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We study the effect of thermal corrections on the evolution of moduli in effective supergravity models.

This is motivated by previous results in the literature suggesting that these corrections could alter and even

erase the presence of a minimum in the zero temperature potential, something that would have disastrous

consequences in these particular models. We show that, in a representative sample of flux compactification

constructions, this need not be the case, although we find that the inclusion of thermal corrections can

dramatically decrease the region of initial conditions for which the moduli are stabilized. Moreover, the

bounds on the reheating temperature coming from demanding that the full, finite temperature potential,

has a minimum can be considerably relaxed given the slow pace at which the evolution proceeds.
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I. INTRODUCTION

The study of moduli evolution is an active field of
research in the context of the phenomenology and cosmol-
ogy of string models. At the level of the D ¼ 4 effective
theory, which we normally assume to be N ¼ 1 super-
gravity (SUGRA), moduli are complex scalar fields, some
of which physically parametrize the size and shape of the
six or seven original string dimensions that have been com-
pactified. It is therefore mandatory that any realistic model
provides, at the end of the day, moduli with a non trivial
vacuum expectation value at the right scale (which is the
Planck mass,MP for conventional small extra dimensions),
and that the minimum corresponds to almost Minkowski
space and supersymmetry broken, in order to connect with
the standard model. Throughout the past 20 years there has
been steady progress in our understanding of the dynamics
of moduli, with two outstanding problems having to be
addressed: the first one is the recurrence of a negative (i.e.
anti-de Sitter, AdS) vacuum energy for every model in
which moduli were successfully stabilized, while the sec-
ond one is the fact that these potentials are so steep along
certain directions that, from the dynamical point of view, it
looked impossible that given any initial conditions away

from their minimum, the moduli would end up in it. This

issue was first pointed out by Brustein and Steinhardt [1]
and is commonly known as the problem of the ‘‘runaway
dilaton.’’
Concerning the first problem, namely, the recurrence of

AdS solutions within all successful attempts at stabilizing
moduli, recent developments in the context of flux com-
pactifications in type IIB string theory [2] have opened up
new ways of trying to achieve either Minkowski or de
Sitter (dS) vacua. In particular, the mechanism presented
by Kachru et al. [3] (KKLT from now on) realized this
by adding D-terms to a SUSY-preserving, AdS F-term
vacuum. Although not entirely correct in the context of
supergravity (see [4,5] for some criticism, and [6,7] for
proposed solutions), its main features have triggered an
enormous amount of interesting work, and subsequent
progress in this field through the past years (in particular,
for explicit string realizations, see [8,9]).
Also on the topic of runaway moduli, in general, sub-

stantial developments have taken place in the past decade.
For a range of initial conditions the problem can be alle-
viated considerably by considering a background perfect
fluid which decelerates the fields and prevents them from
passing the barrier dividing the physical vacuum from the
runaway one [10–16]. Thermal corrections, however, are
potentially dangerous as they modify the shape of the po-
tential and, at high temperatures, the physical vacuum is
entirely lost [17,18]. However, there is a potential limit to
the extent to which this argument can be used. In the very
early Universe as the value of the Hubble parameter,
becomes close to the Planck scale, scattering processes
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are unable to establish thermal equilibrium because they do
not have sufficient time compared to the expansion
rate of the Universe [19]. In this era thermal corrections
arising out of these scatterings would not be present, and
so the physical vacuum would not be destabilized. In the
context of the standard model Enqvist and Sirkka con-
sidered the thermalization of a hot QCD gas in the early
universe, and calculated the critical temperature above
which the Universe can not thermalize to be Tcrit ¼ 3�
1014 GeV [20]. In Ref. [21] the authors used this argument
in considering racetrack inflation and assisted moduli
stabilization.

In this work we present a detailed quantitative analysis
of the effect of these thermal corrections on the region of
initial conditions leading to stabilization of the moduli, for
a given SUGRA model. Given that we are working in re-
gimes beyond the standard model, where we do not have a
proper handle on the conditions under which we will move
out of thermal equilibrium, we adopt two approaches. The
more theoretical is to accept that the Universe may have
been in a period of thermal equilibrium close to the Planck
scale and investigate the impact of thermal corrections in
those regimes. The second is to take seriously the QCD
bound, and investigate the impact of the corrections in
these lower temperature regimes. In both cases we will
conclude that thermal corrections do decrease the area of
the region of stabilization by a similar relative amount.
This effect from the thermal coupling will act on top of the
previous results, where the absolute size of the stabilization
region decreases for a smaller initial density of the back-
ground fluid �init

r [16].

II. EQUATIONS OF MOTION

In this work, we will be studying two string theory
models that can be described by a four dimensional N ¼
1 effective supergravity theory with action of the form

S ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

16�G
R�L� þ Fðg; TÞ

�
; (1)

where

L� ¼ �Ki�|@��
i@� ���| � V; (2)

and Ki�| ¼ @2K=@�i@ ���| is the Kähler metric;�i are com-

plex moduli scalar fields; Vð�Þ is the scalar potential and
G is the 4-dimensional Newton constant. The free energy
Fðg; TÞ acts as a Lagrangian density of matter fields. For a
SUðNcÞ gauge theory with Nf multiplets at high tempera-

ture T, the free energy has a perturbative expansion in
terms of the gauge coupling g ¼ gð�RÞ, where�R denotes
the real part of the moduli fields �,

Fðg; TÞ ¼ ða0 þ a2g
2ÞT4; (3)

and the parameters a0 and a2 are given by

a0 ¼ ��2

24
ðN2

c þ 2NcNf � 1Þ; (4)

a2 ¼ 1
64ðN2

c � 1ÞðNc þ 3NfÞ: (5)

We will be treating a0 and a2 as variables which can be
varied in order to test the results for a range of possible
values of Nc and Nf. We can obtain the energy density and

pressure of this thermal fluid as pr ¼ �F and �r ¼
�pr þ Tdpr=dT, hence

�r ¼ �3a0ð1þ rg2ÞT4; (6)

where r ¼ a2=a0.
In principle, a second component of relativistic particles

that only interacts with the moduli fields gravitationally
can also be present in the dynamics. Assuming both com-
ponents of radiation to be in thermal equilibrium, the non
interacting radiation will have an energy density given by
�B ¼ �2g�T4=30 where g� is the number of effective
degrees of freedom at the temperature T of the thermal
fluid �r. In this case, the equations of motion above are still
valid with a0 being replaced by a0 ! a0 � �2g�=90. The
effective ja0j can then be very large, so that r � 0, effec-
tively washing out the effects of the thermal corrections on
the moduli evolution.
The effective scalar potential for the moduli in four

dimensional N ¼ 1 supergravity is given by

V ¼ eKðKi�|DiWD�|
�W � 3W �WÞ; (7)

where Ki�| is the inverse Kähler metric and DiW ¼ @iW þ
@iKW is the Kähler covariant derivative acting on the
superpotential. In general, the Kähler potential K is a
function of the real parts of the fields and, for most string
compactifications, acquires the form

K ¼ �X
i

lnð�i þ ��iÞ; (8)

where the sum is understood over all moduli�i. As for the
superpotential, which encodes the dynamics of these fields,
a combination of flux terms (normally polynomials in the
different moduli) and non perturbative effects (instantons
and gaugino condensation being the most well-known ones
[22–25]) will provide the potential with a non trivial vac-
uum structure. For the purposes of showing the effects of
thermal corrections, we use the toy models of KKLT [3]
and Kallosh and Linde [26] (KL from now on), given that
they capture the essential features of the cosmological
problems usually attributed to moduli.
The equations of motion follow from the variation of

the action (1). Considering homogeneous fields evolving
in a spatially flat Friedmann-Robertson-Walker spacetime
background, the equations of motion for the complex
fields yield
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€� i þ 3H _�i þ �i
jk

_�j _�k þKi�|@�|V ¼ r�r

3ð1þ rg2ÞK
i�|@�|g

2;

(9)

where _�i ¼ @�i=@t, @�|V ¼ @V=@ ���|, and the connection

on the Kähler manifold has the form

�i
jk ¼ Ki�l

@Kj�l

@�k
: (10)

In addition, the Hubble rate H � _a=a, where aðtÞ is the
scale factor of the Universe, is given by the Friedmann
equation

3H2 ¼ M�2
P ð�� þ �rÞ ¼ M�2

P ðKi�|
_�i _��

�| þ V þ �rÞ;
(11)

with M�2
P ¼ 8�G (or MP ¼ 2� 1018 GeV) and �� ¼

Ki�|
_�i _��

�| þ V and �r are the energy densities of the evolv-

ing moduli fields and of the thermal fluid, respectively. In
what follows we set MP ¼ 1.

We need to understand now how the temperature T
relates to the values of the fields and the scale factor of
the universe. To this end we note that the equations of
motion for the scalar fields can be rewritten as

_�� ¼ �3Hð�� þ p�Þ þ 1
3@i�r

_�i þ 1
3@�|�r

_��
�|
; (12)

where the pressure of the moduli fields is defined as p� ¼
Ki�|

_�i _��
�| � V. By requiring conservation of the total en-

ergy density � ¼ �� þ �r we must have

_� r ¼ �4H�r � 1
3@i�r

_�i � 1
3@�|�r

_��
�|
; (13)

which, upon integration, gives a solution for �r of the form

�r ¼ �init
r

�
ainit
a

�
4
�
1þ rg2ð�init

R Þ
1þ rg2ð�RÞ

�
1=3

: (14)

Comparing with Eq. (6), the evolution of the temperature
can be seen to be

T ¼ Tinit

ainit
a

�
1þ rg2ð�init

R Þ
1þ rg2ð�RÞ

�
1=3

: (15)

It is worth splitting the equations of motion for the
complex scalar fields into those for their real and imagi-
nary parts

€� i
R þ 3H _�i

R þ �i
jkð _�j

R
_�k
R � _�j

I
_�k
I Þ þ 1

2
Ki�|@jRV

¼ 1

6
Ki�|@jRg

2 r�r

1þ rg2
; (16)

€� i
I þ 3H _�i

I þ �i
jkð _�j

I
_�k
R þ _�j

R
_�k
I Þ þ 1

2K
i�|@jIV ¼ 0;

(17)

where now �i
R (�i

I) refers to the real (imaginary) part of
the scalar fields and @jR (@jI ) are used to denote the

derivative of the potential with respect to the real (imagi-
nary) parts of the fields, respectively. We note that, given
an initial value of the energy density of the thermal fluid,
�init
r , the equations of motion and the Friedmann equation

only depend on the ratio r ¼ a2=a0 but not on the specific
values of a0 and a2.
Given Eqs. (9) and (16) we can define an effective scalar

potential for the fields,

Veffð�Þ ¼ Vð�Þ � 1

3

r�rg
2

1þ rg2
; (18)

up to a constant. With a coupling constant of the form [18]

g2 ¼ c

�
; (19)

where c is a constant, it is clear that, at high tempera-
ture (large �r), the effective potential can look very dif-
ferent from V and, in particular, it can be devoid of a
minimum, limiting the stabilization of the moduli or the
maximum temperature allowed. This is the problem raised
in Ref. [18].

III. KKLT MODEL

The possibility of finding de Sitter vacua in string theory
with a stabilized volume modulus, �, was put forward in
Ref. [3], and has been widely adopted in subsequent work.
The key ingredient was to consider the combination of non
perturbative effects and an additional flux term in the
superpotential

W ¼ W0 þ Ae���; (20)

which, together with the usual Kähler potential

K ¼ �3 lnð�þ ��Þ; (21)

defines the F-term of the SUGRA potential, see Eq. (7). It
has been known for many years now that, in this context, it
is possible to stabilize �, although giving rise to an AdS
vacuum. As pointed out in Ref. [3], however, if contribu-
tions from either anti-D3 or D7 branes are included, an
additional D-type term of the form

VD ¼ C

�3
R

; (22)

is generated, where we write � ¼ �R þ i�I. By suitably
tuning the value of C one can move to a de Sitter—or even
Minkowski-vacuum. The scalar potential for � has an ex-
tremum in �I for ��I ¼ n�, with n an integer. Depending
on the sign of W0 cosð��IÞ this can be either a maximum
or a minimum.
In this work we are interested in studying the cosmo-

logical evolution of the field � as it rolls towards its mini-
mum. Previous analysis addressing the same issue were
published in Refs. [14,16], however, without taking into
account the effect of the thermal corrections. Here, we
compare the profile and area of the region of initial posi-
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tions of the field, �init that leads to stabilization when the
field rolls in the presence of a background perfect fluid
with the same region of stabilisation when the field evolves
in the presence of thermal corrections. We illustrate that
comparison for the KKLT model in Figs. 1 and 2 for two
values of the initial energy density of the thermal fluid,
�init
r . The first corresponds to the very high energy regime

�init
r ¼ 10�4M4

P, where the second corresponds to a value
which satisfies the condition for thermal equilibrium ob-
tained in [20] for ja0j<Oð100Þ, namely �init

r ¼ 10�13M4
P.

In both cases the stabilization region is shown with thermal
corrections (shaded areas) for given values of the ratio r ¼
a2=a0 against the stabilization region with just a perfect
fluid of radiation (or equivalently, with r ¼ 0) for the same
initial �r (solid black line).

It proves convenient to work with the canonically nor-

malized field � ¼ ffiffiffiffiffiffiffiffi
3=2

p
ln�R, instead of �R itself. In

the lower right panel of the figures we draw the ratio
between the area of the two stabilization regions—i.e. the
one with thermal corrections (Ath) and the one without
(A)—against jrj.

We note that, because the energy density of the thermal
fluid must be positive definite, and taking the effective 4D
Yang-Mills coupling on the D7 brane g2 ¼ 4�=�R, we
must ensure that

� 1

4�
e

ffiffiffiffiffiffi
2=3

p
� < r � 0: (23)

This means that we need to impose a larger lower bound on
the initial values of � as we increase jrj. In practice this
bound is only effective for large initial �init

r since the
stabilization region decreases naturally for lower initial
temperatures.
Returning to Figs. 1 and 2, we show the regions of initial

conditions that lead to the field stabilizing in the minimum
of its potential. We used the same values of the parameters
for the model as in Ref. [14], namely A ¼ 1:0, � ¼ 0:1,
C ¼ 3� 10�26, and W0 negative (with cosð��IÞ ¼ 1)
such that the minimum at �I ¼ 0 is supersymmetric.
Comparing the two figures, we can see that the stabiliza-
tion region for the lower initial temperature is considerably
smaller, a result that was shown previously for the evolu-
tion without a thermal coupling. The effect from the ther-
mal coupling can be more clearly seen in the lower right
plots, where the ratio of the two stabilization areas is
shown against jrj. We see that in both cases increasing
the strength of the thermal coupling (that is, the relative
size of a2) can effectively eliminate the stabilization re-
gion. On the other hand, the curves for the two different
choices of initial �init

r are very similar, meaning that the
relative effects of the thermal coupling seem to be inde-
pendent of the initial value of the background. In both
cases, a value of jrj & 1 implies that the stabilization
region is decreased by less than 50%.
Using Eq. (6) with a0 ¼ �100, we can see that our

choices for the initial background energy density corre-
spond to initial temperatures of T � 10�2MP and T �
10�4MP. However the dilaton potential only develops a
minimum at a temperature Tcrit � 10�8MP, so that we can
have stabilization of the dilaton even when the evolution
starts at a temperature where the minimum does not exist.
This behavior can be easily understood. Thermal cor-

rections act as a background fluid in that they bring an extra
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FIG. 1. The panels with the shaded regions show the regions of
initial conditions (�, �I)—in Planck units—that lead to stabili-
zation of � at the minimum of the potential for the KKLT model
in the presence of thermal corrections. The solid black line cor-
responds to the region of stabilization in the presence of a perfect
fluid (r ¼ 0) with the same initial energy density �init

r . The lower
right corner shows the ratio of the areas of these regions against
the ratio r ¼ a2=a0. We have set �init

r ¼ 10�4M4
P.
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contribution into the Friedmann equation. Though at high
temperatures the structure of the effective potential is
spoiled (that is, we have no minimum), the extra contribu-
tion reinforces the frictional term in the equation of motion
and forces the field to slow down its evolution as when in
the presence of a non interacting perfect fluid. Therefore,
for suitable initial conditions, the field can approach the
value corresponding to the minimum of the T ¼ 0 poten-
tial, h�iT¼0, when the thermal corrections have already
become negligible, i.e. the temperature has decreased be-
low the critical temperature for which the minimum is
created. In Fig. 3, we show, in the left panel, the evolution
of �� and �r as a function of the temperature for the model

used in Fig. 1, having singled out five values of the tem-
perature. In the right panel we can see the profile of the
effective potential for these five values of the temperature
with the corresponding value of the field at that particular
time. We can see, in position 3, at T ¼ 10�5MP, that the
field is evolving in an effective potential without a mini-
mum but that, in position 5, the effective potential has
recovered the minimum and the field has been trapped in it.

We observe that, initially, the large kinetic energy forces
the field to evolve to the flatter region of the potential
where the field effectively freezes due to the large fric-
tional term in the equation of motion given that �r � ��

holds. As the universe expands the thermal corrections
continue to decrease in magnitude and the field reenters
the steep slope of the potential which admits a scalinglike

regime of evolution i.e., the field restarts rolling with a
kinetic energy that is proportional to the potential energy. It
is this property that prevents the field from gaining kinetic
energy and going over the barrier that separates the physi-
cal minimum from the runaway one. In other words this is
why the modulus does not get driven to larger values more
quickly. For an analytic description of this stabilization
mechanism due to scaling, see [11,13,14,16].

IV. KALLOSH-LINDE MODEL

The Kallosh-Linde model (KL) [26] generalizes the
original version of the KKLT model by admitting two
components in the superpotential

W ¼ W0 þ Ae��� þ Be���: (24)

A particular example was investigated in a previous pub-
lication [16]. The parameters of the model were set to A ¼
1, B ¼ �1:5, C ¼ 0, � ¼ 2�=100, � ¼ 2�=99 and W0

such that there is a supersymmetric minimum with zero
cosmological constant, i.e. W0 is such that both W and
F� � K�W þW� vanish at some �R ¼ �crit, �I ¼ 0.
Furthermore, there are a series of supersymmetric, AdS
minima. In Figs. 4 and 5 we show how the stabilization
region with ? thermal corrections varies with r and, for
comparison, we plot it against the stabilization region
when a perfect fluid of radiation is present (or equivalently,
when r ¼ 0). As for the KKLT model, we see that for both
energy regimes the profile of the stabilization regions is
practically unmodified for small values of jrj and that their
area decreases as jrj becomes larger, eventually vanishing
for sufficiently high values of jrj. Furthermore, we see
again that this effect of the thermal coupling on the stabi-
lization region is similar for the two initial values of �init

r in
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relative terms, though a smaller initial value of the initial
energy density in the background makes the stabilization
areas smaller in absolute terms. The thermal coupling is
slightly more effective in reducing the stabilization area in
this KL model.

V. DISCUSSION

We have seen in the two models investigated that the
inclusion of thermal corrections in the moduli fields evo-
lution can have a very similar effect to a perfect fluid of non
interacting radiation, in the sense that their contribution
increases the friction, decelerating further the fields thus
helping in their stabilization at the desired minimum. We
saw that the relative effect of the thermal coupling in the
stabilization area of the dilaton is nearly independent of the
actual initial value of the background energy density. As
we increase the value of jrj (that is, we increase the relative
value of a2), the stabilization region becomes smaller, and
eventually disappears. Note however, that in both models,
values of jrj & 1 will only decrease the area for at most
50%. For reference, to have jrj> 1 we need Nc 	 17,
whereas for jrj> 1:5 we need Nc 	 26. The values of jrj
obtained strictly from the thermally coupled fields only
gives us a lower bound on the stabilization area. In princi-
ple, we will also have fields in the background without a
thermal coupling to the dilaton in the background. In this
case, we will have an effective value for jrj 
 1, reducing
considerably the global effect of the thermal coupling.
Namely for jrj< 10�2, the difference between the two
scenarios is of less than 1%. On the other hand, it should

also be clear that a larger value of the background energy
density leads to a wider region of stabilisation, as the field
can enter a scaling regime earlier.
The existence of a minimum in the potential is usually

seen as a necessary condition for the stabilization of a mod-
uli field, from which upper bounds to the reheating tem-
perature can be obtained. We have seen that, if we allow for
the field to evolve, the stabilization is also dependent on its
initial condition; and a minimum in the potential need not
be present initially. From Eq. (6) we get that for jrj & 1 the
relation between the initial value of the temperature and
energy density is approximately

Tinit �
�
�init
r

�3a0

�
1=4

; (25)

which means that, for values, a0 � �100 and �init
r �

10�4M4
P or �init

r � 10�13M4
P, the initial value of the

temperature can be as large as 10�2MP or 10�4MP, re-
spectively. These are above the usual upper limit given
for stabilization, T < 10�8MP suggested in Ref. [18] ob-
tained by requiring the minimum to appear in the effective
dilaton potential.
Even though we do consider sectors different from the

(MS)SM as the source for the thermal bath, the simplest
scenario would be to assume that the SM fields would
eventually enter thermal equilibrium at the same tempera-
ture, assuming a smooth evolution of all the background
fields. Of course this does not need to be the case, and in
that instance a different later background with a higher
temperature that interacts with the dilaton could, in prin-
ciple, destabilize the field again. Assuming the field to
be already in its minimum, this would have to be at a
sufficiently high temperature to effectively remove the
minimum.
Though the mechanism here described seems very gen-

eral, it would be interesting to evaluate its robustness for
other scenarios such as the KKLT model coupled to a
Polonyi field studied in Ref. [27]. One other aspect is
that to large temperatures correspond large thermal fluc-
tuations which may give rise to large spatial inhomo-
geneities in the moduli. A quantitative investigation of
these effects and their cosmological implications deserves
a complete study.
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