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We study the cosmic microwave background (CMB) anisotropy due to spherically symmetric nonlinear

structures in flat universes with dust and a cosmological constant. By modeling a time-evolving spherical

compensated void/lump by Lemaitre-Tolman-Bondi spacetimes, we numerically solve the null geodesic

equations with the Einstein equations. We find that a nonlinear void redshifts the CMB photons that pass

through it regardless of the distance to it. In contrast, a nonlinear lump blueshifts (or redshifts) the CMB

photons if it is located near (or sufficiently far from) us. The present analysis comprehensively covers

previous works based on a thin-shell approximation and a linear/second-order perturbation method and

the effects of shell thickness and full nonlinearity. Our results indicate that, if quasilinear and large ( *

100 Mpc) voids/lumps would exist, they could be observed as cold or hot spots with temperature variance

* 10�5 K in the CMB sky.
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I. INTRODUCTION

Recently, much attention has been paid to generation of
the cosmic microwave background (CMB) anisotropy due
to nonlinear evolution of the gravitational potential, which
is called the Rees-Sciama (RS) effect [1]. It has been
argued that the RS effect only affects the angular power
spectrum of the CMB anisotropy at relatively small angular
scales l * 3000 [2–4]. However, recent discoveries of the
CMB anomalies such as octopole planarity, the alignment
between quadrupole and octopole components [5], anom-
alously cold spots on angular scales �10� [6], and asym-
metry in the large-angle power between opposite
hemispheres [7] hint that the RS effect due to large-scale
structures could affect the CMB anisotropy at large angular
scales as well [8]. This possibility is also indicated by a
recent report that the density of extragalactic radio sources
as projected on the sky is anomalously low in the direction
towards the cold spot in the CMB map [9].

The signatures of the RS effect due to nonlinear voids/
lumps in the Friedmann-Robertson-Walker (FRW) uni-
versewithout a cosmological constant has been extensively
studied in the literature [2–4]. Recently, the RS effect due
to a quasilinear void/lump in the FRW universe with a
cosmological constant has been studied using a thin-shell
approximation [10] and a second-order perturbation
method [11]. In order to check the validity and consistency,
it is of great importance to extend the analyses to solve the
Einstein equations without relying on these
approximations.

In this paper, we study the RS effect due to nonlinear
structures in flat universes with a cosmological constant by

solving the Einstein equations, which incorporate the fully
nonlinear regime. Specifically we model a compensated
spherical nonlinear void/lump by a family of Lemaitre-
Tolman-Bondi (LTB) spacetimes and numerically solve
the null geodesic equations with the Einstein equations.
In Sec. II, we derive the Einstein equations and null geo-
desic equations for LTB spacetimes and model a compen-
sating spherical void/lump with a smooth mass density
profile. In Sec. III, we show some numerical results.
Section IV is dedicated to concluding remarks.

II. MODEL AND BASIC EQUATIONS

A. Lemaitre-Tolman-Bondi spacetime

We consider a spherically symmetric spacetime with
dust and a cosmological constant �, which satisfies
Einstein equations,

G�� þ�g�� ¼ 8�G�u�u�; (2.1)

where g��, G��, G, �, and u� are the Riemannian metric

tensor, the Einstein tensor, the gravitational constant, mat-
ter density, and the fluid 4-velocity, respectively.
In spherical coordinates ðt; r; �; �Þ, the general solutions

are represented by the LTB metric,

ds2 ¼ �dt2 þ R02ðt; rÞ
1þ fðrÞdr

2 þ R2ðt; rÞðd�2 þ sin2�d’2Þ;
(2.2)

which satisfies

_R 2 ¼ 2GmðrÞ
R

þ�

3
R2 þ fðrÞ; (2.3)*nsakai@e.yamagata-u.ac.jp
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� ¼ m0ðrÞ
4�R2R0 ; (2.4)

where 0 � @=@r and _� @=@t. The solutions contain two
arbitrary functions, fðrÞ and mðrÞ. If we give 0�, �ðti; rÞ,
and the local Hubble parameter Hðti; rÞ � _Rðti; rÞ=Rðti; rÞ
at the initial time t ¼ ti, mðrÞ and fðrÞ are determined by
(2.3) and (2.4). The radial coordinate r has a gauge degree
of freedom, r ! r0 ¼ ½any function of r�; here we define r
as the areal radius at the initial time: Rðti; rÞ ¼ r.

OncemðrÞ and fðrÞ are determined, the evolution of R is
given by (2.3) numerically. Differentiating (2.3) with re-
spect to r, we obtain

_R 0 ¼ 1

2 _R

�
2Gm0

R
� 2Gm

R2
R0 þ f0 þ 2

3
�RR0

�
; (2.5)

which is the evolution equation of R0. Although R0 can be
calculated also by the finite difference of R with respect to
r, the integration of (2.5) with respect to t gives better
precision for R0.

B. Modeling a void/lump

Our model is composed of three regions: the outer flat
FRW spacetime (Vþ), the inner negatively/positively
curved FRW spacetime (V�), and the intermediate shell
region (Vs). In V�, the field equations (2.3) and (2.4)
reduce to the Friedmann equations,

H2þ ¼ 8�G�þ
3

þ�

3
; �þ / 1

a3þ
; (2.6)

H2� ¼ 8�G��
3

þ�

3
þ C2

a2�
; �� / 1

a3�
; (2.7)

where C � ffiffiffiffiffiffiffiffiffiffiffiffi
fðr�Þ

p
=r� is a constant. Here r ¼ r� denotes

the boundary between V� and Vs whereas a�, H�, and ��
simply mean the quantities in V�.
The shell Vs is constructed by the LTB spacetime in such

a way thatmðrÞ and fðrÞ are continuous through V�. At the
initial time t ¼ ti, we assume that �� � �þ, Hðti; rÞ ¼
const, and the matter density profile is given by

�ðrÞ ¼

8>>><
>>>:

�� for r � r�;
�c���

16 ð3X5� � 10X3� þ 15X� þ 8Þ þ �� for r� � r � rc;
�þ��c

16 ð3X5þ � 10X3þ þ 15Xþ þ 8Þ þ �c for rc � r � rþ;
�þ for r 	 rþ;

(2.8)

with

rc � rþ þ r�
2

; w � rþ � r�
2

;

X� � r� rc 
 w=2

w=2
:

(2.9)

Among the parameters above, �c � �ðrcÞ cannot be fixed
in advance. It is determined as an eigenvalue of Einstein
equations (2.3) and (2.4) with the boundary condition
mðrþÞ ¼ 4�G�þðaþrþÞ3=3 and fðrþÞ ¼ 0. We define
the times t1, t2, t3, and t4 as follows: the photon passes r ¼
rþ from Vþ to Vs at t ¼ t1, passes r ¼ r� from Vs to V� at
t ¼ t2, passes the other side of r ¼ r� from V� to Vs at
t ¼ t3, and passes the other side of r ¼ rþ from Vs to Vþ at

t ¼ t4. Examples of initial and evolved configurations of
�ðt; rÞ are shown in Fig. 1.
Our model parameters are the background density pa-

rameter, the density contrast, the physical radius in units of
the Hubble radius, and the width of the shell in units of the
comoving radius of the void/lump,

�4 � 8�G�þðt4Þ
H2þðt4Þ

; �4 � ��ðt4Þ
�þðt4Þ � 1;

Rðt4; rcÞHþðt4Þ; w=rc;

(2.10)

at the exit time t4 of the photon. The initial parameters�i,
�i, and rc are obtained by iterative integration of the field
equation (2.3) with (2.10).

FIG. 1. Examples of initial and evolved profiles of �ðt; rÞ. (a) and (b) correspond to a void (� < 0) and a lump (� > 0), respectively.
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C. Temperature anisotropy

The wave 4-vector k� of a photon satisfies the null
geodesic equations,

k� ¼ dx�

d�
; k�k� ¼ 0; (2.11)

dk�

d�
þ ��

�	k�k	 ¼ 0; (2.12)

where � is an affine parameter. In what follows, we only
consider a CMB photon which passes the void/lump center,
r ¼ 0. Then the geodesic equations (2.11) and (2.12) with
the metric (2.2) yield

dt

d�
¼ kt;

dr

d�
¼ kr; k� ¼ k’ ¼ 0; (2.13)

kr ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
R0 kt; 
 � sign

�
dr

dt

�
; (2.14)

dkt

d�
¼ � _grr

2
ðkrÞ2; d

d�
ðgrrkrÞ ¼ g0rr

2
ðkrÞ2;

grr � ðR0Þ2
1þ f

:

(2.15)

For the period t2 < t < t3 in V�, the evolution of kt� and
the crossing time are given by

kt� / 1

a�
;

Z t3

t2

dt

a�
¼ 2

C
ðCr�Þ: (2.16)

For the periods t1 < t < t2 and t3 < t < t4 in Vs we
numerically solve the geodesic equations and the field
equations simultaneously. First, we discretize the radial
coordinate into N elements,

ri ¼ r� þ ði� 1Þ�r; i ¼ 1; . . . ; N;

�r ¼ rþ � r�
N � 1

;
(2.17)

and Rðt; rÞ into RiðtÞ � Rðt; riÞ.
Next, we rewrite the geodesic equations (2.13), (2.14),

and (2.15) and the field equations (2.3) and (2.5) as differ-
ential equations of r,

dt

dr
¼ 
R0ffiffiffiffiffiffiffiffiffiffiffiffi

1þ f
p ; (2.18)

dkt

dr
¼ � 
 _R0ffiffiffiffiffiffiffiffiffiffiffiffi

1þ f
p kt; (2.19)

d

dr
ðgrrkrÞ ¼ g0rr

2
kr; (2.20)

dRi

dr
¼ _Ri

�
dt

dr

�
; (2.21)

dR0
i

dr
¼ _R0

i

�
dt

dr

�
; (2.22)

where _R, _R0, and ðdtdrÞ are given by (2.3), (2.5), and (2.18),

respectively.
Finally, we carry out numerical integration of (2.18),

(2.19), (2.21), and (2.22) using the fourth-order Runge-
Kutta method to obtain the solutions of tðrÞ, ktðrÞ,
RiðtðrÞÞ, and R0

iðtðrÞÞ. To estimate the numerical precision,
we also numerically solve Eq. (2.20) and check how the
solution satisfies (violates) the null condition (2.14).
The energy of a photon passing through the homoge-

neous background without a void/lump is

ktþ / 1

aþ
: (2.23)

Then the temperature fluctuation caused by a void/lump
can be written as

�T

T
¼ kt

ktþ
� 1: (2.24)

III. RESULTS

Figure 2 shows temperature fluctuations of photons
passing through a void/lump for comoving observers at
each r ¼ constant. The amplitude of fluctuations tempo-
rarily increases to j�T=Tj � 10�3, but it finally reduces to
�10�5 at the edge of the shell because the mass of the
void/lump is compensated.
In what follows, we discuss only the values of �T=T

measured by a comoving observer outside a void/lump. For
a void, as Fig. 3(a) indicates, the temperature fluctuation
�T=T is always negative regardless of the values of �4.
For a fixed radius, j�T=Tj decreases as the width w=rc of
the void shell increases. We find that our results are con-
sistent with those for a thin-shell homogeneous void in the
quasilinear regime [10]. To see nonlinear effects, in Figs. 3
(b) and 3(c) we plot �T=T obtained from a linear pertur-
bation analysis, a second-order perturbation analysis, and
our fully nonlinear analysis. We find that higher-order
effects are important and they enhance j�T=Tj for a
void, particularly for large �4.
For a lump, as Fig. 4(a) indicates, the temperature

fluctuation �T=T is positive for low background density,
but it can be negative for high background density. In other
words, lumps at low-z blueshift the CMB photons, whereas
lumps at high-z redshift them. This behavior of �T=T in
the quasilinear regime can be interpreted as follows. First,
let us consider a perturbative case j�4j � 1 for which the
linear integrated Sachs-Wolfe (ISW) effect [12] dominates
�T=T. Then one can show that�T=T vanishes for�4 ¼ 0
(de Sitter) because no matter fluctuation exists, and for
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�4 ¼ 1 (Einstein–de Sitter) because the Newtonian gravi-
tational potential freezes in the Einstein–de Sitter universe.
Therefore,�T=T cannot be a monotonic function of�4 for
0<�4 < 1. In fact, as one can see in Fig. 4(a), the ISW
contribution has a peak as a function of �4 for a fixed �4.
Next, let us consider a quasilinear case 0:1 & j�4j & 1. For
small�4, the nonlinear RS effect is not important because
matter fluctuations are small. However, for large �4, the
nonlinear RS effect dominates the linear ISWeffect, which
vanishes for �4 ¼ 1. Our numerical analysis shows that
the nonlinear RS effect reduces the temperature of the
CMB photons, which reconfirms the previous semianalytic

result for lumps in the Einstein–de Sitter universe [3].
Thus, one can interpret that negative �T=T in the �4 ¼
1 background for a void/lump [in Figs. 3(a)/4(a)] is caused
by the nonlinear RS effect alone. It should also be noted
that our result is consistent with the previous one obtained
from a second-order perturbation analysis for a void/lump
in accelerating universes [11].
Figures 4(b) and 4(c) shows nonlinear effects for a lump:

higher-order effects are still important, but they reduce the
amplitude of �T=T in contrast to the case for a void in
Figs. 3(b) and 3(c).

FIG. 3 (color online). Temperature fluctuations of CMB photons passing through the center of a large void with R4ðrcÞ ¼ 0:1H�1
4 for

a comoving observer outside the void. (a) �T=T as a function of �4 for �4 ¼ �0:3. The dotted line indicated by ‘‘thin shell’’ shows
�T=T for the thin-shell model [10]. (b) and (c) �T=T as a function of ��4 for �4 ¼ 0:24 and for �4 ¼ 0:9, respectively; we put
w=rc ¼ 0:3 for both cases. The dotted lines and the dashed lines represent the values obtained from a linear perturbation analysis, and
a second-order perturbation analysis [11], respectively.

FIG. 2. Temperature fluctuations of photons passing through the center of a large void (a) and a large lump (b) for comoving
observers at each r ¼ constant. The parameters are �4 ¼ 
0:3, �4 ¼ 0:24, R4ðrcÞ ¼ 0:1H�1

4 , and w=rc ¼ 0:1. The subscript 4

denotes quantities at the time t4 when a CMB photon exits the edge of a void/lump. The arrow indicates the traveling direction of a
CMB photon.
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IV. CONCLUDING REMARKS

We have studied the CMB anisotropy caused by spheri-
cally symmetric nonlinear structures in flat universes with
dust and cosmological constants. Specifically, by modeling
a time-evolving spherical compensated void/lump by
Lemaitre-Tolman-Bondi spacetimes, we have solved the
null geodesic equations with the Einstein equations
numerically.

We have found that a nonlinear void redshifts the CMB
photons that pass through it regardless of its location. In
contrast, a compensated nonlinear lump blueshifts (or red-
shifts) the CMB photons if it is located near (or sufficiently
far from) us.

Our result for the temperature anisotropy due to a void is
roughly consistent with the previous one based on a thin-
shell approximation. We have also shown that j�T=Tj
decreases as the shell thickness increases for fixed �.

We have checked that our results are also consistent with
the ones based on a linear/second-order perturbation
method for small j�j. It turned out that nonlinear (higher-
order) effects are important even in the quasilinear regime
j�j * 0:3.
Our results indicate that, if a quasilinear (j�j � 0:3) and

large size (R� 0:1H�1) void/lump could exist, they would
be observed as a cold or hot spot at the level of �T=T �
10�5 in the CMB sky. In such a case fully nonlinear and
relativistic analysis is necessary.
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