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We explore the relevance of confinement in quark matter models for the possible quark core of neutron

stars. For the quark phase, we adopt the equation of state derived with the field correlator method,

extended to the zero temperature limit. For the hadronic phase, we use the microscopic Brueckner-

Hartree- Fock many-body theory. We find that the currently adopted value of the gluon condensate G2 ’
0:006–0:007 GeV4, which gives a critical temperature Tc ’ 170 MeV, produces maximum masses which

are only marginally consistent with the observational limit, while larger masses are possible if the gluon

condensate is increased.
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I. INTRODUCTION

QCD at finite temperature and density is the essential
theoretical tool to describe various interesting phenome-
nological sectors from relativistic heavy ion collisions to
the inner structure of neutron stars. In the large temperature
and small density region both experiments [1] and lattice
simulations [2] clearly indicate that the theory is in a
nonperturbative regime at least up to temperatures T ’
3Tcð0Þ [Tcð0Þ is the deconfinement temperature at zero
quark chemical potential �q ¼ 0]. However, in the oppo-

site region of the phase diagram, i.e., at small T and large
�q, where strong coupling effects are expected as well, no

QCD lattice simulations are available yet.
Because of the lack of lattice data, analytic approaches

based on more elementary models, such as the
Nambu–Jona-Lasinio (NJL) model [3], which mimic
some nonperturbative features of QCD, are mostly used
in the large density region, typical of the neutron star
interior. Unfortunately the NJL model cannot be used in
the other limit of zero chemical potential and high tem-
perature because of the lack of the gluon degrees of free-
dom. This is a general feature of many models, which
cannot make predictions for both limits, i.e., high tempera-
ture and zero chemical potential or high chemical potential
and low temperature. This is clearly a serious drawback,
since the models cannot be fully tested. One of the few
exceptions is the field correlator method (FCM) [4], which
in principle is able to cover the full temperature-chemical
potential plane. Furthermore the method contains ab initio
the property of confinement, which is expected to play a
role, at variance with other models like, e.g., the NJL
model.

The study of the properties of neutron stars (NS’s)
concerns the large density (and low temperature) region
of the phase diagram, and in particular, it requires the QCD
nonpertubative equation of state (EOS) at small T and large
�q. The comparison of the quark matter EOS with the

nuclear matter one is the main point to understand if a core
of pure quark matter can exist in NS’s. This possibility has

been addressed and extensively discussed in the literature
[5–7]. In the NJL model, where the phase transition cor-
responds to chiral symmetry restoration, the quark onset at
the center of the NS, as the mass increases, marks an
instability of the star; i.e., the NS collapses to a black
hole at the transition point since the quark EOS is unable
to sustain the increasing central pressure due to gravity.
Indeed, at the maximum mass the mass-radius relation is
characterized by a cusp [8]. On the contrary, for the quark
EOS based on the MIT bag model, it is possible to find a
range of the various parameters which corresponds to a
stable NS. It must be noted that stability is also found in
other approaches that explicitly take into account the dy-
namics of confinement, such as the dielectric model [9] or a
modification of the NJL with an ad hoc confining potential
[10]. A modified NJL with the explicit inclusion of color
superconductivity and isoscalar vector meson coupling
[11] produces stable NS’s as well. This shows how the
presence of quark matter in the interior of NS’s depends on
the adopted quark matter model.
The intriguing relation between the stability of NS’s

with a quark matter core and confinement has already
been addressed in [12], and in this paper we elaborate
further on this idea by resorting to the EOS of the quark
matter at finite temperature and density, obtained in the
nonperturbative framework of the field correlator method
(for a review see [4]), which gives a natural explanation
and treatment of the dynamics of confinement in terms of
color electric (CE) and color magnetic (CM) field correla-
tors. In this way the FCM will be tested by comparing the
results for the neutron star masses with the existing phe-
nomenology, which turns out to be a strong constraint on
the parameters used in the model.
It will be shown that this approach, unlike the noncon-

fining NJL model, admits stable NS’s with gravitational
masses slightly larger than 1:44M�, and this application of
the FCM to the study of NS’s, which has not been consid-
ered before, provides definite numerical indications on
some relevant physical quantities, as the gluon condensate,
to be compared to the ones extracted from the determina-
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tion of the critical temperature of the deconfinement phase
transition. This shows the relevance of the comparison of
the model predictions in the high chemical potential region
with the astrophysical phenomenology, which is one of the
main purposes of the present paper.

In the next section the FCM at finite temperature and
density is briefly recalled, while Sec. III contains some
details of the EOS for the hadronic phase. Our analysis of
the stability of the NS is presented in Sec. IV and finally
Sec. V is devoted to the conclusions.

II. QUARK MATTER: EOS IN THE FIELD
CORRELATOR METHOD

A systematic method to treat nonperturbative effects in
QCD is by gauge invariant field correlators [4]. The ap-
proach based on the FCM provides a natural treatment of
the dynamics of confinement (and of the deconfinement
transition) in terms of the CE (DE and DE

1 ) and CM (DH

and DH
1 ) Gaussian (i.e., quadratic in the tensor F

a
��) corre-

lators. DC and DC
1 are related to the simplest nontrivial 2-

point correlators for the CE and CM fields by

g2 < Trf½CiðxÞ�ðx; yÞCkðyÞ�ðy; xÞ�>

¼ �ik

�
DCðzÞ þDC

1 ðzÞ þ z24
@DC

1 ðzÞ
@z2

�
� zizk

@DC
1 ðzÞ

@z2
;

(1)

where z ¼ x� y, C indicates the CE (E) field or CM (H)
field (the minus sign in the previous expression corre-
sponds to the magnetic case), and finally

� ¼ P exp

�
ig

Z x

y
A�dz�

�
(2)

is the parallel transporter.
DC and DC

1 have a perturbative contribution which is

responsible of their singular behavior at z� 0 (D ’ z�4 for
z ! 0), but also a nonperturbative part which is normalized
to the gluon condensate [4]. DE contributes to the standard
string tension and is directly related to confinement, so that
its vanishing above the critical temperature implies
deconfinement.

The FCM has been extended to finite temperature T and
chemical potential �q in order to describe the deconfine-

ment phase transition [13–18]. In particular, at �q ¼ 0 the

analytical results in the Gaussian approximation, valid for
small vacuum correlation lengths, are in reasonable agree-
ment with lattice data [13,15,16]. The extension in
Ref. [15] of the FCM to finite values of the chemical
potential allows obtaining a simple expression of the equa-
tion of state of the quark-gluon matter in the relevant range
of baryon density. The comparison of this EOS with a
realistic baryonic EOS will be the crucial point of our
investigation.

It must be noticed that the generalization of the FCM at
finite T and �q provides an expression of the pressure of

quarks and gluons where the leading contribution is given
by the interaction of the single quark and gluon line with
the vacuum, called single line approximation (SLA), while
the pair and triple correlations yield higher order correc-
tions. In the SLA, within a few percent, the quark pressure,
for a single flavor, is given by [14,16–18]

Pq=T
4 ¼ 1

�2

�
��

�
�q � V1=2

T

�
þ��

�
��q þ V1=2

T

��
;

(3)

where � ¼ mq=T, and

��ðaÞ ¼
Z 1

0
du

u4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ �2

p 1

ðexp½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ �2

p
� a� þ 1Þ ;

(4)

and V1 is the large distance static Q �Q potential:

V1 ¼
Z 1=T

0
d�ð1� �TÞ

Z 1

0
d��DE

1 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

q
Þ: (5)

The gluon contribution to the pressure is

Pg=T
4 ¼ 8

3�2

Z 1

0
d��3 1

expð�þ 9V1

8T Þ � 1
: (6)

Note that the potential V1 in Eq. (5) does not depend on
the chemical potential and this is partially supported by
lattice simulations at small chemical potential [16,19]. In
our opinion, although we are considering the range T � 0
(in the following calculations we fix the value T ¼ 1 MeV)
and large�q, relevant for the NS, this approximation is still

valid. Indeed the nonperturbative contribution to DE
1 ðxÞ is

parametrized as [4]

DE
1 ðxÞ ¼ DE

1 ð0Þ expð�jxj=�Þ; (7)

where � is the correlation length (0.34 fm for full QCD)
and the normalization is fixed by the condition at T ¼ � ¼
0:

DEð0Þ þDE
1 ð0Þ ¼

�2

18
G2: (8)

G2 is the gluon condensate whose numerical value, deter-
mined by the QCD sum rules, is known with large uncer-
tainty [20]

G2 ¼ 0:012� 0:006 GeV4 (9)

According to [16], the critical temperature at � ¼ 0 in
the FCM turns out to be T � 170 MeV for G2 �
0:006 GeV4. If confinement is dominated by nonperturba-
tive contributions, the normalization DE

1 ð0Þ in Eq. (7) can
be indeed identified with the term appearing in Eq. (8),
which has been denoted by the same symbol. Then from
Eqs. (5), (7), and (8), in the limit T ! 0, we get

V1ðT ¼ 0Þ � �2

9
G2�

3: (10)

BALDO, BURGIO, CASTORINA, PLUMARI, AND ZAPPALÀ PHYSICAL REVIEW D 78, 063009 (2008)
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However, other choices of V1 are possible, and these will
be considered in the discussion section.

Since, on general grounds, we expect that the value of
the gluon condensate decreases at large densities [21], the
assumption that V1 is � independent should not qualita-
tively modify our analysis.

III. HADRONIC PHASE: EOS IN THE
BRUECKNER-BETHE-GOLDSTONE THEORY

The EOS constructed for the hadronic phase at T ¼ 0 is
based on the nonrelativistic Brueckner-Bethe-Goldstone
many-body theory [22], which is a linked cluster expansion
of the energy per nucleon of nuclear matter, well conver-
gent and accurate enough in the density range relevant for
neutron stars. In this approach the essential ingredient is
the two-body scattering matrix G, which, along with the
single-particle potential U, satisfies the self-consistent
equations

Gð	;!Þ ¼ vþ v
X
kakb

jkakbiQhkakbj
!� eðkaÞ � eðkbÞGð	;!Þ; (11)

Uðk;	Þ ¼ X
k0�kF

hkk0jGð	; eðkÞ þ eðk0ÞÞjkk0ia; (12)

where v is the bare nucleon-nucleon interaction, 	 is the
nucleon number density, ! is the starting energy, and

jkakbiQhkakbj is the Pauli operator. eðkÞ ¼ eðk;	Þ ¼
@
2

2m k
2 þUðk;	Þ is the single-particle energy, and the sub-

script a indicates antisymmetrization of the matrix ele-
ment. In the Brueckner-Hartree-Fock (BHF)
approximation the energy per nucleon is

E

A
ð	Þ ¼ 3

5

@
2k2F
2m

þD2; (13)

D2 ¼ 1

2A

X
k;k0�kF

hkk0jGð	; eðkÞ þ eðk0ÞÞjkk0ia: (14)

For the two-body interaction v, we choose the Argonne v18

nucleon-nucleon potential [23]. We have also introduced
three-body forces among nucleons, adopting the phenome-
nological Urbana model [24]. This allows the correct re-
production of the nuclear matter saturation point
	0 � 0:17 fm�3, E=A � �16 MeV, and gives values of
incompressibility and symmetry energy at saturation com-
patible with those extracted from phenomenology [25].
Moreover, the Brueckner-Bethe-Goldstone approach has
been extended to the hyperonic sector in a fully self-
consistent way [26,27], by including the �� and �
hyperons.

In this paper, we adopt a conventional description of
stellar matter, as composed by neutrons, protons, and
leptons in beta equilibrium [28]. The EOS for the beta
equilibrated matter can be obtained for a given composi-

tion, together with the chemical potentials of all species as
a function of the total baryon density. The chemical po-
tentials are the fundamental input for the equations of
chemical equilibrium, charge neutrality conditions, and
baryon number conservation; i.e.,

�n ¼ �p þ�e� ; (15)

�e� ¼ ��� ; (16)

xp ¼ xe� þ x�� ; (17)

1 ¼ xn þ xp; (18)

where xi ¼ 	i=	 is the nucleonic fraction of the species i.
The above conditions allow the unique solution of a closed
system of equations, yielding the equilibrium fractions of
the nucleonic and leptonic species for each fixed nucleon
density. Once the composition of the 
-stable, charge-
neutral stellar matter is known, one can calculate the
equation of state, i.e., the relation between pressure P
and energy density � as a function of the baryon density
	. It can be easily obtained from the thermodynamical
relation

P ¼ � dE

dV
¼ PB þ Pl; (19)

PB ¼ 	2 dð�B=	Þ
d	

; Pl ¼ 	2 dð�l=	Þ
d	

; (20)

with E the total energy and V the total volume. The total
nucleonic energy density is obtained by adding the energy
densities of each species �i. As far as leptons are con-
cerned, at those high densities electrons are a free ultra-
relativistic gas, whereas muons are relativistic. Hence their
energy densities �l are well-known from textbooks [29].

IV. PHASE TRANSITION IN BETA-STABLE
MATTER AND NEUTRON STAR STRUCTURE

We are now able to compare the pressure of the two
phases, namely, the pressure in the hadronic phase given in
Eqs. (19) and (20) with the one in the quark-gluon phase
which, according to [16,18], can be written as

Pqg ¼ Pg þ
X

j¼u;d;s

Pj
q þ��vac; (21)

where Pg and Pj
q are, respectively, given in Eqs. (3) and

(6), and

��vac � �ð11� 2
3NfÞ

32

G2

2
(22)

corresponds to the difference of the vacuum energy density
in the two phases, with Nf being the flavor number.

By assuming a first order hadron-quark phase transition
[30] in beta-stable matter, we adopt the simple Maxwell
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construction. The more general Gibbs construction [5] is
still affected by many theoretical uncertainties [31], and in
any case the final mass-radius relation of massive neutron
stars [32] is slightly affected.

We impose thermal, chemical, and mechanical equilib-
rium between the two phases. This implies that the phase
coexistence is determined by a crossing point in the pres-
sure vs chemical potential plot, as shown in Fig. 1. There
we display the pressure P as function of the baryon chemi-
cal potential �B for baryonic and quark matter phases. In
the upper panel we show the results obtained using V1 ¼ 0,
whereas in the lower panel, calculations with V1 ¼
0:01 GeV [according to the indication of the constraint in
Eq. (10)] are displayed. The solid line represents the cal-
culations performed with the Brueckner-Bethe-Goldstone
method with nucleons, and the other lines represent results
obtained with different choices of the gluon condensateG2.
We recall that the chosen values of G2 give values of the

critical temperature in a range between 160 and 190 MeV
[16].
We observe that the crossing point is significantly af-

fected by the value of the gluon condensate, and only
slightly by the chosen value of the potential V1.
Moreover, with increasing G2, the onset of the phase
transition is shifted to larger chemical potentials. Hence,
we expect that the neutron star will possess a thicker
hadronic mantle with increasing G2.
In Fig. 2 we display the total EOS, i.e., the pressure as a

function of the baryon density for the several cases dis-
cussed above. The plateaus are a consequence of the
Maxwell construction. Below the plateau, 
-stable and
charge-neutral stellar matter is in the purely hadronic
phase, whereas for density above the ones characterizing
the plateau, the system is in the pure quark phase.
The EOS is the fundamental input for solving the well-

known hydrostatic equilibrium equations of Tolman,
Oppenheimer, and Volkov [29] for the pressure P and the
enclosed mass m:
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FIG. 1. Pressure as a function of the baryon chemical poten-
tial. The solid line represents the BHF calculations, and the
dashed ones the model discussed in this paper with two different
choices of the parameter V1, and several values of the gluon
condensate G2. See text for details.
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dPðrÞ
dr

¼ �GmðrÞ�ðrÞ
r2

½1þ PðrÞ
�ðrÞ�½1þ 4�r3PðrÞ

mðrÞ �
1� 2GmðrÞ

r

; (23)

dmðrÞ
dr

¼ 4�r2�ðrÞ; (24)

with � being the total energy density (G is the gravitational
constant). For a chosen central value of the energy density,

the numerical integration of Eqs. (23) and (24) provides the
mass-radius relation. For the description of the neutron star
crust, we have joined the equations of state above de-
scribed with the ones by Negele and Vautherin [33] in
the medium-density regime (0:001 fm�3 < 	<
0:08 fm�3), and the ones by Feynman, Metropolis, and
Teller [34] and Baym, Pethick, and Sutherland [35] for
the outer crust (	 < 0:001 fm�3).
In Fig. 3 we display in the left panel the gravitational

mass (in units of solar massM� ¼ 2� 1033g) as a function
of the central baryon density (normalized with respect to
the saturation value), and the corresponding radius in the
right panel. We observe that the value of the maximum
mass spans over a range between 1.4 and 1.8 solar masses,
depending on the value of the gluon condensate G2, as
shown in Table I. The stability of the pure quark phase
appears only for small values of G2, which are hardly in
agreement with observational data. In fact, we recall that
any ‘‘good’’ equation of state must give for the maximum
mass at least 1.44 solar masses, the best measured value so
far [36]. By increasing the value ofG2, the maximum mass
increases as well, up to about 1.8 solar masses, but the
stability of the pure quark phase is lost, and the maximum
mass contains in its interior at most a mixed quark-hadron
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FIG. 3. The gravitational mass (in units of the solar mass) is displayed as a function of the central baryon density, normalized with
respect to the nuclear matter saturation density 	0 (left panel), and the corresponding radius (right panel).

TABLE I. Properties of the maximum mass configuration for
different values of the model parameters.

V1 G2 MG=M� R (km) 	c=	0

0 0.012 1.76 10.58 5.76

0.008 1.58 11.21 4.35

0.007 1.46 10.2 7.92

0.006 1.43 9.27 9.85

0.01 0.012 1.78 10.46 6.06

0.008 1.66 10.99 4.82

0.007 1.55 11.26 4.23

0.006 1.47 9.79 8.81
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FIG. 4. Same as Fig. 3 for V1 ¼ 0:01 GeV.
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phase. By switching on the potential V1, as displayed in
Fig. 4, we observe a trend similar to the case V1 ¼ 0.
Therefore, generally speaking we can conclude that this
model gives values of the maximum mass in any case
below two solar masses, in agreement with the current
observational data. However, the observational data indi-
cate that NS’s with a mass of at least 1.6 solar masses do
exist [37], and this puts a serious constraint on the value of
the gluon condensate, which is not easy to reconcile with
the value 0:006 GeV4, extracted from the comparison with
the lattice data on the critical temperature. This result
emphasizes the relevance of astrophysical data in testing
different quark matter models.

V. DISCUSSION AND CONCLUSIONS

The problem of the appearance of quark matter in the NS
core has been discussed by considering the microscopic
EOS in the FCM where the dynamics of confinement are
assumed to be a long range phenomenon. The results
confirm the idea that confinement plays an important role
for obtaining a stable system under the gravitational pres-
sure. However, in this case, pure quark matter can appear
only for a certain range of the gluon condensate, which is
mainly a parameter of the model. The comparison with
phenomenological data on NS masses gives strong con-
straints on the values of this parameter, which unfortu-
nately are only marginally compatible with the range
extracted by comparing the model with lattice data at
zero chemical potential. However, in this case the value
of the large distance static Q �Q potential V1 turns out to be
very small. Other choices are possible if Eq. (7) is assumed

to be valid only at long range, while Eq. (8) is a true short
range relationship. In this case the parameters DE

1 ð0Þ in the
two equations cannot be identified and may correspond to
two different numerical values, and therefore the value of
V1 must be considered an independent parameter. In the
comparison with lattice calculations [15] one finds a value
V1 � 0:5 GeV at the critical temperature and for � ¼ 0.
Besides that, the assumption of the independence of V1 on
� can be questionable; it appears in any case that the value
of this parameter at high density and low temperature is
quite uncertain. We have therefore varied the strength of V1

from the small values previously considered up to 0.5 GeV.
The results for the EOS are reported in Fig. 5 for different
values of V1. One can see that the hadron-quark phase
transition is shifted to higher values of the chemical po-
tentials and therefore of the density. This can be expected
just by inspection of the formula for the pressure, which is
clearly a decreasing function of V1. Actually already for
V1 ¼ 100 MeV the phase transition cannot occur in NS’s,
which are then composed of baryon matter only, with a
maximum mass around 2 solar masses. For higher values
of V1 the transition can possibly occur only at exceedingly
high values of the density, and therefore the quark phase is
irrelevant for NS physics.
These results indicate once more a direct link between

the NS quark content and the properties of deconfinement
in the hadron-quark phase transition. More quantitatively,
if one considers that the well established values of NS
masses never exceed � 1:6 solar masses, then these ob-
servational data constrain V1 to small values and in a
narrow range, well below 100 MeV, in sharp contrast
with values around 0.5 GeV extracted from lattice calcu-
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lations. Despite the FCM being in good agreement with
full QCD lattice data and being a well defined theoretical
approach where confinement is, ab initio, the crucial dy-
namical aspect, some refinements seem to be needed once
the astrophysical data are considered.

A relevant point to be clarified is the possible presence
of hyperons, whose onset is expected to be around 2–3
times the saturation density. In Fig. 5 we plot two curves
corresponding to the BHF EOS with and without the
inclusion of hyperons. As displayed, both curves coincide
at small values of the baryon chemical potential, and after
the onset of the hyperons, the former curve grows faster,
becoming the uppermost one in the figure.

Therefore, only at small values of V1, of the order of
0.01 GeVor below, the transition to quark matter occurs at
about the same density as the hyperon onset, as displayed
in Figs. 2 and 5. On the other hand, Fig. 5 clearly shows
that, when increasing V1 up to V1 � 0:5 GeV, no crossing
with the quark matter EOS is possible. We remark that the
baryonic EOS with hyperons in the BHF framework pro-
duces a maximum mass close to 1:3M�, below the obser-
vational limit, and therefore it is not acceptable [38].

It has to be pointed out that in all cases where no phase
transition to quark matter is possible, with or without
hyperons, nuclear matter can reach densities where bary-
ons are so closely packed that keeping their identity is
highly questionable. This is the main physical qualitative

argument that suggests as likely a transition to quark
matter.
Another approximation used in the FCM is the so called

single line approximation where the relevant dynamics are
related to the interaction of a single quark or gluon with the
vacuum. At large density this could be no longer true, but
in the FCM the most important nonperturbative effects are
included in the field correlators and, in particular, in the
gluon condensate which drives the transition. Therefore at
large density the main effect should be related to the �
dependence of G2 in Eq. (8). Lattice data at large tempera-
ture and small density show that the color electric conden-
sate goes to zero at the transition point and the color
magnetic condensate survives at large temperature. In our
analysis the same behavior has been assumed at small
temperature and large density [see Eqs. (21) and (22)].
Of course our results depend on this assumption and we
checked if a different qualitative conclusion is reached
with a density dependent gluon condensate. Following
the suggestion in [21] for the density dependence of G2

we obtain the same qualitative results with the possibility
of a larger NS mass ’ 2 solar masses.

ACKNOWLEDGMENTS

The authors warmly thank Y. Simonov for enlightening
discussions, and the critical reading of the manuscript.

[1] P. F. Kolb and U.W. Heinz, in Quark-Gluon Plasma 3,
edited by R. C. Hwa and X.-N. Wang (World Scientific,
Singapore, 2003), p. 634.

[2] F. Karsch and E. Laermann, in Quark-Gluon Plasma 3,
edited by R. C. Hwa and X.-N. Wang (World Scientific,
Singapore, 2003), p. 1; F. Karsch, E. Laermann, and A.
Peikert, Phys. Lett. B 478, 447 (2000).

[3] M. Buballa, Phys. Rep. 407, 205 (2005).
[4] A. Di Giacomo, H. G. Dosch, V. I. Shevchenko, and Y.A.

Simonov, Phys. Rep. 372, 319 (2002).
[5] N. K. Glendenning, Compact Stars, Nuclear Physics,

Particle Physics, and General Relativity (Springer, New
York, 2000), 2nd ed..
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