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We calculate the shear viscosity � � �e� þ �n in a neutron star core composed of nucleons, electrons,

and muons (�e� being the electron-muon viscosity, mediated by collisions of electrons and muons with

charged particles, and �n the neutron viscosity, mediated by neutron-neutron and neutron-proton

collisions). Deriving �e�, we take into account the Landau damping in collisions of electrons and muons

with charged particles via the exchange of transverse plasmons. It lowers �e� and leads to the nonstandard

temperature behavior �e� / T�5=3. The viscosity �n is calculated taking into account that in-medium

effects modify nucleon effective masses in dense matter. Both viscosities, �e� and �n, can be important,

and both are calculated including the effects of proton superfluidity. They are presented in the form valid

for any equation of state of nucleon dense matter. We analyze the density and temperature dependence of

� for different equations of state in neutron star cores, and compare � with the bulk viscosity in the core

and with the shear viscosity in the crust.
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I. INTRODUCTION

Neutron stars are very compact. Their typical masses are
�1:4M� (where M� is the mass of the Sun), while their
radii are as small as �10 km. As a result, a neutron star
core contains matter, whose density � reaches several �0

(�0 � 2:8� 1014 g cm�3 being the density of the standard
saturated nuclear matter). The core is composed of uniform
neutron-rich nuclear matter and extends from � � 0:5�0 to
the stellar center (where � can be as high as 10�0). It
attracts special attention because of its poorly known com-
position and equation of state (EOS); e.g., Ref. [1]. From
outside, the core is surrounded by a thin (� 1 km thick)
and light (a few percent by mass) crust composed of atomic
nuclei, strongly degenerate electrons and (after the neutron
drip at � * 4� 1011 g cm�3) free neutrons.

In this paper, we study the shear viscosity of neutron star
cores. It is an important transport property which affects
the relaxation of hydrodynamic motions, particularly, a
possible differential rotation within the star and stellar
oscillations [2]. The shear viscosity can be important for
damping gravitational wave driven instabilities (for in-
stance, r-modes; e.g., [3] and references therein). Its
knowledge is required to analyze the efficiency of such
instabilities for generating gravitational waves.

For simplicity, we consider the cores composed of
strongly degenerate neutrons (n), protons (p), electrons
(e), and muons (�)—npe�-matter, neglecting a possible
appearance of hyperons and/or exotic forms of matter (pion
or kaon condensates or quarks or their mixtures) as pre-
dicted by some EOSs at � * 2�0; see, e.g., Ref. [1]. The
electrons and muons constitute almost ideal gases. The
muons are absent in the outermost part of the core. They
appear at densities exceeding a threshold value �� � �0

[4] at which the electron chemical potential reaches the
muon rest-mass energy (�e ¼ m�c

2 � 207mec
2). The

electrons are ultrarelativistic, while the muons are non-
relativistic just after the threshold but become relativistic at
higher �. In contrast to electrons and muons, nucleons
constitute a strongly interacting Fermi liquid where pro-
tons are essentially nonrelativistic, while neutrons become
mildly relativistic at � * 2�0. The neutrons and protons
can be in a superfluid state (e.g., Ref. [5]).
The main contribution to the shear viscosity � in a

neutron star core comes from electrons and muons (lightest
and most mobile particles) and neutrons (most abundant
particles),

� ¼ �e� þ �n: (1)

The viscosity �e� of electrons and muons is mainly limited

by collisions of electrons and muons between themselves
and with other charged particles (protons, in our case) via
electromagnetic forces. In contrast, the neutron contribu-
tion �n is limited by neutron-neutron and neutron-proton
collisions mediated by strong interactions. As a result, �e�

and �n are nearly independent (belong to different—elec-
tromagnetic and nuclear—sectors) and can be calculated
separately [6].
In applications, one often employs the viscosity �e�

calculated by Flowers and Itoh [6] for nonsuperfluid mat-
ter. Recently, Andersson et al. [7] have estimated �e� for

superfluid matter. However, these studies neglect an en-
hancement of collisions of relativistic charged particles
due to the exchange of transverse plasmons. The signifi-
cance of this effect was demonstrated by Heiselberg and
Pethick [8] in their study of transport properties of ultra-
relativistic quark matter. Recently we (Shternin and
Yakovlev [9]) have reconsidered the electron-muon ther-
mal conductivity �e� taking into account the exchange of

transverse plasmons. This effect can reduce �e� by several

orders of magnitude.
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Here we reanalyze �e� in the same manner. We closely

follow [9] and omit technical details. In addition, we
reconsider �n, which is a more difficult task involving
nucleon-nucleon collisions. The viscosity �n was calcu-
lated by Flowers and Itoh [6] for one EOS of nonsuperfluid
matter assuming in-vacuum nucleon-nucleon scattering.
These results were fitted by Cutler and Lindblom [2] by
a simple analytical expression which is widely used; ac-
cording to Ref. [6], �n >�e�. Recently Benhar and Valli

[10] have calculated �n for pure neutron matter in a self-
consistent manner using the same nucleon interaction po-
tential to derive �n and construct the EOS (also for one
EOS). We calculate �n in a more general way than Flowers
and Itoh [6]. Our approach is similar to that used by Baiko,
Haensel and Yakovlev [11] for evaluating the thermal
conductivity of neutrons. In addition, we employ recent
developments [12] in calculations of nucleon-nucleon scat-
tering cross sections in nuclear matter. As in [11], we take
into account superfluidity of protons. Again, we closely
follow the derivation of [11] and omit the details.

After calculating �e� and �n, we analyze the shear

viscosity in neutron star cores with different EOSs.

II. SHEAR VISCOSITY IN NONSUPERFLUID
MATTER

The shear viscosity is calculated from a system of
coupled Boltzmann kinetic equations

v c

@Fc

@r
¼ X

i

Ici; (2)

where Fc is the distribution function of momentum-
transfer carriers c (with c ¼ e, �, or n, in our case); i ¼
n; p; e; � runs over all particle species; vc is the velocity of
particles c, and Ici is a collision integral, that describes a
scattering of particles c and i:

Ici ¼ 1

ð2�@Þ9ð1þ �ciÞ
X

�10�2�20

Z
dp2dp10dp20wcið12j1020Þ

� ½F10F20 ð1� F1Þð1� F2Þ
� F1F2ð1� F10 Þð1� F20 Þ�: (3)

Here, 1 and 2 denote particle states before a collision; 10
and 20 are particle states after the collision; p is the particle
momentum, � is the spin state, and wci is the differential
transition probability. The Kronecker delta �ci is included
to avoid double counting of collisions between identical
particles (c ¼ i).

Distributions Fc slightly deviate from the equilibrium
Fermi-Dirac distributions fc owing to the presence of a
small hydrodynamical velocity field V,

Fc ¼ fc ��c

@fc
@"c

; fc ¼
�
exp

�
"c ��c

kBT

�
þ 1

��1
;

(4)

where "c is the particle energy,�c is its chemical potential,
T is the temperature, kB is the Boltzmann constant, and�c

measures a deviation from equilibrium. The electron-muon
and neutron transports are decoupled because we neglect
the electromagnetic interaction between the leptons and
neutrons. For calculating �e�, the electrons and muons are

treated as the only momentum carriers which undergo
collisions between themselves and with protons. For cal-
culating�n, the only momentum carriers are assumed to be
neutrons, while the contribution of protons is neglected due
to their small fraction. Therefore, the protons are thought to
be passive scatterers which obey the equilibrium Fermi-
Dirac distribution. Nonequilibrium parts of the electron,
muon, and neutron distributions are found using the stan-
dard variational approach with the simplest trial function,

�c ¼ ��c

�
vc	pc
 � 1

3vcpc�	


�
V	
; (5)

where �c is an effective relaxation time of particles c, vc is
their velocity, and

V	
 ¼ 1

2

�
@V	

@x

þ @V


@x	

�
; (6)

with
P

	V		 ¼ divV ¼ 0.
The resulting shear viscosity is expressed through the

effective relaxation times in a standard way,

� ¼ �e� þ �n ¼ �e þ �� þ �n; �e ¼ nep
2
Fe�e

5m�
e

;

�� ¼ n�p
2
F���

5m�
�

; �n ¼ nnp
2
Fn�n

5m�
n

; (7)

where�e, ��, and�n are, respectively, the partial electron,

muon, and neutron shear viscosities; nc is the number
density of particles c; pFc is their Fermi momentum; and
m�

c is an effective mass on their Fermi surface. The electron
and muon effective masses differ from their rest masses
due to relativistic effects, m�

e ¼ �e=c
2 and m�

� ¼ ��=c
2.

The neutron and proton effective masses differ from their
bare masses mainly due to many-body effects in dense
matter (being determined by neutron and proton densities
of state near appropriate Fermi surfaces).
Linearizing the kinetic equations, multiplying them by

ðv1	p1
 � 1
3v1p1�	
Þ, summing over �1, and integrating

over ð2�@Þ�3dp1, we obtain a system of equations for the
relaxation times,

1 ¼ X
i

ð�ci�c þ �0
ci�iÞ; c ¼ e; �; n; (8)

where we introduce the effective collision frequencies,
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�ci ¼ 3�2
@
3

2p5
FckBTm

�
c

Z dp1dp10dp2dp20

ð2�@Þ12
�Wcið12j1020Þf1f2ð1� f10 Þð1� f20 Þ
�

�
2

3
p4
1 þ

1

3
p2
1p

2
10 � ðp1 � p10 Þ2

�
; (9)

�0
ci ¼

3�2
@
3

2p5
FckBTm

�
i

Z dp1dp10dp2dp20

ð2�@Þ12
�Wcið12j1020Þf1f2ð1� f10 Þð1� f20 Þ
�

�
1

3
p2
1p

2
20 �

1

3
p2
1p

2
2 þ ðp1 � p2Þ2 � ðp1 � p20 Þ2

�
;

(10)

with Wcið12j1020Þ ¼ ð1þ �ciÞ�1
P

spinswcið12j1020Þ (the

sum is over spin states of all particles 1, 2, 10, 20).
The formal solution of (8) for the npe�-matter is

�e ¼
�� � �0

e�

�e�� � �0
e��

0
�e

; �� ¼ �e � �0
�e

�e�� � �0
e��

0
�e

;

�n ¼ 1

�n

;

(11)

where

�e ¼
X
i

�ei þ �0
ee ¼ �ee þ �0

ee þ �e� þ �ep;

�� ¼ X
i

��i þ �0
�� ¼ ��� þ �0

�� þ ��e þ ��p;

�n ¼ �nn þ �0
nn þ �np:

(12)

In the absence of muons, the expression for �e� simplifies,

�e� ¼ �e; ��1
e ¼ �e ¼ �ee þ �0

ee þ �ep: (13)

Once collision frequencies are found, the viscosity is
obtained from Eq. (7). In order to determine the collision
frequencies from Eqs. (9) and (10) one needs to know the
transition probability Wcið12j1020Þ. The collisions of
charged particles should be considered with a proper treat-
ment of plasma screening of electromagnetic interaction.
We discuss the plasma screening and the calculation of�e�

in Secs. II A, II B, and II C. The neutron viscosity �n is
studied in Sec. II D. In Sec. II we consider nonsuperfluid
nucleons; the effects of proton superfluidity are analyzed in
Sec. III. Throughout the paper we use the simplest varia-
tional approach. A comparison with an exact solution is
discussed in Sec. II C 4.

A. Plasma screening

The plasma screening in neutron star cores is discussed
in [9]. Here, we outline the main points.

The differential collision probability can be written as

Wcið12j1020Þ ¼ 4
ð2�@Þ4
@
2

�ðp1 þ p2 � p10 � p20 Þ

� �ð"1 þ "2 � "10 � "20 Þ hjMcij2i
1þ �ci

; (14)

where hjMcij2i is the squared matrix element summed over
final and averaged over initial spin states. For collisions of

identical particles, we have Mcc ¼ Mð1Þ
cc �Mð2Þ

cc , where the
first and second terms correspond to the scattering channels
12 ! 1020 and 12 ! 2010, respectively. Collisions of differ-
ent particles go through a single channel, Mci ¼ Mð1Þ

ci ,

Mð1Þ
ci ¼ 4�e2

c2

�
Jð0Þ
101J

ð0Þ
202

q2 þ�l

� Jt101 � Jt202

q2 �!2=c2 þ�t

�
; (15)

where @q ¼ p10 � p1 and @! ¼ "10 � "1 are, respectively,

momentum and energy transfers in a collision event; Jð�Þc0c ¼
ðJð0Þ

c0c;Jc0cÞ ¼ ð2m�
ccÞ�1ð �uc0��ucÞ is the transition 4-current

(� ¼ 0, 1, 2, 3), Jtc0c is the component of Jc0c transverse to
q; �� is a Dirac matrix; uc a normalized bispinor (with
�ucuc ¼ 2mcc

2), and �uc is a Dirac conjugate. The first term
in Eq. (15) corresponds to direct Coulomb interaction via
the longitudinal currents (with respect to q); the spacelike
longitudinal component of the current is expressed through

the timelike component Jð0Þ
c0c with the aid of charge conser-

vation condition. The second term describes the interaction
via transverse currents. It is especially important for rela-

tivistic particles because Jc0c=J
ð0Þ
c0c � pc=ðm�

ccÞ. Longitu-
dinal and transverse interactions are accompanied by dif-
ferent plasma screenings described by the functions�t and
�l in the denominators of Eq. (15).
The collision energy and momentum transfers in neutron

star cores are typically small, @!� kBT 	 "i and @q 	
pFi. This smallness allows us to use the weak-screening
approximation which greatly simplifies the consideration.
Moreover, one typically has ! 	 qvFi, so that it is suffi-
cient to use the asymptotic expressions (e.g., [9])

�l ¼ q2l ¼
4	

�@2
X
i

m�
i pFic; (16)

�t ¼ i
�

4

!

qc
q2t ¼ i

	

@
2

!

qc

X
i

p2
Fi; (17)

where 	 ¼ e2=@c � 1=137 is the fine structure constant;
ql and qt are characteristic plasma wave numbers which
depend on plasma composition (summation is over all
types of charged particles); ql is the familiar Thomas-
Fermi screening wave number; qt & ql, with qt ! ql in
the limit of ultrarelativistic particles. Longitudinal inter-
actions (via the exchange of longitudinal plasmons) are
mediated by static nondissipative screening with character-
istic wave number ql (�l is real), while transverse inter-
actions (via the exchange of transverse plasmons) are
accompanied by the collisionless Landau damping (�t is
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purely imaginary). Characteristic momentum transfers in

transverse interactions are � ¼ ð�!=ð4cqtÞÞ1=3qt 	 ql,
meaning that such interactions occur on larger spatial
scales than the longitudinal ones. Therefore, for relativistic
particles, the transverse interactions can be more efficient.
The importance of such interactions was pointed out by
Heiselberg and Pethick [8] in their study of kinetic prop-
erties of relativistic quark plasma. So far in all calculations
of kinetic properties in neutron star cores (except for [9])
the transverse interactions have been erroneously screened
by the same static dielectric function�l as the longitudinal
interactions. This approximation strongly (up to several
orders of magnitude) overestimates the electron-muon
thermal conductivity [9]. We will show that it overesti-
mates also �e� (but less dramatically).

The squared matrix element in (14) for free ultrarelativ-
istic particles can be written as

hjMcij2i ¼ 16�2
@
6	2

m�2
c m�2

i c2
’; (18)

hjMccj2i
2

¼ 16�2
@
6	2

m�4
c c2

ð’� �Þ; (19)

where ’ and � are dimensionless functions,

’ ¼ ’k þ ’? þ ’?k; (20)

’k ¼ ðm�2
c c2 � @

2q2=4Þðm�2
i c2 � @

2q2=4Þ
@
4ðq2 þ q2l Þ2

; (21)

’? ¼ ðp2
Fc � @

2q2=4Þðp2
Fi � @

2q2=4Þcos2þ @
2ðp2

Fc þ p2
FiÞq2=4

@
4ðq6 þ�6Þ q2; (22)

’?k ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

Fc � @
2q2=4Þðp2

Fi � @
2q2=4Þ

q
@
4ðq2 þ q2l Þðq6 þ�6Þ m�

cm
�
i c

2q4 cos; (23)

 being the angle between the vectors p1 þ p10 and p2 þ
p20 . The function � describes interference between two
scattering channels of identical particles. In the weak-
screening approximation, its contribution is small; see
Sec. II C.

B. Effective collision frequencies

The collision frequencies are obtained by calculating the
integrals (9) and (10). The calculations are greatly simpli-
fied because all particles are strongly degenerate. It is
sufficient to place the colliding particles on their Fermi
surfaces (whenever possible) and use the standard energy-
angular decomposition based on d3p ¼ m�pFd"d�,
where d� is the solid angle element in the direction of
p. All (but one) energy integrations can be done with the
aid of the energy-conserving delta function in (14); only
the ! integration is left. Three angular integrations out of
eight are performed with the aid of the momentum-
conserving delta function; three integrations (over the po-
sition of p1 and over the azimuthal angle of p2 with respect
to p1) are trivial and give 8�2. As a result, one can reduce
the angular integration to the integration over dq and d.
Then the collision frequencies (9) and (10) can be written
as

�ci ¼ 12@2	2

�2p5
Fcm

�
cc

2
ðkBTÞ2

Z 1

0
dw

w2 expð�wÞ
½1� expð�wÞ�2 I�cið!Þ;

(24)

�0
ci ¼

12@2	2

�2p5
Fcm

�
i c

2
ðkBTÞ2

Z 1

0
dw

w2 expð�wÞ
½1� expð�wÞ�2 I

0
�cið!Þ;

(25)

where w ¼ @!=ðkBTÞ. The functions I�cið!Þ and I0�cið!Þ
are the angular integrals

I�ci ¼
Z qm

0
dq

Z �

0
dq2

�
p2
Fc �

@
2q2

4

�
’; (26)

I0�ci ¼ �
Z qm

0
dq

Z �

0
dq2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2

Fc � @
2q2=4Þðp2

Fi � @
2q2=4Þ

q
cos’; (27)

where @qm ¼ minf2pc; 2pig is the maximum momentum
transfer in a collision event. Owing to a trivial integration
over , I�ci contains two terms coming from ’k and ’?,
while I0�ci contains only the contribution from ’?k,

I�ci ¼ Ik�ci þ I?�ci; I0�ci ¼ I?k
�ci: (28)

Let us calculate the angular integrals in the leading
approximation with respect to the parameters �=qm and
ql=qm. This approximation is always justified for the trans-
verse interactions because of the presence of a small quan-
tity @!� kBT in the expression for �=qm. However, it is
less accurate for the longitudinal contribution since ql=qm
is not too small; we will discuss corresponding corrections
in Sec. II C.
The leading-order expressions for the angular integrals

are

I?�ci ¼
�2

6@4�
p4
Fcp

2
Fi; (29)

Ik�ci ¼
�2

4@4
m�2

c m�2
i p2

Fcc
4

ql
; (30)
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I?k
�ci ¼

�2m�
cm

�
i c

2p2
Fcp

2
Fi

2ql@
4

: (31)

Note that the leading-order expression for Ik?�ci is indepen-

dent of w, being of the same order of magnitude with

respect to ql=qm as Ik�ci. In contrast, I?�ci / w�1=3 / ��1.

The final integration over w gives the collision frequen-
cies

�?
ci ¼

�	2

@
2c

p2
Fi

pFcm
�
cc

�
@c

q2t

�
1=3ðkBTÞ5=3; (32)

�k
ci ¼

�2	2m�
cm

�2
i c2

@
2p3

Fcql
ðkBTÞ2; (33)

�0
ci ¼

2�2	2m�
cp

2
Fi

@
2p3

Fcql
ðkBTÞ2; (34)

where � ¼ 2�ð8=3Þ�ð5=3Þð4=�Þ1=3 � 6:93, �ðzÞ is the
Riemann zeta function, and �ðzÞ is the gamma function.
Equations (7), (11)–(13), and (32)–(34) give �e� in the

weak-screening approximation.
For typical conditions in a neutron star core,

�k
ci 	 �?

ci; �0
ci 	 �?

ci: (35)

However, the inequality is not so strong as for the thermal

conductivity [9]. The dominance of �?
ci over �

k
ci is deter-

mined by the factor ½@cql=ðkBTÞ�1=3 which increases
slowly with decreasing T. It is more accurate to include
all components of the collision frequencies. For the ther-

mal conductivity problem, we had �?
ci=�

k
ci / @cql=ðkBTÞ,

so that transverse interactions dominated at all tempera-
tures of interest [9].

Nevertheless, for the not-too-high temperatures (see
Sec. IV for details), �e� is mainly determined by the

collisions via the exchange of transverse plasmons. In
this case, the electron and muon momentum transports
are decoupled [see Eq. (11)],

1

�c
¼ �?

c ¼ X
i

�?
ci ¼

��

4c2
qt

pFcm
�
c

ð@cqtÞ1=3ðkBTÞ5=3: (36)

Then the shear viscosity of electrons or muons (c ¼ e or
�) becomes

�c ¼ �?
c ¼ 12�c2@3

5�

n2c

qtð@cqtÞ1=3
ðkBTÞ�5=3: (37)

We see, that in the low-temperature limit, �e� has a non-

standard temperature behavior, �e� / T�5=3 (instead of

the standard Fermi-liquid dependence � / T�2). The non-
standard behavior was pointed out by Heiselberg and
Pethick [8] for an ultrarelativistic quark plasma. Our re-
sults involve collisions of charged particles in the
npe�-matter (for any degree of relativity of muons). Our

expressions for �e� depend only on the number densities

of charged particles and on their effective masses; there-
fore, they can be used for any EOS of dense matter.
Previous calculations [6,13] overestimated �e� because

they employed the improper plasma screening of trans-
verse interactions. Equation (37) remains valid in the pres-
ence of other charged particles (such as �� hyperons).

C. Corrections to the leading terms

As mentioned above, the corrections to �?
c containing

higher-order powers of �=qm can be neglected, so that �?
c

can be taken in the form (36). In contrast, the corrections to

�k
c containing higher-order powers of ql=qm can be impor-

tant. At not-too-small temperatures, at which �k
c can give a

noticeable contribution, such corrections can affect �e�.

We will discuss several corrections of this type.

1. Kinematical corrections to �k
ci and �0

ci

The main corrections to the leading terms arise from the
q-dependence of the functions ’ [Eqs. (22) and (23)] and
from the q-dependence in Eqs. (26) and (27). The integral

Ik�ci is calculated precisely,

Ik�ci ¼
�m�2

c m�2
i c4p2

Fc

@
4ql

Ik2ðqm=qlÞ

� �c2ql
4@2

½m2�
c m�2

i c2 þ p2
Fcðm�2

c þm�2
i Þ�Ik4ðqm=qlÞ

þ �q3l
16

½ðm�2
c þm�2

i Þc2 þ p2
Fc�Ik6ðqm=qlÞ

� �@2q5l
64

Ik8ðqm=qlÞ; (38)

where we have introduced the integrals

IkkðxÞ ¼
Z x

0

x0k

ðx02 þ 1Þ2 dx
0; (39)

whose expressions are given in the appendix. After the
energy integration the corrected collision frequency be-
comes

�k
ci ¼

4@2	2

p5
Fcm

�
cc

2
ðkBTÞ2Ik�ci: (40)

Similar corrections should be calculated for �0
ci. In the

leading-order approximation (with respect to �=qm), �
6

can be neglected in the denominator of’?k. The remaining

angular integral is taken,

I?k
�ci ¼

�m�
i m

�
cc

2

@
4ql

�
p2
Fcp

2
FiI

?k
0 ðqm=qlÞ

� @
2

4
ðp2

Fc þp2
FiÞq2l I?k

2 ðqm=qlÞþ @
4

16
q4l I

?k
4 ðqm=qlÞ

�
;

(41)
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where

I?k
k ðxÞ ¼

Z x

0

x0k

x02 þ 1
dx0 ¼ IkkðxÞ þ Ikkþ2ðxÞ: (42)

After the energy integration we finally obtain

�0
ci ¼

4@2	2

p5
Fcm

�
i c

2
ðkBTÞ2I?k

�ci: (43)

Our calculations show that these corrections to �k
ci and

�0
ci can reach�70%. It is advisable to include them in �e�.

2. Corrections to lepton-proton collision frequencies

So far we have considered the function ’ calculated for
free relativistic particles. It is a good approximation for
collisions within the electron-muon subsystem, because

the electrons and muons constitute almost ideal Fermi
gases. However, the protons belong to a strongly interact-
ing Fermi liquid; this case should be analyzed separately.
First of all we notice that the protons are nonrelativistic.
Moreover, we will assume, that many-body effects can be
treated by introducing an effective proton mass m�

p. Under

these assumptions, the proton transition current can be
written as Jp202 / 1

2 ðp2 þ p20 Þm�
p��2�20 , which only

slightly modifies ’. The expression (23) for ’?k remains

the same, while the two other functions become

’cp
k ¼ ðm�2

c c2 � @
2q2=4Þm�2

p c2

@
4ðq2 þ q2l Þ2

; (44)

’cp
? ¼ ðp2

Fc � @
2q2=4Þðp2

Fp � @
2q2=4Þcos2þ ðp2

Fc � @
2q2=4Þ@2q2=4

@
4ðq6 þ�6Þ q2: (45)

The difference between �k
cp, calculated with (21) and

(44), is proportional to some power of @ql=ðm�
pcÞ. Contrary

to ql=qm, this ratio is always small for the conditions in
neutron star cores. Hence Eq. (40) with the angular integral
(38) remains a valid approximation. For the completeness
of our analysis, we present the modified angular integral,

Ik�cp ¼
�m�2

c m�2
p c4p2

Fc

@
4ql

Ik2ðqm=qlÞ

� �c2qlm
�2
p

4@2
ðm�2

c c2 þ p2
FcÞIk4ðqm=qlÞ

þ �q3l
16

ðm�2
p c2 þ p2

FcÞIk6ðqm=qlÞ: (46)

This expression gives almost the same �k
cp.

3. Interference corrections to �cc

The last correction to be discussed is the correction to
�cc (to �ee and ���) due to the interference between two

scattering channels (1; 2 ! 10; 20 and 1; 2 ! 20; 10) for col-
lisions of identical particles. This interference is described
by the dimensionless function � which (like ’) contains
longitudinal, transverse, and mixed components. An accu-
rate consideration shows that all these components are
smaller than corresponding components of ’. Therefore,
the interference correction to �?

cc can be neglected, and

noticeable corrections can arise only to �k
cc and �0

cc. These
corrections have been calculated in the same way as in
previous sections. We have obtained that they are numeri-

cally small (give & 5% contribution to �k
cc þ �0

cc). Their
contribution to �e� is always negligible as expected with-

out any numerical calculations. Such corrections can be
significant under two conditions. First, the longitudinal

component �k
cc should be comparable to �?

cc. Second, �cc

itself should give a noticeable contribution to �e�. The

former condition would be realized at high temperatures if
particles c are weakly relativistic. The electrons are ultra-
relativistic in neutron star cores and do not obey the above
requirement. The muons can be weakly relativistic there,
but if they are their contribution to �e� is not large. The

importance of the interference corrections in cc collisions
is further reduced by a (typically) stronger contribution of
cp collisions. There are also collisions between electrons
and muons. The interference corrections for such collisions
are absent; corresponding partial collision frequencies are
of the same order of magnitude as �cc.
Thus, the corrections to �cp and �cc seem to be negli-

gible. The kinematical corrections to �k
ci and �0

ci are sig-

nificant if �k
ci cannot be neglected in comparison with �?

ci.
Note that in [9], for the electron-muon thermal conductiv-
ity problem, no corrections have been required because the
thermal-conduction frequencies �?

ci dominate at any den-
sity and temperature of practical interest.

4. Comparison with exact solution

So far we have used a simplest variational solution for
the shear viscosity based on the expression for the trial
function (5) with �c independent of the particle energy "c.
Actually, however, the energy dependence of �c is more
complicated, which affects the shear viscosity. It is conve-
nient to introduce a correction factor C that relates the
exact and variational shear viscosities,

�exact ¼ C�var: (47)

In ordinary Fermi systems, where the collision probability
is independent of energy transfer @!, the factor C can be
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calculated using the theory developed by Sykes and
Brooker [14] for one component systems and extended
by Flowers and Itoh [6] and Anderson et al. [15] for
multicomponent systems. Unfortunately, this theory can-
not be directly applied to our case because of the dynami-
cal character of transverse plasma screening (Landau
damping).

The factor C for the thermal conductivity with account-
ing for the exchange of transverse plasmons was estimated
in [9]. Let us do the same for the shear viscosity. As in [9],
we restrict ourselves to the exchange of transverse plas-
mons in the weak-screening approximation. Then the elec-
tron transport decouples from the muon one, and we can

consider one type of momentum carriers. We redefine �c

in (5) as

�c ¼ ��eff

�
vc	pc
 � 1

3�	
vcpc

�
V	
�ðxÞ; (48)

where �eff is an effective relaxation time (that can be
treated as a normalization constant), and an unknown
function �ðxÞ of x ¼ ð"c ��cÞ=ðkBTÞ describes the en-
ergy dependence of �c.
Substituting (48) into the linearized kinetic equation,

one obtains an integral equation for �ðxÞ,

fðxÞð1� fðxÞÞ ¼ 6@4	2ðkBTÞ2�eff
�2p5

Fcm
�
cc

2

Z 1

�1
dx0

x0 � x

expðx0 � xÞ � 1
fðxÞð1� fðx0ÞÞ

�
�
2

3

p4
Fc

@
2
I�c1ðx0 � xÞ½�ðxÞ ��ðx0Þ� þ I�cðx0 � xÞ�ðx0Þ

�
; (49)

where I�c ¼ P
iI�ci, I�c1 ¼ P

iI�ci1, and

I�ci1 ¼
Z qm

0
dq

Z �

0
d’: (50)

The integral equation (49) is more complicated than that
for the thermal conductivity (see Eq. (42) in [9]). The term
with I�c1 in (49) appears because we go beyond the
simplest variational approach of �c ¼ const. Without
that approach, there is no cancellation of zero-order ex-
pansion terms (in series of q) in kinematical factors in
Eq. (9). It was that cancellation which led to the appear-
ance of the q2 term under the integral in Eq. (26). The
integral I�ci1 coincides (save a constant factor) with the
angular integral for the thermal conductivity problem
(Eq. (25) in [9]). Taking the weak-screening expressions
for I�c and I�c1 with the exchange of transverse plasmons
alone, and choosing

�eff ¼
�
4

�

�
2=3 pFcm

�
cc

2

	qtð@cqtÞ1=3ðkBTÞ5=3
; (51)

we obtain the dimensionless equation

1

1þ expð�xÞ ¼
Z 1

�1
dx0

sgnðx0 � xÞ
ðexpðx0 � xÞ � 1Þð1þ expð�x0ÞÞ

� ½�ð�ðxÞ ��ðx0ÞÞ þ jx0 � xj2=3�ðx0Þ�;
(52)

where � ¼ p2
Fc=ð3@2�2

TÞ. The quantity �T ¼
ð�kBT=ð4@cqtÞÞ1=3qt is the transverse screening wave
number �, with @! replaced by kBT. In a neutron star
core, one typically has @�T 	 pFc, and hence � 
 1. If
�� 1, then the weak-screening approximation is not
justified.

Once �ðxÞ is found by solving Eq. (50), the shear
viscosity is given by

�cexact ¼ ncp
2
Fc�eff
5m�

c

Z 1

�1
dx�ðxÞfðxÞð1� fðxÞÞ: (53)

We have solved Eq. (52) numerically and compared the

result with the variational one (�var ¼ 22=3�2=3=½12��).
For � ¼ 10–1000, we obtain C ¼ �exact=�var ¼
1:08–1:056. For � � 1000, the factor C ¼ 1:056 becomes
nearly independent of �. Therefore, we have C � 1 indi-
cating that the simplest variational approach is well
justified.
Were the electron (and muon) collisions determined

solely by the exchange of longitudinal plasmons (with
the transition matrix element independent of !), one could
find C from the standard theory. In that case one also
obtains C � 1 (see, e.g., Ref. [16]). We expect, that in
the most general case, when electron and muon collisions
are governed by the exchange of transverse and longitudi-
nal plasmons, the correction factor C differs from C ¼ 1
by & 10%. If so, the simplest variational approach is
sufficiently accurate, and no corrections are required (C ¼
1) for the majority of astrophysical applications.

D. Neutron viscosity

In this section we calculate the neutron shear viscosity
�n. We employ the same formalism as was used in [11] for
studying the neutron thermal conductivity. A similar ap-
proach was used by Baiko and Haensel [16] to determine
kinetic coefficients mediated by neutron-neutron colli-
sions. We calculate �nn from Eq. (7); the effective relaxa-
tion time of neutrons, �n, is given by Eq. (11), being
determined by the collision frequencies (12) of neutrons
with neutrons and protons.
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The neutron-neutron collision frequency can be written
as

�nn þ �0
nn ¼ 16m�3

n ðkBTÞ2
3m2

n@
3

Snn (54)

(note that the authors of [11] did not separate �nn and �0
nn

but considered their sum). The neutron-proton collision
frequency is

�np ¼
32m�2

p m�
nðkBTÞ2

3m2
n@

3
Snp: (55)

Here,mn is a bare nucleon mass. The quantities Snn and Snp
are the effective nucleon-nucleon scattering cross sections
introduced in Eq. (22) of [11] (for the thermal-conduction
problem). For the shear viscosity, in the same notation as in
[11], we obtain

Snn ¼ m2
n

16�2
@
4

Z 1

0
dx0

Z ffiffiffiffiffiffiffiffiffi
1�x02

p

0
dx

12x2x02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2 � x02

p Qnn;

(56)

Snp ¼ m2
n

16�2
@
4

Z 0:5þx0

0:5�x0

dx0
Z a

0
dx

6ðx2 � x4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p Qnp; (57)

where x ¼ @q=ð2pFnÞ, x0 ¼ @q0=ð2pFnÞ, a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 � ð0:25þ x20 � x02Þ2

q
=x0, and x0 ¼ pFp=ð2pFnÞ. This

choice of integration variables is convenient for numerical
integration. The quantities Qnn and Qnp are squared ma-

trix elements for nucleon-nucleon scattering (in the nota-
tion of [11], Qnn ¼ hjMnnj2i and Qnp ¼ hjMnpj2i).

Let us emphasize that kinematic restrictions in Eqs. (56)
and (57) are very different. The effective cross section Snn
is determined by a wide spectrum of momentum transfers q
(or, equivalently, of scattering angles). Our calculations
show that one can get a reasonably accurate Snn assuming
that Qnn is independent of q. Such a q-averaged Qnn can
be extracted from a total neutron-neutron scattering cross
section. In contrast (because, typically, pFp 	 pFn), Snp is

determined by small momentum transfers, that is by a
small-angle cross section of neutron-proton scattering.

By analogy with [11], we can write Snn ¼ Sð0ÞnnKnn and

Snp ¼ Sð0ÞnpKnp. Here, Snn and Snp are the effective cross

sections calculated with in-medium squared matrix ele-

ments,Qnn andQnp; S
ð0Þ
nn and Sð0Þnp are similar cross sections

calculated with the in-vacuum matrix elements; Knn and
Knp are the ratios of the in-medium to the in-vacuum cross

sections.
The authors of [11] calculated all these quantities for the

thermal-conduction problem. The squared matrix elements
Qnn andQnp were extracted from nucleon-nucleon differ-

ential scattering cross sections calculated in Refs. [17,18]
for symmetric nuclear matter with the Bonn nucleon-
nucleon interaction potential using the Dirac-Brueckner
approach. An accurate extraction of the in-medium Qnn

and Qnp required the knowledge of effective masses m�
n

and m�
p (not reported in [17,18]). For that reason, the

procedure used in [11] was ambiguous. Thus, the factors
Knn and Knp, presented in [11] for the neutron thermal

conductivity, are model dependent and not very certain.

Now we turn to calculating Snn, Snp, S
ð0Þ
nn , S

ð0Þ
np , Knn, and

Knp for the shear viscosity. To avoid the above drawbacks,

we suggest to neglect the in-medium effects on the squared

matrix elements and set Knn ¼ Knp ¼ 1, Snn ¼ Sð0Þnn , and

Snp ¼ Sð0Þnp . According to [11] (for the thermal conductiv-

ity), Knn and Knp are indeed �1 (and Knp is relatively

unimportant). Recently Zhang et al. [12] have studied
nucleon-nucleon scattering cross sections in nuclear matter
taking into account two-nucleon and three-nucleon inter-
actions. They used the Brueckner-Hartree-Fock approach
and the Argonne V14 nucleon-nucleon interaction model
supplemented by three-nucleon interactions. Their princi-
pal conclusion is that the in-medium effects on square
matrix elements are relatively weak, while the main me-
dium effect consists in modifying (mostly reducing) m�

n

andm�
p. The reduction of effective masses under the simul-

taneous effects of two-nucleon and three-nucleon forces is
much stronger than under the effect of two-nucleon forces
alone.
Thus, we have calculated Snn and Snp from Eqs. (56) and

(57) using the in-vacuum matrix elements Qnn and Qnp

from Refs. [17,18]. These matrix elements accurately re-
produce [19] well elaborated laboratory measurements of
differential nucleon-nucleon scattering cross sections. Our
calculations of Snn and Snp are expected to be very close to

those done with in-vacuum cross sections measured in
laboratory. In this sense, our values of Snn and Snp are

model independent. Similar calculations of Snn in Ref. [16]
give slightly different results due to the different data sets
for Qnn. Because our Eqs. (54) and (55) for the nucleon-
nucleon collision frequencies contain a proper dependence
on m�

n and m�
p, they can be regarded as independent of any

specific model for nucleon-nucleon interaction. It can be a
two-body or two-body plus three-body interaction; its ex-
plicit form is not essential. Thus, we obtain a description of
the neutron shear viscosity valid for any EOS of nucleon
matter. This approach is not strict (uses the in-vacuum
matrix elements) but universal. One can in principle cal-
culate more accurate in-medium matrix elements for any
chosen EOS but losing the universality. For calculating the
diffusive thermal conductivity from the equations of [11],
we would recommend to adopt the same approach and set
Knn ¼ Knp ¼ 1 in those equations.

The results of our calculations can be fitted by the
expressions
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Snn ¼ 12:88

k1:915n

1� 0:6253kn þ 0:3305k2n
1� 0:0736kn

mb;

Snp ¼
0:8876k3:5p

k5n

1þ 139:6kp þ 103:7kn

1� 0:5932kn þ 0:1829k2n þ 7:629k2p � 0:5405kpkn
mb;

(58)

where ki is the Fermi wave number of nucleons i expressed
in fm�1. As in [11], the calculations and fits cover the range
of kn from 1.1 to 2:6 fm�1 and the range of kp from 0.3 to
1:2 fm�1. These parameter ranges are appropriate to neu-
tron star cores at 0:5�0 & � & 3�0. The fit errors for Snn
do not exceed 0.5%. The maximum fit error of Snp is
�max � 8% (at kn ¼ 1:1 fm�1 and kp ¼ 0:7 fm�1).

III. SHEAR VISCOSITY IN SUPERFLUID MATTER

Neutrons and protons in the npe�-matter of neutron star
cores can be in superfluid state (e.g., Ref. [5]). Here, we
study the effects of superfluidity on the shear viscosity. Let
Tcnð�Þ be the critical temperature for superfluidity of neu-
trons, and Tcpð�Þ be the same for protons. Proton super-

fluidity means superconductivity. Calculations of
superfluid critical temperatures are complicated and very
sensitive to a chosen model of nucleon-nucleon interaction
and a method to employ many-body (polarization) effects
[5]. Numerous calculations give drastically different
Tcnð�Þ and Tcpð�Þ. It is instructive not to rely on any

particular model but treat Tcn and Tcp as free parameters

varied within reasonable limits (Tc & 1010 K), in accor-
dance with microscopic calculations.

Neutron superfluidity has no direct effect on the shear
viscosity �e� of electrons and muons (because �e� is

limited by electromagnetic interactions). However, it
strongly affects neutron star hydrodynamics in a compli-
cated way. It makes the hydrodynamics essentially multi-
fluid (with several hydrodynamical velocity fields; e.g.,
[20] and references therein); it introduces an entrainment
effect (which relates motion of neutrons and protons),
creates a very specific spectrum of elementary medium
excitations (phonons) and associated specific energy and
momentum-transfer mechanisms. All these problems go
far beyond the scope of our paper. Therefore, we will
neglect the effects of neutron superfluidity (will treat neu-
trons as normal) but consider the effects of proton super-
fluidity on �n (assuming the protons to be passive
scatterers of neutrons, i.e., ignoring momentum transport
by protons). We disregard thus hydrodynamical effects of
neutron and proton superfluids.

Microscopically, proton superfluidity manifests itself in
rearranging proton states (from normal Fermi-liquid qua-
siparticles to Bogoliubov quasiparticles) and in the appear-
ance of a gap 	 in the proton energy spectrum near the
Fermi level (" ¼ �),

" ¼ �þ sgnð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2 þ �2

q
; (59)

where � � vFðp� pFÞ; the presented equation is valid at
j�j 	 �.
It is generally believed that Cooper paring of protons

appears in the singlet 1S0 state (e.g., Ref. [5]). The tem-

perature dependence of 	, calculated in the BCS approxi-
mation, can be approximated as [21]

y ¼ 	

kBT
¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �

1:456� 0:157ffiffiffi
�

p þ 1:764

�

�
; (60)

where � ¼ T=Tcp.

A. The effects of proton superfluidity on the
electron-muon viscosity

The effects of proton superfluidity on �e� are twofold.

First, proton superfluidity affects the plasma dielectric
function and, hence, the screening of electromagnetic in-
teractions. The longitudinal dielectric function is almost
insensitive to the presence of superfluidity [22], while the
transverse dielectric function modifies collision frequen-
cies �?

ci. The frequencies �0
ci remain almost unchanged

because they are independent of the transverse screening
in the leading order.
As in [9], a collision frequency in superfluid matter (to

be denoted as �?S
ci ) can be written as

�?S
ci ¼ �?

ciR
?
l ðy; rÞ; (61)

where �?
ci (i ¼ e, �) stands for a collision frequency in

nonsuperfluid matter, while R?
l ðy; rÞ accounts for the su-

perfluid effects (which mainly reduce the collision rate);

r ¼ ðp2
Fe þ p2

F�Þ=p2
Fp (62)

is a slowly varying function determined by plasma compo-
sition. We have r ¼ 1 in the absence of muons, and r > 1
in the presence of muons, with the maximum value of r �
1:26 in the limit of ultrarelativistic muons. The reduction
factor R?

l ðy; rÞ for the shear viscosity is, however, not the

same as for the thermal conductivity (obtained in [9]) and
will be calculated below.
The second effect of proton superfluidity consists of an

additional (direct; not through plasma screening) reduction
of the lepton-proton collision frequencies (such as �ep and

��p). This direct reduction is exponential; it can be de-

scribed by the reduction factors

�?S
cp ¼ �?

cpR
?
p ðy; rÞ; (63)
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�kS
cp ¼ �k

cpR
k
pðyÞ: (64)

The reduction factors R?
p and Rk

p are not the same due to

the difference in longitudinal and transverse plasma
screenings. Following [9], it is convenient to introduce
the reduction factor R?

tot for the total transverse collision
frequency �?

c ¼ �?
ce þ �?

c� þ �?
cp,

�?S
c ¼ �?S

c R?
totðy; rÞ; (65)

R?
totðy; rÞ ¼ ½rR?

l ðy; rÞ þ R?
p ðy; rÞ�=ðrþ 1Þ: (66)

Below we calculate R?
l , R

k
p, R?

p , and R?
tot.

1. Superfluid reduction of collisions in electron-muon
subsystem

Superfluid reduction of lepton-lepton collisions is gov-
erned by the transverse polarization function �t. For the
conditions in neutron star cores, it is sufficient to use�t in
the so-called Pippard limit (@! 	 pFpvFp, @q 	 pFp, and

� 
 1=q, where �� @vFp=ðkBTcpÞ is the coherence

length). In this approximation, the proton contribution to
�t reads

�ðpÞ
t ¼ q2tp

4

	

@cq
Qðw; yÞ; (67)

where q2ti ¼ 4	p2
Fi=ð@2�Þ, and Q is the response function

calculated in Ref. [23] and discussed in [9] in more detail.
In the nonsuperfluid limit of y 	 1 one has Q ¼

i�@w=y, which corresponds to the standard Landau-
damping expression. In the opposite case of strong super-
fluidity (y 
 1), the response function Q becomes pure
real, Q ¼ �2. For intermediate superfluidity, y� 1, we
have used the expressions for Q derived in [23]. They are
valid for a pure BCS formalism neglecting collective

modes and related vortex renormalization in current op-
erators due to gradient invariance. However, as in [9], the
main contribution to �e� comes from the parameter values

far from characteristic frequencies of collective modes (far
from !� vFq) and we can use the standard BCS theory.
The expression for the total polarization function in the

superfluid case takes the form

�t ¼ �!

4qc

�
q2tp

y

�w
<Qðw; yÞ

þ i

�
q2te þ q2t� þ q2tp

y

�w
=Qðw; yÞ

��
: (68)

In the case of strong superfluidity, the main contribution to
�t comes from protons. Moreover, the character of plasma
screening changes. Instead of the dynamical Landau damp-
ing, the screening becomes static, with the frequency-

independent screening wave number �S ¼
½�2q2tp	=ð4@cÞ�1=3. In neutron star cores, one typically

has 	� kBTcp 	 pFic. Therefore, the relation �S 	 ql
remains true in the superfluid case. In other words, the
exchange of transverse plasmons in proton superfluid re-
mains more efficient than the exchange of longitudinal
plasmons. The strong inequality �S 	 qm justifies the
use of the leading-order weak-screening approximation
in describing the exchange of transverse plasmons.
In order to calculate the reduction factor R?

l one should

reconsider the transverse angular integral I?�ci taking into

account the changes of electrodynamical plasma properties
in superfluid matter. In the leading order with respect to
�S=qm,

I?S
�ci ¼ I?�ciF

?ðw; y; rÞ; (69)

where I?�ci refers to nonsuperfluid matter, while

F?ðw; y; rÞ ¼ ½�wðrþ 1Þ�1=3½ð�wrþ y=Qðw; yÞÞ2 þ ðy<Qðw; yÞÞ2�1=3
j�wrþ	=Qðw; yÞj

2ffiffiffi
3

p sin

�
2

3
arctan

j�wrþ y=Qðw; yÞj
y<Qðw; yÞ

�
(70)

accounts for superfluid effects. In the limit of strong super-
fluidity (y 
 1) we have

F?ðw; y; rÞ ¼ 4

3
ffiffiffi
3

p
�
wðrþ 1Þ

�y

�
1=3

: (71)

This asymptotic w-dependence compensates the
w-dependence in I?S

�ci (that appeared under the effect of
plasma screening). Moreover, in the expression for I?S

�ci the
collision energy @! is now replaced by the energy gap 	.

Finally, we write �?S
ci ¼ �?

ciR
?
l ðy; rÞ, and the reduction

factor becomes

R?
l ðy; rÞ ¼

1

�ð8=3Þ�ð5=3Þ
�

Z 1

0

expðwÞ
½expðwÞ � 1�2 w

5=3F?ðw; y; rÞdw:
(72)

When superfluidity vanishes (y ! 1) we evidently have
R?
l ðy; rÞ ! 1. In the opposite case of strong superfluidity

(y 
 1) we obtain

R?
l ðy; rÞ ¼

4�2

9
ffiffiffi
3

p
�ð8=3Þ�ð5=3Þ

�
rþ 1

�y

�
1=3

: (73)

Thus, strong proton superfluidity restores the temperature
dependence �?S

ci / T2 that is standard for Fermi systems.
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This result was derived in [9] for the thermal-conduction
problem. It is a natural consequence of changing plasma
screening from dynamical to statical when T falls below
Tcp.

In addition, we have computed R?
l ðy; rÞ for a wide grid

of y. We do not present an appropriate fit, because we will
calculate and fit the total reduction factor R?

totðy; rÞ for �?
c .

2. Superfluid reduction of collisions of electrons and
muons with protons

Now consider a direct effect of superfluidity on electron-
proton and muon-proton collision rates. The consideration
is similar to that for the thermal-conduction problem [9].
The proton energy gap has to be included in the expres-
sions for the collision frequencies through the proton
Fermi-Dirac distributions. In addition, the electron-proton
and muon-proton scattering matrix elements have to be
calculated using wave functions of proton Bogoliubov
quasiparticles. As a result, the reduction factors R?

p ðyÞ
and Rk

pðy; rÞ can be written as

R?
p ðy; rÞ ¼ 1

�ð8=3Þ�ð5=3Þ
Z 1

0

Z 1

0

dx2dx20

1þ expðz2Þ

�
�ðz20 � z2Þjz20 � z2j�1=3ð1þ 4u2u20v2v20 Þ

½1þ expð�z20 Þ�½expðz20 � z2Þ � 1�
� F?ðjz20 � z2j; y; rÞ

� ðz20 þ z2Þjz20 þ z2j�1=3ð1� 4u2u20v2v20 Þ
½1þ expðz20 Þ�½expð�z20 � z2Þ � 1�

� F?ðjz20 þ z2j; y; rÞ
�
; (74)

Rk
pðyÞ ¼ 3

�2

Z 1

0

Z 1

0

dx2dx20

1þ expðz2Þ
�

� ðz20 � z2Þð1� 4u2u20v2v20 Þ
½1þ expð�z20 Þ�½expðz20 � z2Þ � 1�

� ðz20 þ z2Þð1þ 4u2u20v2v20 Þ
½1þ expðz20 Þ�½expð�z20 � z2Þ � 1�

�
; (75)

where

u p ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

z

r
; vp ¼ sgnðxÞffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

z

r
; (76)

x ¼ vFpðp� pFpÞ=ðkBTÞ, and z ¼ ð"��pÞ=ðkBTÞ.
In the limit of strong superfluidity (y 
 1) we

obtain Rk
pðyÞ ¼ Ak expð�yÞ and R?

p ðy; rÞ ¼ A?ðrþ
1Þ1=3y2=3 expð�yÞ, where

Ak ¼ 6

�2

Z 1

0
d�1

Z 1

0
d�2

ð�2
1 � �2

2Þð�2
1 þ �2

2Þ
expð�2

1Þ � expð�2
2Þ

� 1:454 25 (77)

and

A? ¼ 16

3
ffiffiffi
3

p
�1=3�ð8=3Þ�ð5=3Þ

�
Z 1

0
d�1

Z 1

0
d�2

�2
1 � �2

2

expð�2
1Þ � expð�2

2Þ
� 0:929 74: (78)

Thus, at T 	 Tcp collisions with superfluid protons are

exponentially suppressed. Then the shear viscosity �e� is

limited by collisions within the electron-muon subsystem
(which are also affected by proton superfluidity as de-
scribed in Sec. III A 1).

We have computed Rk
pðyÞ for a wide range of y and fitted

the results by the expression

Rk
pðyÞ ¼ fAk þ ð1:25� AkÞ expð�0:0437yÞ

þ ð1:473y2 þ 0:006 18y4Þ
� exp½0:42�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:42Þ2 þ y2

q
�g

� exp½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:22Þ2 þ y2

q
�; (79)

which reproduces also the asymptotic limits. The maxi-
mum relative fit error is 0.75% at y ¼ 0:533.
We do not present a separate fit expression for R?

p ðy; rÞ,
but give the fit of the total reduction factor R?

totðy; rÞ:

R?
tot ¼ 1� g1

ð1þ g3y
3Þ1=9 þ ðg1 þ g2Þ exp½0:145

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:145Þ2 þ y2

q
�;

g1 ¼ 0:87� 0:314r;

g2 ¼ ð0:423þ 0:003rÞy1=3 þ 0:0146y2

� 0:598y1=3 expð�yÞ;
g3 ¼ 251r�9ðrþ 1Þ6ð1� g1Þ9;

(80)

with the maximum fit error �0:3% at r ¼ 1 and y ¼ 3:5.
This fit reproduces also the limiting case of R?

tot ! 1 at
y ! 0, and the asymptote at y 
 1,

R?
totðy; rÞ ¼ 4�2r

9
ffiffiffi
3

p
�ð8=3Þ�ð5=3Þðrþ 1Þ2=3

1

ð�yÞ1=3 : (81)

Recently the electron shear viscosity in superfluid matter
has been analyzed by Andersson et al. [7]. These authors
have used the standard (but approximate) approach in
which the transverse plasma screening is assumed to be
the same as the longitudinal one. This approach is inaccu-
rate even in the nonsuperfluid case. In Ref. [7] the effects of
superfluidity are described by a reduction factor R�

ep for the

effective electron-proton collision frequency. That factor
has been taken from Ref. [24] devoted to the thermal
conductivity problem. However, the reduction factors for
the thermal conductivity and shear viscosity are different.
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Moreover, the factor R�
ep in [7] is inaccurate even for the

thermal conductivity, because it assumes approximate
plasma screening and neglects additional terms associated
with creation/annihilation of proton Bogoliubov quasipar-
ticles; see [9] for details. Nevertheless, numerical values of
�e, derived from the results of [7] for superfluid matter, are
not too different from our results. Typically, they over-
estimate �e by a factor of 3, and this overestimation
increases with decreasing Tcp.

In the limit of strong superfluidity, the temperature
dependence of �?S

c formally restores the standard Fermi-

liquid behavior, �?S
c / T2. Therefore, �k

ci can be compa-

rable to �?S
c . Note that the ratio �k

ci=�
?S
c in superfluid

matter remains approximately the same as its value at T ¼
Tcp. If Tcp is sufficiently small, then at T ¼ Tcp we have

�?
c 
 �k

ci, and the same inequality holds at smaller T. The
shear viscosity in superfluid matter, fully determined by
the exchange of transverse plasmons, can be written as

�?S
c ¼ �S

ðkBTÞ2
n2c

	2=3

@
4c2pFp

p2
Fe þ p2

F�

�
	

pFpc

�
1=3

;

�S ¼ 27
ffiffiffi
3

p
�1=3

40
� 1:71:

(82)

One can use this expression for estimates, but we recom-
mend to employ the total collision frequency in practical
calculations.

B. Neutron shear viscosity in superfluid matter

We study the effect of proton superfluidity on neutron-
proton collisions. Even this problem is difficult and we
adopt a simplified approach used in [11] for the problem of
neutron thermal conductivity. It has also been widely used
for analyzing superfluid suppression of various neutrino
processes (e.g., [25] and references therein). It consists in
taking an ordinary differential probability of a given scat-
tering process (neutron-proton scattering, in our case) and
inserting particle energies (59) with energy gaps in corre-
sponding Fermi-Dirac distribution functions. In our case,
this approach is expected to be sufficiently accurate. Let us
recall that we consider the protons only as neutron scat-
terers. Proton superfluidity suppresses this scattering chan-
nel, and our approach reproduces such a suppression.

In this approximation, the neutron-proton collision fre-
quency becomes

�S
np ¼ �npRnpðyÞ; (83)

where RnpðyÞ is the superfluid reduction factor. The latter

factor is given by the same expression as the reduction

factor for lepton-proton collisions, Rk
p, save the coherence

factors,

RnpðyÞ ¼ 3

�2

Z 1

0

Z 1

0

dx2dx20

1þ expðz2Þ
�
�

z20 � z2
½1þ expð�z20 Þ�½expðz20 � z2Þ � 1�

� z20 þ z2
½1þ expðz20 Þ�½expð�z20 � z2Þ � 1�

�
: (84)

It obeys the asymptotes Rnpð0Þ ¼ 1 and RnpðyÞ !
Anpy expð�yÞ at y ! 1, where Anp ¼ 0:8589.

We have calculated RnpðyÞ in a wide range of y and fitted
the results by the expression

RnpðyÞ ¼ 2
3½0:513þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:487Þ2 þ 0:018y2

q
�

� exp½2:26�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2:26Þ2 þ y2

q
�

þ 1
3ð1þ 0:000 56y4Þ exp½6:2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6:2Þ2 þ 4y2

q
�;
(85)

the formal maximum fit error is � 0:25% at y ¼ 11:6.
Note that proton superfluidity affects �n weaker than

�e� (because of a relatively small contribution of neutron-

proton collisions to �n).

IV. RESULTS AND DISCUSSION

A. Equations of state

Our results can be used for a wide range of EOSs of the
npe�-matter in neutron star cores. For illustration, we have
selected five model EOSs. The parameters of these EOSs
are given in Table I, including the maximum gravitational

TABLE I. Parameters of the selected EOSs: The compression
modulus K0 of symmetric saturated nuclear matter; the muon
threshold density ��; and also the central density �max, the mass

Mmax and radius Rm of maximum-mass models (�� and �max are

given in units of 1014 g cm�3).

EOS K0 (MeV) ��14 �max14 Mmax ðM�Þ Rm (km)

APR 237 2.28 27.6 1.923 10.31

PAL I 120 2.55 38.6 1.468 9.18

180 2.55 31.4 1.738 9.92

240 2.55 26.6 1.950 10.59

PAL II 120 2.58 35.3 1.484 9.72

180 2.58 29.5 1.753 10.36

240 2.58 25.3 1.966 10.97

PAL III 120 2.46 44.4 1.416 8.45

180 2.46 34.5 1.713 9.60

240 2.46 28.6 1.910 10.12

PAL IV 120 2.50 42.0 1.438 8.75

180 2.50 33.2 1.713 9.60

240 2.50 27.8 1.927 10.32
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mass Mmax of stable stars and the threshold density �� of

muon appearance.
The APR EOS was constructed by Akmal,

Pandharipande, and Ravenhall [26] (their model Argonne
V18þ �vþ UIX�); it is often used in the literature.
Specifically, we adopt its convenient parametrization pro-
posed by Heiselberg and Hjorth-Jensen [27] and described
as APR I by Gusakov et al. [28]. It is sufficiently stiff, the
maximum neutron star mass is Mmax � 1:92M� (and the
maximum-mass star has a circumferential radius of Rm ¼
10:31 km), and the muons appear at �� � 2:28�
1014 g cm�3; see Table I.

The PAL EOSs are convenient semianalytical phenome-
nological EOSs proposed by Prakash, Ainsworth, and
Lattimer [29]. They differ by the functional form of the
dependence of the symmetry energy S of dense matter on
the baryon number density nb. This dependence is de-
scribed [29] by a function FðuÞ, where u ¼ nb=n0, n0 ¼
0:16 fm�3 being the baryon number density of saturated
symmetric matter. For the PAL EOSs I, II, and III, these
functions are FðuÞ ¼ u, 2u2=ðuþ 1Þ, and ffiffiffi

u
p

, respectively.
The PAL IV EOS belongs to the same family of EOSs, but
with the symmetry energy SðuÞ / u0:7 suggested by Page
and Applegate [30]. The PAL EOSs differ also [29] by the
value of the compression modulus K0 of saturated sym-
metric matter, K0 ¼ 120, 180, and 240 MeV. Nevertheless,
the particle fractions ni=nb as a function of nb are inde-
pendent of K0 (for these EOSs); the dependence of nb on �
is almost identical for the three selected K0 values [at a
fixed FðuÞ]. Hence, the collision frequencies and the shear
viscosity are independent of K0. However, taking different
K0, one obtains very different neutron star models (differ-
ent mass-radius relations and Mmax; see Table I). For
illustration, we take K0 ¼ 240 MeV for all PAL models
(unless the contrary is indicated).

Therefore, our selected EOSs correspond to a large
variety of neutron star models.

B. Shear viscosity in nonsuperfluid matter

Figure 1 shows the shear viscosity �e� of electrons and

muons versus density at T ¼ 108 K for five EOSs. The
given temperature is typical for middle-aged (t�
104–105 yr) isolated (cooling) neutron stars without en-
hanced neutrino emission in their cores (e.g.,
Refs. [25,30]). The proton effective mass is taken to be
m�

p ¼ 0:8mn. The thick lines give �e� for the APR and

PAL I–IV EOSs, while the thin solid line is for the APR
EOS, but it is calculated including the contribution from
the exchange of longitudinal plasmons alone. One can see
that the inclusion of transverse plasmons lowers �e� by a

factor of 3 at � * 4� 1014 g cm�3. With the fall of tem-
perature this lowering is stronger. The exchange of trans-
verse plasmons has not been included in previous
calculations of the shear viscosity in neutron star cores,
which has resulted in an overestimation of �e�. The vis-

cosity �e� for the PAL II EOS (the dotted line) goes

significantly higher than other curves due to a larger
amount of protons (and, therefore, electrons and muons)
for this EOS.
Figure 2 demonstrates the density dependence of the

neutron shear viscosity multiplied by squared temperature,
�nT

2. This combination is temperature independent. The
curves are calculated assuming the nucleon effective

FIG. 1 (color online). Shear viscosity �e� of electrons and
muons versus density �14 (in units of 1014 g cm�3) for different
EOSs (Table I) at T ¼ 108 K (m�

p ¼ 0:8mn). The thin solid line

(APR-l) shows the viscosity �e� calculated with account for the

exchange of longitudinal plasmons alone.

FIG. 2 (color online). Viscosity �n of neutrons times T2 versus
density for four EOSs (m�

n ¼ m�
p ¼ 0:8mn).
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masses m�
n ¼ m�

p ¼ 0:8mn. In principle, the effective

masses can be taken from microscopic calculations of an
EOS; they can depend on �, and our expressions for the
shear viscosity allow one to incorporate this density de-
pendence. Here we assume density independent effective
masses by way of illustration. In Fig. 2, for simplicity, we
do not present the results for the PAL IV EOS; they are
very close to the APR results. One can see that the neutron
viscosity for the selected EOSs differs within a factor of
& 2.

Figure 3 demonstrates the viscosity approximation of
Cutler and Lindblom [2] (curve CL) versus � at T ¼
107 K. Recall that the approximation is based on the
calculations by Flowers and Itoh [6] performed for the
EOS of Baym, Bethe, and Pethick [31] assuming in-
vacuum nucleon-nucleon scattering cross sections and
m�

n ¼ m�
p ¼ mn. Also, we show self-consistent calcula-

tions of �n by Benhar and Valli [10] for pure neutron
matter with the EOS that is basically similar to APR
(with another version for three-nucleon interaction). The
authors have used one and the same nucleon interaction
potential to derive the EOS and �n. The curve BV (2bf) is
their result (from their Fig. 1) obtained employing two-
body nucleon forces; the curve BV (2bf þ 3bf) is obtained
employing the two-body and three-body forces. The effec-

tive massm�
n is calculated self-consistently as a function of

� (m�
n is different for both curves and, unfortunately, is not

reported in [10]).
All other curves in Fig. 3 are our results for the APR

EOS assuming various values ofm�
n andm

�
p. For simplicity,

these phenomenological values are taken density indepen-
dent. We show either the viscosity �nn, limited by neutron-
neutron collisions alone (dashed lines), or the viscosity �n,
limited by neutron-neutron and neutron-proton collisions
(solid lines). One can see that the contribution of neutron-
proton collisions is relatively small, while the dependence
of the viscosity on nucleon effective masses is important.
Smaller effective masses strongly increase the neutron
viscosity. In the limit of m�

n ¼ m�
p ¼ mn we obtain the

viscosity �n which is a factor of � 40 smaller than CL.
Using the results of [11] for the thermal conductivity of
neutrons �n, derived in the same approximations as our
results for �n, we obtain the values of �n a factor of 2–4
smaller than those given by Flowers and Itoh [6,32]. The
nature of this systematic disagreement of our results with
the results of Flowers and Itoh is unclear. We have checked
that it cannot be attributed to using different EOSs.
A comparison of our results with those of Benhar and

Valli [10] is complicated because Benhar and Valli do not
present the values of m�

n which they obtained for neutron
matter. If, however, we take a reasonable value of m�

n ¼
0:7mn, we obtain�nn (not shown in Fig. 3) very close to the
curve BV (2bf) of Benhar and Valli. In order to reproduce
their BV (2bf þ 3bf) curve with our equations, we should
employ a density dependent m�

n. It should vary from m�
n �

0:6mn at �� 1:5� 1014 g cm�3 to 0:45mn at �� 6�
1014 g cm�3. Let us note that the inclusion of three-
nucleon interactions does reduce m�

n, and the reduction
increases with density [12]. However, since we do not
know exact values of m�

n, used in Ref. [10], we cannot
analyze the relative importance of m�

n and in-medium
corrections to the squared matrix element. We assume
(Sec. II D) that the effect of the effective masses is more
important. Notice, in addition, that the in-vacuum differ-
ential neutron-neutron scattering cross section in Ref. [10]
(the solid line in their Fig. 3) seems underestimated.
In Fig. 4 we compare partial shear viscosities in a

neutron star core with the APR EOS at T ¼ 108 K.
Previously, it has been widely thought that �n completely
dominates over �e� in the core of a nonsuperfluid star.

Now we have considerably lowered both viscosities
(Figs. 1 and 3). The main contribution to the total shear
viscosity (�tot, the solid line) at T ¼ 108 K comes from the
electrons (�e, the dashed line). The neutron viscosity �n

(the dash-dotted line) is lower than �e. Note, however, that
the relation between �n and �e is temperature dependent;
when T decreases, �n becomes more important (see Fig. 5
and a discussion below). The dotted line in Fig. 4 shows the
muon shear viscosity ��. For T ¼ 108 K, it becomes

comparable with �n at � * 7� 1014 g cm�3.

FIG. 3 (color online). Neutron shear viscosity versus � at T ¼
107 K. The curve CL is the approximation of Cutler and
Lindblom [2] of the results [6]. The curves BV (2bf) and BV
(2bf þ 3bf) are obtained by Benhar and Valli [10] for pure
neutron matter taking into account two-body and two-body
plus three-body forces, respectively. Other curves are our results
for the viscosity �nn, limited by neutron-neutron collisions
alone, or for the viscosity �n, limited by neutron-neutron and
neutron-proton collisions; these curves are calculated for the
APR EOS assuming various phenomenological density indepen-
dent effective masses m�

n and m�
p.
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C. Shear viscosity in superfluid matter

Now we discuss the shear viscosity in the presence of
proton superfluidity (superconductivity) but for nonsuper-
fluid neutrons. For illustration, we take m�

n ¼ m�
p ¼ 0:8mn

throughout a neutron star core.
Figure 5 demonstrates the temperature dependence of

�e� (solid lines) and �n (dashed lines) in the presence of

proton superfluid (Tcp ¼ 109 K, curves SF) and for non-

superfluid matter (unmarked curves) at � ¼ 4�
1014 g cm�3.

In nonsuperfluid matter, �e� exceeds �n at T * 107 K

(for the adopted values of m�
n and m�

p) but the situation

reverses at lower T. The reversal is a consequence of the

different temperature behaviors, �e� / T�5=3 [Eq. (37)]

and �n / T�2. The thin solid line shows �e� calculated

taking into account the exchange of longitudinal plasmons
alone. It demonstrates the standard Fermi-system behavior,
�e� / T�2, and overestimates �e�. At T ¼ 109 K the

overestimation is small. It reaches a factor of � three at
T ¼ 108 K, and exceeds 1 order of magnitude at T &
107 K.

Proton superfluidity noticeably increases �e� at T < Tcp

and restores the Fermi-liquid temperature behavior, �e� /
T�2 [Eq. (82)]. The increase of �n is not large because it
comes from superfluid suppression of neutron-proton col-
lisions which give a relatively small contribution to �n. In
the presence of proton superfluidity, �e� completely domi-

nates over �n.
The electron shear viscosity in superfluid matter has

recently been considered by Andersson et al. [7]. We
have already discussed their approach in Sec. III A 2. For

their EOS and superfluidity model, their results overesti-
mate �e, typically, by a factor of 3 in superfluid matter and
by more than 1 order of magnitude in nonsuperfluid matter.
Figure 6 compares the shear viscosity � (left panel) with

the bulk viscosity � (right panel) determined by the direct
and modified Urca processes in the core of a vibrating
neutron star at T ¼ 107, 108, and 109 K. The vibration
frequency is set to be ! ¼ 104 s�1; these vibrations
strongly affect � but do not affect �. The bulk viscosity
is calculated according to Refs. [33,34]. The EOS is the
same as in [33,34] (PAL I with K0 ¼ 180 MeV).
Note that � decreases with growing T, while � increases

(e.g., Refs. [33,34]). For T ¼ 107 K, the shear viscosity
dominates in the entire stellar core, while for T ¼ 108 K
the bulk viscosity � in the inner core (where the direct Urca
process is allowed, after the jump of � in the right panel)
becomes �10 times higher than �. For T ¼ 109 K, the
bulk viscosity completely dominates in the entire core. The
presence of proton superfluidity enhances � and sup-
presses � . The dashed lines in the left and right panels of
Fig. 6 show � and � , respectively, in superfluid matter with
Tcp ¼ 109 K at T ¼ 108 K. Superfluidity makes the shear

viscosity more important. Note that shear perturbations in
dense matter (e.g., associated with differential stellar rota-
tion) are damped by the shear viscosity and can be un-
affected by the bulk viscosity. Therefore, the shear
viscosity can be important for applications even if it is
lower than the bulk viscosity.

FIG. 4 (color online). Partial shear viscosities in nonsuperfluid
neutron star cores versus density at T ¼ 108 K (m�

n ¼ m�
p ¼

0:8mn).

FIG. 5 (color online). Electron-muon and neutron shear vis-
cosities versus temperature in the nonsuperfluid neutron star core
and in the presence of proton superfluidity (Tcp ¼ 109 K) for the

APR EOS at � ¼ 4� 1014 g cm�3 (m�
n ¼ m�

p ¼ 0:8mn). Curves

SF correspond to the superfluid case, while other curves are for
normal matter. The thin solid curve is �e� calculated including

the exchange of longitudinal plasmons alone.
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Finally, Fig. 7 compares the shear viscosity in the crust
and the core of a neutron star. The viscosity in the crust is
calculated for cold-catalyzed matter [1] using the results of
Refs. [35,36]. The former paper is devoted to the viscosity
mediated by electron-ion collisions, while Ref. [36] deals
with the contribution of electron-electron collisions taking
into account the exchange of transverse plasmons. In the
crust, the latter effect is not large. We use the APR EOS in
the core, and the core is assumed to be nonsuperfluid. The
solid, dashed, and dash-dotted lines correspond to T ¼
107, 108, and 109 K, respectively. The viscosity jump at
the star crust-core interface (at � ¼ 1:4� 1014 g cm�3) is

due to the disappearance of atomic nuclei in the core. The
nuclei, present in the crust, lower the viscosity owing to a
very efficient electron-ion scattering.

V. CONCLUSIONS

We have calculated the shear viscosity in a neutron star
core as a sum of the electron-muon viscosity �e� and the

neutron viscosity �n. Calculating the viscosity �e�, which

is mediated by collisions of charged particles, we have
taken into account the exchange of transverse plasmons
(that has not been done before). Our results include also the
effects of proton superfluidity. They are universal, pre-
sented in the form of analytic fit expressions convenient
for implementing into computer codes for any EOS of
nucleon matter in neutron star cores.
Our main conclusions are
(1) The exchange of transverse plasmons strongly re-

duces �e� for all temperatures and densities of

interest in a nonsuperfluid core. A low temperatures,

we have �e� / T�5=3.

(2) The viscosity �e� generally dominates over �n,

although �n can exceed �e� at T & 107 K and � &

4� 1014 g cm�3 (for m�
n � m�

p � 0:8mn).

(3) The viscosity �n strongly depends on the nucleon
effective masses. Typically, it is more than 1 order of
magnitude lower than that calculated in Ref. [6] and
parametrized in Ref. [2].

(4) Strong proton superfluidity significantly increases
�e� and restores its Fermi-liquid temperature de-

pendence, �e� / T�2. In this regime, �e� exceeds

�n.
(5) The shear viscosity � is comparable with the bulk

viscosity � at T � 108 K (for a star vibrating at a
frequency !� 104 s�1) and dominates at lower T.
Superfluidity increases the importance of � in com-
parison with � .

FIG. 6 (color online). Density dependence of the shear viscosity � (left) and the bulk viscosity � (right) at different temperatures (the
values of log10T are given near the curves) in a neutron star core with the PAL I EOS (see text). Solid curves are for normal matter (N).
Dashed curves are for T ¼ 108 K and proton superfluidity with Tcp ¼ 109 K. The viscosity � is plotted for a neutron star vibrating at a

frequency of ! ¼ 104 s�1.

FIG. 7 (color online). Density profiles of the shear viscosity
through a nonsuperfluid neutron star (through the outer crust,
inner crust and the core) for three values of T (log10T½K� ¼ 7, 8,
and 9—solid, dashed, and dash-dotted lines, respectively). The
left vertical dotted line shows the neutron drip density, the right
line is the crust-core interface.
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Our results can be used in simulations of neutron star
hydrodynamics, in particular, to analyze the damping of
internal differential rotation, stellar oscillations, gravita-
tional wave driving instabilities.

Our results can be improved further in many respects. It
would be most important to study the shear viscosity
problem in the presence of neutron and proton superfluidity
in the frame of multifluid hydrodynamics as discussed in
Sec. III.

Nevertheless, even our restricted standard one-fluid for-
mulation is incomplete. Our calculations of �n can be
improved by taking into account the medium effects on
the matrix elements of nucleon-nucleon scattering.
However, we rely on the results of Ref. [12] that these
medium effects are weaker than the effects of nucleon
effective masses (which we include explicitly). An account
for the medium effects on the matrix elements would
complicate the expressions for �n (making them
nonuniversal).

We have also neglected the effects of a strong magnetic
field which can modify the shear viscosity. For not-too-
high magnetic fields, B & 1013 G, which do not affect the
plasma polarization functions (e.g., Ref. [37]), the general-
ization of the present results to the magnetic case is
straightforward. For stronger fields, the polarization tensor
becomes anisotropic and the viscosity problem is very
complicated.

The present results are in line with our studies of kinetic
properties of relativistic plasma taking into account the
exchange of transverse plasmons. These effects were
studied by Heiselberg and Pethick [8] for ultrarelativistic
quark plasma. They should be included in all calculations
of kinetic properties of relativistic plasmas, particularly in
neutron stars. For the neutron star crust, the effect was
studied in [38] (thermal conductivity) and [36] (shear
viscosity). For neutron star cores, it was analyzed in [9]

(thermal conductivity), [37] (electrical conductivity), and
[39] (neutrino pair emission in electron-electron
collisions).
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APPENDIX: EXPLICIT EXPRESSIONS FOR
ANGULAR INTEGRALS

Here we present explicit expressions of the angular

integrals IkkðxÞ, defined by Eq. (39), for different values

of k,

Ik0ðxÞ ¼
1

2
arctanxþ 1

2

x

1þ x2
; (A1)

Ik2ðxÞ ¼
1

2
arctanx� 1

2

x

1þ x2
; (A2)

Ik4ðxÞ ¼ x� 3

2
arctanxþ 1

2

x

1þ x2
; (A3)

Ik6ðxÞ ¼
x3

3
� 2xþ 5

2
arctanx� 1

2

x

1þ x2
; (A4)

Ik8ðxÞ ¼
x5

5
� 2x3

3
þ 3x� 7

2
arctanxþ 1

2

x

1þ x2
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