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We investigate electron-positron pair production in pulse-shaped electric background fields using a non-

Markovian quantum kinetic equation. We identify a pulse length range for subcritical fields still in the

nonperturbative regime where the number of produced pairs significantly exceeds that of a naive

expectation based on the Schwinger formula. From a conceptual viewpoint, we find a remarkable

quantitative agreement between the (real time) quantum kinetic approach and the (imaginary time)

effective action approach.
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I. INTRODUCTION

It is a long-standing prediction of quantum electrody-
namics (QED) that its vacuum is unstable in the presence
of strong electric fields and decays by emitting electron-
positron pairs [1,2]. The decay of the QED vacuum—the
so-called Schwinger mechanism—has often been analyzed
within equilibrium quantum field theory, even though it is a
far-from-equilibrium, time-dependent phenomenon. For
resolving the dynamics of the production process, kinetic
theory including a source term for electron-positron pair
production provides an appropriate approach.

According to the nonperturbative Schwinger formula
[3], which is strictly valid only for spatially homogeneous
and static electric fields, a sizeable production rate requires
field strengths of the order Ecr ¼ 1:3 � 1018 V=m. The
study of corrections due to spatial or temporal inhomoge-
neities has a long history which includes exact solutions
[4,5], various semiclassical methods [6–11], and functional
techniques [12] as well as Monte Carlo simulations [13].
Within kinetic theory, first approaches used an instanta-
neous phenomenologically motivated source term based on
the Schwinger formula, which served as a model for both
quark-antiquark pair production in chromoelectric flux
tubes and electron-positron pair production even in the
case of time-dependent electric fields [14–18]. On the other
hand, for spatially homogeneous and time-dependent elec-
tric fields, a rigorous connection between kinetic theory
and a mean-field approximation to QED has been estab-
lished [19–21]. It was shown that the true source term for
electron-positron pair production has intrinsically non-
Markovian character.

In recent years, special interest has been laid on the
investigation of electron-positron pair production in alter-
nating [22–24] and pulse-shaped electric fields [25–27]
within the kinetic approach including the non-Markovian
source term, with the field-current feedback due to
Maxwell’s equation taken into account as well. Because
of the rapid development of laser technology during the

past years, physicists pin their hopes on x-ray free electron
laser systems and optical high-intensity laser systems to
experimentally observe the Schwinger mechanism within
the next decades.
In this investigation, we explore the connection between

the non-Markovian and the Schwinger-like source term for
a pulse-shaped electric field in order to look for a new pair-
production behavior which goes beyond the instantaneous
Schwinger approximation.

II. PARTICLE CREATION IN ELECTRIC
BACKGROUND FIELDS

We consider a spatially homogeneous, time-dependent

Abelian vector potential in the temporal gauge A�ðtÞ ¼
ð0; ~AðtÞÞ, with its spatial part defining the ẑ-direction:
~AðtÞ ¼ ð0; 0; AðtÞÞ. The corresponding electric background
field points into the ẑ direction as well,

~EðtÞ ¼ � d ~AðtÞ
dt

¼ ð0; 0; EðtÞÞ; (1)

whereas the corresponding magnetic background field van-

ishes: ~BðtÞ ¼ r� ~AðtÞ ¼ 0. In our calculations, we choose
an electric background field of the form

EðtÞ ¼ E0

cosh2ðt=�Þ : (2)

The field reaches a maximummagnitude of E0 at t ¼ 0 and
switches on and off exponentially near t � �4�, where the
electric background field drops to a value of approximately
one per mille of the maximum magnitude. The temporal
gauge vector potential AðtÞ giving rise to this electric
background field is given by

AðtÞ ¼ �E0�½1þ tanhðt=�Þ�: (3)

A. Quantum kinetic equation

A key quantity in the description of the pair-production
process in the electric background field is the single-
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particle momentum distribution function fð ~k; tÞ. It can be
computed from a quantum Vlasov equation with a source
term for electron-positron pair production. It receives a
physical meaning as distribution function of real particles
as we go to asymptotic times t ! �1 when the electric
background field vanishes. In our opinion, a similar inter-
pretation at intermediate times [24] is difficult to justify. In
addition to the source term, we would in general have to
take collisions and the field-current feedback due to
Maxwell’s equation into account; however, in the field
strength regime we are mainly interested in, i.e. the sub-
critical field strength regime with E0 � 0:1Ecr, these ef-
fects can be neglected [25], and we obtain

dfnMð ~k; tÞ
dt

¼ 1

2

eEðtÞ�?
!2ð ~k; tÞ

Z t

�1
dt0

eEðt0Þ�?
!2ð ~k; t0Þ ½1� 2fnMð ~k; t0Þ�

� cos

�
2
Z t

t0
d�!ð ~k; �Þ

�
; (4)

with e the electric charge. ~k ¼ ð ~k?; k3Þ denotes the canoni-
cal three-momentum vector with pkðtÞ ¼ k3 � eAðtÞ being
the kinetic momentum in the ẑ direction, �2? ¼ m2 þ ~k2? is

the transverse energy squared and !2ð ~k; tÞ ¼ �2? þ pkðtÞ2
characterizes the total energy squared. This equation,
which is valid for both helicities, has a non-Markovian

character for two reasons: the factor ½1� 2fð ~k; tÞ� arising
from quantum statistics takes the time history of the dis-
tribution function into account, whereas the cosine factor
accounts for the time history of the electric background
field. In order to simplify the numerical treatment of this
equation, we may introduce the auxiliary quantities

unMð ~k; tÞ ¼
Z t

�1
dt0

eEðt0Þ�?
!2ð ~k; t0Þ ½1� 2fnMð ~k; t0Þ�

� sin

�
2
Z t

t0
d�!ð ~k; �Þ

�
; (5)

vnMð ~k; tÞ ¼
Z t

�1
dt0

eEðt0Þ�?
!2ð ~k; t0Þ ½1� 2fnMð ~k; t0Þ�

� cos

�
2
Z t

t0
d�!ð ~k; �Þ

�
; (6)

and reformulate the integro-differential equation (4) as a
coupled system of first order differential equations:

d

dt
fnMð ~k; tÞ ¼ 1

2

eEðtÞ�?
!2ð ~k; tÞ v

nMð ~k; tÞ; (7)

d

dt
unMð ~k; tÞ ¼ 2!ð ~k; tÞvnMð ~k; tÞ; (8)

d

dt
vnMð ~k; tÞ ¼ eEðtÞ�?

!2ð ~k; tÞ ½1� 2fnMð ~k; tÞ�

� 2!ð ~k; tÞunMð ~k; tÞ: (9)

While the non-Markovian character of Eq. (4) due to the
cosine factor is crucial for the electron-positron pair crea-
tion process, we anticipate that memory effects due to the
statistical factor become only important for very strong
electric background fields of the order of E0 � Ecr. Then,
the Compton time tc ¼ 1=m is of the order of the time scale
of electron-positron pair creation [28], and a sizeable
distribution localized in phase space is accumulated such
that statistical effects such as Pauli blocking become rele-
vant. However, in the field strength regime we are inter-
ested in, E0 � 0:1Ecr, neglecting the statistical factor for

fð ~k; tÞ � 1 yields the low-density approximation:

d

dt
fldð ~k; tÞ ¼ 1

2

eEðtÞ�?
!2ð ~k; tÞ

Z t

�1
dt0

eEðt0Þ�?
!2ð ~k; t0Þ

� cos

�
2
Z t

t0
d�!ð ~k; �Þ

�
: (10)

This equation can be solved either by direct integration

fldð ~k; tÞ ¼ 1

2

Z t

�1
dt00

eEðt00Þ�?
!2ð ~k; t00Þ

Z t00

�1
dt0

eEðt0Þ�?
!2ð ~k; t0Þ

� cos

�
2
Z t00

t0
d�!ð ~k; �Þ

�
; (11)

or, as before, by reformulating it as a coupled system of
first-order differential equations:

d

dt
fldð ~k; tÞ ¼ 1

2

eEðtÞ�?
!2ð ~k; tÞ v

ldð ~k; tÞ; (12)

d

dt
uldð ~k; tÞ ¼ 2!ð ~k; tÞvldð ~k; tÞ; (13)

d

dt
vldð ~k; tÞ ¼ eEðtÞ�?

!2ð ~k; tÞ � 2!ð ~k; tÞuldð ~k; tÞ: (14)

An important observable is given by the asymptotic
particle number density n½eþe�� which is obtained as an

integral of the asymptotic distribution function fð ~k;1Þ

n½eþe�� ¼ 2
Z d3k

ð2�Þ3 fð
~k;1Þ; (15)

with the factor of 2 arising from spin degeneracy.

B. Effective action approach

We briefly summarize the main results obtained within
the effective action approach to electron-positron pair pro-
duction for later use. Within this approach the vacuum-to-
vacuum persistence amplitude in the presence of an exter-
nal electromagnetic field A� is represented as

h0j0iA ¼ exp½iSeff�; (16)

with Seff denoting the effective action. At weak fields, the
imaginary part of the effective action is an estimate of the
number of produced electron-positron pairs per unit vol-
ume [4,29],
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neff½eþe�� ’ 2 Im½Seff�: (17)

For the present electric field Eq. (2), an exact integral
representation of the imaginary part of the effective action
can be found [4,5]:

Im ½Seff� ¼ � 1

8�2

Z
d3k ln½ð1� e���þÞð1� e����Þ�;

(18)

with �� ¼ �ð�þ þ �� � 2eE0�Þ and �� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2? þ ðk3 � eE0�Þ2

q
.

C. Instantaneous approximation

Results concerning electron-positron pair production in
time-dependent electric fields EðtÞ within both the quan-
tum kinetic approach and the effective action approach
were derived long after Schwinger had found an analytic
expression for the vacuum decay rate in a spatially homo-
geneous but static electric field E0 pointing into the ẑ
direction:

Im ½Seff� ¼ e2E2
0

8�3

X1
n¼1

1

n2
exp

�
� n�m2

eE0

�
: (19)

As an ansatz, this result was assumed to approximately
hold for arbitrary time-dependent electric background field
EðtÞ as well. This served as a starting point for formulating
a Vlasov equation for the single-particle momentum dis-
tribution function including an instantaneous phenomeno-
logically motivated source term for electron-positron pair
production [14,17,18]:

d

dt
fSð ~k; tÞ ¼ �eEðtÞ�ðk3 � eAðtÞÞ

� ln

�
1� exp

�
��ðm2 þ ~k2?Þ

eEðtÞ
��

: (20)

The instantaneous source term is chosen in such a way that
Eq. (19) is recovered [with E0 being replaced by EðtÞ] upon
integrating over the whole momentum space and by in-
cluding a factor of 2 for spin degeneracy. Of course, using
the instantaneous source term is not justified in the pres-
ence of a rapidly varying electric background; deviations
of the full result from this approximation for time-
dependent fields EðtÞ point to new properties of pair pro-
duction beyond the Schwinger formula, which will be
investigated in the next section.

III. NUMERICAL RESULTS

In our studies, we compare n½eþe�� obtained by means
of the numerical solution of both the non-Markovian equa-
tion (4) and the low-density approximation (10) with the
exact effective action result Eq. (18) and the instantaneous
approximation (19), in order to look for new pair-

production properties in time-dependent electric back-
ground fields EðtÞ which are unexpected from the
Schwinger formula (19). We also check the validity of
the low-density approximation in this field strength regime.
The numerical solutions are found by first solving the
coupled system of first-order differential equations (7)–
(9), (12), and (13), respectively. We use an adaptive
Runge-Kutta method and then perform the momentum
integral Eq. (15) on a finite momentum grid.
Obviously, the asymptotic particle number density

within the instantaneous approximation should be directly
proportional to the temporal width � of the electric pulse;
cf. Eq. (19):

nS½eþe�� ¼ e2E2
0�

4�3

Z 1

�1
dt0

1

cosh4ðt0Þ

� exp

�
��m2cosh2ðt0Þ

eE0

�
: (21)

A. Pulse length and field strength dependence

As a first aim, we explore the asymptotic particle num-
ber density n½eþe�� reached in an electric background
field with E0 ¼ 0:1Ecr as a function of the temporal width
� ranging from 2 � 10�5 eV�1 to 2 � 10�4 eV�1, cf. Fig. 1
and Table I. The shortest time scale has been chosen such
that the Keldysh adiabaticity parameter � ¼ Ecr=ðEm�Þ ’
1, separating the nonperturbative Schwinger regime � � 1
from the perturbative multiphoton region � � 1.
First we note that the results obtained by means of the

non-Markovian equation (4) and the effective action ap-
proach Eq. (18) coincide up to the third digit, with the
numerical deviation arising from the finite numerical ac-
curacy. Hence, we have shown the equivalence between the
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FIG. 1. Logarithmic plot of the number density n½eþe�� cal-
culated for E0 ¼ 0:1Ecr as a function of the temporal width � in
units of ½2 � 10�5 eV�1�. Dashed line: solution obtained for the
non-Markovian equation (4) and within the effective action
approach Eq. (18). Dotted line: solution obtained within the
low-density approximation Eq. (10). Solid line: solution ob-
tained in the instantaneous approximation Eq. (19).
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(imaginary time) effective action approach and the (real
time) quantum kinetic approach. Moreover, the quantum
kinetic calculation contains in addition to the particle
number density n½eþe�� useful information about the

momentum space distribution fð ~k;1Þ of the electron-
positron pairs, cf. Fig. 2.

Second, comparing the results obtained by means of the
non-Markovian equation (4) and the instantaneous ap-
proximation Eq. (19) indicates that the latter significantly
underestimates the reachable particle number density at
short times. For example, deviations greater than a factor
of 400 occur at extreme short time scales � ¼ 2 �

10�5 eV�1 � 10 � tc, with tc corresponding to the
Compton time. The Schwinger result is obtained again
for temporal widths � * 70 � tc. Our results confirm the
observation that time variations of the field generically
increase the pair-production yield [7,11].
As a second aim, we explore the asymptotic particle

number density n½eþe�� reached in an extreme short pulse,
i. e. � ¼ 2 � 10�5 eV�1 � 10 � tc, as a function of the field
strength of the electric background field with E0 ranging
from 0:1Ecr to Ecr, cf. Fig. 3 and Table I. The numerical
results indicate that the instantaneous approximation sig-
nificantly underestimates the reachable particle number
density for subcritical field strengths, whereas the
Schwinger result is obtained again for field strengths of
the order of E0 * 0:5Ecr where the Keldysh parameter
drops below � ’ 0:2.

B. Non-Markovian solution vs low-density
approximation

In Table II we show the ratio nld½eþe��=nnM½eþe�� in
order to explore the validity region of the low-density
approximation. For weak and static electric fields EðtÞ ¼
E0 < Ecr, the applicability of this approximation has been
shown [30]. For pulse-shaped fields, the low-density ap-
proximation yields good results with deviations of the
order of 10% only in the field strength regime E0 �
0:1Ecr but becomes unreliable when reaching higher field
strengths. This deviation increases only very slowly with
pulse length, whereas for increasing field strengths the
deviation rises significantly. Although the quantitative re-
sults within the low-density approximation get worse for
higher field strengths, the approximation does not break
down completely but still gives a reasonable qualitative

TABLE I. nnM½eþe��=nS½eþe�� as a function of the temporal
width � in units of ½2 � 10�5 eV�1� and the ratio E ¼ E0=Ecr.
Especially in the vicinity of � � 10 � tc and E0 ¼ 0:1Ecr we
obtain a vast discrepancy. Points with deviations greater than
10% are labeled boldface.

E
� 1 2 3 4 5 6 7 8

0.1 420:4 6:568 2:311 1:555 1:286 1:159 1.087 1.043

0.2 2:969 1:295 1.093 1.029 1.001 0.985

0.3 1:452 1.073 1.012 0.991 0.982

0.4 1:187 1.023

0.5 1.096

0.6 1.056

0.7 1.035

0.8 1.022

0.9 1.014

1 1.009

0
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2 10 12

4 10 12

FIG. 2 (color online). Momentum space plot of the asymptotic

distribution function fnMð ~k;1Þ calculated for E0 ¼ 0:1Ecr and
� ¼ 2 � 10�5 eV�1 � 10 � tc. It is an advantage of the quantum
kinetic approach that the position and the width of the peak of
the distribution function in momentum space can be calculated
very precisely.
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FIG. 3. Logarithmic plot of the number density calculated for
� ¼ 2 � 10�5 eV�1 � 10 � tc as a function of the field strength
E0. Dashed line: solution obtained for the non-Markovian equa-
tion (4) and within the effective action approach Eq. (18). Dotted
line: solution obtained within the low-density approximation
Eq. (10). Solid line: solution obtained in the instantaneous
approximation Eq. (20).
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picture. However, for accurate predictions of the single-

particle momentum distribution function fð ~k;1Þ and the
particle number density n½eþe�� one has to take all non-
Markovian effects into account. Additionally, near and
beyond E0 � Ecr, also the field-current feedback due to
Maxwell’s equation eventually needs to be taken into
account. More detailed comparisons between different
approximations to the quantum kinetic equation including
those with backreaction can be found in [31].

IV. CONCLUSIONS

We have numerically investigated electron-positron pair
creation in short pulse-shaped electric background fields
by means of an existing quantum kinetic formulation. A

thorough comparison is made to results obtained from an
exact effective action method and a phenomenologically
motivated instantaneous approximation.
One main result is the perfect agreement between the

(real time) quantum kinetic approach and the (imaginary
time) effective action approach. This is quite remarkable
since the concepts behind these two approaches are very
different: The quantum kinetic equation describes the real
time nonequilibrium evolution of the quantum system
whereas the effective action approach is an imaginary
time equilibrium method.
Additionally, we have shown that the instantaneous

approximation drastically underestimates the reachable
particle number density in the field strength regime E0 �
0:1Ecr when dealing with extreme short temporal widths
� � 2 � 10�5 eV�1 � 10 � tc. Alongside, we have recon-
firmed that the low-density approximation of the quantum
kinetic equation gives reasonable qualitative results in the
subcritical field strength regime.
Our results suggest similar findings for larger pulse

lengths but smaller field strengths, yielding similar
Keldysh parameters � ’ 1. Numerical studies in this re-
gime are challenging. Given the future potential of pulse
shaping with higher harmonics, and in the light of sugges-
tions for enhancing pair production with taylored pulses
[32], such investigations are highly relevant and clearly a
worthwhile pursuit.
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The numerical results show a strong E dependence whereas the
influence of the pulse length on the result is very weak.
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