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I present an exhaustive numerical investigation of the optical caustics in gravitational lensing by a

spinning black hole for an observer at infinity. Besides the primary caustic, I examine higher order

caustics, formed by photons performing one or several loops around the black hole. My investigation

covers the whole parameter space, including the black hole spin, its inclination with respect to the line of

sight, the source distance, and the caustic order. By comparing my results with the available analytical

approximations, I find perfect agreement in their respective domains of validity. I then prove that all

caustics maintain their shape (a tube with astroidal cross section) in the entire parameter space without

suffering any transitions to different caustic shapes. For nearly extremal spin, however, higher order

caustics grow so large that their cross sections at fixed radii wind several times around the black hole. As a

consequence, for each caustic order, the number of images ranges from 2 to 2ðnþ 1Þ, where n is the

number of loops spanned by the caustic. As for the critical curves, I note that for high values of the spin

they develop a small dip on the side corresponding to prograde orbits.
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I. INTRODUCTION

If general relativity is the correct theory of gravity, the
Kerr solution describes the spacetime metric outside spin-
ning black holes [1]. Therefore it is currently utilized in all
models trying to reconstruct the phenomena observed
around observed astrophysical black holes, either remnants
of stellar collapse or supermassive black holes lying in the
central regions of several galaxies [2,3]. A crucial step in
the comprehension of physics in such extreme environ-
ments is the complete understanding of the phenomenol-
ogy related to the bending of photon trajectories caused by
spacetime curvature. In order to get reliable predictions on
any observables, it is necessary to keep in mind that a Kerr
black hole acts as a very strong gravitational lens, generat-
ing an infinite number of images of the same source [4].
The total flux of a source close to a Kerr black hole (such as
the accretion disk itself [5,6], an isolated bright spot on it
[7,8], or a star orbiting the black hole [9]) gets a significant
contribution from the secondary image and from higher
order images [6]. This is also true for the details of fine
structures in the profile of spectral lines, such as the iron
K� line in the x-ray domain, which are strong indicators of
the presence of an intrinsic angular momentum of the black
hole [10].

On the other hand, the progresses in radio [11] and
infrared band [12] interferometry, along with the projects
of x-ray interferometry in space (MAXIM, http://max-
im.gsfc.nasa.gov), foreshadow that resolved pictures of
the nearest supermassive black hole (Sgr A* in the center
of the Milky Way) will be feasible in a not-so-far future
[13]. This will represent a spectacular advance in our
knowledge of black hole physics. In particular, the contri-
butions of different images of the same source will be

identified and studied separately. Higher order images
will then provide a huge amount of independent informa-
tion on the inner portions of the accretion disks of super-
massive black holes and will become precious witnesses of
the strong gravitational field just outside the horizon.
Gravitational lensing theory states that the multiplicity

of the images of a given source depends on the source-lens-
observer configuration. In a given spacetime metric, for an
observer in a particular spacetime point, the multiplicity
only depends on the source position. If the metric is sta-
tionary (as in the case of the Kerr metric) and the observer
is static, the caustic can be defined in the 3-dimensional
subspace at constant time as a 2-dimensional surface sep-
arating regions of space in which a source would give rise
to a different number of images. When a pointlike source
crosses a caustic, a pair of additional images with infinite
magnification is created or destroyed (the finite source size
acts as a cutoff for real sources) [14].
It can be easily guessed that the study of the shape of the

caustics is of fundamental importance for a reliable and
complete description of the whole phenomenology related
to the environment of astrophysical black holes. In fact, the
multiplicity of the images and their brightness is essen-
tially determined by the position of the source within the
caustic structure. Even temporal variations in the observed
overall luminosity may be due to caustic crossing of bright
features around the black hole [15].
Surprisingly, 45 years after the discovery of the Kerr

metric, the complete structure of the caustics of a spinning
black hole has not yet been derived. Indeed, the complexity
of the metric prevents us from finding simple analytical
solutions for the caustic surfaces. Even numerical studies
are very challenging and not straightforward. The first
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indication of the existence of nondegenerate caustics came
from the work of Cunningham and Bardeen [9], who traced
the light curves of a source star orbiting a spinning black
hole. They noticed that the magnification of the primary
and secondary images diverged at some particular points,
signaling that caustic crossings were occurring. In spite of
the huge number of ray-tracing codes in Kerr spacetime
developed in so many years, the only comprehensive study
of the caustic surfaces has been performed by Rauch and
Blandford [15]. They have explicitly shown that the pri-
mary caustic is a tube with a cross section having the shape
of an astroid (a closed curve with four cusps), which is very
typical in gravitational lensing theory as soon as the spheri-
cal symmetry of the lens is broken by an external or
internal perturbation. They have shown several pictures
of the primary caustic and derived some simple asymptotic
behaviors for its size. Besides the primary caustic, the
authors have mentioned the existence of higher order
caustics, but they have not shown any pictures of them,
leaving several questions about the size and the shape of
these caustics open. Later on, Sereno and De Luca found
an analytical approximation for the primary caustic valid
for large source distances [16]. In a series of papers based
on the strong deflection limit approximation [17], we have
derived a perturbative analytical approximation describing
the higher order caustics (but not the primary caustic) [18–
20]. These approximations show that at low spin values the
higher order caustics are still tubes with astroidal cross
sections with increasing size. Basically, this is all we know
about caustics in the Kerr spacetime.

All these studies provide several hints about the caustic
structure of the Kerr black hole lens in several limits. Yet,
the fate of the higher order caustics at high values of the
spin still remains unclear. As they become larger and larger
with increasing spin, do they undergo any transitions to
different caustic shapes? Does their size stay finite? Do
they merge? The present work provides clear answers to
these and other questions of theoretical and observational
relevance, clarifying the whole panorama of the caustic
structure of the Kerr spacetime. I present a thorough nu-
merical analysis of the caustics generated by a Kerr black
hole at all caustic orders, studying their dependence on the
black hole spin, its inclination, and the source distance.
The reliability of my results is also double-checked against
former studies and all analytical approximations available
up to now.

The paper is organized as follows. Section II traces the
methodology followed for the generation of the caustics,
referring to the appendix for a detailed explanation of all
steps. Section III deals with the primary caustic. Section IV
discusses the dependence of higher order caustics on the
spin and its inclination. Section V focuses on the caustics
of extremal black holes. Section VI is devoted to critical
curves in the observer’s sky. Section VII contains the
conclusions.

II. METHODOLOGY

The Kerr metric in Boyer-Lindquist coordinates [21] is
(G ¼ c ¼ 1)

ds2 ¼
�
1� 2Mr

�2

�
dt2 � �2

�
dr2 � �2d#2

�
�
�þ 2Mrðr2 þ a2Þ

�2

�
sin2#d�2

þ 4aMrsin2#

�2
dtd�; (1)

� ¼ r2 � 2Mrþ a2; (2)

�2 ¼ r2 þ a2cos2#: (3)

M is the mass of the black hole and a is the specific
angular momentum, ranging from 0 (Schwarzschild black
hole) to M (extremal black hole). The horizon radius is

rh ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
.

Let us consider a static observer at coordinates
ðro; #o;�oÞ with �o ¼ 0 and let us assume ro � 2M for
simplicity. In practice, all astrophysical situations satisfy
this limit. The observer’s polar coordinate #o also coin-
cides with the inclination of the spin axis with respect to
the line of sight between the observer and the black hole. It
is often convenient to work with the coordinate � � cos#
instead of #. Therefore, one can define �o � cos#o.
Similarly, consider a source at coordinates ðrs; #s; �sÞ,

with �s � cos#s.
The observer can construct his own coordinates ð�1; �2Þ

in the sky, such that the black hole is in the origin and the
�2 axis coincides with the projection of the spin of the
black hole on the sky.
Now I make a qualitative summary of the numerical

algorithm for finding the caustics and state a few basic
equations that should be sufficient to understand the main
points. In Appendix A I report all the details of the calcu-
lation and the definitions of all variables.
The first important concept to be reviewed is the shadow

of the black hole [2]. Imagine tracing a photon trajectory
from the observer back toward the black hole. The trajec-
tory is completely determined by the angles �1 and �2,
which specify the final direction of the photon when it hits
the observer. These angles may be considered as the initial
conditions for tracing back the photon geodesic in the Kerr
metric. Then, it is well known that there exists a set of
photon trajectories that are traced back to grazing unstable
fixed radii orbits around the black hole. These particular
trajectories define a locus in ð�1; �2Þ, which is called the
shadow border of the black hole. As evident from Fig. 1, in
the limit a! 0, this locus has a circular shape with angular

radius 3
ffiffiffi
3

p
M=ro. For nonvanishing spin, it is slightly dis-

placed toward the right direction (remember that I have
chosen coordinates such that the spin of the black hole is
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projected on the positive �2 axis) and becomes slightly
flattened on the left side. The shape of the shadow depends
on the black hole spin and its inclination on the line of sight
and can be used, in principle, to extract these parameters
[2,13,22]. The reason for the name ‘‘shadow border’’ is that
all sources lying outside the unstable circular orbits gen-
erate images appearing outside this locus in the observer’s
sky. Only sources very close to the black hole may have
images inside the shadow border. Therefore, to an instru-
ment with the sufficient angular resolution, the black hole
should appear as a dark spot (shadow) surrounded by a
more luminous region [13]. In the appendix, I review the
derivation of the shape of the shadow border, which is
explicitly given by Eqs. (A11) and (A12) in parametric
form as functions of rm, which represents the radius of the
unstable photon orbit from which the photon emerges and
hits the observer at angles ð�1; �2Þ.

It is convenient to switch from rm to a more friendly
parameter that I call � as defined by Eq. (A14). � is very
similar to an angular variable: as it ranges in ½��;��, the
whole shadow border is spanned. The intersections with
the �1 axis are at � ¼ 0 (with �1 > 0) and � ¼ �� (with
�1 < 0). � ¼ �=2 corresponds to a point close to the
positive �2 axis and � ¼ ��=2 corresponds to a point
close to the negative �2 axis. As the spin axis is projected to
the positive �2 axis, one can deduce that photons reaching
the observer from the left of the black hole (� ’ ��) come
from orbits corotating with the black hole, whereas pho-
tons reaching the observer from the right of the black hole

(� ’ 0) come from orbits rotating in the opposite sense
with respect to the black hole. I shall often refer to photons
on corotating orbits as prograde photons and to photons on
counter-rotating orbits as retrograde photons. Photons
reaching the observer from above or below the black
hole (� ’ ��=2) come from quasipolar orbits.
The shadow border can be used to construct new coor-

dinates ð ;�Þ in the observer’s sky, such that the sky
coordinates ð�1; �2Þ can be reexpressed in terms of them:

�1 ¼ �1ð ;�Þ; (4)

�2 ¼ �2ð ;�Þ: (5)

These coordinates are similar to polar coordinates, with �
playing the role of the polar angle and  related to the

modulus
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ �22

q
. The choice of the precise form of the

radial variable  as a function of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ �22

q
is done with the

purpose of simplifying the numerical calculations, as will
be explained in the following paragraphs.
A detailed study of the geodesics equations at fixed

source distance rs (see Appendix) provides the sought after
relation between the source’s angular coordinates and the
variables  and �

�s ¼ �sð ;�Þ; (6)

�s ¼ �sð ;�Þ: (7)

As  and � determine the position of the images in the
observer’s sky, Eqs. (6) and (7) represent the Kerr lens
mapping.
Of course, the detailed expression of this mapping may

become very involved and cumbersome to numerical cal-
culations if one does not make a proper choice of the
variable  . Luckily, the explicit form of the function �s

in Eq. (6) consists of an oscillating Jacobi elliptic function

whose argument monotonically increases when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ �22

q
decreases. From the physical point of view, this means that
the closer the photon passes to the black hole the larger is
the number of oscillations in the polar motion it performs.
Then, it is natural to define  as the argument of this Jacobi
elliptic function. With this definition, the function�sð ;�Þ
resembles a sinusoid in  , with the amplitude of the
oscillations determined by �.
With a suitable normalization of  , one can set the

period of the Jacobi elliptic function to � ¼ 2. In this
way, one can establish the equivalence �s ¼ 0 ,  ¼ m,
with m integer. Furthermore, the number of inversions in
the polar motion of the photon from the source to the
observer is m ¼ ½ þ 1=2�, where by ½x� I indicate the
integer part of x. The precise definition of  is given by
Eq. (A36), though it is necessary to go through a conspicu-
ous portion of the appendix to understand all the details.
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FIG. 1. The shadow border as seen by an equatorial observer
for different values of the black hole spin. �1 and �2 are the
angular coordinates in the observer’s sky in units of 2M=ro. The
black hole is in the origin and the spin axis points in the positive
�2 direction.
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As long as the Jacobian determinant of the lens mapping
is different from zero, the mapping is locally invertible and
the number of images stays constant. Images can be cre-
ated or destroyed only in the critical points where the
Jacobian determinant vanishes. It turns out that for each
value of m there is one Jacobian critical point in the
interval between two consecutive polar inversions m�
1=2<  <mþ 1=2, for all values of �. Therefore, one
can identify m with the caustic order. The primary caustic
is obtained with a single polar inversion (m ¼ 1), the
second order caustic is generated by photon trajectories
with two polar inversions (m ¼ 2), and so on. With the
critical points found in the ð ;�Þ space, one can readily
draw the critical curves in the observer’s sky by applying
Eqs. (4) and (5), and the caustics by applying Eqs. (6) and
(7).

In conclusion, once one fixes all the parameters (black
hole spin a, spin inclination �o, source distance rs, caustic
orderm), one is able to trace the corresponding caustic and
critical curve through suitable numerical calculations.

III. PRIMARY CAUSTIC

The primary caustic is the caustic generated by light rays
with a single inversion point in the polar motion. In the
Schwarzschild limit (a! 0), it degenerates to a line start-
ing from the black hole and extending to infinity in the
opposite direction with respect to the observer (� ¼ ��).
Distant sources that approach the primary caustic experi-
ence the standard weak deflection gravitational lensing as
described in classical textbooks. The two weak deflection
images merge when the source lies right on the primary
caustic, forming the well-known Einstein ring.

If one turns the black hole spin on, the degenerate one-
dimensional caustic becomes a finite-thickness tube with a
cross section having the shape of a four-cusped astroid.
Several cross sections at fixed radii are shown in Fig. 2 for
a nearly extremal Kerr black hole. If the source lies inside
the enclosed region, two additional images are present

As already shown in the extensive study by Rauch and
Blandford [15], the cross section is reflection-symmetric at
very large distances, but becomes more and more distorted
approaching the black hole. Moreover, the caustic tube is
shifted clockwise (i.e., in the sense opposite to the rotation
of the black hole), as evident from Fig. 2, where it can be
noted that the caustic does not lie at � ¼ ��, as in the
Schwarzschild case (recall that I have put the observer at
�o ¼ 0). This shift becomes larger and larger for sources
closer to the horizon. A full 3-dimensional picture of the
primary caustic tube was first presented in Ref. [15] and is
shown again here in Fig. 3. It can be noted that the caustic
tube becomes beltlike as it winds around the black hole
horizon, represented by the spherical surface in the figure.
As anticipated in the introduction, the caustic separates

two regions of space in which a source gives rise to a
different number of images. After drawing the primary
caustic, it is useful to explain the way it affects the for-
mation of the images around the corresponding critical
curve. I remind the reader that only the images of order
m ¼ 1 (i.e., generated by photons with one polar inversion)
are involved.
In Fig. 4 I have drawn a schematic picture of the images

of a source close to the caustic as detected by an observer.
In Fig. 4(a) is a cross section of the primary caustic at rs ¼
12M, along with several possible source positions, repre-
sented by different symbols. In Fig. 4(b) I show the corre-

2π 3π
φ

-0.4

-0.2

0

0.2

0.4

µ

FIG. 2. Cross sections of the primary caustic for a ¼ 0:9998M
and �o ¼ 0. From left to right, the radial coordinate is rs ¼ 5M,
4:5M, 4M, 3M, 2:3M, 1:82M, 1:42M, 1:22M.

FIG. 3. The primary caustic tube for a ¼ 0:9998M and �o ¼
0. In building this 3-dimensional representation, I have chosen
coordinates such that x ¼ r sin# cos�, y ¼ r sin# sin�, z ¼
r cos#, following Ref. [15]. The spin axis is directed toward
the top. The straight solid line indicates the direction towards the
observer, whereas the dashed line points in the opposite direc-
tion. The primary caustic for a Schwarzschild black hole (a ¼ 0)
coincides with this dashed line.
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sponding critical curve as a solid line and the shadow
border in dashed style. The images corresponding to the
source positions of Fig. 4(a) are shown with the same
symbol. I also remind the reader that the spin is directed
toward the north pole (� ¼ 1) in Fig. 4(a) and is parallel to
the �2 axis in Fig. 4(b).

If the source is outside the caustic [the cross in Fig. 4(a)]
there are two images [the two crosses in Fig. 4(b)]. One
image is on the same side of the source and lies outside the
critical curve (primary image) and the other is opposite and
lies inside the critical curve (secondary image). If the
source enters the caustic from the right (empty box), two
images with opposite parities are created on the left of the

critical curve (there is a reflection with respect to a vertical
axis from the caustic to the critical curve). If one places a
source on the equatorial plane close to the right cusp (filled
circle), one has three images close to the left tip of the
critical curve, corresponding to prograde photons. Finally,
if on has a source close to the upper cusp (empty circle),
one has three images close to the upper tip of the critical
curve.
Then, to summarize, the right cusp of the caustic in-

volves the creation of images generated by prograde pho-
tons; the opposite occurs for the left cusp. Therefore, I will
often refer to the right cusp as the prograde cusp and the
left cusp as the retrograde cusp. As for the upper and lower
cusps, they are associated with the formation of images
generated by quasipolar orbits. In the primary caustic (and
in all odd higher order caustics), the upper cusp is asso-
ciated with the upper tip of the critical curve, whereas in all
even order caustics it is associated with the lower tip (there
is also a reflection with respect to a horizontal axis in even
order caustics [18]).
This picture is a useful reference to understand how the

different parts of the caustic are associated with the corre-
sponding parts of the critical curve and where the images
are created or destroyed when the source crosses a caustic.
From now on, I will concentrate mostly on the shape of the
caustics, confining the discussion about the critical curves
to Sec. VI.
Coming back to the primary caustic surface, I find that

for any values of the black hole spin the primary caustic
performs an infinite number of turns around the horizon.
This fact is evident from Fig. 5(a), where the azimuthal
coordinate of the left cusp (corresponding to retrograde
photons) is plotted vs the logarithm of the difference
between the radial coordinate and the horizon radius rh.
This plot shows that at large distances the primary caustic
always tends to ��, whatever the value of the spin. In the
opposite limit, very close to the black hole horizon, the
position of the retrograde cusp shifts clockwise more and
more without stopping (� increases with a negative sign).
One can easily establish a logarithmic law �c ’ cðaÞ�
logðrs � rhÞ, where the coefficient cðaÞ depends on the
black hole spin, becoming larger and larger for high values
of the spin.
As already guessed in Ref. [20], the divergence of the

azimuthal position of the caustic in the approach to the
horizon is a direct consequence of the divergence of the
radial integral I2 (Eq. (A33) in the appendix) appearing in
the lens equation for �s (A38). This integral contains a
factor 1=�, which generates the logarithmic divergence of
I2. This has been explicitly shown here by numerical
calculations for the first time.
In Fig. 5(b) I plot the size of the primary caustic (calcu-

lated as the distance between the right and the left cusp) as
a function of the radial coordinate in logarithmic scale.
One sees that the size tends to zero at very large distances,

θ

θ

FIG. 4. A schematic picture of the images of a point source at
rs ¼ 12M generated by a black hole with spin a ¼ 0:2M as seen
by an equatorial observer. (a) The primary caustic cross section
and four possible positions of the source, indicated by the cross,
the filled circle, the empty circle, and the box. (b) The corre-
sponding images in the observer’s sky together with the critical
curve (solid line) and the shadow of the black hole (dashed line).
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whatever the value of the spin. This is only true for the
primary caustic, whereas all higher order caustics tend to a
finite size at large distances, as shall be seen in the next
section. Close to the horizon, the size of the primary
caustic tends to a constant.

Recently, an interesting analytical approximation for the
primary caustic has been proposed by Sereno and De Luca
in Ref. [16], using methods previously developed in
Ref. [23]. This approximation is obtained by an expansion
in the parameter

" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðro þ rsÞ

4rors

s
; (8)

which is valid at large distances from the black hole for any
values of the spin. The explicit expression of the caustic
reads

�s ¼ ��� 4a"2 � 5
4�a"

3 þ ½ð225128�
2 � 16Þa

� 15
16�a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

o

q
cos3��"4; (9)

�s ¼ ��o � 15
16�a

2ð1��2
oÞ3=2"4sin3�; (10)

with � ranging from �� to �.
In Fig. 6 I compare my numerical results with the

formulas by Sereno and De Luca, finding a perfect agree-

ment at large distances from the black hole. In particular,
Fig. 6(a) represents the azimuthal position of the retrograde
cusp as a function of the radial coordinate in a log-log plot,
whereas Fig. 6(b) shows the size of the caustic as a function
of the radial coordinate in a log-log plot. The approxima-
tion only fails at very small distances from the horizon. It is
interesting to note that the exact size is smaller than that
predicted by Eq. (9) for small spins, whereas the situation
is reversed at higher spins.

IV. HIGHER ORDER CAUSTICS

It is well known that a Schwarzschild black hole gen-
erates two infinite sequences of lensed images of a given
source [24]. Apart from the two main images, usually
treated in the weak deflection limit, all remaining images
can be described in the strong deflection limit [2,17,24].
Higher order images arise from the fact that photons graz-
ing the unstable photon orbit may perform one or more
turns around the black hole before emerging. For each turn,
one has an additional pair of images, whose luminosity
decreases exponentially as one increases the number of
turns. In practice, gravitational lensing phenomenology is
replicated for each number of turns around the black hole,
including a new ringlike critical curve and a degenerate

φ

FIG. 5. (a) Azimuthal coordinate of the retrograde cusp of the
primary caustic as a function of the radial coordinate. (b) Size of
the primary caustic as a function of the radial coordinate. In both
figures, from bottom to top, the curves are drawn for a ¼ 0:2M,
0:4M, 0:6M, 0:8M, 0:9998M.

FIG. 6. Comparison between numerical calculations (solid
lines) and the analytical approximation by Sereno and
De Luca [16] (dashed lines). (a) Position of the retrograde
cusp as a function of the radial coordinate. (b) Size of the caustic
as a function of the radial coordinate. From bottom to top, the
curves are for a ¼ 0:2M, 0:4M, 0:6M, 0:8M, 0:9998M.
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caustic line. Furthermore, the structure is replicated even
for sources in front of the black hole (this geometrical
configuration has been dubbed retro-lensing [25]). In this
case, apart from the direct image of the source, all other
images are due to strongly deflected photons turning
around the black hole one or more times and reaching
back the observer.

Standard lensing and retro-lensing caustics can be
treated in a unified way, noting that one has a new caustic
each time one adds a new inversion point in the polar
motion of the photon. As anticipated in Sec. II, the number
of inversions can then be identified with the caustic order.
For example, the primary caustic is generated by photons
with a single inversion point, the second order caustic (first
retro-lensing caustic) is generated by photons with two
inversion points, the third order caustic (second standard
lensing caustic) is generated by photons with three inver-
sion points, and so on. This situation holds even when I
switch the angular momentum on. Nevertheless, analo-
gously to what happens for the primary caustic, higher
order caustic tubes are shifted and acquire a finite thick-
ness. Up to now, higher order caustics have been studied in
the strong deflection limit approximation [26] in the equa-
torial plane and successively for small values of the black
hole spin in a fully analytical way [18–20]. In this section, I
shall present a complete study of higher order caustics in
the whole parameter space.

First I note that at large distances there is a fundamental
difference between the primary caustic and the higher
order caustics. In fact, whereas the primary caustic shrinks
to zero size and tends to the Schwarzschild point-caustic at
� ¼ �� for rs ! 1, each higher order caustic tends to a
well-determined asymptotic astroid shape in the coordi-
nates ð�;�Þ. Therefore, rather than a tube, at very large
distances the 3-dimensional region enclosed by the caustic
resembles a pyramid with astroidal base and vertex in the
black hole. The volume enclosed within the caustic grows
as �cr

2
s , where �c is the angular area within the asymp-

totic astroidal shape.
Let us begin by studying the dependence of the asymp-

totic cross sections of the caustics at very large distances on
the black hole spin a. In Fig. 7 I show the second order
caustic (first retro-lensing caustic) and the third order
caustic (second standard lensing caustic) for different val-
ues of the spin. At very low values of a, higher order
caustics are very small and only slightly displaced from
the Schwarzschild positions � ¼ �m�. As a grows, the
size and the displacement of the caustics grow. At the same
time, the caustics become asymmetric, with the cusp on the
right (corresponding to prograde photons) more stretched
than the cusp on the left (retrograde photons).

At nearly extremal spins, higher order caustics become
very large but do not undergo any transitions to different
shapes. This regime is particularly interesting and will be
deeply investigated in the following section.

Now I turn to the dependence of the asymptotic caustics
on the spin inclination with respect to the line of sight. In
Fig. 8 I show some asymptotic cross sections of the caus-
tics for different values of the spin inclination �o. The
retro-lensing caustics are always centered on �o, i.e., they
lie at the same latitude as the observer, whereas the stan-
dard lensing caustics lie at opposite latitude. Both retro-
lensing and standard lensing caustics preserve the same
shift in the azimuthal direction as the �o ¼ 0 caustic.
Increasing �o from 0 (observer on the equatorial plane)
to 1 (observer on the polar axis), all higher order caustics
gradually shrink to zero size. An observer on the polar axis
would thus have pointlike caustics on the optical axis as in
the Schwarzschild case. Another interesting feature is that
the caustics are slightly stretched on the side closer to the
equatorial plane. This is not just an effect of the use of the
projected coordinate � as it can be seen even in terms of
the polar angle #. One must conclude that multiple images
arise more easily for sources close to the equator.
In order to double-check the numerical calculations, I

can compare my asymptotic caustics with some approxi-
mation schemes. The first is the one developed in Ref. [26],
based on the strong deflection limit (SDL). In that paper,
only the intersections of the caustics with the equatorial

FIG. 7. Second order (a) and third order asymptotic caustics
(b) for an equatorial observer �o ¼ 0 and different values of the
spin. From left to right, a ¼ 0:02M, 0:2M, 0:4M, 0:6M, 0:8M,
0:9998M.
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plane have been calculated numerically. Nevertheless, a
comparison with these results allows me to check the
retrograde and prograde cusp positions with a completely
independent calculation. The second approximation is pro-
vided by the fully analytical formulas derived in Refs. [18–
20] in the strong deflection limit with an expansion to
second order in the black hole spin a. They read

�s ¼ ð�1Þm½�o þ Rmð1��2
oÞ3=2sin3��; (11)

�s ¼ �m����m þ Rm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

o

q
cos3�; (12)

where the azimuthal shift is

��m ¼ �
�
2m�

3
ffiffiffi
3

p þ 2 logð2 ffiffiffi
3

p � 3Þ

þ log

�ð2 ffiffiffiffi
rs

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Mþ rs

p Þ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrs � 2MÞp ��
a; (13)

and the semiamplitude of the caustic is

Rm ¼ a2
�
1

18
ð5m�þ 8

ffiffiffi
3

p � 36Þ

þ ð9Mþ 2rs � 2
ffiffiffiffi
rs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Mþ rs

p Þ
3

ffiffiffi
3

p ffiffiffiffi
rs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Mþ rs

p
�
: (14)

In the limit rs � 2M, these expressions reduce to their first
lines, respectively.
Figure 9 shows the dependence of the positions of the

cusps of the asymptotic caustic on the black hole spin.
Along with the numerical results, I have plotted the two
approximations described above. One sees that the
Schwarzschild limit is correctly reproduced as a! 0,
since the caustics become pointlike and return to the
optical axis (� 2� for the second order caustic and �3�
for the third order caustic). As soon as one switches the
spin on, the caustics are shifted clockwise (more negative
�) and acquire finite extension, since the prograde cusp is
more shifted than the retrograde cusp.
The perturbative approximation works quite well up to

a ’ 0:2M. At higher spins, it underestimates the shift of the
caustics. On the other hand, the SDL approximation with-
out the expansion in powers of a works extremely well for

FIG. 8. Second order (a) and third order asymptotic caustics
(b) generated by a Kerr black hole with spin a ¼ 0:6M for
different values of the inclination �o ¼ cos#o. From the center
to the periphery, �o ¼ 0, 0.3, 0.6, 0.9, 0.99.

FIG. 9. Azimuthal position of the prograde and retrograde
cusps of the asymptotic caustic as a function of the black hole
spin. (a) Second order caustic; (b) third order caustic. The solid
lines are from numerical results in this paper, the dotted lines are
the SDL approximation of Ref. [26], the dashed lines are the
perturbative results of Ref. [19].
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the third order caustic, as the solid and dotted lines are
practically indistinguishable in Fig. 9(b). For the second
order caustic, instead, it works quite well for the retrograde
cusp but fails at moderate and high spin values for the
prograde cusp. One must keep in mind that the SDL
approximation is designed for high caustic orders and is
just marginally applicable to the second order caustic.

Now let us come to the full development of the caustic
surfaces, from very far source distances up to the horizon.
In Fig. 10 I show the second order caustic tube for a rather
small value of the spin (a ¼ 0:2M). It looks quite similar to
the primary caustic. The caustic tube has astroidal cross
section and winds an infinite number of times around the

horizon. However, the cross section does not shrink to zero
size at infinity, but preserves the same angular size. A 3-
dimensional picture containing several caustics at the same
time would not be so readable, as all caustics wind around
the horizon so tightly that they would be undistinguishable.
However, a picture giving the idea of how several caustics
wind around the black hole is in Fig. 11, where I have
represented the projection of the caustics on the equatorial
plane. The radial coordinate has been replaced by the
logarithmic coordinate logðrs � rhÞ=2Mþ 11 in order to
put the ‘‘spiral arms’’ of the caustics in better evidence. Of
course, such a representation becomes meaningless at dis-
tances less than rh þ 10�11M. I have represented the pri-
mary caustic ( labeled by ‘‘1’’) along with higher order
caustics up to the sixth order. In this way I have explicitly
shown where the caustics lie with respect to the observer’s
direction ( labeled by ‘‘O’’). In the Schwarzschild limit, all
caustics reduce to a line: odd ones are on the opposite side
and even ones (retro-lensing caustics) are on the same side
as the observer. At a > 0, all caustics are shifted clockwise
and acquire a finite extension, proportionally to their order.
Let us come to a more quantitative analysis. Figure 12

shows the azimuthal position of the retrograde cusp as a

FIG. 10. The second order caustic surface for a ¼ 0:2M and
�o ¼ 0. The straight line indicates the direction towards the
observer.

FIG. 11. A representation of the caustics on the equatorial
plane in which the radial coordinate has been replaced by
logðrs � rhÞ=2Mþ 11. The outer circle represents the surface
at logðrs � rhÞ=2M ¼ 4. Inner circles are in steps of 1 in such a
logarithmic coordinate. The observer is in the direction labeled
by O on the equatorial plane. The number at the end of each
caustic represents the respective caustic order. Here the spin is
a ¼ 0:2M with the black hole rotating counterclockwise.

FIG. 12. Position of the retrograde cusp for the second order
(a) and the third order (b) caustics, as a function of the radial
coordinate. In both figures, from bottom to top, the curves are for
a ¼ 0:2M, 0:4M, 0:6M, 0:8M, 0:9998M.
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function of the radial coordinate for the second and third
order caustic. The behavior is very similar to the primary
caustic, with the logarithmic divergence for rs ! rh.
However, at large radii, the retrograde cusp does not settle
to the Schwarzschild position �m�, but a finite shift
remains. In Fig. 13 I plot the size of the caustics (estimated
as the distance between the prograde and the retrograde
cusp) as a function of the radial coordinate. Indeed, the size
of the caustics tends to two different constants at large and
small radii. This behavior has already been noted for small
a caustics in Ref. [20].

I conclude this section with a picture representing the
relative error in the prediction of the position and size of
the caustics by the perturbative formulas (13) and (14). In
Fig. 14 one can see that the error decreases exponentially
with the caustic order m, as predicted by the SDL approxi-
mation. However, a residual error remains because
of the expansion in powers of a. In any case, for the value
a ¼ 0:02M used in this plot, the error is at most 3% for
the second order caustic at large distances. Therefore,
the SDL approximation works amazingly well at all
radial distances, reproducing the logarithmic spiralling
perfectly.

V. CAUSTICS OF EXTREMAL KERR BLACK
HOLES

As shown in the previous sections, higher order caustics
become very large at high values of the spin. Since there
are several indications that nearly extremal spinning black
holes may be not uncommon in the Universe, it is particu-
larly important to focus on the caustic structure of this
particular limiting species of Kerr black holes.
First, in Fig. 15 I show the asymptotic cross sections at

large source distances for several caustic orders. Apart
from the second order caustic, all higher order caustics
extend for more than a complete loop around the black
hole. The left (retrograde cusp) is shifted clockwise from
the Schwarzschild position linearly with the caustic order
m, following the law

�l ¼ �3:86mþ 0:87: (15)

On the contrary, the right (prograde) cusp is shifted ex-
ponentially with m, following the law

�r ¼ �1:05m� 0:36 expð1:57mÞ: (16)

FIG. 13. Size of the second order (a) and the third order (b)
caustics, as a function of the radial coordinate. In both figures,
from bottom to top, the curves are for a ¼ 0:2M, 0:4M, 0:6M,
0:8M.

FIG. 14. Relative error of the perturbative approximation given
by Eqs. (13) and (14) as a function of the radial coordinate.
(a) Error in the shift of the caustic. (b) Error in the size of the
caustic. Curves are for caustic orders m ¼ 2, 3, 4 from top to
bottom. a ¼ 0:02M, �o ¼ 0.
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Caustics overlap each other without any interference, as
they correspond to trajectories with different numbers of
inversion points in the polar motion, which live in different
regions of the ð ;�Þ space. Also the extension in latitude
increases, with the northern and southern cusps gradually
approaching the poles.

The reader may wonder about the physical consequen-
ces of having caustics extending for more than 2� in
azimuth. In Fig. 16 we plot the third order caustic reporting
all points in the physical interval 0 � �< 2�. In this way,
the caustic appears to exit from the right side and reenter
from the left side 5 times before it ends in the prograde
cusp. Suppose there is a source on the same side of the
observer (�s ’ 0) and close enough to the northern pole
(�s ’ 1) to be outside of the caustic surface. In this situ-
ation, there are only two images formed by photons with
three inversions in the polar motion. If one moves the

source down, by decreasing �s, the source meets the
caustic for the first time. At this point, two new images
appear, as we know from gravitational lensing theory.
Their initial position on the critical curve is the one that
corresponds to the caustic point where the source crosses
the caustic. However, if one continues to move the source
down, at some point one meets the caustic for the second
time. Two new images appear in a different position on the
critical curve. In particular, these new images are still
formed by photons with three inversion points in the polar
motion but they perform one more loop in the azimuthal
motion before reaching the observer with respect to the
previous pair. If one continues to decrease �s, one can
cross the caustic 4 more times, including the final cusp
crossing. Therefore, for an extremal Kerr black hole, one
can have up to 14 images with three inversion points in the
polar motion.
The number of times a particular caustic can be crossed

is simply given by the number of azimuthal loops spanned
by the caustic plus one. With the empirical formulas (15)
and (16), I can estimate that a caustic of order m may
generate up to

n ¼ ½0:36 expð1:57mÞ � 2:82mþ 0:87� (17)

new pairs of images. In practice, for a source very close to
the pole, the number of images with m inversions in the
polar motion will always be the minimal one, i.e., 2. On the
other hand, for a source close to the equatorial plane, the
number of images will always be very close to the maximal
one 2ðnþ 1Þ. It is interesting to connect this result with the
exponential decrease in the magnification of higher order
images with the caustic order. From one side one has an
exponential increase of the number of images. From the
other side one has an exponential decrease in the magnifi-
cation factor of each image. However, even if I have not
calculated the details of the magnification, I can expect that
the decrease in the magnification dominates on the increase
in the number of images, in such a way that the total flux in
the images of orderm still decreases exponentially with the
caustic order. Finally, I also note that, apart from the first
pair of additional images, all images created by repeated
caustic crossings occur in a region close to the stretched
prograde cusp. Therefore, all these additional images will
appear to the observer on the left side of the black hole.
As for the dependence of the caustics on the spin incli-

nation on the line of sight, I have plotted several second
order and third order caustics in Fig. 17. As in Fig. 8, the
caustics keep the same azimuthal shift for their central
region while their size decreases with increasing �o.
Even if the �o ¼ 0 caustics extend for several azimuthal
loops, by increasing�o up to�o ¼ 1, all caustics shrink to
a point. Furthermore, one can see, in particular, from
Fig. 17(b) that the caustics maintain their extension in
latitude until the azimuthal stretch is reduced to less than
one loop. Only then, the latitudinal size starts to decrease

FIG. 15. Asymptotic caustics of an extremal Kerr black hole
for an equatorial observer. From left to right the caustic order is
m ¼ 2, 3, 4, 5.

FIG. 16. Third order asymptotic caustic of an extremal Kerr
black hole for an equatorial observer in the �-� plane. In this
plot, I have taken into account the fact that the azimuthal
coordinate is periodic with period 2�.
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significantly. As a consequence, since the left and right
cusps are always at � ¼ ��o, one has a considerable
asymmetry between the side of the caustic towards the
pole and the side towards the equator, which remains
much larger.

After the study of the asymptotic cross section of the
caustic surfaces, it is time to examine the full development
of the caustics of an extremal Kerr black hole. As can be
deduced from the extension of the asymptotic cross sec-
tions, the caustic surfaces become so wide that they no
longer resemble a tube. They assume an almost disklike
shape with the thickness increasing with the distance from
the black hole. Some 3-dimensional pictures of the second
order caustic are shown in Fig. 18 with different points of
view. The caustic has been calculated for an observer on
the equatorial plane (whose direction is indicated by the
straight line). One can appreciate the half-disk shape which
winds around the black hole more and more. The retro-
grade cusp is the equatorial cusp on the left side, which
also enjoys the wider latitudinal extension. The prograde
cusp is on the right side, where the caustic has a spiky cross

section. The prograde cusp winds around the black hole
much more quickly than the retrograde cusp, at least
initially. It can be easily imagined that the pictures of

FIG. 17. Second order (a) and third order (b) asymptotic
caustics of an extremal Kerr black hole for different positions
of the observer. From the center to the periphery the caustics are
drawn for �o ¼ 0, 0.3, 0.6, 0.9, 0.99.

FIG. 18. Three-dimensional pictures of the second order caus-
tic surface of an extremal Kerr black hole for an observer on the
equatorial plane. The surface has been plotted for radial dis-
tances in the range ½2:2M; 20M�. (a) View from the north pole.
(b) View from the observer side, lifted by 10� above the equator.
(c) View from the left side. The straight line in (a) and (c) points
towards the observer.
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even higher order caustic surfaces, which spread over
several loops around the black hole, are very difficult to
show in a clear way. The caustic surface self-intersects
several times.

Finally, I plot the position of the retrograde and prograde
cusps in Fig. 19. One can see that both retrograde and
prograde cusps wind around the black hole following the
usual logarithmic law �	 c logðrs=rh � 1Þ. However, the
prograde cusps start to follow the logarithmic law at much
larger distances than the retrograde cusps. This means that
the caustic has a very large increase from the asymptotic
size at large radial distances to the final size at distances
very close to the black hole. The slope of the logarithmic
laws is the same for all prograde and retrograde cusps and
amounts to c ¼ 57:55, which means that each time one
decreases the distance from the horizon by a factor 10, the
caustic makes 9.16 turns around the black hole.

VI. CRITICAL CURVES

As stated in Sec. II, once one finds a critical point of the
lens mapping in the ð ;�Þ space, one can easily determine
the corresponding critical point in the observer’s sky,
spanned by the angular coordinates ð�1; �2Þ. As � varies
from �� to �, the critical points describe a closed curve
around the black hole. Therefore, for each caustic order m,

for a given source distance rs, one has a distinct critical
curve in the observer’s sky. In particular, the primary
critical curve of order m ¼ 1 is the classical Einstein
ring. If a source at distance rs lies on the primary caustic
tube and is large enough that a complete cross section of
the caustic tube lies inside the source, then the observer
will see the primary image and the secondary image
merged together to cover the whole Einstein ring. Since
higher order caustics have a greater extension, the case that
a source intercepts a complete cross section of the caustic
tube can only occur for sufficiently low spins or very large
sources. Therefore, it is much more difficult to have a
complete Einstein ring of higher order. Nevertheless, criti-
cal curves are the loci where additional pairs of images
appear or disappear when a caustic crossing occurs. Since
such images are maximally magnified during the process
of creation or destruction, it is important to study critical
curves because they indicate the places where higher order
images are most likely to be detected. However, the aver-
age radius of a critical curve depends on the source dis-
tance. This is particularly evident for the primary critical
curve, whose average radius at large source distances

scales as the Einstein angle �E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Mrs=roðro þ rsÞ

p
.

Higher order critical curves tend to an asymptotic shape
for large source distances, whereas they become smaller
for smaller source distances. Typically, higher order criti-
cal curves are slightly larger than the shadow of the black
hole, but when the source is closer than the unstable photon
orbits, the critical curves appear entirely inside the shadow
of the black hole.
In Fig. 20 I show some critical curves for a nearly

extremal Kerr black hole and an equatorial observer. As
is well known [2], the shadow is shifted to the right (retro-
grade side) with respect to the black hole position, with the
left (prograde) side more flattened.
In Fig. 20(a) I show the primary critical curve for various

source distances. If the source is far from the black hole,
the critical curve is also far from the shadow. If the source
is closer to the black hole, the critical curve shrinks gradu-
ally and finally enters the shadow when the source is closer
to the black hole. Note that the critical curve enters the
shadow from the retrograde side first, because the retro-
grade unstable orbit lies at a larger radius. The prograde
unstable orbit is closer to the horizon and therefore the
critical curve stays outside the shadow on the prograde side
until the source becomes very close to the horizon. I can
also note that the primary critical curve maintains its nearly
circular shape at all source distances.
Higher order critical curves, instead, follow the shape of

the shadow more closely. In Fig. 20(b) I show the second
order critical curve for various source distances. At very
large source distances each critical curve tends to a fixed
asymptotic curve at finite distance from the shadow. As the
source distance is decreased, the critical curve shrinks and
finally enters the shadow. Note that higher order critical

FIG. 19. Azimuthal position of the retrograde cusp (a) and
prograde cusp (b) as a function of the logarithm of the distance
from the event horizon. From bottom to top, the curves are for
caustic order m ¼ 2, 3, 4, 5.
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curves have a small concavity on the prograde side, which
disappears when the source is closer to the black hole.
In Fig. 20(c) I show the critical curves of orderm ¼ 2, 3,

4 altogether for a source at infinity. All critical curves are
outside the shadow with higher order ones closer to the
shadow. In Fig. 20(d) I show the critical curves of order
m ¼ 1, 2, 3 for a source at rs ¼ 1:1M, i.e., very close to the
horizon. In this case the primary curve is the most internal
one, with the higher order ones gradually closer to the
shadow.
Finally, the dependence of the critical curves on the spin

inclination closely follows the dependence of the shadow,
which becomes more and more circular and symmetric as
the observer’s latitude increases.

VII. CONCLUSIONS

In all applications of gravitational lensing, the study of
critical curves and caustics of specific lens models has

FIG. 20. Critical curves for a Kerr black hole with spin a ¼ 0:9998M and an equatorial observer. The coordinates ð�1; �2Þ in the
observer’s sky are in units of 2M=ro. (a) Primary critical curve for various source distances: starting from the outside, rs ¼ 5M, 3M,
1:8M, 1:1M. (b) Second order critical curve for various source distances: starting from the outside, rs ¼ 1, 4:2M, 1:6M, 1:1M.
(c) Critical curves of order m ¼ 2, 3, 4 for a source at infinity. (d) Critical curves of order m ¼ 1, 2, 3 for a source at rs ¼ 1:1M. The
shadow border is represented by the dashed curve.

FIG. 21. Relation between  and � for a ¼ 0:2M, �o ¼ 0,
� ¼ �=4. From left to right, the curves are drawn for rs ¼ 2M,
3M, 4M, 5M, 6M, respectively. Note that for these values rm ¼
3:16M.
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always represented a fundamental step in the comprehen-
sion of the whole phenomenology. As can be easily imag-
ined, the derivation of caustic surfaces in a full general
relativistic context is much more involved than in classical
lens models analyzed under the weak deflection paradigm.
The simplest general relativistic lens is the Schwarzschild
black hole. In this model, however, the caustics are degen-
erate and are therefore trivially tractable. The first general
relativistic lens with a nontrivial caustic structure is the
Kerr black hole. Going beyond the results of previous
works, focused on particular limits of the caustics
[15,16,18–20], this paper contains a complete investigation
of the full caustic structure of the Kerr metric. This repre-
sents a considerable step forward for gravitational lensing
phenomenology in full general relativity.

In summary, I have shown 3-dimensional pictures of the
primary and higher order caustic surfaces. I have analyzed
the dependence of the cross sections of the caustic surfaces
on the source distance, the black hole spin, the spin incli-
nation, and the caustic order. I have shown that the caustic
surfaces always wind an infinite number of times around
the horizon following a logarithmic law. The size of the
caustics always remains finite in the whole parameter
space, and there are no transitions to different kinds of
caustic singularities in the lens mapping. For extremal spin
values, the size of higher order caustics increases exponen-
tially with the caustic order. This implies that the number
of higher order images also grows exponentially, as the
same caustic can be crossed an exponential number of
times. I have compared my results with previous
analytical and numerical approximations, finding perfect
agreement in the respective limits of validity of the ap-
proximations. I have also shown some critical curves in the
observer’s sky, focusing on their dependence on the source
distance.

In addition, the code developed in this paper for the
calculation of the caustics is particularly well-suited for
the study of higher order images, as being inspired by the
strong deflection limit methodology. An interesting future
development of this code might be the implementation of
an efficient resolution algorithm of the Kerr lens equation
including higher order images.

Besides the purely theoretical interest of the analysis
presented in this paper, I can easily imagine that the knowl-
edge of the complete caustic structure of the Kerr black
hole in all ranges of parameters will stand as an extremely
helpful guide in future astrophysical applications involving
very strong light bending by the gravitational field of
spinning black holes.
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APPENDIX A: FROM THE GEODESICS
EQUATION TO THE LENS MAPPING

In this appendix, I describe all the steps of the calcu-
lation of the caustics in Kerr spacetime. Section A 1 recalls
the basic facts about Kerr geodesics. Section A 2 discusses
the unstable photon orbits and the choice of good variables
for numerical integration. Section A 3 deals with angular
integrals, Sec. A 4 with radial integrals. Section A 5
introduces the  variable and shows the lens mapping
explicitly. Finally, Sec. A 6 discusses details on the nu-
merical implementation of the strategy for searching criti-
cal points and drawing caustic surfaces.

1. Basics of Kerr geodesics

Thanks to the separability of the Hamilton-Jacobi equa-
tion [27], the geodesic motion for a massless particle is
described by two integral equations

�
Z drffiffiffiffi

R
p ¼ �

Z d#ffiffiffiffiffi
�

p ; (A1)

�f ��i ¼ a
Z r2 þ a2 � aJ

�
ffiffiffiffi
R

p dx� a
Z dxffiffiffiffi

R
p

þ J
Z csc2#ffiffiffiffiffi

�
p d#; (A2)

where

� ¼ Qþ a2cos2# � J2cot2#; (A3)

R ¼ r4 þ ða2 � J2 �QÞr2 þ 2MrðQþ ðJ � aÞ2Þ � a2Q:

(A4)

J and Q are two constants of motion. The first can be
identified with the projection of the angular momentum of
the particle on the spin axis and the second is related to the
square of the total angular momentum. The double signs
before the integrals are chosen in such a way that all pieces
of the integrals between two consecutive inversion points
are summed with a positive sign.
A photon reaching the observer with constants of motion

J and Q will then be detected by the observer at angular
coordinates [2]

�1 ¼ � J

ro
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

o

p ; (A5)

�2 ¼ �r�1
o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ�2

o

�
a2 � J2

1��2
o

�s
: (A6)

Only an indetermination on the sign of �2 remains.
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Conversely, the constants of motion of a photon reaching
the observer from angles ð�1; �2Þ are found by inverting
Eqs. (A5) and (A6)

J ¼ ��1ro
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

o

q
; (A7)

Q ¼ �22r
2
o þ�2

oð�21r2o � a2Þ: (A8)

2. Choosing good labels for photon trajectories

All photon trajectories ending at the observer can be
completely specified by assigning proper values to the
constants of motion J andQ. Equivalently, one can specify
the coordinates in the observer sky �1 and �2. However, in
order to keep numerical errors low, I may need to find new
labels for the photon trajectories. In the case of the Kerr
metric, the most challenging geodesics are those approach-
ing the unstable photon orbit. I have found that using
variables inspired by the SDL technique [19] proves very
convenient, opening the way to a reliable description of
higher order caustics. Therefore, in this subsection I recall
the definition of the SDL parameters 	 and �, and introduce
the variable � which replaces the 
 of Ref. [19].

The inversion points in the radial motion are obtained by
solving the equation R ¼ 0. Photons reaching an observer
at infinity can have one or zero radial inversion points. If
@R=@r ¼ 0 is satisfied at the same time with R ¼ 0 for
some value r ¼ rm, then the photon remains at radial
coordinate rm forever. However, small perturbations would
make the photon fall into the black hole or escape to
infinity, because the circular photon orbits around Kerr
black holes are unstable. The unstable photon orbits are
characterized by particular values of the constants of mo-
tion J andQ. In order to find them, one can solve equations
R ¼ 0 and @R=@r ¼ 0 for J and Q as functions of r ¼ rm.
As rm varies, J and Q describe a locus in the ðJ;QÞ space,
corresponding to all possible unstable photon orbits.
Explicitly, this locus is given by [2]

JmðrmÞ ¼ ð3M� rmÞr2m � a2ðrm þMÞ
aðrm �MÞ ; (A9)

QmðrmÞ ¼ r3m½4a2M� rmðrm � 3MÞ2�
a2ðrm �MÞ2 : (A10)

A photon orbiting at rm is thus characterized by con-
stants JmðrmÞ and QmðrmÞ. The allowed values of rm are
those keeping Q positive. By perturbing the unstable orbit,
one can make the photon escape and reach a distant ob-
server. In this case, plugging Eqs. (A9) and (A10) into
Eqs. (A5) and (A6), one finds that the escaped photon is
detected at position

�1;mðrmÞ ¼ r2mðrm � 3MÞ þ a2ðrm þMÞ
roaðrm �MÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
o

p ; (A11)

�2;mðrmÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðrmÞ

p
Mroaðrm �MÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1��2
o

p ; (A12)

�ðrmÞ ¼ r3m½4Ma2 � rmðrm � 3MÞ2�
� 2a2rmð2a2M� 3M��2rm þ r3mÞ�2

o

� a4ðrm �MÞ2�4
o: (A13)

Not all perturbed photons can reach an observer out of
the equatorial plane. Only those photons with rm such that
�ðrmÞ> 0 can be detected. Solving Eq. �ðrmÞ ¼ 0 nu-
merically, one can find the two extrema of the allowed
interval for rm for any given values of the parameters a and
�o. I shall indicate these two extrema by rþ and r�.
Letting rm vary between rþ and r� in Eqs. (A11) and

(A12) and allowing both signs for �2, I obtain a closed
curve in the observer’s sky, which is usually referred to as
the border of the ‘‘shadow’’ of the black hole, because the
radiation deflected from the black hole would appear out-
side this closed curve. Some shadow borders for different
values of a are shown in Fig. 1. When the observer lies on
the equatorial plane (�o ¼ 0), rþ coincides with the radius
of the unstable photon orbit for equatorial prograde pho-
tons, whereas r� becomes the radius of the unstable photon
orbit for equatorial retrograde photons, which is typically
larger. Increasing the inclination, rþ and r� approach each
other until they coincide when the observer lies at the pole
of the black hole (�o ¼ 1).
As rþ and r� depend on the spin and the inclination, it is

convenient to introduce the variable �, related to rm by

rm ¼ 1
2½rþð1� cos�Þ þ r�ð1þ cos�Þ�: (A14)

As � varies from 0 to �, rm varies from r� to rþ. If I
replace the double sign in Eq. (A12) by sign½��, I can get
the whole shadow border at once, by varying � in the range
½��;��.
As anticipated in Sec. II, � works as an angular coor-

dinate: � ¼ 0 corresponds to retrograde photons, appear-
ing on the right of the black hole; � ¼ �=2 corresponds to
photons on nearly polar orbits, reaching the observer from
above the black hole; � ¼ � corresponds to prograde
photons, detected on the left of the black hole.
In addition, I introduce the new variable � by the rela-

tions

�1 ¼ �1;mð�Þð1þ �Þ; (A15)

�2 ¼ �2;mð�Þð1þ �Þ: (A16)

As � varies in the range ½�1;þ1Þ and � in ½��;��, �1
and �2 span the whole observer sky. This construction is
very close to that presented in Ref. [19], though here I
make no expansion in powers of a. The variables � and �
can be used to label geodesics ending at the observer and
are particularly well-suited for numerical calculations. The
corresponding values of the constants of motion J and Q
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can be found by plugging Eqs. (A15) and (A16) into
Eqs. (A7) and (A8).

When � > 0, Eq. R ¼ 0 admits a nondegenerate inver-
sion point r
, whose expression can be written as

r
 ¼ rmð1þ 	Þ: (A17)

	 is a function of � and �. It can be found by solving Eq.
R ¼ 0 numerically for given values of �, �, and the pa-
rameters a and �o. For small values of �, one has 		 ffiffiffi

�
p

.
However, for low values of the inclination �o and for high
values of the spin, prograde photons (� ’ �) tend to satisfy
a linear relation of the type 		 �. However, 	 is not an
observable and these relations are specific of Boyer-
Lindquist coordinates.

3. Angular integrals

Equations (A1) and (A2) contain integrals on the polar
angle #. Performing the transformation cos# ¼ �, they
become

J1 ¼ �
Z 1ffiffiffiffiffiffiffiffi

��

q d�; (A18)

J2 ¼ �
Z 1

ð1��2Þ
ffiffiffiffiffiffiffiffi
��

q d�; (A19)

where

�� ¼ a2ð�2� þ�2Þð�2þ ��2Þ; (A20)

�2� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2JQ þ 4a2Q

q
� bJQ

2a2
; (A21)

bJQ ¼ a2 � J2 �Q: (A22)

The integration extrema are the source and observer
polar coordinates �s and �o. However, for each inversion
in the polar motion, one must split the integration domain
and change sign.

The final result can be expressed in terms of elliptic
integrals of the first and third kind

J1ð�s; �; �Þ ¼ 1

a��
½�sign½��Fð�o; kÞ

þ ð�1Þmsign½��Fð�s; kÞ þ 2mKðkÞ�;
(A23)

J2ð�s; �; �Þ ¼ 1

a��
½�sign½���ð�2þ; �o; kÞ

þ ð�1Þmsign½���ð�2þ; �s; kÞ
þ 2m�ð�2þ; kÞ�; (A24)

�s ¼ arcsin
�s

�þ
; (A25)

�o ¼ arcsin
�o

�þ
; (A26)

k ¼ ��2þ
�2�

; (A27)

where m is the number of inversions in the polar motion,
and the sign½�� takes into account the fact that for positive
� the observer is reached from above and for negative � is
reached from below. Recall the definitions of the elliptic
integrals

Fð�; kÞ ¼
Z �

0

d#ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ksin2#

p ; (A28)

KðkÞ ¼ Fð�=2; kÞ; (A29)

�ðn; �; kÞ ¼
Z �

0

d#

ð1� nsin2#Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ksin2#

p ; (A30)

�ðn; kÞ ¼ �ðn; �=2; kÞ: (A31)

Besides depending on the source polar coordinate �s,
the functions J1 and J2 also depend on � (weakly) and �
through the constants of motion J and Q, appearing in the
expressions of �þ and ��.

4. Radial integrals

The geodesics Eqs. (A1) and (A2) also contain two
integrals on the radial coordinate

I1 ¼
Z dxffiffiffiffi

R
p ; (A32)

I2 ¼
Z dxffiffiffiffi

R
p

Z r2 þ a2 � aJ

�
ffiffiffiffi
R

p dx: (A33)

These integrals depend on the labels ð�; �Þ identifying
the geodesic through J and Q.
The photon might be emitted from the source either

outward or inward. I must therefore distinguish these two
cases and solve the integrals accordingly.
If the photon is emitted in the outward direction, there is

no inversion point and the integrations are carried out in the
domain ½rs;1Þ. For numerical reasons, it is convenient to
change the integration variable to z, defined by

r ¼ rm
1� z

: (A34)

Then the integration range becomes ½1� rm=rs; 1�. In this
case, the integrand is sharply peaked at z ¼ 0 [20].
If the photon is emitted inward, it must have an inversion

point r
 somewhere between rm and rs in order to come
back and reach a distant observer. Therefore, this case is
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relevant for lensing only if � > 0 and rs > rm. The radial
integrals are split in two pieces: the approach piece, with
extrema ½r
; rs�, and the escape piece, with extrema
½r
;1Þ. The two pieces are conveniently calculated using
the variable

r ¼ r

1� z

; (A35)

which maps the integration domains to the finite intervals
½0; 1� r
=rs� and [0, 1], respectively. In this case the
integrand diverges at z ¼ 0, but the result of the integration
is finite for any value of � > 0. As �! 0, the integrals
diverge logarithmically, except for prograde orbits at high
values of the spin, for which the integrals diverge as ��1.

For a given source at rs > rm, there exists a maximum
value for � (I call it �max) such that R is positive only for
� < �max. When � ¼ �max, rs becomes a solution of the
equation R ¼ 0 and thus coincides with the inversion
point r
.

Summing up, the functions I1ð�; �Þ and I2ð�; �Þ have
two branches if rs > rm: one corresponding to photons
emitted outward, which exists for � in ½�1; �max�, and
the other corresponding to photons emitted inward, exist-
ing for � in ð0; �max�. The two branches nicely join at �max.
If rs < rm, only the outward branch exists for � in ½�1; 0Þ.

5. Lens mapping

At this point, I introduce a new variable  , which con-
siderably simplifies numerical calculations and assumes a
key role in their success. This variable is defined by the
relation

2KðkÞ ¼ a��I1ð�; �Þ þ sign½��Fð�o; kÞ: (A36)

The variable  is directly defined in terms of the radial
integral I1, thus eliminating the problems of the two
branches that this function has when it is expressed in
terms of �. The reason behind the coefficient 2KðkÞ will
be clear later.

In Fig. 21 I plot  vs � for a generic choice of the
parameters. I note that when rs < rm, � < 0 for all values
of  , whereas for rs > rm � reaches the maximum value
�max, corresponding to rs ¼ r
 and then tends to zero for
very large values of  . On the other hand, � is a single-
valued function of  . Therefore, I can replace all occur-
rences of � by �ð Þ obtained by solving Eq. (A36)
numerically.

Multiplying Eq. (A1) by a��, separating the �s term
and applying the Jacobi elliptic function sn, I get

�s ¼ sign½���þsn½2KðkÞ ; k�; (A37)

which represents the lens equation for the polar coordinate
�s.

The Jacobi elliptic function snðx; kÞ is periodic in x with
period 4KðkÞ. It tends to the usual trigonometric sinwhen k
is small (which is more or less this case, since�þ <�� ).

So, the right-hand side of Eq. (A37) vanishes at  ¼ m
with m integer, is maximum at  ¼ 2mþ 1=2, and mini-
mum at  ¼ 2mþ 3=2. The interval in which there are m
inversion points in the polar motion is m� 1=2<  <
mþ 1=2. As we shall see, the fact that this interval has a
trivial form in terms of  for any values of m is crucial in
the search for the critical points of higher order. If I had
kept �, the definition of the search domain would have been
much more problematic. In Ref. [19], the variable  played
a similar role, but its definition was restricted to the limit of
small black hole spin. In that case  reduces to the equiva-
lent deflection by a Schwarzschild black hole of the same
mass. Equation (A36) generalizes the former definition and
allows a fruitful use of this variable in all the Kerr parame-
ter space.
As regards the azimuthal motion, the extrema of � are

�i ¼ �s and �f ¼ �o. Recalling that I have set �o ¼ 0,

Eq. (A2) can be written in the form

�s ¼ a½I1ð ;�Þ � I2ð ;�Þ� � JJ2ð�s;  ; �Þ: (A38)

This is the lens equation for the azimuthal coordinate �s.
Along with (A37), it constitutes the lens mapping for a
Kerr black hole in the form of Eqs. (6) and (7).

6. Remarks on numerical implementation

Here I give a few technical details regarding the numeri-
cal implementation of the algorithm for finding critical
curves and caustics.
As input parameters I consider the black hole spin a, the

inclination �o, the source distance rs, the caustic order m,
and the value of the variable �. Of course, depending on
which kind of plot one wants to draw, one may decide to
cycle on different variables. For example, by cycling on �
keeping all other parameters fixed, one gets a cross section
of the caustic surface at fixed source distance. Cycling on
a, while keeping � at some specific value, one may get the
position of a cusp (for example) as a function of the black
hole spin.
Starting from each set of parameters fa;�o; rs; m; �g,

first I calculate rþ and r� by solving Eq. �ðrÞ ¼ 0 with
�ðrÞ given by Eq. (A13). Then I find rm by Eq. (A14).
For any test value of  , I numerically invert Eq. (A36) to

find �, keeping track of the branch of I1 in which I am. If I
am in the branch characterized by the presence of the radial
inversion point, I also need to calculate 	 by numerical
solution of Eq. R ¼ 0.
All these equations are solved using the Mathematica

FINDROOT routine with the secant method. The integrations

of I1 and I2 are performed using the NINTEGRATE routine,
which works pretty well on the finite domains obtained by
changing to the z integration variable.
At this point, I can evaluate the lens equations (A37) and

(A38) to get �s and �s, without further effort.
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The Jacobian of the lens mapping is obtained by evalu-
ating difference quotients of �s and �s with respect to  
and �.

Finally, the zero of the Jacobian at fixed � is found by
applying the secant method with respect to  in the range
½m� 1=2; mþ 1=2�.

Depending on the required precision and the number of
points in the cycle, the evaluation of a caustic may take

several minutes. I have required a precision of 10�6 in  
and about 500 points for each caustic, refining the sam-
pling in the neighborhood of the cusps. With this setup, a
cross section at fixed rs takes about 5 minutes on a laptop.
Numerical noise has been detected on prograde orbits at
extremal spin only starting from the fifth order caustic.
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