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It is nowadays accepted that the universe is undergoing a phase of accelerated expansion as tested by

the Hubble diagram of type Ia supernovae (SNeIa) and several large scale structure observations. Future

SNeIa surveys and other probes will make it possible to better characterize the dynamical state of the

universe, renewing the interest in cosmography which allows a model independent analysis of the

distance-redshift relation. On the other hand, fourth order theories of gravity, also referred to as fðRÞ
gravity, have attracted a lot of interest since they could be able to explain the accelerated expansion

without any dark energy. We show here how it is possible to relate the cosmographic parameters (namely,

the deceleration q0, the jerk j0, the snap s0, and the lerk l0 parameters) to the present-day values of fðRÞ
and its derivatives fðnÞðRÞ ¼ dnf=dRn (with n ¼ 1, 2, 3), thus offering a new tool to constrain such higher

order models. Our analysis thus offers the possibility to relate the model independent results coming from

cosmography to the theoretically motivated assumptions of fðRÞ cosmology.
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I. INTRODUCTION

As soon as astrophysicists realized that type Ia super-
novae (SNeIa) were standard candles, it appeared evident
that their high luminosity should make it possible to build a
Hubble diagram, i.e. a plot of the distance-redshift relation,
over some cosmologically interesting distance ranges.
Motivated by this attractive consideration, two indepen-
dent teams started SNeIa surveys leading to the unexpected
discovery that the universe expansion is speeding up rather
than decelerating [1]. This surprising result has now been
strengthened by more recent data coming from SNeIa
surveys [2–7], large scale structure [8], and the cosmic
microwave background (CMBR) anisotropy spectrum [9–
11]. This large data set coherently points toward the picture
of a spatially flat universe undergoing an accelerated ex-
pansion driven by a dominant negative pressure fluid,
typically referred to as dark energy [12].

While there is a wide consensus on the above scenario
depicted by such good quality data, there is a similarly
wide range of contrasting proposals to solve the dark
energy puzzle. Surprisingly, the simplest explanation,
namely, the cosmological constant � [13], is also the
best one from a statistical point of view [14].
Unfortunately, the well-known coincidence and 120 orders
of magnitude problems render � a rather unattractive
solution from a theoretical point of view. Inspired by the
analogy with inflation, a scalar field �, dubbed quintes-
sence [15], has then been proposed to give a dynamical �
term in order to both fit the data and avoid the above
problems. However, such models are still plagued by diffi-

culties on their own, such as the almost complete freedom
in the choice of the scalar field potential and the fine-tuning
of the initial conditions. Needless to say, a plethora of
alternative models are now on the market, all sharing the
main property of being in agreement with observations, but
relying on completely different physics.
Notwithstanding their differences, all the dark energy

based theories assume that the observed acceleration is the
outcome of the action of an up to now undetected ingre-
dient to be added to the cosmic pie. In terms of the Einstein
equations, G�� ¼ �T��, such models are simply modify-

ing the right-hand side, including in the stress-energy
tensor something more than the usual matter and radiation
components.
As a radically different approach, one can also try to

leave unchanged the source side, and rather modify the
left-hand side. In a sense, one is therefore interpreting
cosmic speedup as a first signal of the breakdown of the
laws of physics as described by the standard general rela-
tivity (GR). Since this theory has been experimentally
tested only up to the Solar System scale, there is no a
priori theoretical motivation to extend its validity to extra-
ordinarily larger scales such as the cosmological ones (e.g.
the last scattering surface). Extending GR, still retaining its
positive results, opens the way for a large class of alter-
native theories of gravity ranging from extra dimensions
[16] to nonminimally coupled scalar fields [17,18]. In
particular, we will be interested here in fourth order theo-
ries [19,20] based on replacing the scalar curvature R in the
Hilbert-Einstein action with a generic analytic function
fðRÞ which should be reconstructed starting from data
and physically motivated issues. Also referred to as fðRÞ
gravity, these models have been shown to be able to both fit
the cosmological data and evade the Solar System con-
straints in several physically interesting cases [21–25].
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It is worth noting that both dark energy models and
modified gravity theories have been shown to be in agree-
ment with the data. As a consequence, unless higher pre-
cision probes of the expansion rate and the growth of
structure will be available, these two rival approaches
could not be discriminated. This confusion about the theo-
retical background suggests that a more conservative ap-
proach to the problem of cosmic acceleration, relying on as
few model dependent quantities as possible, is welcome. A
possible solution could be to come back to the cosmogra-
phy [26] rather than finding solutions of the Friedmann
equations and testing them. Being only related to the
derivatives of the scale factor, the cosmographic parame-
ters make it possible to fit the data on the distance-redshift
relation without any a priori assumption on the underlying
cosmological model: in this case, the only assumption is
that the metric is the Robertson-Walker one (and hence
does not rely on the solution of cosmic equations). Almost
a century after Hubble discovery of the expansion of the
universe, we can now extend cosmography beyond the
search for the value of the Hubble constant. The SNeIa
Hubble diagram extends up to z ¼ 1:7, thus invoking the
need for, at least, a fifth order Taylor expansion of the scale
factor in order to give a reliable approximation of the
distance-redshift relation. As a consequence, it could be,
in principle, possible to estimate up to five cosmographic
parameters, although the still too small data set available
does not allow one to get a precise and realistic determi-
nation of all of them.

Once these quantities have been determined, one could
use them to put constraints on the models. In a sense, we
are reversing the usual approach consisting in deriving the
cosmographic parameters as a sort of by-product of an
assumed theory. Here, we follow the other way around,
expressing the model characterizing quantities as a func-
tion of the cosmographic parameters. Such a program is
particularly suited for the study of fourth order theories of
gravity. As is well known, the mathematical difficulties
entering the solution of fourth order field equations make it
quite problematic to find analytical expressions for the
scale factor and hence predict the values of the cosmo-
graphic parameters. A key role in fðRÞ gravity is played by
the choice of the fðRÞ function. Under quite general hy-
potheses, we will derive useful relations among the cosmo-
graphic parameters and the present-day value of

fðnÞðRÞ ¼ dnf=dRn, with n ¼ 0; . . . ; 3, whatever fðRÞ is.1
Once the cosmographic parameters are determined, this
method will allow us to investigate the cosmography of
fðRÞ theories.

The layout of the paper is as follows. Sections II and III
are devoted to introducing the basic notions of the cosmo-

graphic parameters and fðRÞ gravity, respectively, summa-
rizing the main formulas we will use later. Section IV
contains the main result of the paper, demonstrating how
the fðRÞ derivatives can be related to the cosmographic
parameters. Since the latter are not well determined today,
we will discuss, in Sec. V, how these formulas can be
adapted to a different parametrization relying on express-
ing the cosmographic parameters in terms of a phenome-
nological assumption for the dark energy equation of state
(EoS). Section VI illustrates a possible application of the
relation among fðRÞ derivatives and cosmographic pa-
rameters showing how one can constrain the parameters
of a given fðRÞ model. Since future data will likely deter-
mine with a sufficient precision at least the first two cosmo-
graphic parameters, it is worth estimating how this will
impact the determination of the fðRÞ quantities, which is
the argument of Sec. VII. We then summarize and con-
clude in Sec. VIII.

II. COSMOGRAPHIC PARAMETERS

Standard candles (such as SNeIa and, to a limited extent,
gamma ray bursts) are ideal tools in modern cosmology
since they make it possible to reconstruct the Hubble
diagram, i.e. the redshift-distance relation up to high red-
shift values. It is then customary to assume a parametrized
model (such as the concordance �CDM one, or any other
kind of dark energy scenario) and contrast it against the
data to check its viability and constrain its characterizing
parameters. As it is clear, such an approach is model
dependent so some doubts always remain on the validity
of the constraints on derived quantities such as the present-
day values of the deceleration parameter and the age of the
universe. In order to overcome such a problem, one may
resort to cosmography, i.e. expanding the scale factor in
Taylor series with respect to the cosmic time [26]. Such an
expansion leads to a distance-redshift relation which only
relies on the assumption of the Robertson-Walker metric,
thus being fully model independent since it does not de-
pend on the particular form of the solution of cosmic
equations. To this aim, it is convenient to introduce the
following functions [26,28]:

H ¼ 1

a

da

dt
; q ¼ � 1

a

d2a

dt2
H�2; j ¼ 1

a

d3a

dt3
H�3;

s ¼ 1

a

d4a

dt4
H�4; l ¼ 1

a

d5a

dt5
H�5; (1)

which are usually referred to as the Hubble, deceleration,
jerk, snap, and lerk parameters [29], respectively.2 Their
present-day values (which we will denote with a subscript
0) may be used to characterize the evolutionary status of
the Universe. For instance, q0 < 0 denotes an accelerated

1As an important remark, we stress that our derivation will rely
on the metric formulation of fðRÞ theories, while we refer the
reader to [27] for a similar work in the Palatini approach.

2Note that the use of the jerk parameter to discriminate
between different models was also proposed in [30] in the
context of the statefinder parametrization.
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expansion, while j0 allows one to discriminate among
different accelerating models.

It is then a matter of algebra to demonstrate the follow-
ing useful relations:

_H ¼ �H2ð1þ qÞ; (2)

€H ¼ H3ðjþ 3qþ 2Þ; (3)

H
::: ¼ H4½s� 4j� 3qðqþ 4Þ � 6�; (4)

d4H=dt4 ¼ H5½l� 5sþ 10ðqþ 2Þjþ 30ðqþ 2Þqþ 24�;
(5)

where a dot denotes the derivative with respect to the
cosmic time t. Equations (2)–(5) make it possible to relate
the derivative of the Hubble parameter to the other cosmo-
graphic parameters. The distance-redshift relation may
then be obtained starting from the Taylor expansion of
aðtÞ along the lines described in [28,31,32]. The result
for the fifth order is reported in the Appendix.

It is worth stressing that the definition of the cosmo-
graphic parameters only relies on the assumption of the
Robertson-Walker metric. As such, it is however difficult
to state a priori to what extent the fifth order expansion
provides an accurate enough description of the quantities
of interest. Actually, the number of cosmographic parame-
ters to be used depends on the problem one is interested in.
As we will see later, here we are concerned only with the
SNeIa Hubble diagram so we have to check that the
distance modulus �cpðzÞ obtained using the fifth order

expansion of the scale factor is the same (within the errors)
as the one �DEðzÞ of the underlying physical model. Since
such a model is of course unknown, one can adopt a
phenomenological parametrization for the dark energy3

EoS and look at the percentage deviation ��=�DE as a
function of the EoS parameters. We have carried out such
an exercise using the Chevallier-Polarski-Linder (CPL)
model introduced later, and verified that ��=�DE is an
increasing function of z (as expected), but still remains
smaller than 2% up to z� 2 over a wide range of the CPL
parameter space. On the other hand, halting the Taylor
expansion to a lower order may introduce significant de-
viation for z > 1 that can potentially bias the analysis if the
measurement errors are as small as those predicted for
future SNeIa surveys. We are therefore confident that our
fifth order expansion is both sufficient to get an accurate
distance modulus over the redshift range probed by SNeIa
and necessary to avoid dangerous biases.

III. fðRÞ GRAVITY

Much interest has been recently devoted to a form of
quintessence induced by curvature according to which the
present universe is filled by pressureless dust matter only
and the acceleration is the result of the modified Friedmann
equations obtained by replacing the Ricci curvature scalar
R with a generic function fðRÞ in the gravity action
[19,20]. Under the assumption of a flat universe, the
Hubble parameter is therefore determined by4

H2 ¼ 1

3

�
�m

f0ðRÞ þ �curv

�
(6)

where the prime denotes the derivative with respect to R
and �curv is the energy density of an effective curvature
fluid5:

�curv ¼ 1

f0ðRÞ
�
1

2
½fðRÞ � Rf0ðRÞ� � 3H _Rf00ðRÞ

�
: (7)

Assuming there is no interaction between the matter and
the curvature terms (we are in the so-called Jordan frame),
the matter continuity equation gives the usual scaling
�M ¼ �Mðt ¼ t0Þa�3 ¼ 3H2

0�Ma
�3, with �M the

present-day matter density parameter. The continuity equa-
tion for �curv then reads

_� curv þ 3Hð1þ wcurvÞ�curv ¼ 3H2
0�M

_Rf00ðRÞ
½f0ðRÞ�2 a�3 (8)

with

wcurv ¼ �1þ €Rf00ðRÞ þ _R½ _Rf000ðRÞ �Hf00ðRÞ�
½fðRÞ � Rf0ðRÞ�=2� 3H _Rf00ðRÞ (9)

the barotropic factor of the curvature fluid. It is worth
noticing that the curvature fluid quantities �curv and wcurv

only depend on fðRÞ and its derivatives up to the third
order. As a consequence, considering only their present-
day values (which may be naively obtained by replacing R
with R0 everywhere), two fðRÞ theories sharing the same
values of fðR0Þ, f0ðR0Þ, f00ðR0Þ, f000ðR0Þ will be degenerate
from this point of view.6

Combining Eq. (8) with Eq. (6), one finally gets the
following master equation for the Hubble parameter:

3Note that one can always use a phenomenological dark
energy model to get a reliable estimate of the scale factor
evolution even if the correct model is a fourth order one.

4We use here natural units such that 8�G ¼ 1.
5Note that the name curvature fluid does not refer to the

Friedmann-Robertson-Walker curvature parameter k, but only
takes into account that such a term is a geometrical one related to
the scalar curvature R.

6One can argue that this is not strictly true since different fðRÞ
theories will lead to different expansion rates HðtÞ and hence
different present-day values of R and its derivatives. However, it
is likely that two fðRÞ functions that exactly match each other up
to the third order derivative today will give rise to the same HðtÞ
at least for t ’ t0 so that ðR0; _R0; €R0Þ will be almost the same.
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_H ¼ � 1

2f0ðRÞ f3H
2
0�Ma

�3 þ €Rf00ðRÞ
þ _R½ _Rf000ðRÞ �Hf00ðRÞ�g: (10)

Expressing the scalar curvature R as a function of the
Hubble parameter as

R ¼ �6ð _H þ 2H2Þ (11)

and inserting the result into Eq. (10), one ends with a fourth
order nonlinear differential equation for the scale factor
aðtÞ that cannot be easily solved also for the simplest cases
[for instance, fðRÞ / Rn]. Moreover, although technically
feasible, a numerical solution of Eq. (10) is plagued by the
large uncertainties on the boundary conditions (i.e., the
present-day values of the scale factor and its derivatives up
to the third order) that have to be set to find the scale factor.

IV. fðRÞ DERIVATIVES VS COSMOGRAPHY

Motivated by these difficulties, we approach now the
problem from a different viewpoint. Rather than choosing a
parametrized expression for fðRÞ and then numerically
solving Eq. (10) for given values of the boundary condi-
tions, we try to relate the present-day values of its deriva-
tives to the cosmographic parameters ðq0; j0; s0; l0Þ so that
constraining them in a model independent way gives us a
hint for what kind of fðRÞ theory could be able to fit the
observed Hubble diagram.7

As a preliminary step, it is worth considering again the
constraint equation (11). Differentiating with respect to t,
we easily get the following relations:

_R ¼ �6ð €H þ 4H _HÞ; €R ¼ �6ðH::: þ 4H €H þ 4 _H2Þ;
R
:::¼ �6ðd4H=dt4 þ 4H

:::
H þ 12 _H €HÞ: (12)

Evaluating these at the present time and using Eqs. (2)–(5),
one finally gets

R0 ¼ �6H2
0ð1� q0Þ; (13)

_R 0 ¼ �6H3
0ðj0 � q0 � 2Þ; (14)

€R 0 ¼ �6H4
0ðs0 þ q20 þ 8q0 þ 6Þ; (15)

R
:::
0 ¼ �6H5

0½l0 � s0 þ 2ðq0 þ 4Þj0
� 6ð3q0 þ 8Þq0 � 24�; (16)

which will turn out to be useful in the following.

Let us now come back to the expansion rate and master
equations (6) and (10). Since they have to hold along the
full evolutionary history of the universe, they naively hold
also at present. As a consequence, we may evaluate them in
t ¼ t0, thus easily obtaining

H2
0 ¼

H2
0�M

f0ðR0Þ þ
fðR0Þ � R0f

0ðR0Þ � 6H0
_R0f

00ðR0Þ
6f0ðR0Þ ;

(17)

� _H0 ¼ 3H2
0�M

2f0ðR0Þ þ
_R2
0f

000ðR0Þ þ ð €R0 �H0
_R0Þf00ðR0Þ

2f0ðR0Þ :

(18)

Using Eqs. (2)–(5) and (13)–(16), we can rearrange
Eqs. (17) and (18) as two relations among the Hubble
constant H0 and the cosmographic parameters ðq0; j0; s0Þ,
on one hand, and the present-day values of fðRÞ and its
derivatives up to third order. However, two further relations
are needed in order to close the system and determine the
four unknown quantities fðR0Þ, f0ðR0Þ, f00ðR0Þ, f000ðR0Þ.
The first one may be easily obtained by noting that, insert-
ing back the physical units, the rate expansion equation
reads

H2 ¼ 8�G

3f0ðRÞ ½�m þ �curvf
0ðRÞ�

which clearly shows that, in fðRÞ gravity, the Newtonian
gravitational constant G is replaced by an effective (time
dependent) Geff ¼ G=f0ðRÞ. On the other hand, it is rea-
sonable to assume that the present-day value of Geff is the
same as the Newtonian one, so we get the simple constraint

Geffðz ¼ 0Þ ¼ G ! f0ðR0Þ ¼ 1: (19)

In order to get the fourth relation we need to close the
system, we first differentiate both sides of Eq. (10) with
respect to t. We thus get

€H ¼ _R2f000ðRÞ þ ð €R�H _RÞf00ðRÞ þ 3H2
0�Ma

�3

2½ _Rf00ðRÞ��1½f0ðRÞ�2

� _R3fðivÞðRÞ þ ð3 _R €R�H _R2Þf000ðRÞ
2f0ðRÞ

� ðR:::�H €Rþ _H _RÞf00ðRÞ � 9H2
0�MHa�3

2f0ðRÞ ; (20)

with fðivÞðRÞ ¼ d4f=dR4. Let us now suppose that fðRÞ
may be well approximated by its third order Taylor expan-
sion in R� R0, i.e. we set

fðRÞ ¼ fðR0Þ þ f0ðR0ÞðR� R0Þ þ 1
2f

00ðR0ÞðR� R0Þ2
þ 1

6f
000ðR0ÞðR� R0Þ3: (21)

In such an approximation, fðnÞðRÞ ¼ dnf=Rn ¼ 0 for n �
4 so that naively fðivÞðR0Þ ¼ 0. Evaluating then Eq. (20) at
present, we get

7Note that a similar analysis, but in the context of the energy
conditions in fðRÞ, has been presented in [33]. However, in that
paper, the author gives an expression for fðRÞ and then computes
the snap parameter to be compared to the observed one. On the
contrary, our analysis does not depend on any assumed func-
tional expression for fðRÞ.
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€H 0 ¼
_R2
0f

000ðR0Þ þ ð €R0 �H0
_R0Þf00ðR0Þ þ 3H2

0�M

2½ _R0f
00ðR0Þ��1½f0ðR0Þ�2

� ð3 _R0
€R0 �H _R2

0Þf000ðR0Þ
2f0ðR0Þ

� ðR:::0 �H0
€R0 þ _H0

_R0Þf00ðR0Þ � 9H3
0�M

2f0ðR0Þ : (22)

We can now schematically proceed as follows. Evaluate
Eqs. (2)–(5) at z ¼ 0 and plug these relations into the left-
hand sides of Eqs. (17), (18), and (22). Insert Eqs. (13)–
(16) into the right-hand sides of these same equations so
that only the cosmographic parameters ðq0; j0; s0; l0Þ and
the fðRÞ related quantities enter both sides of these rela-
tions. Finally, solve them under the constraint (19) with
respect to the present-day values of fðRÞ and its derivatives
up to the third order. After some algebra, one ends up with
the desired result:

fðR0Þ
6H2

0

¼ �P 0ðq0; j0; s0; l0Þ�M þQ0ðq0; j0; s0; l0Þ
Rðq0; j0; s0; l0Þ ;

(23)

f0ðR0Þ ¼ 1; (24)

f00ðR0Þ
ð6H2

0Þ�1 ¼ �P 2ðq0; j0; s0Þ�M þQ2ðq0; j0; s0Þ
Rðq0; j0; s0; l0Þ ; (25)

f000ðR0Þ
ð6H2

0Þ�2 ¼ �P 3ðq0; j0; s0; l0Þ�M þQ3ðq0; j0; s0; l0Þ
ðj0 � q0 � 2ÞRðq0; j0; s0; l0Þ ;

(26)

where we have defined

P 0 ¼ ðj0 � q0 � 2Þl0 � ð3s0 þ 7j0 þ 6q20 þ 41q0

þ 22Þs0 � ½ð3q0 þ 16Þj0 þ 20q20 þ 64q0 þ 12�j0
� ð3q40 þ 25q30 þ 96q20 þ 72q0 þ 20Þ; (27)

Q0 ¼ ðq20 � j0q0 þ 2q0Þl0 þ ½3q0s0 þ ð4q0 þ 6Þj0
þ 6q30 þ 44q20 þ 22q0 � 12�s0
þ ½2j20 þ ð3q20 þ 10q0 � 6Þj0 þ 17q30 þ 52q20

þ 54q0 þ 36�j0 þ 3q50 þ 28q40 þ 118q30 þ 72q20

� 76q0 � 64; (28)

P 2 ¼ 9s0 þ 6j0 þ 9q20 þ 66q0 þ 42; (29)

Q2 ¼ �f6ðq0 þ 1Þs0 þ ½2j0 � 2ð1� q0Þ�j0
þ 6q30 þ 50q20 þ 74q0 þ 32g; (30)

P 3 ¼ 3l0 þ 3s0 � 9ðq0 þ 4Þj0 � ð45q20 þ 78q0 þ 12Þ;
(31)

Q 3 ¼ �f2ð1þ q0Þl0 þ 2ðj0 þ q0Þs0 � ð2j0 þ 4q20

þ 12q0 þ 6Þj0 � ð30q30 þ 84q20 þ 78q0 þ 24Þg;
(32)

R ¼ ðj0 � q0 � 2Þl0 � ð3s0 � 2j0 þ 6q20 þ 50q0

þ 40Þs0 þ ½ð3q0 þ 10Þj0 þ 11q20 þ 4q0 � 18�j0
� ð3q40 þ 34q30 þ 246q0 þ 104Þ: (33)

Equations (23)–(33) make it possible to estimate the
present-day values of fðRÞ and its first three derivatives
as a function of the Hubble constant H0 and the cosmo-
graphic parameters ðq0; j0; s0; l0Þ provided a value for the
matter density parameter �M is given. This is a somewhat
problematic point. Indeed, while the cosmographic pa-
rameters may be estimated in a model independent way,
the fiducial value for�M is usually the outcome of fitting a
given data set in the framework of an assumed dark energy
scenario. However, it is worth noting that different models
all converge towards the concordance value �M ’ 0:25
which is also in agreement with astrophysical (model
independent) estimates from the gas mass fraction in gal-
axy clusters. On the other hand, it has been proposed that
fðRÞ theories may avoid the need for dark matter in gal-
axies and galaxy clusters [34]. In such a case, the total
matter content of the universe is essentially equal to the
baryonic one. According to the primordial element abun-
dance and the standard big bang nucleosynthesis scenario,
we therefore get �M ’ !b=h

2 with !b ¼ �bh
2 ’ 0:0214

[35] and h the Hubble constant in units of 100 km/s/Mpc.
Setting h ¼ 0:72 in agreement with the results of the HST
Key project [36], we thus get �M ¼ 0:041 for a baryons-
only universe. We will therefore consider in the following
both cases when numerical estimates are needed.
It is worth noticing that H0 only plays the role of a

scaling parameter, giving the correct physical dimensions
to fðRÞ and its derivatives. As such, it is not surprising that
we need four cosmographic parameters, namely,
ðq0; j0; s0; l0Þ, to fix the four fðRÞ related quantities
fðR0Þ, f0ðR0Þ, f00ðR0Þ, f000ðR0Þ. It is also worth stressing
that Eqs. (23)–(26) are linear in the fðRÞ quantities so that
ðq0; j0; s0; l0Þ uniquely determine the former ones. On the
contrary, inverting them to get the cosmographic parame-
ters as a function of the fðRÞ ones, we do not get linear
relations. Indeed, the field equations in fðRÞ theories are
nonlinear fourth order differential equations in the scale
factor aðtÞ so that fixing the derivatives of fðRÞ up to third
order makes it possible to find a class of solutions, not a
single one. Each one of these solutions will be character-
ized by a different set of cosmographic parameters thus
explaining why the inversion of Eqs. (23)–(33) does not
give a unique result for ðq0; j0; s0; l0Þ.
As a final comment, we reconsider the underlying as-

sumptions leading to the above derived relations. While
Eqs. (17) and (18) are exact relations deriving from a
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rigorous application of the field equations, Eq. (22) heavily
relies on having approximated fðRÞ with its third order
Taylor expansion (21). If this assumption fails, the system
should not be closed since a fifth unknown parameter

enters the game, namely, fðivÞðR0Þ. Actually, replacing
fðRÞwith its Taylor expansion is not possible for all classes
of fðRÞ theories. As such, the above results only hold in
those cases where such an expansion is possible. Moreover,
by truncating the expansion to the third order, we are
implicitly assuming that higher order terms are negligible
over the redshift range probed by the data. That is to say,
we are assuming that

fðnÞðR0ÞðR� R0Þn �
X3
m¼0

fðmÞðR0Þ
m!

ðR� R0Þm for n � 4

(34)

over the redshift range probed by the data. Checking the
validity of this assumption is not possible without explic-
itly solving the field equations, but we can guess an order
of magnitude estimate considering that, for all viable mod-
els, the background dynamics should not differ too much
from the �CDM one at least up to z ’ 2. Using then the
expression of HðzÞ for the �CDM model, it is easy to see
that R=R0 is a quickly increasing function of the redshift
so, in order for Eq. (34) to hold, we have to assume that

fðnÞðR0Þ � f000ðR0Þ for n � 4. This condition is easier to
check for many analytical fðRÞ models.

Once such a relation is verified, we still have to worry
about Eq. (19) relying on the assumption that the cosmo-
logical gravitational constant is exactly the same as the
local one, i.e. the same as the one measured in the labora-
tory and entering the Newtonian Poisson equation.
Actually, the cosmological gravitational constant should
be identified with the one entering the perturbation equa-
tions for a given fðRÞ model. Comparing the Newtonian
GN and this cosmologicalG, one could infer whether theG
entering the background equations is the same as the local
one. Although this is outside our aims here, we can, in a
first reasonable approximation, argue that the condition
Glocal ¼ Gcosmo could be replaced by the weaker relation
Geffðz ¼ 0Þ ¼ Gð1þ "Þ with " � 1. In this case, we
should repeat the derivation of Eqs. (23)–(26) now using
the condition f0ðR0Þ ¼ ð1þ "Þ�1. Taylor expanding the
results in " to the first order and comparing with the above
derived equations, we can estimate the error induced by our
assumption " ¼ 0. The resulting expressions are too
lengthy to be reported and depend in a complicated way
on the values of the matter density parameter �M, the
cosmographic parameters ðq0; j0; s0; l0Þ, and ". However,
we have numerically checked that the errors induced on
fðR0Þ, f00ðR0Þ, f000ðR0Þ are much lower than 10% for a value
of " as high as an unrealistic "� 0:1. We are therefore
confident that our results are reliable also under such
conditions.

V. fðRÞ DERIVATIVES AND CPL MODELS

In order to determine the present-day values of fðRÞ and
its first three derivatives, one should first estimate the
cosmographic parameters from the observational data in
a model independent way. Unfortunately, even in the
present era of precision cosmology, such a program is still
too ambitious to give useful constraints on the fðRÞ de-
rivatives, as we will see later. On the other hand, the
cosmographic parameters may also be expressed in terms
of the dark energy density and EoS parameters, so we can
work out the present-day values of fðRÞ and its derivatives,
giving the same ðq0; j0; s0; l0Þ of the given dark energy
model. To this aim, it is convenient to adopt a parametrized
expression for the dark energy EoS in order to reduce the
dependence of the results on any underlying theoretical
scenario. Following the prescription of the Dark Energy
Task Force [37], we will use the CPL parametrization for
the EoS setting [38]:

w ¼ w0 þ wað1� aÞ ¼ w0 þ wazð1þ zÞ�1 (35)

so that, in a flat universe filled by dust matter and dark
energy, the dimensionless Hubble parameter EðzÞ ¼ H=H0

reads

E2ðzÞ ¼ �Mð1þ zÞ3 þ�Xð1þ zÞ3ð1þw0þwaÞe�ð3waz=1þzÞ

(36)

with�X ¼ 1��M because of the flatness assumption. In
order to determine the cosmographic parameters for such a
model, we avoid integrating HðzÞ to get aðtÞ by noting that
d=dt ¼ �ð1þ zÞHðzÞd=dz. We can use such a relation to

evaluate ð _H; €H;H
:::
; d4H=dt4Þ and then solve Eqs. (2)–(5),

evaluated in z ¼ 0, with respect to the parameters of
interest. Some algebra finally gives

q0 ¼ 1
2 þ 3

2ð1��MÞw0; (37)

j0 ¼ 1þ 3
2ð1��MÞ½3w0ð1þ w0Þ þ wa�; (38)

s0 ¼ � 7

2
� 33

4
ð1��MÞwa � 9

4
ð1��MÞ

� ½9þ ð7��MÞwa�w0 � 9

4
ð1��MÞ

� ð16� 3�MÞw2
0 �

27

4
ð1��MÞð3��MÞw3

0; (39)
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l0 ¼ 35

2
þ 1��M

4
½213þ ð7��MÞwa�wa þ 1��MÞ

4

� ½489þ 9ð82� 21�MÞwa�w0 þ 9

2
ð1��MÞ

�
�
67� 21�M þ 3

2
ð23� 11�MÞwa

�
w2

0

þ 27

4
ð1��MÞð47� 24�MÞw3

0

þ 81

2
ð1��MÞð3� 2�MÞw4

0: (40)

Inserting Eqs. (37)–(40) into Eqs. (23)–(33), we get
lengthy expressions (which we do not report here) giving
the present-day values of fðRÞ and its first three derivatives
as a function of ð�M;w0; waÞ. It is worth noting that the
fðRÞ model thus obtained is not dynamically equivalent to
the starting CPL one. Indeed, the two models have the
same cosmographic parameters only today. As such, for
instance, the scale factor is the same between the two
theories only over the time period during which the fifth
order Taylor expansion is a good approximation of the
actual aðtÞ. It is also worth stressing that such a procedure
does not select a unique fðRÞ model, but rather a class of
fourth order theories all sharing the same third order Taylor
expansion of fðRÞ.

A. The �CDM case

With these caveats in mind, it is worth considering first
the �CDM model which is obtained by setting ðw0; waÞ ¼
ð�1; 0Þ in the above expressions, thus giving8>>>><

>>>>:

q0 ¼ 1
2 � 3

2��

j0 ¼ 1

s0 ¼ 1� 9
2�M

l0 ¼ 1þ 3�M þ 27
2 �

2
M:

(41)

When inserted into the expressions for the fðRÞ quantities,
these relations give the remarkable result

fðR0Þ ¼ R0 þ 2�; f00ðR0Þ ¼ f000ðR0Þ ¼ 0; (42)

so we obviously conclude that the only fðRÞ theory having
exactly the same cosmographic parameters as the �CDM
model is just fðRÞ / R, i.e. GR. It is worth noticing that
such a result comes out as a consequence of the values of
ðq0; j0Þ in the �CDM model. Indeed, should we have left
ðs0; l0Þ undetermined and only fixed ðq0; j0Þ to the values in
(41), we should have got the same result in (42). Since the
�CDM model fits well a large set of different data, we do
expect that the actual values of ðq0; j0; s0; l0Þ do not differ
too much from the �CDM ones. Therefore, we plug into
Eqs. (23)–(33) the following expressions:

q0 ¼ q�0 � ð1þ "qÞ; j0 ¼ j�0 � ð1þ "jÞ;
s0 ¼ s�0 � ð1þ "sÞ; l0 ¼ l�0 � ð1þ "lÞ;

with ðq�0 ; j�0 ; s�0 ; l�0 Þ given by Eqs. (41) and ð"q; "j; "s; "lÞ
quantifying the deviations from the�CDM values allowed
by the data. A numerical estimate of these quantities may
be obtained, e.g., from a Markov chain analysis, but this is
outside our aims. Since here we are interested in a theo-
retical examination, we prefer to consider an idealized
situation where the four quantities above all share the
same value " � 1. In such a case, we can easily investigate
how much the corresponding fðRÞ deviates from the GR
one considering the two ratios f00ðR0Þ=fðR0Þ and
f000ðR0Þ=fðR0Þ. Inserting the above expressions for the
cosmographic parameters into the exact (not reported)
formulas for fðR0Þ, f00ðR0Þ, and f000ðR0Þ, taking their ratios,
and then expanding to first order in ", we finally get

�20 ¼ 64� 6�Mð9�M þ 8Þ
½3ð9�M þ 74Þ�M � 556��2

M þ 16
� "

27
; (43)

�30 ¼ 6½ð81�M � 110Þ�M þ 40��M þ 16

½3ð9�M þ 74Þ�M � 556��2
M þ 16

� "

243�2
M

;

(44)

having defined �20 ¼ f00ðR0Þ=fðR0Þ �H4
0 and �30 ¼

f000ðR0Þ=fðR0Þ �H6
0 which, being dimensionless quanti-

ties, are more suited to estimate the order of magnitudes
of the different terms. Inserting our fiducial values for�M,
we get �

�20 ’ 0:15� " for �M ¼ 0:041

�20 ’ �0:12� " for �M ¼ 0:250;

�
�30 ’ 4� " for �M ¼ 0:041

�30 ’ �0:18� " for �M ¼ 0:250:

For values of " up to 0.1, the above relations show that the
second and third derivatives are at most 2 orders of mag-
nitude smaller than the zeroth order term fðR0Þ. Actually,
the values of �30 for a baryon-only model (first row) seem
to argue in favor of a larger importance of the third order
term. However, we have numerically checked that the
above relations approximate very well the exact expres-
sions up to " ’ 0:1 with an accuracy depending on the
value of �M, being smaller for smaller matter density
parameters. Using the exact expressions for �20 and �30,
our conclusion on the negligible effect of the second and
third order derivatives is significantly strengthened.
Such a result holds under the hypothesis that the nar-

rower the constraints on the validity of the �CDM model,
the smaller the deviations of the cosmographic parameters
from the �CDM ones. It is possible to show that this is
indeed the case for the CPL parametrization we are con-
sidering. On the other hand, we have also assumed that the
deviations ð"q; "j; "s; "lÞ take the same values. Although

such a hypothesis is somewhat ad hoc, we argue that the
main results are not affected by giving it away. Indeed,
although different from each other, we can still assume that

COSMOGRAPHY OF fðRÞ GRAVITY PHYSICAL REVIEW D 78, 063504 (2008)

063504-7



all of them are very small so Taylor expanding to the first
order should lead to additional terms into Eqs. (43) and
(44) which are likely of the same order of magnitude.
Therefore, if the observations confirm that the values of
the cosmographic parameters agree within �10% with
those predicted for the �CDM model, we must conclude
that the deviations of fðRÞ from the GR case, fðRÞ / R,
should be vanishingly small.

It is worth stressing, however, that such a conclusion
only holds for those fðRÞ models satisfying the constraint
(34). It is indeed possible to work out a model having

fðR0Þ / R0, f
00ðR0Þ ¼ f000ðR0Þ ¼ 0, but fðnÞðR0Þ � 0 for

some n. For such a (somewhat ad hoc) model, Eq. (34) is
clearly not satisfied so the cosmographic parameters have
to be evaluated from the solution of the field equations. For
such a model, the conclusion above does not hold so one
cannot exclude that the resulting ðq0; j0; s0; l0Þ are within
10% of the �CDM ones.

B. The constant EoS model

Let us now take into account the condition w ¼ �1, but
still retain wa ¼ 0, thus obtaining the so-called quiessence
models. In such a case, some problems arise because both
the terms ðj0 � q0 � 2Þ and R may vanish for some com-
binations of the two model parameters ð�M;w0Þ. For in-
stance, we find that j0 � q0 � 2 ¼ 0 for w0 ¼ ðw1; w2Þ
with

w1 ¼ 1

1��M þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1��MÞð4��MÞ
p ;

w2 ¼ � 1

3

�
1þ 4��Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1��MÞð4��MÞ

p �
:

On the other hand, the equationRð�M;w0Þ ¼ 0may have
different real roots forw depending on the adopted value of
�M. Denoting collectively with wnull the values of w0 that,
for a given�M, make ðj0 � q0 � 2ÞRð�M;w0Þ, taking the
null value, we individuate a set of quiessence models
whose cosmographic parameters give rise to divergent
values of fðR0Þ, f00ðR0Þ, and f000ðR0Þ. For such models,
fðRÞ is clearly not defined so we have to exclude these
cases from further consideration. We only note that it is
still possible to work out a fðRÞ theory reproducing the
same background dynamics of such models, but a different
route has to be used.

Since both q0 and j0 now deviate from the �CDM
values, it is not surprising that both f00ðR0Þ and f000ðR0Þ
take finite non-null values. However, it is more interesting
to study the two quantities �20 and �30 defined above to
investigate the deviations of fðRÞ from the GR case. These
are plotted in Figs. 1 and 2 for the two fiducial�M values.
Note that the range of w0 in these plots has been chosen in
order to avoid divergences, but the lessons we will draw
also hold for the other w0 values.

As a general comment, it is clear that, even in this case,
f00ðR0Þ and f000ðR0Þ are from 2 to 3 orders of magnitude
smaller than the zeroth order term fðR0Þ. Such a result
could yet be guessed from the previous discussion for the
�CDM case. Actually, relaxing the hypothesisw0 ¼ �1 is
the same as allowing the cosmographic parameters to
deviate from the �CDM values. Although a direct map-
ping between the two cases cannot be established, it is
nonetheless evident that such a relation can be argued, thus
making the outcome of the above plots not fully surprising.
It is nevertheless worth noting that, while in the �CDM
case �20 and �30 always have opposite signs, this is not the
case for quiessence models with w>�1. Indeed, depend-
ing on the value of �M, we can have fðRÞ theories with
both �20 and �30 positive. Moreover, the lower �M is, the
higher the ratios �20 and �30 are for a given value of w0.
This can be explained qualitatively noticing that, for a
lower �M, the density parameter of the curvature fluid

1.3 1.2 1.1 1 0.9 0.8 0.7
w0

0.02

0.015

0.01

0.005

0

0.005

0.01

η 2
0

FIG. 1. The dimensionless ratio between the present-day val-
ues of f00ðRÞ and fðRÞ as a function of the constant EoS w0 of the
corresponding quiessence model. Short dashed and solid lines
refer to models with �M ¼ 0:041 and 0.250, respectively.

1 0.95 0.9 0.85 0.8 0.75 0.7
w0

0

0.002

0.004

0.006

0.008

η 3
0

FIG. 2. The dimensionless ratio between the present-day val-
ues of f000ðRÞ and fðRÞ as a function of the constant EoS w0 of
the corresponding quiessence model. Short dashed and solid
lines refer to models with �M ¼ 0:041 and 0.250, respectively.
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(playing the role of an effective dark energy) must be
larger, thus claiming higher values of the second and third
derivatives (see also [39] for a different approach to the
problem).

C. The general case

Finally, we consider evolving dark energy models with
wa � 0. Needless to say, varying three parameters allows
us to get a wide range of models that cannot be discussed in
detail. Therefore, we only concentrate on evolving dark
energy models with w0 ¼ �1 in agreement with some of
the most recent analyses. The results on �20 and �30 are
plotted in Figs. 3 and 4, as functions ofwa. Note that we are
considering models with positive wa so that wðzÞ tends to
w0 þ wa > w0 for z ! 1 so the EoS dark energy can
eventually approach the dust value w ¼ 0. Actually, this
is also the range favored by the data. We have, however,
excluded values where �20 or �30 diverge. Considering
how they are defined, it is clear that these two quantities
diverge when fðR0Þ ¼ 0 so that the values of ðw0; waÞ
making ð�20; �30Þ diverge may be found solving

P 0ðw0; waÞ�M þQ0ðw0; waÞ ¼ 0

where P 0ðw0; waÞ and Q0ðw0; waÞ are obtained by insert-
ing Eqs. (37)–(40) into the definitions (27) and (28). For
such CPL models, there is no fðRÞ model having the same
cosmographic parameters and, at the same time, satisfying
all the criteria needed for the validity of our procedure.
Actually, if fðR0Þ ¼ 0, the condition (34) is likely to be
violated so higher than third order must be included in the
Taylor expansion of fðRÞ, thus invalidating the derivation
of Eqs. (23)–(26).

Under these caveats, Figs. 3 and 4 demonstrate that
allowing the dark energy EoS to evolve does not change
significantly our conclusions. Indeed, the second and third
derivatives, although not null, are nevertheless negligible

with respect to the zeroth order term, thus arguing in favor
of a GR-like fðRÞ with only very small corrections. Such a
result is, however, not fully unexpected. From Eqs. (37)
and (38), we see that, having set w0 ¼ �1, the q0 parame-
ter is the same as for the �CDM model, while j0 reads
j�0 þ ð3=2Þð1��MÞwa. As we have stressed above, the

Hilbert-Einstein Lagrangian fðRÞ ¼ Rþ 2� is recovered
when ðq0; j0Þ ¼ ðq�0 ; j�0 Þ, whatever the values of ðs0; l0Þ
are. Introducing a wa � 0 makes ðs0; l0Þ differ from the
�CDM values, but the first two cosmographic parameters
are only mildly affected. Such deviations are then partially
washed out by the complicated way they enter in the
determination of the present-day values of fðRÞ and its
first three derivatives.

VI. CONSTRAINING fðRÞ PARAMETERS

In the previous section, we have worked out an alter-
native method to estimate fðR0Þ, f00ðR0Þ, f000ðR0Þ, resorting
to a model independent parametrization of the dark energy
EoS. However, in the ideal case, the cosmographic parame-
ters are directly estimated from the data so that Eqs. (23)–
(33) can be used to infer the values of the fðRÞ related
quantities. The latter can then be used to put constraints on
the parameters entering an assumed fourth order theory
assigned by a fðRÞ function characterized by a set of
parameters p ¼ ðp1; . . . ; pnÞ provided that the hypotheses
underlying the derivation of Eqs. (23)–(33) are indeed
satisfied. We show below two interesting cases which
clearly highlight the potentiality and the limitations of
such an analysis.

A. Double power-law Lagrangian

As a first interesting example, we set

fðRÞ ¼ Rð1þ �Rn þ 	R�mÞ (45)

with n and m two positive real numbers (see, for example,

0 0.5 1 1.5 2 2.5 3
wa

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

η 2
0

FIG. 3. The dimensionless ratio between the present-day val-
ues of f00ðRÞ and fðRÞ as a function of the wa parameter for
models with w0 ¼ �1. Short dashed and solid lines refer to
models with �M ¼ 0:041 and 0.250, respectively.
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wa
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0.0015

0.002
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η 3
0

FIG. 4. The dimensionless ratio between the present-day val-
ues of f000ðRÞ and fðRÞ as a function of the wa parameter for
models with w0 ¼ �1. Short dashed and solid lines refer to
models with �M ¼ 0:041 and 0.250, respectively.
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[40] for some physical motivations). The following expres-
sions are immediately obtained:

8>>>>>>>><
>>>>>>>>:

fðR0Þ ¼ R0ð1þ �Rn
0 þ 	R�m

0 Þ
f0ðR0Þ ¼ 1þ �ðnþ 1ÞRn

0 � 	ðm� 1ÞR�m
0

f00ðR0Þ ¼ �nðnþ 1ÞRn�1
0 þ 	mðm� 1ÞR�ð1þmÞ

0

f000ðR0Þ ¼ �nðnþ 1Þðn� 1ÞRn�2
0

� 	mðmþ 1Þðm� 1ÞR�ð2þmÞ
0 :

Denoting by �i (with i ¼ 0; . . . ; 3) the values of fðiÞðR0Þ
determined through Eqs. (23)–(33), we can solve

8>>>>>><
>>>>>>:

fðR0Þ ¼ �0

f0ðR0Þ ¼ �1

f00ðR0Þ ¼ �2

f000ðR0Þ ¼ �3

which is a system of four equations in the four unknowns
ð�;	; n;mÞ that can be analytically solved proceeding as
follows. First, we solve the first and second equations with
respect to ð�;	Þ, obtaining

8<
:� ¼ 1�m

nþm ð1� �0

R0
ÞR�n

0

	 ¼ � 1þn
nþm ð1� �0

R0
ÞRm

0 ;
(46)

while, solving the third and fourth equations, we get

8<
:� ¼ �2R

1�n
0

½1þmþð�3=�2ÞR0�
nðnþ1ÞðnþmÞ

	 ¼ �2R
1þn
0

½1�nþð�3=�2ÞR0�
mð1�mÞðnþmÞ :

(47)

Equating the two solutions, we get a system of two equa-
tions in the two unknowns ðn;mÞ, namely,

8<
:

nðnþ1Þð1�mÞð1��0=R0Þ
�2R0½1þmþð�3=�2ÞR0� ¼ 1

mðnþ1Þðm�1Þð1��0=R0Þ
�2R0½1�nþð�3=�2ÞR0� ¼ 1:

(48)

Solving with respect to m, we get two solutions, the first
one being m ¼ �n which has to be discarded since it
makes ð�;	Þ go to infinity. The only acceptable solution is

m ¼ �½1� nþ ð�3=�2ÞR0� (49)

which, inserted back into the above system, leads to a
second order polynomial equation for n with solutions

n ¼ 1

2

�
1þ�3

�2

R0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ð�0; �2; �3Þ

p
�2R0ð1þ�0=R0Þ

�
(50)

where we have defined

N ð�0; �2; �3Þ ¼ ðR2
0�

2
0 � 2R3

0�0 þ R4
0Þ�2

3

þ 6ðR0�
2
0 � 2R2

0�0 þ R3
0Þ�2�3

þ 9ð�2
0 � 2R0�0 þ R2

0Þ�2
2

þ 4ðR2
0�0 � R3

0Þ�3
2: (51)

Depending on the values of ðq0; j0; s0; l0Þ, Eq. (50) may
lead to one, two, or any acceptable solutions, i.e. real
positive values of n. This solution then has to be inserted
back into Eq. (49) to determinem and then into Eqs. (46) or
(47) to estimate ð�;	Þ. If the final values of ð�;	; n;mÞ are
physically viable, we can conclude that the model in
Eq. (45) is in agreement with the data, giving the same
cosmographic parameters inferred from the data them-
selves. Exploring analytically what is the region of the
ðq0; j0; s0; l0Þ parameter space which leads to acceptable
ð�;	; n;mÞ solutions is a daunting task far outside the aim
of the present paper.

B. HS model

One of the most pressing problems of fðRÞ theories is
the need to escape the severe constraints imposed by the
Solar System tests. A successful model has been recently
proposed by Hu and Sawicki [21] (HS), setting8

fðRÞ ¼ R� Rc

�ðR=RcÞn
1þ 	ðR=RcÞn : (52)

As for the double power-law model discussed above, there
are four parameters which can be expressed in terms of the
cosmographic parameters ðq0; j0; s0; l0Þ.
As a first step, it is trivial to get8>>>>>>>>>><

>>>>>>>>>>:

fðR0Þ ¼ R0 � Rc
�Rn

0c

1þ	Rn
0c

f0ðR0Þ ¼ 1� �nRcR
n
0c

R0ð1þ	Rn
0c
Þ2

f00ðR0Þ ¼ �nRcR
n
0c½ð1�nÞþ	ð1þnÞRn

0c�
R2
0
ð1þ	Rn

0c
Þ3

f000ðR0Þ ¼ �nRcR
n
0c
ðAn2þBnþCÞ

R3
0
ð1þ	Rn

0c
Þ4

(53)

with R0c ¼ R0=Rc and8>><
>>:
A ¼ �	2R2n

0c þ 4	Rn
0c � 1

B ¼ 3ð1� 	2R2n
0cÞ

C ¼ �2ð1� 	Rn
0cÞ2:

(54)

Equating Eqs. (53) to the four quantities ð�0; �1; �2; �3Þ
defined as above, we could, in principle, solve this system
of four equations in four unknowns to get ð�;	; Rc; nÞ in
terms of ð�0; �1; �2; �3Þ and then, using Eqs. (23)–(33),
as functions of the cosmographic parameters. However,

8Note that such a model does not pass the matter instability
test so some viable generalizations [41] have been proposed.
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setting�1 ¼ 1 as required by Eq. (24) gives the only trivial
solution �nRc ¼ 0 so the HS model reduces to the
Einstein-Hilbert Lagrangian fðRÞ ¼ R. In order to escape
this problem, we can relax the condition f0ðR0Þ ¼ 1 to
f0ðR0Þ ¼ ð1þ "Þ�1. As we have discussed in Sec. IV,
this is the same as assuming that the present-day effective
gravitational constant Geff;0 ¼ GN=f

0ðR0Þ only differs

slightly from the usual Newtonian one which seems to be
quite a reasonable assumption. Under this hypothesis, we
can analytically solve for ð�;	; Rc; nÞ in terms of
ð�0; "; �2; �3Þ. The actual values of ð�0; �2; �3Þ will no
longer be given by Eqs. (23)–(26), but we have checked
that they deviate from those expressions9 much less than
10% for values of " as high as 10%.

With this caveat in mind, we first solve

fðR0Þ ¼ �0; f00ðR0Þ ¼ ð1þ "Þ�1

to get

� ¼ nð1þ "Þ
"

�
R0

Rc

�
1�n

�
1��0

R0

�
2
;

	 ¼ nð1þ "Þ
"

�
R0

Rc

��n
�
1��0

R0

� "

nð1þ "Þ
�
:

Inserting these expressions in Eqs. (53), it is easy to check
that Rc cancels out so we can no longer determine its value.
Such a result is, however, not unexpected. Indeed, Eq. (52)
can trivially be rewritten as

fðRÞ ¼ R� ~�Rn

1þ ~	Rn

with ~� ¼ �R1�n
c and ~	 ¼ 	R�n

c , which are indeed the
quantities that are determined by the above expressions
for ð�;	Þ. Reversing the discussion, the present-day values
of fðiÞðRÞ depend on ð�;	; RcÞ only through the two pa-

rameters ð~�; ~	Þ. As such, the use of cosmographic parame-
ters is unable to break this degeneracy. However, since Rc

only plays the role of a scaling parameter, we can arbi-
trarily set its value without loss of generality.

On the other hand, this degeneracy allows us to get a
consistency relation to immediately check whether the HS
model is viable or not. Indeed, solving the equation
f00ðR0Þ ¼ �2, we get

n ¼ ð�0=R0Þ þ ½ð1þ "Þ="�ð1��2R0Þ � ð1� "Þ=ð1þ "Þ
1��0=R0

;

which can then be inserted into the equations f000ðR0Þ ¼ �3

to obtain a complicated relation among ð�0; �2; �3Þ which
we do not report for the sake of brevity. Solving such a
relation with respect to �3=�0 and Taylor expanding to
first order in ", the constraint we get reads

�3

�0

’ � 1þ "

"

�2

R0

�
R0

�
�2

�0

�
þ "��1

0

1þ "

�
1� 2"

1��0=R0

��
:

If the cosmographic parameters ðq0; j0; s0; l0Þ are known
with sufficient accuracy, one could compute the values of
ðR0; �0; �2:�3Þ for a given " (eventually using the expres-
sions obtained for " ¼ 0) and then check if they satisfied
this relation. If this is not the case, one can also immedi-
ately give off the HS model without the need for solving
the field equations and fitting the data. Actually, given the
still large errors on the cosmographic parameters, such a
test only remains in the realm of (quite distant) future
applications. However, the HS model works for other tests
as shown in [21], and so a consistent cosmography analysis
has to be combined with them.

VII. CONSTRAINTS ON fðRÞ DERIVATIVES FROM
THE DATA

Equations (23)–(33) relate the present-day values of
fðRÞ and its first three derivatives to the cosmographic
parameters ðq0; j0; s0; l0Þ and the matter density �M. In
principle, therefore, a measurement of these latter quanti-

ties makes it possible to put constraints on fðiÞðR0Þ, with
i ¼ f0; . . . ; 3g, and hence on the parameters of a given
fourth order theory through the method shown in the
previous section. Actually, the cosmographic parameters
are affected by errors which obviously propagate onto the
fðRÞ quantities, and the covariance matrix for the cosmo-
graphic parameters is not diagonal so one also has to take

care of this to estimate the final errors on fðiÞðR0Þ. A similar
discussion also holds for the errors on the dimensionless
ratios �20 and �30 introduced above. As a general rule,
indicating with gð�M;pÞ a generic fðRÞ related quantity
depending on �M and the set of cosmographic parameters
p, its uncertainty reads


2
g ¼

�������� @g

@�M

��������2


2
M þXi¼4

i¼1

�������� @g

@pi

��������2


2
pi
þX

i�j

2
@g

@pi

@g

@pj

Cij

(55)

where Cij are the elements of the covariance matrix (which

isCii ¼ 
2
pi
). We have set ðp1; p2; p3; p4Þ ¼ ðq0; j0; s0; l0Þ

and assumed that the error 
M on�M is uncorrelated with
those on p. Note that this latter assumption strictly holds if
the matter density parameter is estimated from an astro-
physical method (such as estimating the total matter in the
universe from the estimated halo mass function).
Alternatively, we will assume that �M is constrained by
the CMBR related experiments. Since the latter mainly
probe the very high redshift universe (z ’ zlss ’ 1089),
while the cosmographic parameters are concerned with
the present-day cosmos, one can argue that the determina-
tion of �M is not affected by the details of the model
adopted for describing the late universe. Indeed, we can
reasonably assume that, whatever the dark energy candi-

9Note that the correct expressions for ðphi0; �2; �3Þ may still
formally be written as Eqs. (23)–(26), but the polynomials
entering them are now different and also depend on powers of ".
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date or fðRÞ theory is, the CMBR era is well approximated
by the standard GR with a model comprising only dust
matter. As such, we will make the simplifying (but well
motivated) assumption that 
M may be reduced to very
small values and is uncorrelated with the cosmographic
parameters.

Under this assumption, the problem of estimating the
errors on gð�M;pÞ reduces to estimating the covariance
matrix for the cosmographic parameters given the details
of the data set used as observational constraints. We ad-
dress this issue by computing the Fisher information matrix
(see, e.g., [42] and references therein) defined as

Fij ¼
	

@2L

@�i@�j



(56)

with L ¼ �2 lnLð�1; . . . ; �nÞ,Lð�1; . . . ; �nÞ the likelihood
of the experiment, ð�1; . . . ; �nÞ the set of parameters to be
constrained, and h. . .i the expectation value. Actually, the
expectation value is computed by evaluating the Fisher
matrix elements for fiducial values of the model parameters
ð�1; . . . ; �nÞ, while the covariance matrix C is finally ob-
tained as the inverse of F.

A key ingredient in the computation of F is the definition
of the likelihood which depends, of course, on what ex-
perimental constraint one is using. To this aim, it is worth
remembering that our analysis is based on fifth order
Taylor expansion of the scale factor aðtÞ so we can only
rely on observational tests probing quantities that are well
described by this truncated series. Moreover, since we do
not assume any particular model, we can only characterize
the background evolution of the universe, but not its dy-
namics which, being related to the evolution of perturba-
tions, unavoidably need the specification of a physical
model. As a result, the SNeIa Hubble diagram is the ideal
test10 to constrain the cosmographic parameters. We there-
fore defined the likelihood as

L ðH0;pÞ / exp��2ðH0;pÞ=2;

�2ðH0;pÞ ¼
XN SNeIa

n¼1

�
�obsðziÞ ��thðzn; H0;pÞ


iðziÞ
�
2
;

(57)

where the distance modulus to redshift z reads

�thðz;H0;pÞ ¼ 25þ 5 logðc=H0Þ þ 5 logdLðz;pÞ; (58)

and dLðzÞ is the Hubble-free luminosity distance:

dLðzÞ ¼ ð1þ zÞ
Z z

0

dz

HðzÞ=H0

: (59)

Using the fifth order Taylor expansion of the scale factor,
we get for dLðz;pÞ an analytical expression (reported in the
Appendix) so the computation of Fij does not need any

numerical integration (which makes the estimate faster).

As a last ingredient, we need to specify the details of the
SNeIa survey, giving the redshift distribution of the sample
and the error on each measurement. Following [43], we
adopt11


ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

sys þ
�

z

zmax

�
2

2

m

s

with zmax the maximum redshift of the survey, 
sys an

irreducible scatter in the SNeIa distance modulus, and

m to be assigned depending on the photometric accuracy.
In order to run the Fisher matrix calculation, we have to

set a fiducial model, which we set according to the �CDM
predictions for the cosmographic parameters. For �M ¼
0:3 and h ¼ 0:72 (with h the Hubble constant in units of
100 km/s/Mpc), we get

ðq0; j0; s0; l0Þ ¼ ð�0:55; 1:0;�0:35; 3:11Þ:
As a first consistency check, we compute the Fisher matrix
for a survey mimicking the recent database in [7], thus
setting ðN SNeIa; 
mÞ ¼ ð192; 0:33Þ. After marginalizing
over h (which, as is well known, is fully degenerate with
the SNeIa absolute magnitude M), we get for the uncer-
tainties

ð
1; 
2; 
3; 
4Þ ¼ ð0:38; 5:4; 28:1; 74:0Þ

where we are still using the indexing introduced above for
the cosmographic parameters. These values compare rea-
sonably well with those obtained from a cosmographic
fitting of the Gold SNeIa data set12 [44]:

q0 ¼ �0:90� 0:65; j0 ¼ 2:7� 6:7;

s0 ¼ 36:5� 52:9; l0 ¼ 142:7� 320:

Because of the Cramer-Rao theorem, the Fisher matrix
approach is known to provide the minimum variance errors
a given experiment can attain, thus giving higher limits to
its accuracy on the determination of a set of parameters.
This is indeed the case with the comparison suggesting that
our predictions are quite optimistic. It is worth stressing,

10See the Conclusions for further discussion on this issue.

11Note that, in [43], the authors assume the data are separated in
redshift bins so the error becomes 
2 ¼ 
2

sys=N bin þ
N binðz=zmaxÞ2
2

m with N bin the number of SNeIa in a bin.
However, we prefer not to bin the data so that N bin ¼ 1.
12Actually, such estimates have been obtained by computing
the mean and the standard deviation from the marginalized
likelihoods of the cosmographic parameters. As such, the central
values do not represent exactly the best fit model, while the
standard deviations do not give a rigorous description of the error
because the marginalized likelihoods are manifestly non-
Gaussian. Nevertheless, we are mainly interested in an order
of magnitude estimate so we do not care about such statistical
details.
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however, that the analysis in [44] used the Gold data set
which is poorer in high z SNeIa than the one in [7] we are
mimicking, so larger errors on the higher order parameters
ðs0; l0Þ are expected.

Rather than computing the errors on fðR0Þ and its first
three derivatives, it is more interesting to look at the
precision attainable on the dimensionless ratios ð�20; �30Þ
introduced above since they quantify how many deviations
from the linear order are present. For the fiducial model we
are considering, both �20 and �30 vanish, while, using the
covariance matrix for a present-day survey and setting

M=�M ’ 10%, their uncertainties read

ð
20; 
30Þ ¼ ð0:04; 0:04Þ:
As an application, we can look at Figs. 1 and 2 showing
how ð�20; �30Þ depend on the present-day EoS w0 for fðRÞ
models sharing the same cosmographic parameters of a
dark energy model with constant EoS. As it is clear, also
considering only the 1
 range, the full region plotted is
allowed by such large constraints on ð�20; �30Þ, thus mean-
ing that the full class of corresponding fðRÞ theories is
viable. As a consequence, we may conclude that the
present-day SNeIa data are unable to discriminate between
a � dominated universe and this class of fourth order
gravity theories.

As a next step, we consider a SNAP-like survey [45],
thus setting ðN SNeIa; 
mÞ ¼ ð2000; 0:02Þ. We use the same
redshift distribution in Table 1 of [43] and add 300 nearby
SNeIa in the redshift range (0.03, 0.08). The Fisher matrix
calculation gives for the uncertainties on the cosmographic
parameters

ð
1; 
2; 
3; 
4Þ ¼ ð0:08; 1:0; 4:8; 13:7Þ:
The significant improvement of the accuracy in the deter-
mination of ðq0; j0; s0; l0Þ translates to a reduction of the
errors on ð�20; �30Þ, which now read

ð
20; 
30Þ ¼ ð0:007; 0:008Þ
having assumed that, when SNAP data are available, the
matter density parameter �M has been determined with a
precision 
M=�M � 1%. Looking again at Figs. 1 and 2, it
is clear that the situation is improved. Indeed, the con-
straints on �20 make it possible to narrow the range of
allowed models with low matter content (the dashed line),
while models with typical values of �M are still viable for
w0 covering almost the full horizontal axis. On the other
hand, the constraint on �30 is still too weak so almost the
full region plotted is allowed.

Finally, we consider a hypothetical future SNeIa survey
working at the same photometric accuracy as SNAP and
with the same redshift distribution, but increasing the
number of SNeIa up to N SNeIa ¼ 6� 104 as expected
from, e.g., DES [46], PanSTARRS [47], SKYMAPPER
[48], while still larger numbers may potentially be
achieved by ALPACA [49] and LSST [50]. Such a survey

can achieve

ð
1; 
2; 
3; 
4Þ ¼ ð0:02; 0:2; 0:9; 2:7Þ

so that, with 
M=�M � 0:1%, we get

ð
20; 
30Þ ¼ ð0:0015; 0:0016Þ:

Figure 1 shows that, with such a precision on �20, the
region of w0 values allowed essentially reduces to the
�CDM value, while, from Fig. 2, it is clear that the
constraint on �30 definitively excludes models with low
matter content, further reducing the range of w0 values to
quite small deviations from w0 ¼ �1. We can therefore
conclude that such a survey will be able to discriminate
between the concordance �CDM model and all the fðRÞ
theories giving the same cosmographic parameters as qui-
essence models other than the �CDM itself.
A similar discussion may be repeated for fðRÞ models

sharing the same ðq0; j0; s0; l0Þ values as the CPL model
even if it is less intuitive to grasp the efficacy of the survey
with the parameter space being multivalued. For the same
reason, we have not explored what the accuracy is on the
double power-law or HS models, even if this is technically
possible. Actually, one should first estimate the errors on
the present-day value of fðRÞ and its three time derivatives
and then propagate them on the model parameters using the
expressions obtained in Sec. VI. The multiparameter space
to be explored makes this exercise quite cumbersome, so
we leave it for a forthcoming work where we will explore
in detail how these models compare to the present and
future data.

VIII. CONCLUSIONS

The recent amount of good quality data has given a new
input to the observational cosmology. As often happens in
science, new and better data lead to unexpected discoveries
as in the case of the presently accepted evidence for cosmic
acceleration. However, a fierce and strong debate is still
open on what this cosmic speedup implies for theoretical
cosmology. The equally impressive amount of different
(more or less) viable candidates has also generated great
confusion so model independent analyses are welcome. A
possible solution could come from the cosmography of the
universe rather than assuming ad hoc solutions of the
cosmological Friedmann equations. Present-day and future
SNeIa surveys have renewed the interest in the determina-
tion of the cosmographic parameters so it is worth inves-
tigating how these quantities can constrain cosmological
models.
Motivated by this consideration, in the framework of

metric formulation of fðRÞ gravity, here we have derived
the expressions of the present-day values of fðRÞ and its
first three derivatives as a function of the matter density
parameter �M, the Hubble constant H0, and the cosmo-
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graphic parameters ðq0; j0; s0; l0Þ. Although based on a
third order Taylor expansion of fðRÞ, we have shown that
such relations hold for quite a large class of models so they
are valid tools to look for viable fðRÞ models without the
need of solving the mathematically difficult, nonlinear,
fourth order, differential field equations.

Notwithstanding the common claim that we live in the
era of precision cosmology, the constraints on ðq0; j0; s0; l0Þ
are still too weak to efficiently apply the program we have
outlined above. As such, we have shown how it is possible
to establish a link between the popular CPL parametriza-
tion of the dark energy equation of state and the derivatives
of fðRÞ, imposing that they share the same values of the
cosmographic parameters. This analysis has led to the quite
interesting conclusion that the only fðRÞ function able to
give the same values of ðq0; j0; s0; l0Þ as the �CDM model
is indeed fðRÞ ¼ Rþ 2�. If future observations tell us that
the cosmographic parameters are those of the �CDM
model, we can therefore rule out all fðRÞ theories satisfy-
ing the hypotheses underlying our derivation of Eqs. (23)–
(26). Actually, such a result should not be considered as a
‘‘no way out’’ situation for higher order gravity. Indeed,
one could still work out a model with null values of f00ðR0Þ
and f000ðR0Þ as required by the above constraints, but with
nonvanishing higher order derivatives. One could well
argue that such a contrived model could be rejected on
the basis of Occam’s razor, but nothing prevents us from
still taking it into account if it turns out to be both in
agreement with the data and theoretically well founded.

If new SNeIa surveys determine the cosmographic pa-
rameters with good accuracy, acceptable constraints on the
two dimensionless ratios �20 / f00ðR0Þ=fðR0Þ and �30 /
f000ðR0Þ=fðR0Þ could be obtained, thus allowing us to dis-
criminate among rival fðRÞ theories. To investigate
whether such a program is feasible, we have pursued a
Fisher matrix based forecast of the accuracy future SNeIa
surveys can achieve on the cosmographic parameters and
hence on ð�20; �30Þ. It turns out that a SNAP-like survey
can start giving interesting (yet still weak) constraints,
allowing us to reject fðRÞ models with low matter content,
while a definitive improvement is achievable with future
SNeIa surveys observing �104 objects, thus making it
possible to discriminate between �CDM and a large class
of fourth order theories. It is worth stressing, however, that
the measurement of �M should come out as the result of a
model independent probe such as the gas mass fraction in
galaxy clusters which, at present, is still far from the 1%
requested precision. On the other hand, one can also rely
on the �M estimate from the CMBR anisotropy and po-
larization spectra even if this comes at the price of assum-
ing that the physics at recombination is strictly described
by GR so one has to limit its attention to fðRÞ models
reducing to fðRÞ / R during that epoch. However, such an
assumption is quite common in many fðRÞ models avail-
able in the literature so it is not too restrictive of a
limitation.

A further remark is in order concerning what kind of
data can be used to constrain the cosmographic parameters.
The use of the fifth order Taylor expansion of the scale
factor makes it possible to not specify any underlying
physical model, thus relying on the minimalist assumption
that the universe is described by the flat Robertson-Walker
metric. While useful from a theoretical perspective, such a
generality puts severe limitations on the data set one can
use. Actually, we can only resort to observational tests
depending only on the background evolution so the range
of astrophysical probes reduces to standard candles (such
as SNeIa and possibly gamma ray bursts) and standard rods
(such as the angular size-redshift relation for compact
radio sources). Moreover, pushing the Hubble diagram to
z� 2 may raise the question of the impact of gravitational
lensing amplification on the apparent magnitude of the
adopted standard candle. The magnification probability
distribution function depends on the growth of perturba-
tions [51] so one should worry about the underlying physi-
cal model in order to estimate whether this effect biases the
estimate of the cosmographic parameters. However, it has
been shown [4,52] that the gravitational lensing amplifica-
tion does not significantly alter the measured distance
modulus for z� 1 SNeIa. Although such an analysis has
been done for GR based models, we can argue that, what-
ever the fðRÞ model is, the growth of perturbations finally
leads to a distribution of structures along the line of sight
that is as similar as possible to the observed one so the
lensing amplification is approximately the same. We can
therefore argue that the systematic error made by neglect-
ing lensing magnification is lower than the statistical ones
expected by the future SNeIa surveys. On the other hand,
one can also try further reducing this possible bias using
the method of flux averaging [53] even if, in such a case,
our Fisher matrix calculation should be repeated accord-
ingly. It is also worth noting that the constraints on the
cosmographic parameters may be tightened by imposing
some physically motivated priors in the parameter space.
For instance, we can impose that the Hubble parameter
HðzÞ always stays positive over the full range probed by the
data or that the transition from past deceleration to present
acceleration takes place over the range probed by the data
(so that we can detect it). Such priors should be included in
the likelihood definition so that the Fisher matrix is recom-
puted, which is left for a forthcoming paper.
Although the present-day data are still too limited to

efficiently discriminate among rival fðRÞ models, we are
confident that an aggressive strategy aiming at a very
precise determination of the cosmographic parameters
could offer stringent constraints on higher order gravity
without the need for solving the field equations or address-
ing the complicated problems related to the growth of
perturbations. Almost 80 years after the pioneering
distance-redshift diagram by Hubble, the old cosmo-
graphic approach appears nowadays as a precious obser-
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vational tool to investigate the new developments of
cosmology.
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APPENDIX: DISTANCE FORMULAS

We derive here some useful relations for distance related
quantities as a function of the redshift z and the cosmo-
graphic parameters. Using the definitions in Eqs. (1), it is
easy to get for the fifth order Taylor expansion of the scale
factor

aðtÞ
aðt0Þ ¼ 1þH0ðt� t0Þ � q0

2
H2

0ðt� t0Þ2

þ j0
3!

H3
0ðt� t0Þ3 þ s0

4!
H4

0ðt� t0Þ4

þ l0
5!

H5
0ðt� t0Þ5 þO½ðt� t0Þ6 (A1)

with t0 the present-day age of the universe. Note that
Eq. (A1) is also the fifth order expansion of ð1þ zÞ�1,
with the redshift z defined as z ¼ aðt0Þ=aðtÞ � 1. The
physical distance traveled by a photon that is emitted at
time t� and absorbed at the current epoch t0 is

D ¼ c
Z

dt ¼ cðt0 � t�Þ

so that inserting t� ¼ t0 � D
c into Eq. (A1) gives us an

expression for the redshift as a function of t0 and D=c,
i.e. z ¼ zðDÞ. Solving with respect toD up to the fifth order
in z gives us the desired expansion for DðzÞ as

DðzÞ ¼ cz

H0

fD0
z þD1

zzþD2
zz

2 þD3
zz

3 þD4
zz

4g (A2)

with

D 0
z ¼ 1; D1

z ¼ �ð1þ q0=2Þ;

D2
z ¼ 1þ q0 þ q20

2
� j0

6
;

D3
z ¼ �

�
1þ 3

2
q0 þ 3

2
q20 þ

5

8
q30 �

1

2
j0 � 5

12
q0j0 � s0

24

�
;

D4
z ¼ 1þ 2q0 þ 3q20 þ

5

2
q30 þ

7

2
q40 �

5

3
q0j0 � 7

8
q20j0

� j0 þ j20
12

� 1

8
q0s0 � s0

6
� l0

120
:

In typical applications, one is not interested in the physical
distance DðzÞ, but rather in the luminosity distance

DL ¼ aðt0Þ
aðt0 �D=cÞ ða0r0Þ; (A3)

or the angular diameter distance

DA ¼ aðt0 �D=cÞ
aðt0Þ ða0r0Þ (A4)

with a0 ¼ aðt0Þ and

r0ðDÞ ¼

8>><
>>:
sin

Rt0
t0�D=c

cdt
aðtÞ k ¼ 1Rt0

t0�D=c
cdt
aðtÞ k ¼ 0

sinh
Rt0
t0�D=c

cdt
aðtÞ k ¼ �1:

(A5)

Using Eq. (A1), some cumbersome algebra finally gives

r0ðDÞ
D=a0

¼ R0
D þR1

D

�
H0D

c

�
þR2

D

�
H0D

c

�
2

þR3
D

�
H0D

c

�
3 þR4

D

�
H0D

c

�
4 þR5

D

�
H0D

c

�
5

with

R 0
D ¼ 1; R1

D ¼ 1=2;

R2
D ¼ 1

6

�
2þ q0 � kc2

H2
0a

2
0

�
;

R3
D ¼ 1

24

�
6þ 6q0 þ j0 � 6

kc2

H2
0a

2
0

�
;

R4
D ¼ 1

120

�
24þ 36q0 þ 6q20 þ 8j0 � s0

� 5kc2ð7þ 2q0Þ
a20H

2
0

�
;

R5
D ¼ 24þ 48q0 þ 18q20 þ 4q0j0 þ 12j0 � 2s0 þ 24l0

144

� 3kc2ð15þ 10q0 þ j0Þ
144a20H

2
0

:

Expressing D in Eq. (A5) as a function of z through
Eq. (A2) and inserting the result into Eq. (A3), one obtains
the desired fifth order approximation for the Hubble-free
luminosity distance dL ¼ DLðzÞ=ðc=H0Þ as a function of
the redshift z:

dLðzÞ ¼ D0
LzþD1

Lz
2 þD2

Lz
3 þD3

Lz
4 þD4

Lz
5; (A6)

having defined
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D 0
L ¼ 1; D1

L ¼ � 1

2
ð�1þ q0Þ; D2

L ¼ � 1

6

�
1� q0 � 3q20 þ j0 þ kc2

H2
0a

2
0

�
;

D3
L ¼ 2� 2q0 � 15q20 � 15q30 þ 5j0 þ 10q0j0 þ s0

24
þ 2kc2ð1þ 3q0Þ

24H2
0a

2
0

;

D4
L ¼ �6þ 6q0 þ 81q20 þ 165q30 þ 105q40

120
þ 10j20 � 27j0 � 110q0j0 � 105q20j0

120
� 15q0s0 þ 11s0 þ l0

120

� 5kc2ð1þ 8q0 þ 9q20 � 2j0Þ
120a20H

2
0

:

Finally, a similar procedure gives the following approximation for the Hubble-free angular diameter distance dAðzÞ ¼
DAðzÞ=ðc=H0Þ to fifth order in z:

dAðzÞ ¼ D0
AzþD1

Az
2 þD2

Az
3 þD3

Az
4 þD4

Az
5; (A7)

having set

D 0
A ¼ 1; D1

A ¼ � 1

2
ð3þ q0Þ; D2

A ¼ 1

6

�
11þ 7q0 þ 3q20 � j0 � kc2

H2
0a

2
0

�
;

D3
A ¼ � 50þ 46q0 þ 39q20 þ 15q30 � 13j0 � 10q0j0 � s0

24
þ 2kc2ð5þ 3q0Þ

24H2
0a

2
0

;

D4
A ¼ 274þ 326q0 þ 411q20 þ 315q30 þ 105q40

120
þ 10j20 � 137j0 � 210q0j0 � 105q20j0 � 15q0s0 � 21s0 � l0

120

� 5kc2ð17þ 20q0 þ 9q20 � 2j0Þ
120a20H

2
0

:

Using such expressions (for k ¼ 0 since we have assumed a flat universe in the text), it is then straightforward to compute
the quantities entering the Fisher matrix so that no numerical integration or differentiation is needed.
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