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Observational tests of modified gravity
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Modifications of general relativity provide an alternative explanation to dark energy for the observed
acceleration of the Universe. Modified gravity theories have richer observational consequences for large-
scale structures than conventional dark energy models, in that different observables are not described by a
single growth factor even in the linear regime. We examine the relationships between perturbations in the
metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational
lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect.
We show how a broad class of gravity theories can be tested by combining these probes. A robust way to
interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the
ratio of the gravitational “constant” in the Poisson equation to Newton’s constant. We also discuss
quasilinear effects that carry signatures of gravity, such as through induced three-point correlations.
Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for
distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which
break the equality between the two metric potentials even in general relativity. With these two extra
degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational
tests? We show with specific examples that observational constraints on both the metric potentials and
density perturbations can in principle distinguish modifications of gravity from dark energy models. We
compare our result with other recent studies that have slightly different assumptions (and apparently

contradictory conclusions).
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I. INTRODUCTION

The energy contents of the Universe pose an interesting
puzzle, in that general relativity (GR) plus the standard
model of particle physics can only account for about 4% of
the energy density inferred from observations. By intro-
ducing dark matter (DM) and dark energy (DE), which
account for the remaining 96% of the total energy budget
of the Universe, cosmologists have been able to account for
a wide range of observations, from the overall expansion of
the Universe to the large-scale structure of the early and
late Universe [1].

The dark matter/dark energy scenario assumes the va-
lidity of GR at galactic and cosmological scales and in-
troduces exotic components of matter and energy to
account for observations. Since GR has not been tested
independently on these scales, a natural alternative is that
the failures of GR plus the standard model of particle
physics imply a failure of GR. This possibility, that mod-
ifications in GR at galactic and cosmological scales can
replace dark matter and/or dark energy, has become an area
of active research in recent years.

Attempts have been made to modify GR at galactic [2]
or cosmological scales [3-5]. Modified Newtonian dynam-
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ics and its relativistic version (tensor-vector-scalar, TeVeS)
[2] are able to replace dark matter at galaxy scales to
reproduce the galaxy rotation curves, which provided the
earliest and most direct evidences for the existence of dark
matter. The DGP model [3], in which gravity lives in a 5D
brane world, naturally leads to late time acceleration of the
Universe. Adding a correction term f(R) to the Einstein-
Hilbert action [4] also allows late time acceleration of the
Universe to be realized.

In this paper we will focus on modified gravity (MG)
theories that are designed as an alternative to dark energy
to produce the present day acceleration of the Universe. In
these models, such as DGP and f(R) models, gravity at late
cosmic times and on large scales departs from the predic-
tions of GR. We will consider the prospects of distinguish-
ing MG models containing dark matter but no dark energy
from GR models with dark matter and dark energy. By
design, successful MG models will be indistinguishable
from viable DE models against observations of the expan-
sion history of the Universe. To break this degeneracy,
observations of large-scale structure (LSS) must be used
to test the growth of perturbations.

LSS in MG theories can be more complicated to predict,
but is also richer because different observables such as
lensing and galaxy clustering probe independent perturbed
variables. This differs from conventional DE scenarios
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where the linear growth factor of the density field fixes all
observables on sufficiently large scales. One of the goals of
this study is to examine carefully what various LSS ob-
servables measure once the assumption of GR (with
smooth DE) is dropped.

Structure formation in modified gravity in general dif-
fers [6—-18] from that in GR. Theories of LSS in these
modified gravity models are still in their infancy.
However, perturbative calculations at large scales have
shown that it is promising to connect predictions in these
theories with observations of LSS. Most studies have fo-
cused on probes of a single growth factor with one or a few
observables. In this paper we will consider a variety of LSS
observables that can be measured with high precision with
current or planned surveys. Our emphasis will be on
model-independent constraints of MG enabled by combin-
ing different observables.

Carrying out robust tests of MG in practice is challeng-
ing as in the absence of a fundamental theory, the mod-
ifications to gravity are often parametrized by free
functions, to be fine-tuned and fixed by observations.
Given the parameter space available to both DE and MG
theories, it is unclear how the two classes of theories can be
distinguished. Kunz and Sapone [19] presented a rather
pessimistic example. They found that one can tune a
clustered dark energy model to reproduce observations of
gravitational lensing and matter fluctuations in the DGP
model. It is not clear if this conclusion applies to all
modified gravity models and if adding more LSS observ-
ables helps to break this severe degeneracy.

In this paper, we first discuss ways of parametrizing
modified gravity models and dark energy models.
Section II presents the definitions and evolution equations
for perturbations in the metric and the energy-momentum
tensor. We then classify independent LSS observables
based on the perturbations that are probed by them.
Section III is devoted to the use of observational probes
of LSS for testing MG. We consider the four fundamental
perturbation variables and the observations that can be used
to probe them. The additional information available in the
quasilinear regime is discussed in the Appendix. In Sec. IV
we consider the question of distinguishing MG from DE
scenarios. The specific question we want to answer is:
given a set of LSS observations, can a general MG model
be mimicked by a DE model? If not, what LSS observables
are required to break the degeneracy? We conclude in
Sec. V.

II. PERTURBATION FORMALISM

By definition, the dark sector (dark matter and dark
energy) can only be inferred from their gravitational con-
sequence. In general relativity, gravity is determined by the
total stress-energy tensor of all matter and energy (G, =
87GT,,). Thus we can treat dark matter and dark energy
as a single entity, without loss of physical generality [20—
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22]. This entity has total mean matter density pggr and
equation of state parameter w = pgr/pPgr. However,
when discussing perturbations in this entity, we may sepa-
rate it into a matter component (dissipationless particles
which can be described as a pressureless fluid free of
anisotropic stress) and a dark energy component.
Throughout this paper, when we refer to “smooth” or
“clustered”” dark energy, we refer to this dark energy
subset of the overall dark sector.

We may consider the Hubble parameter H(z) to be fixed
by observations. In a dark energy model, pggr is given by
the Friedmann equation of GR: pggr = 3H?/87G. The
equation of state parameter is w = —1 — 2H/3H>.

The corresponding modified gravity model has matter
density pyg to be determined from its Friedmann-like
equation. We will consider MG models dominated by
dark matter and baryons at late times and denote fluid
variables such as the density with subscript MG.

A. Metric and fluid perturbations

With the smooth variables fixed, we will consider per-
turbations as a way of testing the models. In the Newtonian
gauge, scalar perturbations to the metric are fully specified
by two scalar potentials ¢ and ¢:

ds®> = —(1 + 2¢)dr* + (1 — 2¢)a*(t)dX?, (1)

where a(?) is the expansion scale factor. This form for the
perturbed metric is fully general for any metric theory of
gravity, aside from having excluded vector and tensor
perturbations (see [23] and references therein for justifica-
tions). Note that ¢ corresponds to the Newtonian potential
for the acceleration of particles, and that in general rela-
tivity ¢ = ¢ in the absence of anisotropic stresses.

A metric theory of gravity relates the two potentials
above to the perturbed energy-momentum tensor. We in-
troduce variables to characterize the density and velocity
perturbations for a fluid, which we will use to describe
matter and dark energy (we will also consider pressure and
anisotropic stress below). The density fluctuation & is
given by

p(X, 1) — p(t)
p(1)
where p(X, 1) is the density and p(¢) is the cosmic mean

density. The second fluid variable is the divergence of the
peculiar velocity

8(x, 1) = , 2

0=VT)/(p+p)=V"73 3)

where v is the (proper) peculiar velocity. Choosing 6
instead of the vector v implies that we have assumed v to
be irrotational. This approximation is sufficiently accurate
in the linear regime, even for unconventional dark energy
models and minimally coupled modified gravity models.
In principle, observations of large-scale structure can
directly measure the four perturbed variables introduced
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above: the two scalar potentials ¢ and ¢, and the density
and velocity perturbations specified by 6 and 6. As shown
below, these variables are the key to distinguishing modi-
fied gravity models from dark energy. Each has a scale and
redshift dependence, so it is worth noting which variables
and at what scale and redshift are probed by different
observations. It is convenient to work with the Fourier
transforms, such as

5(F. 1) = f PxS(F, e, @)

When we refer to length scale A, it corresponds to a
statistic such as the power spectrum on wave number k =
27r/A. We will henceforth work exclusively with the
Fourier space quantities and drop the " symbol for
convenience.

B. Evolution and constraint equations

We consider here the fluid equations for DE and MG
scenarios. We work in the Newtonian gauge and follow the
formalism and notation of [20], except that we use physical
time ¢ instead of conformal time. We are interested in the
evolution of perturbations after decoupling, so we will
neglect radiation and neutrinos as sources of perturbations.
We will make the approximation of nonrelativistic motions
and restrict ourselves to subhorizon length scales. One can
also self-consistently neglect time derivatives of the metric
potentials in comparison to spatial gradients. These ap-
proximations will be referred to as the quasistatic,
Newtonian regime. We will not consider the evolution of
perturbations on superhorizon length scales; [24] shows
that differences in their evolution may have observable
consequences for some MG models [discussed further
under the cosmic microwave background (CMB) below].

1. Dark energy with GR scenario

We first consider the DE scenario, assuming GR. Using
the perturbed field equations of GR to first order gives a set
of constraint and evolution equations. The evolution of the
density and velocity perturbations includes gravity and
pressure perturbations &p as sources. In the Newtonian
limit they give the familiar continuity and Euler equations
for a perfect fluid. Keeping all first order terms and using
the notation 6 = dé/dt, gives

: 0 ; 0
a p

~—(1+ w)eﬁ YL 3HwWS . (5)

a P

In the second line we have dropped the ¢ term as it is
negligible compared to the other terms in the quasistatic
regime. The Euler equation is given by
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. W
Ogr = —H(1 — 3w)Ocr — mHGR
o k2
+<p/p—a+¢f). ©6)
1+w a

We have allowed for anisotropic stress sources in the
energy-momentum tensor, parametrized by the scalar o,
which enters the Euler equation.

Note that the above equations describe the multicompo-
nent fluid of baryons, dark matter, and dark energy; the
density and velocity variables for this fluid are subscripted
GR above (these variables will represent a fluid with no
dark energy for MG theories below). The metric potential
variables are ¢ and ¢ in either case. Further, we do not
subscript 6 p and o as these sources occur only in the DE
plus GR scenario.

The linearized constraint equation gives the Poisson
equation for weak field gravity:

6
Ko = —47TGa2[)GR[SGR +3(1 + w)Ha %]

= —47Ga’ pGrOcr @)

where in the second line we have dropped the H6gg/k>
term as it is negligible for nonrelativistic motions on scales
well below the horizon.

Nonzero anisotropic stress o leads to inequality between
the two potentials:

K(¢p — ) = 1200Ga*(1 + w)po. 8)

It is common to take ¢ = i for ordinary matter and dark
matter; however clustered dark energy can have a non-
negligible anisotropic stress.

Equations (5)—(8) fully describe the evolution of pertur-
bations in DE scenarios in the quasistatic, Newtonian
regime. Next we consider the analogous relations for
modified gravity scenarios.

2. Modified gravity scenario

For minimally coupled gravity models with baryons and
cold dark matter, but without dark energy, we can neglect
pressure and anisotropic stress terms in the evolution equa-
tions to get the continuity equation:

. 0 . 0
buo = (M0 -3g)= -0 )
a a
where the second equality follows from the quasistatic
approximation as for GR. The Euler equation is

. k2
a

For a generic MG theory, the analog of the constraint
equations (7) and (8) can take different forms. We will
attempt to characterize the general behavior in the weak
field limit for small perturbations (small &) and nonrela-
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tivistic motions. On subhorizon scales the field equations
in MG theories can then be significantly simplified. We
parametrize modifications in gravity by two functions
Ge(k, 1) and m(k 1) to get the analog of the Poisson
equation and a second equation connecting ¢ and ¢ [25].
We first write the generalization of the Poisson equation in
terms of an effective gravitational constant Gg:

K¢ = —4mGe(k, 1) pyca® Sy (11)

Note that the potential ¢ in the Poisson equation comes
from the spatial part of the metric, whereas it is the
“Newtonian” potential ¢ that appears in the Euler equa-
tion (it is called the Newtonian potential as its gradient
gives the acceleration of material particles). Thus in MG,
one cannot directly use the Poisson equation to eliminate
the potential in the Euler equation. A more useful version
of the Poisson equation would relate the sum of the poten-
tials, which determines lensing, with the mass density. We
therefore introduce G.¢ and write the constraint equations
for MG as

k(i + ¢) = —8mGeg(k, 1) praca* Sy, (12)

¢ = yn(k 1), 13)

where G = Ger(1 + n71)/2. Note that if one starts in
real space then the corresponding parameters would not be
Fourier transforms of 7 and G.g. Thus the Fourier trans-
form of the parametrized post-Newtonian parameter y =
¢/, the ratio of the metric potentials in real space con-
strained by solar system tests, is given by a convolution of
7 and ¢ [26]. Only if 7 is scale independent would it be the
Fourier transform of . A similar reasoning applies to G
in using the Poisson equation. We prefer to work in Fourier
space because of the ease of describing perturbations: each
Fourier mode evolves independently in the large-scale,
linear regime. Furthermore, the equations describing cos-
mological perturbations in MG theories such as f(R) grav-
ity and DGP are generally expressed in Fourier space.

The parameter G characterizes deviations in the (¢ +
¢) — 6 relation from that in GR. Since the combination
W + ¢ is directly responsible for gravitational lensing, G
has a specific physical meaning: it determines the power of
matter inhomogeneities to distort light. This is the reason
we prefer it over working with more direct generalization
of Newton’s constant, G.

The Gy — 1 parametrization is equivalent to the Q0 — 7
parametrization independently proposed by [18] (see also
[27]), where Q parametrizes deviations in Poisson equa-
tion (7) from GR. For minimally coupled gravity models,
with no dark energy fluctuations, it is also equivalent to that
proposed by [16]. And 7 is also equivalent to the parameter
@ proposed by [17]. DGP and f(R) gravity can be de-
scribed by our parametrization. So is the widely adopted
Yukawa potential. An exception to our approach is TeVeS
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as it includes scalar and vector fields that are coupled to the
growth of scalar perturbations.

For a generic metric theory of MG, one would expect
that a Poisson-like equation is valid to leading order in the
potentials and the density perturbation, at least on large
scales in the linear regime where Fourier modes are un-
coupled. In this regime, we expect that since the left-hand
side of the field equations involves curvature, it must have
second derivatives of the metric perturbations, while the
right-hand side is simply given by the energy-momentum
tensor. On smaller scales, in general a MG theory may not
obey superposition and require higher order terms and
higher derivatives of the potentials. Similarly a generic
relation between ¢ and ¢ is likely to have a linearized
relation of the form in Eq. (13). While it is not necessary
that the leading term be linear in both the potentials,
observational constraints require that it be very close to
linear with 7 = 1 on small scales where tests of gravity
exist (see [28] for a review).

With the linearized equations above, the evolution of
either the density or velocity perturbations can be de-
scribed by a single second order differential equation. In
the case of MG theories, this equation is simpler as the only
source is provided by the Newtonian potential ¢y. From

Egs. (9) and (10) we get, for the linear solution, S(k, 1) =~
Sinitiar (K)D(k, 1),

. .k
6 +2H6 +—=0. (14)
a

For a given theory, Eqs. (12) and (13) then allow us to
substitute for ¢ in terms of & to determine D(k, t), the
linear growth factor for the density:

87TGeff _

D+ 2HD — a

D =0. (15)

We can also use the relations given above to obtain the
linear growth factors for # and the potentials from D. Note
that in general the growth factors for the potentials have a
different k dependence than D. In the Appendix we give
details on the linear and second order solutions and sum-
marize quasilinear signatures of MG theories.

C. Power spectra

Before we turn to large-scale structure observables, we
define the power spectra of the perturbed variables. The
three-dimensional power spectrum of 8(k, z) for instance is
defined as

(8(k, 2)8(K, 2)y = @m)38p(k + K)Ps(k, z),  (16)

where we have switched the time variable to redshift z. The
power spectra of perturbations in other quantities are de-
fined analogously. We will denote the cross spectra of two
different variables with appropriate subscripts, for ex-
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ample, Ps,, denotes the cross spectrum of the density 6 and
the potential .

We write down next the relation between the power
spectra of the two potentials and the density in DE and
MG scenarios. From the Poisson equation (7) for GR we
have

_, Pscrlk 2)
GR: P,k 2) = (4wG)2a4pgR‘iG+,

where P is the power spectrum of the potential ¢. Using
the Friedmann equation for GR the above equation is often
written as

a7

9 Pscr(k, 2)
GR: P¢(k, Z) = ZH%QQW’

where H is the present day value of the Hubble parameter,
and () is the dimensionless density parameter.

The Poisson equation (12) for MG gives the following
equations for the power spectra of the metric potentials:

MG: P, 4(k 2) = [87G i(k, 2)Pa* pygPsma(k 2)/k*

or P, = [87Téeff(k’ Z)]2 a4_2 P6,MG(k’ Z)
¢ [+ nil(k, Z)]2 PmG iz ’

(19)

(18)

where we have used Eq. (13) to get the equation for P .

For LSS observables, we will need the power spectra of
(¢ + @) for lensing, of ¢ for dynamics, and of o for tracers
of LSS. We will use Egs. (17)—(19) to connect them, along
with the relations between the two potentials [Eq. (8) for
GR and Eq. (13) for MG]. With these relations we can
express different observable power spectra in terms of a
single density power spectrum—for MG this will involve
the functions G (k, z) and 5(k, z).

III. LARGE-SCALE STRUCTURE OBSERVATIONS

We will assume that the background expansion rate is
determined by a set of observations: type Ia supernovae,
baryon acoustic oscillation (BAO), and other probes at low
redshift and the CMB and nucleosynthesis at high redshift.
These observations measure the luminosity or angular
diameter distance at a given redshift. The distance mea-
sures in a spatially flat universe are, within factors of 1 + z,
simply the comoving coordinate distance:

2 d7’
x(2) fo ") (20)
Furthermore, BAO can directly measure the Hubble con-
stant at the redshift of galaxies.

We are interested in the constraints available on per-
turbed quantities. Hence we will consider observational
probes of large-scale structure to constrain modified grav-
ity scenarios. In nearly all cases we will be interested in
scales in the range 1-10° Mpc. The MG theories of interest
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must modify gravity on horizon scales of order 10* Mpc; it
is an open question how they transition to GR on very small
scales to satisfy experimental constraints from solar system
tests. We will assume that the MG theories of interest differ
from GR over the observationally accessible scales.

The most stringent current tests of gravity come from
laboratory and solar system tests and from binary pulsar
observations; see [28] for a review. Interesting probes of
gravity on sub-Mpc scales also exist: galaxy rotation
curves, satellite dynamics, strong lensing observations of
galaxies and clusters, and x-ray plus lensing observations
of clusters (e.g., [29]). Modifications in gravity can affect
the propagation of gravitational wave. Future gravitational
wave experiments such as LISA can detect gravitational
wave from distant supermassive black hole pairs in the
coalescence phase and thus test this effect [30]. We will not
consider these tests in this paper. We will restrict our
attention to large-scale structure on scales where theoreti-
cal predictions can be made using linear or quasilinear
perturbation theory.

A. Connection of observables to perturbation variables

In principle, observations of large-scale structure can
directly measure four fundamental variables that describe
the perturbed metric and (fluid) energy-momentum tensor:
the two scalar potentials ¢ and ¢ that characterize the
metric, and the density and velocity perturbations specified
by 6 and 0. Next we discuss the prospects for different
probes of these variables.

Sum of potentials y + ¢: Gravitational lensing in either
the weak or strong lensing regime probes the sum of the
metric potentials. We will consider the weak lensing shear
(or equivalently the lensing convergence) power spectrum
as the primary statistical discriminator of MG via lensing.

The spatial components of the geodesic equation for a
photon trajectory x*(A) (where A parametrizes the path)
are

d2xH u dxP dx”
a2 "7 dx da
For the metric of Eq. (1), this gives the following relation

for the first order perturbation to the photon trajectory
[generalizing, for example, from Eq. (7.72) of [31]]:

21

d2xDr
dA?

where ¢ is the norm of the tangent vector of the unper-

=~V + ), (22)

turbed path and v | is the gradient transverse to the un-
perturbed path. This gives the deflection angle formula

o= - f 8, + B)ds, 23)

where s = gA is the path length and «; is the ith compo-
nent of the deflection angle (a two-component vector on
the sky). Since all lensing observables are obtained by
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taking derivatives of the deflection angle, they necessarily
depend only on the combination ¢ + ¢ (to first order in the
potentials).

For weak lensing tomography we use the shear power
spectrum for two sets of source galaxies with redshift
distributions centered at z; and z;. Following standard
treatments of weak lensing, this may be derived from the
deflection angle formula to get the shear power spectrum
on angular wave number / ([32]):

[
Co, = [ W OW) 00K Py (k= x). 2

where the weight function W; is simply
Xi— X
Xi

W, o (25)
for source galaxies at a single comoving distance y; =
x(z;) (it can be easily generalized for sources specified by a
redshift distribution). We have assumed a flat background
geometry for simplicity; our results throughout this paper
can be generalized to a curved spatial geometry by replac-
ing y in the argument of W by the angular diameter
distance.

Note that in the literature the lensing power spectra for
GR are expressed in terms of the density power spectrum
Ps(k) assuming the standard Poisson and Friedmann equa-
tions. Usually anisotropic stress is neglected so that one
can substitute into the above equation the relation between
the power spectra: P4 = 9% *H3Q?>Ps/a*> from
Eq. (18). For MG, this substitution breaks down due to
the modifications of the Poisson equation and the
Friedmann equation. However the correct substitution
can be made in terms of G.g(k, z) using Eq. (19) and the
modified Friedmann equation (which depends on the spe-
cific theory).

Since lensing probes the sum of the metric potentials,
with the deflection angle formula following from the geo-
desic equation (which simply describes how curvature
affects trajectories), it may not by itself test the field
equations of the gravity theory. However lensing measure-
ments at multiple source redshifts are sensitive to the
growth of the lensing potential, which does offer a test of
the MG theory. And by combining lensing with other
observables, the relation of Py, to Ps can be tested.
Recent studies that have examined constraints on MG
theories with weak lensing include [18,33-39].

Another important observable in lensing is galaxy—gal-
axy lensing, the mean tangential shear around foreground
(lens) galaxies. Its Fourier transform, the galaxy-lensing
cross spectrum, depends on ¢ + ¢ and on the galaxy
number density. It is given by an equation similar to
Eq. (24), with the power spectrum of the lensing potential
in the integrand replaced by the three-dimensional cross-
power spectrum, and with one of the weight functions
replaced by one representing the foreground galaxy distri-
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bution:

W)Wy, 0k !
Coy, (D) = [dX%mew(k % X)’

(26)

where W,; is the normalized (foreground) galaxy redshift
distribution (e.g., [40]). Galaxy—galaxy lensing has been
well measured from the Sloan Digital Sky Survey (SDSS).
It is a very useful check on galaxy bias; hence it aids the
interpretation of galaxy clustering measurements ([41]) as
well.

Assumptions: In using weak lensing observations with
the above formalism, one assumes that intrinsic correla-
tions are negligible or removable (in general these can
differ for different gravity theories), that the weak lensing
approximation is valid, and that galaxy properties that
affect photometric redshift determination are not affected
by the gravity theory.

Newtonian potential : This can be measured by dy-
namical probes, typically involving galaxy or cluster ve-
locity measurements. If gravity is the only force
determining galaxy accelerations at large scales (as ex-
pected), we have from Eq. (10):

_d(ab,)
dt ’

where 6, = V - v,. On sub-Mpc scales this relation can be
used to constrain ¢ using galaxy satellite dynamics and
rotation curves (e.g., [42]). Redshift distortion effects in
the galaxy power spectrum probe larger scales, which we
address in more detail here.

The redshift space power spectrum of galaxies is a well-
measured quantity. It can be expressed in the large-scale,
small angle limit as (e.g., [43])

K>y 27)

2 2 4 k2 2.2
P = [ Pl + T P, (0 + 153 P 0 |F(S (j))
(28)

where u = k;/k is the cosine of the angle of the k vector
with respect to radial direction; P, P, , and P, are the
real space galaxy power spectra of galaxies, galaxy-6, and
6,, respectively; o, is the 1D velocity dispersion; and F(x)
is a smoothing function, normalized to unity at x = 0,
determined by the velocity probability distribution. The
dependence on u enables separate measurements of all
three power spectra, though Py, is the hardest to measure
with high precision [44,45]. Furthermore, measurements of
P at smaller scales provide information on pairwise ve-
locity dispersion o, [46].
In the linear regime, we can rewrite Eq. (27) as

_ d(aDg)/dte ‘

Ry = =0, (29)

Here Dy, is the growth factor of 6,. For MG models, D, has
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a simple relation to D, the linear density growth factor:
Dy < aD = aBHD, where 8 = dInD/d Ina. In the linear
regime we have 6,(k, 1) = 6,(k, t;,)Dy(K, 7). Note that the
above equation does not require Dy to be scale indepen-
dent, so it is applicable to modified gravity models and
clustered dark energy models. Note also that we do not
distinguish the growth factor of 6, from that of 6 because
we only use its time (redshift) derivative, which is expected
to be very similar. Velocity measurements at multiple red-
shifts are required to measure ¢ from the above equation,
as described in [47].

For clustered DE models, the galaxy v, is not neces-
sarily equal to v of the total fluid. From the Euler equa-
tion (6) applied separately to different components of the
fluid, we can see that the DM and DE velocities evolve
differently since only the latter is affected by pressure
perturbations in the DE. As a first order approximation,
galaxies and baryonic gas velocities trace that of the DM.
So what one actually measures is 6, = Opy # Opg 7 0.
This distinction can be relevant for DE models with large
perturbations on subhorizon scales if these are not corre-
lated with the matter fluctuations (i.e., if the DE power
spectrum has a different shape from the matter power
spectrum).

Assumptions/caveats: The galaxy peculiar velocity only
probes i where there are galaxies. So potentially there is a
bias related to the environment of galaxies. However, since
gravity is a long range force, the potential where galaxies
reside is determined by matter over a much larger region
and thus should be unbiased with respect to the overall .
Galaxies themselves are not sufficiently massive to con-
tribute to this long range potential. However, to obtain v,
from limited redshift bins, one does need to parametrize
the redshift dependence of v,.

The accuracy of the velocity information inferred from
the redshift space galaxy power spectrum relies on the
modeling of the redshift distortion. The derivation of
Eq. (28) is quite general—it can be applied to general
DE or MG models. However, Eq. (28) does not describe
redshift distortions to percent-level accuracy [43].
Nonetheless, with improved modeling of the correlation
function in redshift space [48] the associated systematic
errors in velocity (and ) measurements can be reduced.

Density contrast 0: The clustering of galaxies is one of
the earliest measures of large-scale structure, and its mea-
surements have advanced over the last three decades. The
galaxy power spectrum P, is the simplest statistical mea-
sure of correlations in the galaxy number density. Several
other probes of large-scale structure also probe the density
field: clustering of the Lyman-alpha forest, clustering of
quasars and galaxy clusters, the abundance of galaxy clus-
ters, and (in the future) 21-cm emission measurements of
the high-redshift universe.

However, given a measured galaxy power spectrum, the
power spectrum Pg of the underlying mass density 6 may
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differ due to galaxy bias. Further the galaxy-density rela-
tion may be nonlocal and vary slightly in different gravity
theories due to differences in the tidal field that influence
collapsed objects such as galaxy halos. We will restrict
ourselves to large scales (k < k,;, the nonlinear wave
number) where bias is scale independent in simple models
of galaxy formation. This allows us to infer the mass power
spectrum from the galaxy power spectrum without detailed
modeling of their relation, because it is possible to fit for
the bias directly from the data. We discuss below the
caveats to this assumption for clustered dark energy.

The galaxy density in three-dimensional space may be
expressed in terms of the density and bias parameters b,
and b, as

§,=—2=0b6+—=05% (30)

This expansion is useful for small values of §; it can be
used in a perturbative expansion to explore what measure-
ments are sufficient to measure the bias parameters by, b,
as well as 6 (see [49] for details on the bias formalism).
Equation (28) shows how the three-dimensional galaxy
power spectrum P, can be obtained from redshift space
measurements. A second way of measuring P, is from
imaging data with photometric redshifts. This provides
measurements of the angular power spectrum of galaxies,
which is a projection of the three-dimensional galaxy
power spectrum

C,() = deWiEX)PgG:i,X), 31)

where W, is the normalized redshift distribution of gal-
axies included in the sample. With good photo-z’s it is a
narrow range with width of order 0.1 in redshift, so that
many such angular spectra can be measured at different
mean redshifts from a survey (e.g., [50]).

1. Galaxy bias with clustered dark energy

In clustered dark energy models it is not a priori clear
whether the galaxy overdensity is related to the matter
overdensity &,, or to the total fluid overdensity Sgr. We
argue below that at least for some galaxy populations, J, is
directly related to &,,, even though the evolution of the
matter density responds to the full gravitational potential
(which receives contributions from dark energy clustering
as well).

One way to see this is to consider the centers of mass of
galaxy halos at sufficiently high redshift z; where the dark
energy density is negligible. The clustering of these halo
centers is then simply a biased version of the mass distri-
bution. Hence at z; one can write 8,(z;) = b(z;)8), with
b(z;) independent of scale for large enough scales. As they
evolve to redshifts below unity, their motions are given by
the potential ¢, just as for the matter field. Hence their
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evolution obeys the continuity and Euler equations: & g =
~0,/a and 6, =~ —HO, + k*y/a. The matter density
obeys the same equations with &, and 6,, as the density
and velocity perturbations. This means that the bias factor
preserves its scale independence: at low redshift, it relates
the galaxy power spectrum to the matter power spectrum
and is not directly sensitive to the clustering of dark energy.
For example the halo-model expression [51,52] for the bias
evolution is b(z) =1+ (v — 1)/8..(z), where 8. (z) =
D(z) is the density required for spherical collapse at z,
and v = 8,(z)/o with o the smoothed rms mass fluctua-
tion. The expression for ellipsoidal collapse has two addi-
tional parameters but still has no scale dependence.

Clustered dark energy follows Eq. (6) with w # 0 and
o # 0, so it has a different time and spatial dependence
from o,,. If the dark energy clusters significantly, it is
therefore possible that galaxies have a scale dependent
bias relative to it and therefore to the total density field.

The above argument is very general but relies on some
approximations. These are well justified for massive halos,
for which the evolution at low redshift is very simple:
consider galaxy halos of mass M > M., where M, is the
standard halo-model nonlinear mass. The centers of mass
of these halos can be mapped to high-o peaks in the nearly
Gaussian mass distribution at high redshift. Moreover, they
do not move significantly, so it is evident that their power
spectrum at large scales evolves simply by the growth of its
amplitude. Such massive halos correspond to galaxy clus-
ters and luminous red galaxies (LRGs) at moderate to high-
redshift. For galaxies in lower mass halos, halo motions
and mergers change their clustering at low redshift, so one
has to be careful in modeling their bias factors.

Another route to 6 in any GR scenarios is through the
metric potentials. Given lensing measurements of ¢ + ¢
and dynamical measurements of ¢, one can obtain the
potential ¢. Using this, the Poisson equation (7) then gives
0, since the gravitational constant is known in GR. Thus o
is not independent of the metric potentials even for clus-
tered DE models.

2. Empirical determination of bias

To leading order then, knowledge of b, allows us to
relate P, to Ps. Barring extreme scenarios of clustered
dark energy, we take 6 to be the full density field.

Provided a halo-model description applies reasonably
well to our universe, bias can be determined by combining
observations and using two- and three-point statistics. For
concreteness we consider the bias parameters b, b, that
can be determined from the data using the power spectrum
and bispectrum (denoted B) measurements. In a determi-
nistic bias model, one can then get the density power
spectrum. With P, = biPs and the reduced three-point
parameter Q ~ B/P? (see the Appendix and [49] for full
expressions), one has a relationship between the Q parame-
ter of galaxies and mass [53,54]:
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_ % b

. 2
b (32)

Qq

By using P, and measurements of Q, for different tri-
angles, both bias parameters and Ps can be determined.
(A similar analysis can be done in real space, e.g., using
counts in cells. The skewness S5 is given by the shape of
the power spectrum and bias parameters.) While this is a
simplified model, it helps us address what changes for MG:
the predictions for P4 and Q 5 both change, with the former
given by the new linear growth factor on large scales and
the latter by next order terms in perturbation theory (see the
Appendix for more details). For well-specified gravity
scenarios, these calculations can be done and thus the
bias factors determined from measurements.

A second approach to measuring b, is to use the galaxy-
mass cross correlation measured by galaxy—galaxy lensing
in combination with the galaxy power spectrum (e.g.,
[41]). This has the advantage that one uses only two-point
statistics that can be measured with high accuracy.
However, as discussed below and by [25], for MG theories
there is a complication because the Poisson equation is
needed as well since lensing measures the potentials rather
than 8. So for MG theories, the extraction of the bias
parameter in this approach is more complicated, but never-
theless feasible by jointly fitting for bias and G-

3. Galaxy cluster mass function

A different probe of 6 is provided by the mass function
of galaxy clusters. Given Gaussian initial conditions and a
spherical/ellipsoidal collapse model, the number density of
galaxy clusters can be related to the linear density contrast.
In the spherical collapse scenario, a region containing mass
M will collapse if the overall density fluctuation exceeds a
threshold &,.. The number of such regions can be predicted
from the Gaussian statistics and this fixes the halo mass
function dn/dM, the number of halos with mass M.

In the standard ACDM cosmology, gravitational dynam-
ics is determined by GR. The mass function of galaxy
clusters is sensitive to the smoothed mass density variance
o% on scale R, which is dependent on the cluster mass and
is typically of order 10 Mpc (e.g., [55]). This is related to
the density power spectrum as

3
ok = %Pg(k)wfop nat(KR), (33)
where W,q, 1y 18 the window function for averaging with a
spherical top hat.

For clustered DE models, the cluster formation picture
becomes complicated. The presence of the anisotropic
stress invalidates the spherical collapse model and more
complicated models such as ellipsoidal collapse with tidal
fields need to be used. Furthermore, the fate of an over-
dense region is no longer determined by the matter fluc-
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tuation &,, alone. DE fluctuations opg and o affect
through Egs. (7) and (8). And dp affects the evolution of
opg through Egs. (5) and (6). Thus a combination of §,,,
Opg» 0P, and o acts in determining the evolution of a given
region of matter—the resulting collapse condition has yet
to be worked out. Since many galaxy clusters form recently
at z = 1, where DE is non-negligible, DE fluctuations
could leave some detectable signatures in cluster
abundance.

For probing the dark universe, this is a valuable feature.
It implies that galaxy cluster abundances contain informa-
tion on not only fluctuations in matter but also fluctuations
in dark energy, and thus is a promising probe of the total 6.
To extract such information requires further modeling of
the DE model, but a simplified model can be obtained as
follows. The collapse condition based on energy conserva-
tion should be linear in the DM and DE perturbation
variables, since they are all first order variables of the
energy-momentum tensor. At high redshift, the dark en-
ergy contribution should vanish (assuming ppg < p,,)-
Thus we may assume that matter fluctuations are the
only source of growth for the late time &,, as well as
Ope> Op, and o responsible for the LSS. In this picture,
all perturbation variables are correlated and have determi-
nistic relations [56]. The collapse condition can be sim-
plified into a modified condition on §,, alone. An effective
5%t can be defined for specific DE models, such that when
a region reaches 8,, = &<, it will collapse.

The usual collapse model deals with isolated objects and
thus Birkhoff’s theorem is implicitly required.
Modifications in GR result in a generic breakdown of
Birkhoff’s theorem. This significantly complicates the
modeling of cluster abundance in MG models, since the
fate of a given region is determined not only by matter and
energy inside this region, but also matter and energy out-
side. However, given a MG model, one can still predict the
probability for a given region with overdensity J,, to
collapse and thus predict cluster abundances.

Assumption/caveats: Unlike the use of gravitational
lensing to probe ¢ + ¢, it is model dependent to probe o
from cluster abundance. (1) The cluster abundance requires
careful modeling, even in the simplest case of smooth DE
models. For example, the tidal field makes the spherical
collapse model only a rough approximation. (2) The
observable-mass relation is needed to connect observable
[e.g., x-ray flux, Sunyaev Zel’dovich (SZ) flux, or cluster
richness] to the mass of clusters. These cluster properties
often involve complicated gastrophysical processes and
cannot be predicted with sufficiently high precision from
first principles. As a consequence, using cluster abundance
to probe & often requires model-dependent calibrations.

In spite of these caveats, it is hoped that the well-posed
problem of the evolution of a region in an initially
Gaussian random field will be calculable and related to
the linear density field in generic MG or DE models.
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Velocity divergence 6: Many existing velocity measure-
ments are based on distance indicators: the difference of
the true distance from what is inferred from the recession
velocity gives an estimate of the peculiar velocity of a
sample of galaxies or clusters [57]. The pairwise velocity
at small separation can be measured through anisotropic
galaxy clustering in redshift space at cosmological dis-
tances [46]. While challenging, there are ongoing attempts
to improve measurements of bulk flow measurements,
based on SNe Ia [58]. An independent method is the kinetic
SZ effect [59] of clusters which is directly proportional to
the cluster peculiar velocity and enables a rather model-
independent measurement method [60]. These measure-
ments are likely to have lower signal-to-noise ratio than the
redshift space distortions discussed above. Further it is
unclear whether they estimate 6 of the total fluid in a
clustered DE scenario, for the reason discussed above.

CMB: The CMB power spectrum is given by

Crrll) = f dk f dx'Fos(k L X)jlkx@)]  (34)

where the spherical Bessel function j; is the geometric
term through which the CMB power spectrum depends
on the distance to the last scattering surface. The function
Fcvp combines several terms describing the primordial
power spectrum and the growth of the potential. We will
regard Fyp as identical to the GR prediction since we do
not invoke MG in the early universe (up to the redshift at
last scattering).

The CMB anisotropy does receive contributions at red-
shifts below last scattering, in particular, due to the inte-
grated Sachs-Wolfe (ISW) effect [61]. In the presence of
dark energy or due to modifications in gravity, gravita-
tional potentials are in general time varying and thus
produce a net change in the energy of CMB photons:

d
AT ] —(‘”dt ?) a0y, (35)

T

The ISW effect, like gravitational lensing, depends on and
probes the combination ¢ + ¢. The ISW signal is over-
whelmed by the primary CMB at all scales (although it
does produce a bump at the largest scales in the CMB
power spectrum). For this reason, it has to be measured
indirectly, through cross correlation with other tracers of
large-scale structure. The resulting cross-correlation signal
is then

ISW

[ dy
Ciw()) = [P g (k = —,,\/)az—. (36)
IswW g+d) X X2

Here, P+ ¢k x) is the cross-power spectrum of (W +
¢) and galaxies or other tracers of the LSS such as quasars
or clusters. By cross correlating the CMB temperature with
galaxy overdensity d,, the ISW effect has been detected at
= 50 confidence level [62] and provides independent
evidence for dark energy, given the prior of a spatially
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flat universe and GR. This cross-correlation signal depends
on galaxy bias, which has to be marginalized to infer
cosmology. With the aid of gravitational lensing, uncer-
tainties of galaxy bias can be avoided [63,64].
Furthermore, since the ISW amplitude peaks on the largest
scales, it also has a strong correlation with large-scale bulk
flows and produces a cross-correlation signal with poten-
tially better signal-to-noise ratio than that of the density-
ISW cross correlation [65].

The primary CMB is Gaussian and statistically isotropic.
However, gravitational lensing distorts the CMB sky and
induces anisotropy and Fourier mode coupling in the
CMB, which should not exist otherwise. This feature al-
lows reconstruction of the lensing potential from future
high resolution CMB maps [66]. The CMB sky is the
furthest lensing source and thus can probe ¢ + ¢ at red-
shifts well above unity. This will be useful to constrain
those MG and DE models in which deviations from
ACDM persist at these redshifts.

ISW measurements and future measurements of lensing
and galaxy clustering can probe scales approaching the
horizon scale. This provides an additional test of MG
models in which the growth of perturbations is altered at
relatively high redshift on superhorizon scales.
Bertschinger [23] showed that growth on superhorizon
scales is constrained to be universal for MG models with
iy = ¢. Hu and Sawicki [24] showed how it differs for
f(R) models which do not obey this constraint, and de-
scribe the transition from superhorizon to subhorizon
scales. If measurements achieve high accuracy on these
large scales, they can be combined with information on
subhorizon scales to provide additional constraints on the
ratio of potentials 7 for such MG models.

Summary: The quantity that can be measured most
robustly is the sum of potentials s + ¢, through gravita-
tional lensing and the ISW effect. With a bit more model-
ing, the Newtonian potential ¢ can be inferred from galaxy
velocity measurements (i.e., redshift space distortions). To
obtain model-independent constraints on the total density
perturbation 6 is challenging if one allows for dark energy
clustering in the GR scenario. Galaxy clustering is likely to
be an effective measure of the matter fluctuation §,,, while
cluster abundance is a promising probe of  as it is sensi-
tive to DE fluctuations as well. Although the galaxy pecu-
liar velocity is likely to be well measured in the future, the
DE peculiar velocity (and therefore the overall v and 6) is
likely the most difficult to measure. Cross correlations of
large-scale structure tracers with the lensing potential or
the Newtonian potential are probably the most promising
tests of MG in the near future, as we discuss next.

B. Joint constraints from multiple observations

If multiple observables are to be combined, model-
independent information can only be inferred if they probe
the same range of redshift and length scale. The distance-
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redshift relation will be measured to ~1% accuracy by the
next-generation SNIa and BAO surveys at low-z and by the
CMB at high-z. The next-generation BAO surveys can
further measure H(z) at low redshift. With the expansion
rate of DE and MG models tightly constrained, measure-
ments of perturbed variables become powerful
discriminators.

The distance-redshift relation at redshift z is given by an
integral over the expansion rate, and therefore the energy
densities, from redshift O to z. This measurement at z < 1
has provided evidence of acceleration, consistent with
ACDM. On the other hand, CMB measurements at
high-z for both distances and perturbations are consistent
with a universe governed by GR, with its energy density
dominated by matter and radiation [40]. Thus either dark
energy or modification of gravity must produce effects that
are significant at z =< 1 and negligible at z ~ 1000. In
Fig. 1 we show as examples the deviation (from ACDM
with Qpg = 0.7) of a model with Qpg = 0.75 and a flat
DGP model with (),, = 0.3. It is clear that for both dis-
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FIG. 1 (color online). Upper panel: We plot the normalized
distance d(z) (solid curves, almost coincident) and the linear
growth rate D(z)/a(z) (dotted curves) for 0 < z < 3 for two dark
energy models (in black and red) and a DGP model (in blue).
The distances and growth rates are normalized to give 1 at high
redshift (z = 1100). Lower panel: The fractional deviations in
distance (solid curves) and linear growth (dotted curves) from
the fiducial ACDM model are shown for a dark energy model
(black) and DGP (blue) (see text for details). Note that the DGP
growth curve is sensitive to the parameters chosen to fit the
distance-redshift relation: for a distance curve that matches
ACDM better, the growth curve would also have smaller devia-
tion.
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tances and perturbations, significant deviations occur at
low-z in such models [67].

The most promising scale/redshift range in the near
future is ~10-100 sMpc at redshifts ~0.3—1. Imaging
and spectroscopic observations are likely to be made on
these scales and will be robust to many sources of error and
dependence on specific models. We list below several
categories of surveys that will test MG and DE models.
Two sets of surveys are indicated: surveys planned for the
near future (significant data within 5 years), and surveys
planned to start in about a decade. (The list is not complete
as several projects have been formulated or modified re-
cently.)

(1) Multicolor imaging survey: With photometric red-
shifts for millions of galaxies, these surveys provide
measurements of weak lensing, galaxy cluster abun-
dances, and the angular clustering of galaxies, clus-
ters, and quasars. These measurements probe
¥+ ¢, 8, and their cross correlation. Upcoming
surveys include the following:

(a) DES, KIDS, PS1, HSC (2008-). 0 <z =< 1.

(b) LSST, SNAP, DUNE (2014-). 0 <z = 3.

(2) Spectroscopic surveys: While primarily designed to
measure the distance-redshift relation and H(z) us-
ing the baryon acoustic oscillations in galaxy power
spectra, they will provide improved measurements
of Py, P,,, and P,, on large scales. Some surveys
will target 7z = 1 galaxies and others will select
galaxies at higher redshift, 2 < z < 3.

(a) LAMOST, WiggleZ, HETDEX, WFMOS, BOSS
(2008-). 0 <z = 3.

(b) ADEPT (2014-). 1 =z =< 2.

(3) 21 cm surveys: SKA [68] (2015-). The square kilo-
meter array (SKA) has the potential to detect ~10°
galaxies over 0 <z =< 1.5, with a deeper survey
extending to z ~ 5, through 21 cm line emission of
neutral hydrogen in galaxies. If successful, it will
provide high precision measurements of the
distance-redshift relation through BAOs [69], and
tests of MG through (a) weak lensing maps with
accuracy comparable to that of large optical surveys
[70], (b) velocity measurements through redshift
distortions of galaxy clustering [25], and (c) ISW
measurements  through  CMB-galaxy  cross
correlations.

(4) SZ and x-ray cluster surveys: These will measure
the abundances of galaxy clusters out to z ~ 1 and
beyond. Cosmological applications will depend on
supplementary optical data to get photometric red-
shifts of the detected clusters.

(a) SZA, SPT, ACT, APEX, eROSITA (2008-). 0 <
7= 1.

(5) CMB: temperature and polarization maps provide
high-z constraints and also measurements of the
ISW effect and CMB lensing, which are probes of
i + ¢ at lower redshift.
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(a) PLANCK and ground based missions (2008-).

We have indicated the approximate redshift range over
which these surveys will provide accurate measurements.
It would be most useful to have different observables
overlap in redshift and length scale in the range z =
0.3-1 and at scale A = 10 to several 100 Mpc. This range
of scales covers the linear and quasilinear regimes of
structure formation (we are assuming that MG effects are
present on these scales). Next we consider two promising
combinations of observables that on the 5-7 yr time scale
will enable measurements of the MG functions G.¢ and 7
on these scales.

Lensing and galaxy power spectra: Planned next-
generation imaging surveys (see above) will have area
coverage in excess of 1000 sq. degrees, enabling a few
percent-level measurements of lensing power spectra. The
same imaging surveys will also measure the angular clus-
tering of the galaxies C, (at z ~ 0.3-0.6, the redshift of the
lensing mass) to percent-level accuracy; cluster abundan-
ces will also be measured through optical and SZ surveys:
both measurements probe the matter density o.
Alternatively, spectroscopic surveys like BOSS will mea-
sure P,, the three-dimensional power spectrum, to percent-
level accuracy. The shear power spectra can be combined
with the density power spectra measured at z ~ 0.3-0.6
and scales of 10-100 Mpc. Using the Poisson equation,
G will then be tightly constrained, assuming statistical
errors dominate the error budget. The main galaxy sample
and LRG sample of the SDSS has already been used in
constraining MG models through galaxy clustering alone
(e.g., [71]), though in a model-dependent way.

Cross correlations of galaxies with shear and velocity:
Galaxy—galaxy lensing measurements made from imaging
surveys probe the lensing potential-galaxy correlation.
This measurement has been made to high accuracy from
the SDSS [72,73]. In the near future one can expect mea-
surements of P,, to a few percent (e.g., from the BOSS
survey) at z ~ 0.3-0.6. In combination with percent-level
galaxy-galaxy-lensing measurements over the same range
of redshift, the ratio of potentials 1 will be precisely con-
strained [47].

The measurements described above would be major
advances in constraining MG theories, as the current con-
straints on ~10-100 Mpc scales are weak and insufficient
to test MG theories with any robustness. For particular
models the scale and redshift evolution of a single statistic,
such as the lensing power spectrum, can be powerful as
well. We leave for future work a detailed study of how well
these measurements will test MG theories. In considering
an observable suitable for distinguishing models of gravity,
one must address the familiar problems in extracting cos-
mological information due to statistical and systematic
errors, i.e., the expected precision on the measurement,
the physical assumptions necessary to connect observable
to the four variables of interest, and the degeneracy with
other cosmological parameters.
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IV. MODIFIED GRAVITY VS DARK ENERGY

Specific models of MG and DE can be tested by com-
bining observations of the expansion rate and large-scale
structure. For example, in the ACDM model (and well-
defined scalar field models), the growth of the large-scale
structure is completely determined by the expansion his-
tory: there exists a fixed relation between the expansion
rate and the growth of LSS. This consistency check has
been carried out in the literature and is indeed able to
distinguish  specific  models investigated  [10].
Furthermore, this consistency check can be performed in
a model-independent way to search for signatures of vio-
lation of GR, with the prior of smooth DE [74-76].

DE models that depart from scalar field models can be
much more complicated, with a breakdown of the corre-
spondence between the expansion rate and large-scale
structure. The expansion rate is determined by pgr and
w. However, two extra DE properties, the anisotropic stress
o and the response of pressure to perturbations (0 p), can
affect the growth of the LSS. These two properties are
determined by the microphysics of the DE model and are
independent of pgr and w. As a consequence, the growth
of LSS is no longer fixed by the expansion rate and the
above consistency check cannot be applied to search for
signatures of the violation of GR. Current observational
constraints on the sound speed (¢2 = 8p/8p) [77] and the
anisotropic stress [78] are weak. Furthermore, these studies
use a particular form of ¢ and 6 p and assume that one can
be switched off when studying the other. Thus a potentially
wide range of DE models with non-negligible anisotropic
stress and pressure fluctuations are still viable against
observations. To investigate the feasibility of distinguish-
ing between DE and MG, we will allow for arbitrary
anisotropic stress and pressure perturbations.

Modifications of gravity (at least the class of theories we
have considered) involve two extra quantities which gov-
ern LSS, namely, modification of Newton’s constant, G,
and the ratio of potentials n = ¢ /. Although these quan-
tities determine the gravitational interaction of perturba-
tions, they do in general affect the expansion rate H(z)—
unlike for GR and its Newtonian limit. This is in part due to
the fact that for MG, Birkhoff’s theorem no longer holds
and thus the usual exercise of calculating H(z) from the
Newtonian dynamics of a spherical matter distribution no
longer applies. Thus G and 7 represent real extra degrees
of freedom in MG theories.

The extra degrees of freedom in MG and clustered DE
models can produce similar observational consequences.
For example, the anisotropic stress breaks the equality
between ¢ and ¢/, mimicking the role of 1 in MG models.
Thus one might expect that by tuning the 2 extra degrees of
freedom in DE models, one can mimic a given MG model
to fit observations. Indeed, Kunz and Sapone [19] explic-
itly construct a DE model which reproduces degenerate ¢,
¢, and §,, with the flat DGP modified gravity model [79].
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This degeneracy certainly deserves further investigation.
In this section, we consider in more detail the question: can
one always succeed in tuning DE models to produce ob-
servational consequences identical to a given MG model?
If the answer is yes, then one can never unambiguously test
for deviations from GR.

The answer to the above question is incomplete in fully
describing the dark degeneracy. The complementary ques-
tion, which needs to be answered is: can one always tune
MG models to produce observational consequence identi-
cal to a given DE model? If the answer is yes, then one can
never unambiguously justify the existence of DE.
However, this question is more difficult since it requires
a general parametrization of the relation between the ex-
pansion rate H(z) and the nature of a general gravity
theory—such a parametrization is not yet available. This
limit in theoretical understanding of MG forces us to
investigate only the first question, since we know the
most general way of parametrizing the influence of DE
on the expansion history of the Universe. Furthermore, we
have constrained our study to a special class of MG mod-
els, in which gravity is minimally coupled to matter. The
study of both questions for the most general MG models is
beyond the scope of this paper.

The relationship between the four perturbation variables
¢, ¥, 6, and @ is fixed for a complete DE or MG theory.
These consistency relations are the key to probing the
nature of DE and MG. With just two variables being
observable, one can only test against one consistency
relation and, as we see below, by tuning the 2 extra degrees
of freedom in clustered DE models, any MG model can be
mimicked. However, with more observed variables, one
can test other consistency relations and hope to break the
degeneracy between DE and MG models. In this section,
we explore the feasibility of distinguishing DE and MG
models. In this section we consider only the question of
distinguishability in principle, without regard to the accu-
racy of observations in the foreseeable future.

A. Two perturbation observables

First we assume that both potentials are observables, i.e.,
we require ¢ and ¢ to be identical in the two models. From
the discussions in previous sections, these two quantities
are the most likely to be measured to high precision. So we
set them identical in the constraint equations for GR and
MG to get relations between the remaining variables.
Comparing Eq. (8) for o in GR with the constraint
Egs. (12) and (13) for MG gives

U —1 Gt Puc
+1 G par

2
n

In addition by combining the Poisson equation (7) for

GR with Egs. (12) and (13) for MG, we obtain a second
constraint
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2 Ge Pyc
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)
Sor +3(1 + w)Ha% = Sumg. (38)

The question then is whether Egs. (5), (6), and (38), have
solutions for dggr, Ogr, and O p, in terms of MG variables
[recall that o is now fixed by Eq. (37)]. Without a funda-
mental theory, §p can take any form [21]: hence there is
always a form of 6 p satisfying all three equations. Namely,
there is always a DE model which can mimic the given MG
model to produce identical ¢ and .

The degeneracy persists for other combinations of two
perturbation variables. We have discussed above that in a
clustered DE model, it is difficult to establish whether
galaxies, other tracers, or cluster abundances probe & or
8,, (or neither). If we assume that a subset of LSS obser-
vations will provide measurements of d, then combining
that with measurements of s + ¢ from lensing, we have

2 GerPyvc )
= ) —-1) 39
T30+ w) (G[)GR (39)

Thus if o is free, it can be chosen to match the above
equation for any set of theories.

Extra information can break this degeneracy. The re-
sponse of pressure to density perturbations and the aniso-
tropic stress are determined by the microphysics of the DE
model. It requires a theory to provide such closure relations
(see [24] for more detailed discussions). For example, the
quintessence model predicts vanishing o and negligible
pressure perturbation on subhorizon scale. Even if advan-
ces in the understanding of general DE theory do not
provide such specific information, some general con-
straints can still break the degeneracy. For example, if
8p takes the form 6p = c28p and ¢z = c2(1), as is true
for the adiabatic case, solutions do not exist in general for
Egs. (5), (6), and (38). In this case, one cannot find a DE
model to mimic the given MG model.

Another physically well-motived example is for the
anisotropic stress o. A natural source of o is the velocity
perturbations in the fluid. By the requirement on gauge
invariance, the evolution in ¢ may be parametrized in the
following form in the Newtonian gauge [78,80]:

+aHg =5 G g (40)
o o=-—"5-9,
31+w

where c,; is the viscous parameter. This equation in gen-
eral contradicts Egs. (37) and (39) above and thus no DE
model that satisfied Eq. (40) can mimic the given MG
model.

Extra information can also come from additional ob-
servables. The equations above show that if we have just
one additional observable, such as é or 6, there will in
general be no solution for the remaining two variables that
satisfies three equations [e.g., (5), (6), and (38)]. We con-
sider this next.
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B. Three or more observables

If both potentials and & are observable then the theory is
constrained much more tightly, especially if they are mea-
sured multiple redshifts.

For a DE model to mimic the given MG model, 6, ¢,
and ¢ must satisfy the three equations (7), (12), and (13).
This imposes the following consistency relation for G
and 7:

= oGt PyG 41)
G por
So if the given MG model does not obey the above relation,
no DE model can produce 6, ¢, and ¢ identical to the
given MG model, no matter how the DE properties are fine-
tuned.

Equation (41) represents a strong constraint on MG
models as it shrinks the 2-parameter 7 — G.g space in
MG models into a straight line. We show as an example
that the DGP model does not satisfy this condition.

In a flat DGP model, Gy =G and 5 ' =(1+
1/3Bpap)/(1 — 1/3Bpgp)  [11].  Here PBpgp =1-—
2r.H(1 + H/3H*)=1—-2r H/(1 —2r.H) <0, with
H*=H/r.+ Qa3 and r,=1/(1 —Q,,). We have
normalized H(z = 0) = 1. For the DGP model, pyg =
Q,,a™3 (up to a normalization, which is irrelevant for
this discussion). By requiring the DE model to reproduce
the expansion history of the given MG model, we have
pcr = H?. Figure 2 shows that the consistency condition
is significantly violated by all flat DGP models. This means
that no DE model can produce ¢, ¢, and 6 identical to a
flat DGP model that satisfies observational constraints on
the expansion history.

This conclusion seems to contradict [19]. However, [19]
requires the dark matter density fluctuation &,, to be iden-
tical in the GR and MG scenarios. We require the total & to
be identical instead. In GR, the Poisson equation specifies
the ¢ — 0 relation, not the ¢ — §,, relation, so with & as
an observable, one directly constructs consistency relations
and thus distinguishes between DE and MG.

There is also a constraint on the anisotropic stress, from
Eqgs. (8), (12), (13), and (38),

n -1

3w 5. (42)

U’ =
Comparing Eq. (6) with Eq. (10), we obtain

. 2 2
0(3Hw— 4 )+( Cs 5—a)k—=o. (43)
1+w 1+w a

Since HO ~ BaH?*8 < k*8/a, we have

(1+w)0'=n_1—1
o 3

¢ =

(44)

Comparing Eq. (5) with Eq. (9), we obtain
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1

0.5

Z[GE”/G][[JMG//{JGR] -1

— 0.5

1/7n

FIG. 2. First consistency condition for at least one DE model
to mimic ¢, ¢, and 6 in a flat DGP model. The dashed line given
by Eq. (41) represents the required condition, while the solid
curve is the actual relation in flat DGP. When @ — 0, n — 1 and
for a — o0, n — 1/2. The points on the curve with ¢ = 0.5 and
a = 1 are indicated. (For flat DGP lines with different (), lie on
top of each other.) The disagreement between the two curves
shows that DGP is a modified gravity model that cannot be
mimicked by any dark energy model.

1-(wB+1+3w)n

FIG. 3. The second necessary condition for at least one DE
model to mimic ¢, ¥, and 6 in the given DGP model. The
condition 7' =~ wgB + 1 + 3w, given by Eq. (46) implies the
variable on the y axis should be zero for all a. For flat DGP with
Q,, = 0.2, this condition is also severely violated for a > 0.
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, _ w(0/a—3)

)
+w=wl=+1)
c 315 w w( 3 1 45)
Combining both constraints on c¢2, we obtain
n '=wB+1+3w. (46)

w is fixed by the condition pgg = H>. B is calculated from
the given MG theory. So the above equation can be
checked from the viewpoint of MG models
unambiguously.

Again, Fig. 3 shows that this condition is severely vio-
lated for the DGP model: thus no DE model can mimic a
flat DGP model to reproduce identical ¢, i, and 6. We
have verified that this is true for f(R) models as well.

These relations present general constraints, without re-
sort to real observation data. Observations show that at the
present epoch, w < —1/3 since the universe is accelerat-
ing, while B> 0 since the structure is growing. From
Eq. (45), we have ¢2 < —1/3, if the related DE model
can reproduce ¢, ¢, and 6. Furthermore, Eq. (46) tells that
7n < 0 today.

V. DISCUSSION

We have described the role of perturbations in testing
theories of MG against large-scale structure observations.
We have chosen the class of MG theories that are described
by scalar perturbations, so that two metric potentials suf-
fice to describe the perturbed space-time. We then consider
the quasistatic, Newtonian limit of the perturbed field
equations and compare DE and MG theories.

Our main focus is on the relationship of different ob-
servables—lensing, large-scale dynamics of galaxies, gal-
axy clustering, cluster abundances, and various cross
correlations—to the four perturbation variables of MG
theories including the two metric potentials, the density
field, and the divergence of the peculiar velocity. In Sec. I1I
we give the relationship of measured power spectra in real
space, redshift space, and on the sky with theoretical
predictions for these perturbation variables. We highlight
the use of two effective functions to test MG theories: the
ratio of the metric potentials ¢/ and the effective gravi-
tational constant G.;. We also consider in the Appendix
quasilinear signatures of MG and show how the MG func-
tions affect second order corrections to the power spectrum
and the bispectrum.

We discuss in detail what is actually measured by vari-
ous large-scale structure observations once the assump-
tions of smooth dark energy and GR are dropped. While
lensing and dynamical probes have a direct connection to
different potential variables, tracers of the density field and
cluster abundances must be treated carefully in extracting
information about the density field from them. The most
robust tests of MG effects can be made by combining
different observables from planned multicolor imaging
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surveys and redshift surveys: see Sec. IIIB for two ex-
amples that will be feasible in the near future.

Observables that may not be useful in constraining
smooth DE can be crucial for testing MG because there
are more variables to be measured and different observ-
ables are sensitive to them. For instance, the redshift space
power spectrum P, is not considered a valuable probe of
structure formation in DE studies as other methods produce
lower statistical errors on dark energy parameters. But in a
MG scenario, P,y is useful because it probes the
Newtonian potential ¢ that other probes are not sensitive
to. It can be combined with galaxy—galaxy lensing, which
probes P+ 4), to constrain the ratio of potentials ¢ /s
(Sec. IIIB). This is a case where observables from multi-
color imaging surveys and spectroscopic surveys must be
combined to test MG theories. More generally, once one
allows for MG scenarios, multiple observables are needed
to test theories. Thus the diversity of LSS observations,
which has lost some of its appeal in the recent trend of
going after a single dark energy figure of merit, becomes
vital (see [81] for a broader criticism of dark energy driven
research, and [82] for a rebuttal).

Finally we consider a question posed recently in the
literature: can a DE model be constructed to mimic any
MG theory? We show that with observations of multiple
perturbed variables (three are sufficient in general), unique
signatures of MG theories can be established. We show
with the example of the flat DGP model how, given suffi-
ciently accurate measurements of the lensing and
Newtonian potentials and the density, no DE model can
mimic the DGP model.

Our results may be compared with other recent studies in
the literature, some of which appeared while this work was
in progress [19,24,83]. These studies tackle the question of
how dark energy and modified gravity can be distin-
guished. We have clarified the apparent conflicts between
this paper and [19] in Sec. IV B. References [24,83,84]
present a formal argument that any deviation from GR can
be absorbed into the dark sector as an effective dark
component. The effective stress-energy tensor of this com-
ponent, T¢/}, is defined as the deviation of the given MG
theory from Einstein’s field equations. Tff,f, is conserved, as
expected for the usual DE model. From this argument, one
might conclude that MG cannot be distinguished from DE
gravitationally. However, Hu and Sawicki and Bashinsky
[24,83] also pointed out that the effective dark component
has a generic, though implicit, coupling to matter, despite
the conservation of Tzf,f,. This coupling hides in the closure
relations for this dark component, which depend on exter-
nal matter and the metric, instead of just its internal mi-
crophysics. A theory with such a dark component is
different from conventional DE models of the kind we
have considered, even ones with strong clustering of the
DE. (Indeed, it should not be surprising that allowing for a
dark component with an arbitrary stress-energy tensor and

PHYSICAL REVIEW D 78, 063503 (2008)

couplings to matter can mimic any modification of grav-
ity.) Our result, that DE models—with no coupling to
matter—can be distinguished from MG, appears to be
consistent with the analysis of [24,83]. In Sec. IV we
showed how consistency relations, obtained from the evo-
lution and constraint equations obeyed by perturbation
variables, help to distinguish between DE and MG. The
violation of the consistency conditions that can occur with
sufficient observables (see Sec. IVB) would thus imply
either the modification of gravity or a coupling of the “dark
energy’’ with matter in a GR scenario.

There are several assumptions and caveats in this study.
We study MG theories with scalar perturbations to the
metric; our formalism does not apply to theories with
additional vector or tensor degrees of freedom. While
describing the quasilinear regime of large-scale structure
(where planned observations have the best signal-to-noise
ratio), one needs to be aware that it is not clear how to
obtain nonlinear predictions of some MG theories. We
have chosen to work in Fourier space, where the descrip-
tion of clustering is simpler, but this means that there is not
always a direct relationship of our effective functions for
MG theories with the real space description of these theo-
ries (e.g., Gy is related to its real space counterpart in the
Poisson equation by a convolution with the density field).
And finally, we have left for future work a detailed study of
the accuracy with which MG tests can be performed by the
next generation of surveys.
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APPENDIX: PERTURBATION THEORY IN
MODIFIED GRAVITY

The fluid equations in the Newtonian regime are given
by the continuity, Euler, and Poisson equations. Keeping
the nonlinear terms that have been discarded in the study of
linear perturbations in the rest of the paper, the continuity
equation gives
d3k 1 lz * ]g 1

— L2 L0k 8(k — ky),

S+60=—
Qm)? K

(AD)

where the term on the right shows the nonlinear coupling of
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modes. Note that the time derivatives are with respect to
conformal time in this Appendix. The Euler equation is

d3k1 k2]_€)1 ‘ (E - El)
Q7)) 2121k, — k52
X 0(k,)0(k — ky).

6+ HO— K= —

(A2)

We neglect pressure and anisotropic stress as the energy
density is taken to be dominated by nonrelativistic matter
[85]. The Poisson equation is given by Eq. (12) and sup-
plemented by the relation between ¢ and ¢ given by
Eq. (13). Using these equations we can substitute for ¢
in the Euler equation to get

. d?’k] kzlgl * (]z - ]zl)
Q27 23|k, — k5|2
X 0(k)0(k — ky).  (A3)

8WGeff _ 26 _

0+ HO+ a

Equations (A1) and (A3) are two equations for the two
variables 6 and 6. They constitute a fully nonlinear de-
scription of MG theories and can be solved once 1 and e
are specified. An important caveat is that they may never-
theless be invalid for particular theories, for example, if the
superposition principle is violated.

Next we consider perturbative expansions for the density
field and the resulting behavior of the power spectrum and
bispectrum. Let 6 = 8, + 8, + ..., where §, ~ O(82).
Higher order effects due to gravitational dynamics become
detectable on 10 s of Mpc at low redshift. While this is
strictly true only for general relativity, any MG theory that
is close enough to GR to fit observations can also be
expected to have this feature. In the quasilinear regime,
i.e., on length scales between ~10-100 Mpc, mode-
coupling effects can be calculated using perturbation the-
ory. For MG, let us simplify the notation by introducing the
function:

87Téeff
(1+m)
which is simply 477G in GR but can vary with time and

scale in MG theories. The evolution of the linear growth
factor is given by substituting for v in Eq. (AS) to get

dmalk, 1) = (A4)

81+ HS — Luchuca®s, = 0. (A5)

In GR, the relation of ¢ to & is given by the Poisson
equation with constant G. In MG, this relation involves
both 1 and G.g. If either of these functions have a depen-
dence on k or z, then the solution for the growth factor
changes. The linear solutions for ¢ and ¢ + ¢ are then
simply obtained using Eqgs. (12) and (13).

We show below that in addition the second order solu-
tion has a functional dependence on Gy and 7 that can
differ. Thus potentially distinct signatures of the scale and
time dependence of G (k, z) can be inferred from higher
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order terms. These rely either on features in k and ¢ in
measurements of Py, and P, or on the three-point
functions, which even at a single redshift can have distinct
signatures of MG [86]. Quasilinear signatures due to
n(k, z) can also be detected via second order terms in the
redshift distortion relations for the power spectrum and
bispectrum. Our discussion generalizes that of [6] who
examined a Yukawa-like modification of the Newtonian
potential. Note that inclusion of higher order terms in the
density field in the quasistatic Newtonian equations is
consistent even if higher order terms in the field equations
of modified gravity theories are neglected: the latter in-
volve potentials which are taken to be very small in the
weak field limit, unlike the density.

1. Second order solution

From a perturbative treatment of Eqs. (A1) and (A3) the
second order term for the growth of the density field is
given by

8y + H&y — pyga*livedy = HI[6y, 8,1+ L[5y, 6]
+1,[6,,8,] (A6)
where /; and I, denote convolutionlike integrals of the two

arguments shown, given by the right-hand side of Egs. (A1)
and (A3) as follows:

d3k1 Iz' /21

—81(721)51(]2 - ]21), (A7)

L[8,, 6,1(k) = e B
1

and

Bk, Kk - (k—Fk,) .

L8, 8,1k = _ 8,(k)8,(k — ky).
2001, 91 Q) 2k%|k1_]%|2 1\K1)0q 1

(A8)

Finally, the last term in Eq. (A6) is simply I,[8,, 8,] =
L,[6,, 8,1+ I,[8,, 6,]. Note that by continuing the itera-
tion higher order solutions can be obtained.

From the above equations it follows that if {yg =
{vc(?) then 8, may be specified by k integrals over 6,
so that one may express the functional relationship §, =
8,[6,] (where it is understood that 8, at a given wave
number k depends on &, at all other wave numbers). But
for the general case of a MG theory with scale dependent
{vG, the second order solution has additional scale and
time dependence behavior that is not determined by the
linear solution [owing to the third term on the left-hand
side in Eq. (A6)]. So the functional relationship must be
modified to 8, = 8,[8;; {mc]. This means that quasilinear
evolution provides an additional signature of MG. That is,
even if the initial power spectrum is not fully specified
(e.g., if the running of the spectral index is not well con-
strained), the comparison of linear and quasilinear growth
rates can reveal the signature of MG. In practice, whether
the quasilinear signature is significant must be determined
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by computations for specific models (see [87] for a specific
model for which it is not). Note also that the second order
correction to the density power spectrum also involves the
third order density field as it is given by P, ~ (83) +
(8,83). The qualitative features we highlight for §, will
also be found in 63, which is also given by iterations of the
nonlinear Eqgs. (A1) and (A2).

We summarize the comparison of linear and second
order solutions for the density for GR versus MG. We
have identified the function {yg(k, £) as containing all the
information about MG that affects density and velocity
fields. For the density field the first and second order
solutions can be compared to GR as follows:

(1) Linear growth in GR: In smooth dark energy GR

models, 8,(k, f) is a separable function of scale and
time. .

(ii) Linear growth in MG: In MG theories, 6,(k, 1) is a
separable function of k and 7 if and only if the MG
function {yg is independent of scale.

(iii) Second order solution in GR: In smooth dark energy
GR models, the second order solution 52(12, t) is not
separable. It is however determined by integrals over
8 l .

@iv) Second order solution in MG: In MG models with
vk, 1), 8, is no longer determined solely by &,
and contains additional signatures of MG.

Note that for weak lensing measurements, quasilinear cor-
rections are given by the density times G [by substituting
higher order terms into Eq. (19)]. So the resulting signa-
tures can be straightforwardly computed using the higher
order solutions for the density field.

2. Three-point correlations

Distinct quasilinear effects are found in three-point cor-
relations (we will use the Fourier space bispectrum), as it is
the lowest order probe of gravitationally induced non-
Gaussianity. The bispectrum for the density field By is
defined by

(8(k1)8(ky)8(k3)) = (2m)’ 8p(ky + ky + k3)Bs(ky, ky, k).

(A9)
Since Bs ~ (8) ~ (828,) (using (8}) = 0 for an initially
Gaussian density field), the second order solution enters at
leading order in the bispectrum. Note also that the wave
vector arguments of the bispectrum form a triangle due to
the Dirac delta function on the right-hand side above. In
practice, a very useful measure of non-Gaussianity is the
reduced bispectrum function Q, which for the density field
6 is given by

BS(EM 122’ 123)
Ps(ki)Ps(ky) + Ps(ky)Ps(ks) + Ps(ki)Ps(ks)”
(A10)

To leading order Q is independent of the amplitude of the

05 =
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linear power spectrum [both numerator and denominator
are O(87), see [86]] and is nearly constant with triangle
size in GR. It is however sensitive to the shape of the
triangle. The dependence on size and shape changes for
MG theories and is in principle a probe of {yg. It is beyond
the scope of this paper to elaborate on the measurement of
the bispectrum from galaxy surveys; we will instead focus
on the prospects for lensing measurements. Shirata et al.
[71] have tested Yukawa-like modifications of gravity us-
ing Q for the galaxy density measured in real and redshift
space.

The lensing bispectrum contains perhaps the clearest
signature of MG. It is a projection of the three-dimensional
bispectrum

KBy ~ (87 G esra® ) (5%)

= (87Gora’ prc)(818,). (ALl

Since both §; and &, are functions of {y;g, measurements
of By 4 are sensitive to G and yg separately.

The reduced lensing bispectrum in a MG theory can be
expressed in terms of the density power spectrum and
bispectrum as

Gt (k1) Gegr (ko) G g (k3) Bs (ky, K, K3)/ i
k3G (kiP5 (k)G (ky)Ps(ky) /K33 + sym...
(A12)

Qyto *

For equilateral triangles, O in MG theories is simpler
since the G factors in all the terms are the same. One then
has

K*Qs5mc)

Qy+pMc) 2 (A13)

effPMG
The ratio of Q for MG versus GR for equilateral triangles is
given by

Qy+p(MG) o Osmc) Gpor

TPGR (Al4)
Qu+ocr)  Qsor) GeftPug

Note that Q itself depends on {;g. Bernardeau [86] shows
that with 7 = 1 but a scale dependent Gg, Q4 for given
initial power spectrum is relatively insensitive to {yg. If
that holds for generic initial power spectra and gravity
models, it would imply that Q,4wmc) probes G for
models with n = 1.

In general a measurement of the lensing power spectrum
and reduced bispectrum (roughly speaking, of P, , and
Qy+¢) 1s sufficient to measure departures from GR. There
are three underlying functions (Pgs, {ug, and Geff) to be
determined. For given k and source redshift, we have
measurements of P and of Q as a function of triangle
shape. Thus while the equilateral triangles may be regarded
as sensitive primarily to G, elongated triangles will be
sensitive to {yg, and therefore to 7). In practice one must
take into account the fact that the bispectrum has lower
signal-to-noise ratio than the power spectrum on quasi-

063503-17



BHUVNESH JAIN AND PENGIJIE ZHANG

linear scales [88], so one must fit for the desired informa-
tion from all triangle configurations and sizes to constrain
the MG functions.

To summarize this section, quasilinear effects thus offer
two signatures of MG.
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lations of the density and potential fields.
Independent of the shape and amplitude of the power
spectrum, the dependence of the reduced bispectrum
Q on triangle size and shape is a useful test of MG.
The reduced lensing bispectrum, for example, has a
strong dependence on Gg.

We have not considered here whether a clustered DE model
can mimic both these signatures. It would be of interest to
carry out the second order calculations for a set of MG
models and compare predicted deviations with observatio-
nal error bars.
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