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The motion of a Dp-brane in the background of a stack of coincident NS5-branes is analyzed as the

motion of a relativistic point particle in the transverse space of the five-branes. In this system, the particle

experiences a proper acceleration orthogonal to its proper velocity due to the background dilaton field

which changes the dynamics from that of a simple geodesic motion. In particular, we show that in the

vicinity of the five-branes, it is this acceleration which is responsible for modifying the motion of the

radial mode to that of an inverted simple harmonic oscillator leading to the tachyonic instability.
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In string theory, it is well known that soliton solutions
like the NS5-brane and Dp-brane are contained in the
string spectrum. While the former is supersymmetric and
stable, the latter can be either supersymmetric and stable
(Bogomol’nyi-Prasad-Sommerfield (BPS) Dp-brane) or
nonsupersymmetric and unstable (non-BPS Dp-brane). A
pair of D� �D branes is nonsupersymmetric even if each is
supersymmetric individually. Such nonsupersymmetric
systems are unstable because the lowest lying state of the
open string, either (both ends) ending on a single non-BPS
D-brane or stretched between the brane and the antibrane,
is a tachyon. The condensation of the tachyon can lead to a
stable brane configuration or the total annihilation of the
brane. A nice review of this phenomenon can be found in
[1]. The dynamics of tachyon condensation has led to many
interesting time-dependent phenomena including the de-
cay of a non-BPS brane into a strange ‘‘tachyon matter’’
state whose equation of state is that of a pressureless fluid
[2]. An effective action of the Dirac-Born-Infeld (DBI)
type for the tachyon [3–6] has been very useful in under-
standing such processes.

A completely different dynamics, namely, that of a BPS
Dp-brane propagating in the background of a stack of
coincident NS5-branes, has been studied recently using
the effective DBI action [7]. It has been observed there
that when theDp-brane comes close to the NS5-branes, the
dynamics of the Dp-brane can be mapped to that of the
open string tachyon condensation, where the radial mode
on the Dp-brane plays the role of the tachyon. Moreover,
its equation of state approaches that of a pressureless fluid
with the pressure falling off exponentially at late times.
These properties along with the fact that a parallelDp-NS5
brane system is a nonsupersymmetric system, has led to the
nomenclature ‘‘geometric tachyon’’ for the radial mode on

the Dp-brane. The tachyonic instability has been made
more precise [8] by compactifying one of the transverse
directions of the NS5-branes on a circle and placing the
Dp-brane, as a point on this circle diametrically opposite to
the five-branes. In such a case it has been observed that the
potential energy density of the Dp-brane at this point has a
saddle point. As a result, this point corresponds to an
unstable equilibrium and the Dp-brane develops a ta-
chyonic mode associated with translations along the circle.
Various other aspects of this system have also been inves-
tigated in [9–15]. For example, it has been noted recently
that under certain conditions a geometric tachyon in one
system gets mapped to the universal open string tachyon in
another system and vice versa [16].
In this paper we look for a better understanding of the

origin of the tachyonic instability when the motion is in the
uncompactified transverse space. Our interest is in the
dynamics of a BPS Dp-brane in type II string theory in
the presence ofN coincident NS5-branes and we formulate
this as the motion of a relativistic point particle in the
background of fields generated by the NS5 branes. We
take the five-branes to be stretched in the directions
(x1; x2; . . . ; x5) and their world-volume directions are de-
noted by x ��, �� ¼ 0; 1; . . . ; 5. Similarly the transverse di-
rections are labeled by xm, m ¼ 6, 7, 8, 9. The Dp-brane is
taken to be parallel to the coincident five-branes, i.e., it is
extended in the directions x�, � ¼ 0; 1; . . . ; p with p � 5.
Hence theDp-brane is pointlike in the directions xm. When

the Dp-brane is placed at a large distance r ¼ ðxmxmÞ1=2,
from the stack of coincident NS5-branes, it experiences an
attractive force due to both gravitational and dilatonic
interactions. Since the mass (� 1=g2s where gs denotes
the string coupling constant) of the NS5-branes is much
larger than the mass (� 1=gs) of the Dp-brane at weak
string coupling, the Dp-brane will move towards the NS5-
branes.
The background fields for the five-branes are obtained

from the supergravity solution as [� �� �� ¼ ð�;þ; � � � ;þÞ]
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ds2 ¼ �d�2 ¼ � �� ��dx
��dx �� þGmndx

mdxn;

Gmn ¼ HðrÞ�mn; e2ð���0Þ ¼ HðrÞ ¼ 1þ N‘2s
r2

;

Hmnp ¼ ��qmnp@q�;

(1)

where HðrÞ is the harmonic function describing the N
coincident five-branes (with ‘s denoting the fundamental
string length). Here� denotes the dilaton field, e�0 ¼ gs is
the string coupling constant, and Hmnp is the field-strength

of the Neveu-Schwarz (NS) B-field.
We label the world-volume coordinates of the Dp-brane

by ��, � ¼ 0; 1; . . . ; p and identify �� ¼ x� by making
use of the reparametrization invariance on the world vol-
ume. Since we are considering the motion of the Dp-brane
only in the transverse space of the NS5-branes, the position
of the Dp-brane in this space, (x6, x7, x8, x9), gives rise to
scalar fields, Xmð��Þ,m ¼ 6; . . . ; 9 on the world volume of
the Dp-brane. The dynamics [17] of these scalar fields is
governed by the DBI action

Sp ¼ ��p
Z

dpþ1�e�ð���0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðG�� þ B��Þ

q
; (2)

where �p is the tension of the Dp-brane. G�� and B�� are

the induced metric and the B-field on the world volume,
given by (X �� ¼ x ��)

G�� ¼ @XA

@��

@XB

@�� GABðXÞ; B�� ¼ @XA

@��

@XB

@�� BABðXÞ:
(3)

Here the indices A;B ¼ 0; 1; . . . ; 9 and GAB and BAB are
the metric and the B-field in ten dimensions, given in (1).
We are interested in the case when the fields representing
the position of the Dp-brane Xm, m ¼ 6; . . . ; 9, depend
only on time, Xm ¼ XmðtÞ. In this case, the action (2)
simplifies considerably and takes the form

Sp ¼ ��pVp

Z
dte�ð���0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Gmn

_Xm _Xn
q

; (4)

where Vp is the volume of the p-dimensional space in

which the Dp-brane is stretched out and an overdot repre-
sents a derivative with respect to t. The dilaton field and the
metricGmn are related to the harmonic function as noted in
(1).

We rewrite the above action in a suggestive form as

Sp ¼ ��pVp

Z
dte� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�G �m �n

_X �m _X �n
q

¼ ��pVp

Z
d�e� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�G �m �n

dX �m

d�

dX �n

d�

s
; (5)

where �� ¼ ���0, G �m �n ¼ ð�1; GmnÞ with �m and �n tak-
ing values �m ¼ ð0; mÞ ¼ 0, 6, 7, 8, 9; X0 ¼ t and � is the
proper time. The action (5) can be thought of as describing
the dynamics of a relativistic point particle in gravitational

as well as dilatonic backgrounds. Note that �� does not
depend on X0 and, therefore, on time explicitly. However,
since it depends upon Xm, which is a function of time, it
has an implicit time dependence. The Lorentz factor fol-
lows from (1) to be

	 ¼ dt

d�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�G �m �n

_X �m _X �n
p ; (6)

and denoting the proper velocity of the particle as u �m ¼
dX �m=d�, it can be checked easily that G �m �nu

�mu �n ¼ �1.
The momentum of the particle is obtained from (5) to be

P �m ¼ �pVpe
� ��G �m �nu

�n, which leads to P2 ¼ G �m �nP �mP �n ¼
�ð�pVpÞ2e�2 �� and this makes it clear that such a particle is

not tachyonic in the conventional sense unless the dilaton
field becomes complex.
Therefore, to understand the origin of the tachyonic

instability, let us analyze the equations of motion following
from (5) which correspond to the motion of a particle in a
curved background subject to an acceleration, namely,

d2X �m

d�2
þ � �m

�n �p

dX �n

d�

dX �p

d�
¼ 
 �m; (7)

where � �m
�n �p is the Christoffel symbol constructed from the

metric G �m �n, namely,

� �m
�n �p ¼ 1

2G
�m �qð@ �nG �q �p þ @ �pG �n �q � @ �qG �n �pÞ; (8)

and the proper acceleration 
 �m is given by


 �m ¼
�
G �m �n þ dX �m

d�

dX �n

d�

�
@ �n

��: (9)

Thus we note that the dilaton background is responsible for
a proper acceleration leading to a deviation of the trajec-
tory of the particle from its geodesic. It can be checked
easily that G �m �nu

�m
 �n ¼ 0 so that the proper acceleration is
orthogonal to the proper velocity as would be expected for
a relativistic system. This is reminiscent of a Rindler
particle executing hyperbolic motion [18] and clarifies
the origin of the hyperbolic solution obtained in [7].
We can compute the energy-momentum tensor by using

the general formula

T�� ¼ � @L

@ð@�XmÞ@
�Xm þ ���L; (10)

where L is the Lagrangian of the action (5) and the non-
vanishing components take the explicit forms,

T00 ¼ �pVp	e
� �� � E;

Tij ¼ ��pVp	
�1e� ���ij � p�ij;

(11)

where 	 is the Lorentz factor defined in (6) and E; p denote
the energy and the pressure of the system, respectively.
From time translation invariance we expect energy to be
conserved and similarly rotational invariance in the trans-
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verse space leads to the conservation of angular momen-
tum in the system.

The time component ( �m ¼ 0) of the equation of motion
(7) yields

d	

dt
¼ 	

d ��

dt
; (12)

which we recognize from (11) to lead to conservation of
energy. On the other hand, using (12) the dynamical Eq. (7)
for �m ¼ m takes the form

€X m þ �m
�n �p

_X �n _X �p þG �p �q
_X �p _X �qGmn@n �� ¼ 0: (13)

We note that for large separations the leading behavior of
this equation is the free particle motion described by €Xm ¼
0. This corresponds to the vanishing of the gravitational
force as well as the acceleration 
m for large separations in
the leading order. We study below the dynamics of the
system in the next-to-leading order.

For this purpose it is simpler to work in the spherical-
polar coordinates. Using the fact that angular momentum is
conserved, we can restrict the motion of the particle to a
plane with the radial mode R and the angular mode �. In
this case the line element in (1) takes the form

� d�2 ¼ �dt2 þHdR2 þHR2d�2; (14)

and correspondingly the Lorentz factor (6) becomes

	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H _R2 �HR2 _�2

p : (15)

The nonvanishing components of � can be computed from
(8) and are given by

�R
RR ¼ @R ln

ffiffiffiffiffi
H

p
; �R

�� ¼ �R2@R ln
ffiffiffiffiffiffiffiffiffiffi
HR2

p
;

��
R� ¼ ��

�R ¼ @R ln
ffiffiffiffiffiffiffiffiffiffi
HR2

p
:

(16)

In the spherical coordinates (13) has the form

€R� R _�2 þ 1

2H2
@RHð2H _R2 � 1Þ ¼ 0;

€�þ 1

HR2
@RðHR2Þ _� _R ¼ 0:

(17)

Since � is an angular coordinate, its conjugate gives the
angular momentum of the form

L ¼ �pVp	e
� ��HR2 _� ¼ EHR2 _�: (18)

Defining the quantity

HR2 _� ¼ L

E
¼ ‘; (19)

we note that the second equation in (17) leads to the
conservation condition

d

dt
ðHR2 _�Þ ¼ d

dt

�
L

E

�
¼ d‘

dt
¼ 0; (20)

namely, the angular momentum associated with the motion
of the particle is conserved.
The true dynamics of the system is contained in the R

equation in (17). Using (18) as well as the fact that energy
in (11) is conserved, we obtain from (15)

_R 2 ¼ 1

H

�
1� 1

H

��
�pVp

E

�
2 þ ‘2

R2

��
� 0; (21)

which determines [using the form of H in (1)] that for
�pVp

E � 1, we must have ðN‘2s � ‘2Þ � 0 and R2 � R2
0,

while for
�pVp

E � 1, we can have either ðN‘2s � ‘2Þ � 0

without any restriction on R, or ðN‘2s � ‘2Þ � 0 with R2 �
R2
0 where R2

0 ¼ j N‘2s�‘2

ð�pVpE Þ2�1
j. Since we are interested in the

behavior of the system close to the origin R ’ 0, it is clear
that we must have ðN‘2s � ‘2Þ � 0 independent of the

value of the ratio
�pVp

E . (Parenthetically, we remark here

that the analysis in [7] assumed that
�pVp

E � 1, but the

difference in whether this ratio is bigger than or smaller
than unity simply reflects how far away the Dp-brane can
be from the NS5 branes initially. Since it is natural to
assume that the Dp-brane starts out infinitely far away,

we would assume
�pVp

E � 1, although what is really impor-

tant for the analysis of the behavior near the NS5 branes is
that N‘2s � ‘2 � 0.)
From (16) as well as (9) we find that for large R both the

gravitational as well as the dilatonic forces behave as 1
R3 so

that for large R � ffiffiffiffi
N

p
‘s the radial equation in (17) yields

€Rþ ðN‘2s � ‘2Þ
�
� 2N‘2s

R2
0

þ 1

�
1

R3
¼ 0; (22)

as expected for a particle moving in an attractive �1=R2

potential (up to multiplicative factors) in four spatial di-
mensions [as long as ðN‘2s � ‘2Þ> 0]. The dynamics of

the Dp-brane in the vicinity (R � ffiffiffiffi
N

p
‘s) of the NS5-

branes is better understood in the variable Z ¼ 1=R. In
this variable the harmonic function becomes H ¼
1þ N‘2sZ

2 and for
ffiffiffiffi
N

p
‘sZ � 1, the R equation in (17)

takes the form

€Z� 1

ðN‘2sÞ2
ðN‘2s � ‘2ÞZ ¼ 0: (23)

For ðN‘2s � ‘2Þ> 0 which is the case of interest for us, we
recognize (23) to correspond to an inverted simple har-
monic oscillator. On the other hand, we note that in the
absence of the acceleration the radial equation for small R
reduces to €Z ¼ 0. The origin of the tachyonic instability is
now clear, namely, it is the acceleration due to the dilatonic
background which is the source of the instability. Even
though P2 < 0 indicating that the particle is not tachyonic
in the conventional sense, the dilatonic force that it expe-
riences in the background of the NS5 branes leads to
hyperbolic motion and the tachyonic instability in the
system. Furthermore, using this hyperbolic motion [solu-
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tion of (23)], we can check the known fact that the pressure
as given in (11) falls off exponentially at late time. We note
here that although (23) exhibits a tachyonic instability, in
order to see where the instability occurs we give the
complete radial equation below [see the first Eq. in (17)]

€R ¼ ðN‘2s � ‘2ÞN‘2s
ðR2 þ N‘2sÞ3

�
Rþ

�
2

R2
0

� 1

N‘2s

�
R3

�
¼ � dV

dR
;

(24)

where VðRÞ is the potential in which the particle moves.

From this we find that, for R0 <
ffiffiffiffi
N

p
‘s which is the case of

our interest, the instability occurs at R ¼ 0 and the effec-
tive mass squared of the particle is

m2 � d2VðRÞ
dR2

��������R¼0
¼ �ðN‘2s � ‘2Þ

ðN‘2sÞ2
: (25)

However, since the effective string coupling e
�� blows up at

R ¼ 0, a full quantum treatment is necessary to identify the
true position of instability.

We emphasize that in the absence of the additional force
produced by the dilaton, the particle will follow a gravita-
tional geodesic which does not lead to any instability. Of
course, this cannot happen within the context of string
theory unless we set the dilaton to zero by hand. On the

other hand, if we consider the motion of a fundamental
string, given by the Nambu-Goto action, in the background
of a stack of coincident D5-branes, then the absence of a
dilaton prefactor in the Nambu-Goto action may lead one
to think that the particle will not experience any accelera-
tion and would follow the gravitational geodesic without
any instability. However, this is not true since the back-
ground D5-branes can give rise to an induced metric with
an overall conformal factor [so that the action takes the
form (5)] and this conformal factor can indeed be a source
of proper acceleration leading to a geometric tachyon in
the dynamics. In fact, it is known that a parallel but
separated F-D5 system is nonsupersymmetric and so we
expect a tachyonic instability. The F-string in this case is
known to melt into the D5-branes to form a nonthreshold
bound state [19]. The formation of this bound state can be
viewed as due to the geometric tachyon condensation. The
details of this work will be published in a companion
paper [20].
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