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The fðRÞ gravity field equations are derived as an equation of state of local space-time thermodynamics.

Jacobson’s arguments are nontrivially extended, by means of a more general definition of local entropy,

for which Wald’s definition of dynamic black hole entropy is used, as well as the concept of an effective

Newton constant for graviton exchange, which recently appeared in the literature.
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I. INTRODUCTION

In a key article [1], Jacobson derived Einstein’s equa-
tions (Ee) from arguments based only on thermodynamics
at equilibrium of local space-time. To derive this result, he
first generalized black hole (Bh) thermodynamics to space-
time thermodynamics as seen by a local observer. Then, he
took the basic Clausius relation, to obtain a local differen-
tial equation (from the previously defined map between
local space-time and thermodynamic observables), that
turns out to be precisely Ee. From this we can say that
Ee are derived as an ‘‘equation of state’’ from local space-
time thermodynamics. He noted that his finding strongly
suggests that, in a fundamental context, Ee are to be viewed
as an equation of state and, therefore, they should probably
not be taken as a basis for quantizing gravity. This is
consistent with the idea that gravity is an emergent phe-
nomenon of a more fundamental framework, like string
theory (e.g., [2]). If this were true, not only general rela-
tivity, but presumably all generalized gravity theories,
should be seen under this same light.

Modified gravity models constitute a very important
dynamical alternative to �CDM cosmology, in that they
have the capability to describe the current accelerated
expansion of our Universe (dark energy epoch), but also
the initial de Sitter phase and inflation, and even the galaxy
rotation curves corresponding to dark (and ordinary) mat-
ter [3]. We will here prove that Jacobson’s derivations can
be generalized to cover these more complicated theories of
gravity that are extensively used nowadays. First, we re-
view Jacobson’s arguments to introduce the basic notions
and then derive the desired generalization. In particular, we
will completely close the program for the so-called fðRÞ
gravities (see, e.g., [3], and references therein), where the
Lagrangian only depends on the Ricci scalar and its co-
variant derivatives, leaving the problem open for more
general cases. In [4], the field equations for fðRÞ of poly-

nomial form were derived using nonequilibrium ther-
modynamics arguments (see also [5]). Here, we pro-
pose an alternative approach where local thermodynamic
equilibrium is maintained, using the idea of ‘‘local-boost-
invariance’’ introduced in [6].

II. JACOBSON’S CONSTRUCTION IN BRIEF

Any free-falling local observer p has some gauge free-
dom to describe his local coordinate system. The equiva-
lence principle can be used to describe space-time in a
vicinity of p as flat. Then, we choose the local spacelike
area element perpendicular to the worldline of p to have
zero expansion rate � and shear � at a given point on the
history of p, that we call p0. In this setting, the past horizon
of p0 is called the ‘‘local Rindler horizon’’ at p0. Since,
locally, we have Poincaré symmetry, there is an approxi-
mate Killing field K generating boost at p0, vanishing at
p0, which we take as the future pointing to the inside past
of p0.
Having this basic setting, we are ready to give pre-

cise meaning to the local thermodynamic definitions. First,
note that local Rindler horizons are null and act as causal
barriers. Therefore, we can associate entropy S to it,
measuring the ‘‘many degrees of freedom outside,’’ what
presumably results in entanglement entropy just at the
horizon. With this understanding, entropy is proportional
to the area elements of the horizon, where a fundamental
length has to be provided to give a UV cutoff. Heat Q is
energy flow of microscopic degrees of freedom across the
causal barrier, and is felt, therefore, via gravitational en-
ergy, where its source is undetectable. Last, the local tem-
perature T is defined as ‘‘Unruh temperature,’’ as seen by a
local accelerated observer hovering just inside the horizon.
Energy flow has to be measured by this same observer, for
consistency.
In more detail, different accelerated observers would

measure different energy flows and temperature, both di-
verging at the horizon but with constant ratio, and this is
just what will be used.We have also imposed � ¼ � ¼ 0 at
p0, to give a sort of ‘‘local definition of equilibrium’’ since,
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in general, causal horizons change in time as they expand
and twist. In this construction, locally and at the instant p0,
there is not such a deformation, and the space is ‘‘at
equilibrium.’’

A. Accelerated observer and approximations

On the above point p0 with its associated local Rindler
horizon H , take an accelerated observer hovering just
inside the horizon �. By the above construction, � is an
approximate local boost Killing field future directed to the
past of p0. Then, the variation of heat (caused by energy
flow across the horizon), measured by �, is �Q ¼R
H Tab�

bd�a, where the integration is over a pencil of

generators of H at p0. If K is a tangent vector to the
generators of H , with affine parameter � such that � ¼ 0
at p0, we have that �

a ¼ �k�Ka þOð�2Þ, where k is the
acceleration of �. Therefore, d�a ¼ Kad�dA, where dA is
the cross section area element of H . Thus, the final
expression for the variation of heat, at leading order, is

�Q ¼ �
Z

H
k�TabK

aKbd�dA: (1)

Note that for � the Unruh temperature T is set to be

T ¼ @k=2�: (2)

On the other hand, Jacobson uses that the variation of the
entropy is proportional to the variation of the horizon area
A, i.e., �S ¼ ��A, with � an unknown proportionality
constant. Here, �Ameasures the change of the area as we
approach the point p0, and therefore is given by �A ¼R
H �ð�Þd�dA. Next, we use Raychaudhuri‘s equation to

integrate � near p0. In this coordinate system, at leading
order in �, we obtain � ¼ ��RabKaKb þOð�2Þ, and the
relevant expression for the entropy variation to this order is

�S ¼ ��
Z

H
�RabK

aKbd�dA: (3)

B. Thermodynamic relations

To derive information of thermodynamic systems, like
the equation of state, we need just the basic thermody-
namic relation

�Q ¼ T�S; (4)

and the functional dependence of S with respect to the
energy and size of the system. In our case we have
Eqs. (1)–(3) at our disposal, to get the beautiful relation

TabK
aKb ¼ 1

2�
�RabK

aKb: (5)

Since K is an arbitrary null vector onH , we can write the
unprojected equation Tab ¼ 1

2��Rab þ gabh, with h an

unknown function, arbitrary as of now. Using then that
the left-hand side is divergence-free, plus the Bianchi
identities for the Ricci tensor, we get the integrability

conditions, 1
4��raR ¼ �rah, and therefore the final

form of the thermodynamic relation is

�
2�

�

�
Tab ¼

�
Rab � R

2
gab

�
þ�gab; (6)

where � is an integration constant.
To summarize, we have here obtained the Ee as an

equation of state for a local free-falling observer. To de-
duce the above, we have used the following critical as-
sumptions: (i) Measurements are done in a vicinity of a
general point p0. (ii) Our local coordinate system is at
equilibrium, in the sense that �, � ¼ 0 at p0. (iii) The
accelerated observer � tends to K, a null vector generator
of the causal horizon. (iv) We always restrict ourselves to
the leading-order approximation in the affine parameter �.

III. THE GENERAL CASE OF
MODIFIED GRAVITY

We apply the above construction to more general theo-
ries of gravity. Following Iyer and Wald [6], we just
assume that our Lagrangian is diffeomorphism invariant,
in an n-dimensional oriented manifold M, being the dy-
namical fields a Lorentz signature metric gab and other
matter fields  . The most general Lagrangian is

L ¼ Lðgab; Rcdef;ra1Rcdef; . . . ;rða1 . . .ranÞRcdef;

 ;ra1 ; . . . ;rða1 . . .ranÞ Þ:
(7)

The corresponding field equations can be found by a varia-
tional procedure on ðgab;  Þ, so that we get

�L ¼ �ðEab
g �gab þE � Þ þ d�; (8)

where � is the volume element and � a (n� 1)-form.
Hence, the field equations of the theory areEab

g ¼ 0,E ¼
0. In [6], it was found how to write them from a variation of
the ðgab; RcdefÞ, as if they were independent variables, so

that we get, after the corresponding identifications,

E ab
g ¼ Aabg þ EpqraR Rpqr

b þ 2rprqE
pabq
R ; (9)

where ðAabg ; EpabqR Þ are the variations of L with respect to

ðgab; RpabqÞ in each case, taken as independent variables.

In the above expressions, if the derivatives of Rcdef occur

in the Lagrangian, one integrates by parts and then takes its

variation, to obtain EpabqR .
This form of the field equations is useful due to its

relation to Bh thermodynamics. Basically, it has been
known for a while now [7], that in the case when we
have a stationary Bh solution, the entropy S can be calcu-
lated as a Noether charge evaluated at the bifurcation
(n� 2)-surface of the event-horizon �. In these cases,
the entropy is given by
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S ¼ �2�
Z

�
EabpqR �ab�pq; (10)

where �ab is the binormal vector of �.
Less understood is the case of dynamical Bh entropy.

There, the event-horizon is not bifurcated and the above
formula does not hold. On the other hand, in [6] a pre-
scription that passes the tests of consistency for the entropy
is presented. The idea is to approximate the metric g, in a
vicinity of a given point p of the event-horizon, by a boost-
invariant metric gIq (q boost parameter, see below). This is
done by altering the original Taylor expansion of the metric
around p, so that the new metric is boost-invariant up to
some order q, that defines the size of the vicinity where our
approximation is valid. Then, for this boost-invariant met-
ric, there is a Killing vector field that, on the horizon, is
null, and vanishes at p. We thus have created an approxi-
mated bifurcation surface of order q and can use the same
expression as before for the entropy, only that the integra-
tion is done on the boost-invariant variables:

Sdynð�pÞ ¼ �2�
Z

�p

ÊabpqR �ab�pq; (11)

where ÊabpqR ¼ EabpqR ðgIqÞ (see [6] for details).
Having understood these modifications for calculating

the Bh entropy, we are almost ready to continue. Still, we
need some information on the geometrical meaning of
Eq. (10). In [8] it was noticed that, for a static Bh, entropy
can always be reexpressed as the area of the bifurcation
(n� 2)-surface A divided by 4 in units of an effective
Newton constant Geff , i.e.,

S ¼ A

4Geff

where
1

8�Geff

¼ EabpqR �ab�pq: (12)

The above result has been checked for some string theory
cases where it was found that Geff is indeed constant on
the bifurcation surface. This result has to be supplemented
with the key observation that the above effective New-
ton constant plays also the role of an effective gravita-
tional coupling for graviton exchange. In other words,
the kinetic term of the n-dimensional graviton, obtained
from the general Lagrangian L, is precisely of the form
1
4E

abpq
R ðrrhbqrrhap þ . . .Þ and, hence, EabpqR can be

thought of as the strength of the graviton interaction in
all possible polarizations. In retrospective, Geff corre-
sponds to the strength of the gravitational interaction in
the particular polarizations defined by the binormal of the
bifurcation (n� 2)-surface A.

A. Field equation as equation of state

Now that we have the basic inputs for the possible
geometrical interpretation of the Bh entropy S for gener-
alized theories of gravity, we are ready to consider the
problem of defining there a local version of Bh thermody-
namics, following the steps of Jacobson. Note that all

definitions regarding local observers (accelerated or not),
local Rindler horizons, and so on, are based on differential
geometry and the equivalence principle. We expect all
these definitions to hold in the general setting and, thus,
we leave them unchanged.
What makes the difference, being one of the key points

in this generalization, is the definition of the local entropy.
After the discussion above, it seems natural to relate en-
tropy to the area of the causal horizon, only that now we
replace the proportionality constant with a field-dependent
effective constant. In other words, we state that the local
variation of the entropy is still proportional to the variation
of the area of the causal horizon, but in units of this
effective Newton constant. Therefore, we write now [9]

�S ¼ �ð�eAÞ; (13)

where �e is, in general, a function of the metric and its
derivatives to a given order lþ 2, i.e.,

�e ¼ �eðgab; Rcdef;rðlÞRpqrsÞ: (14)

Using the above ansatz, we are ready to proceed with our
derivation. Since we just change the definition of entropy
variation, due to the energy flow across the local Rindler
horizon, we get the modified expression

�S ¼ �
Z

H
�ð�eRab �rarb�eÞKaKbd�dAþOð�2Þ:

(15)

It is important to notice that, in this expression,
ð�e; kara�eÞ is to be evaluated at its leading contribution
in �. We have used its boost-invariant part at first order in
lambda to effectively incorporate the boost-invariant no-
tion of [6] creating an ‘‘approximated bifurcation point at
first order in �’’ at p0.
The other part of the derivation is unaffected and gives

the same result of (1), namely,

�Q ¼ �
Z

H
k�TabK

aKbd�dAþOð�2Þ: (16)

Therefore, the thermodynamic relation (4) implies

TabK
aKb ¼ 1

2�
ð�eRab �rðarbÞ�eÞKaKb: (17)

At this point we consider the general differential equation,
removing the contraction with K, thus

Tab ¼ �e
2�

Rab �rðarbÞ �e
2�

þ gabH; (18)

where the new terms are added based on the fact that K is a
tangent vector of the null geodetics at p0, generating local
boost. Hence, we have a local equation with two unknown
functions of the metric and its derivatives ð�e;HÞ.
To find the form of these three functions, we use the

integrability condition
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ra

�
�e
2�

Rab �rðarbÞ �e
2�

þ gabH

�
¼ 0; (19)

obtained from the observation that the right-hand side
should be divergence-free. After some algebra,

0 ¼ �e
4�

rbRþ ðrarbra �rbr2Þ �e
2�

þrbH

� 1

2
ðr2rb þrarbraÞ �e

2�
: (20)

At this point, with no lose of generality, we can set

H ¼ hþr2 �e
2�

; (21)

finally obtaining the expression

0 ¼ �e
4�

rbRþrbh: (22)

B. The specific case of fðRÞ gravities
Equation (19) can in principle be solved in many differ-

ent ways. Here we will consider the simplest possibility,
that eventually leads to the so-called fðRÞ gravities [3]
(note the f), a special—but phenomenologically very
important—family of the general theories of modified
gravity where only the Ricci scalar is involved, as well
as their covariant derivatives to any order, i.e. L ¼
fðR;rnRÞ.

The solution of Eq. (19) we are considering is the one
where the first two terms cancel each other. The last can be
easily integrated assuming �e is a function of R only, thus
h ¼ � 1

2 fðRÞ, with �e
2� ¼ @f

@R . Therefore, the final form is

Eab ¼ @f

@R
Rab �rðarbÞ @f

@R
þ gab

�
� 1

2
fþr2 @f

@R

�
;

(23)

f a function of R and its covariant derivatives.
Equation (23) is in fact the correct field theory equation

for fðRÞ gravities, provided we identify the function fðRÞ as

the Lagrangian of the theory. Also, in this case the effective
Newton constant of (12) is related to �e, as is expected
from the relation

1

8�Geff

¼ EpqrsR �pq�rs ¼ @f

@R
ðgprgqs � gqrgpsÞ�pq�rs

¼ @f

@R
¼ �e

2�
: (24)

Note that, for these theories, the different polarizations of
the gravitons only enter in the definition of the effective
Newton constant through the metric itself. This is an im-
portant simplification that, in turn, permits us to find the
solution of the integrability condition (19). To summarize,
we have succeeded in our thermodynamic derivation of
fðRÞ gravities where, remarkably, exactly as in the case of
Einstein gravity, the local field equations can be thought of
as an equation of state of equilibrium thermodynamics.
It will be very interesting to see if this derivation can be

extended to the more complicated cases, stemming from
string theory, where the full Riemann tensor is involved in
the Lagrangian. This seems to imply a sort of tetrad de-
composition of the effective Newton constant such that one
recovers, at the end, only the polarization normal to the
causal barrier of the local Rindler horizon. Work along this
line is in progress. As a last comment, in our derivation we
have used the first law, but no information is given about
the second law. In fact it is not known if the second law is
present in generalized gravities (see [10]).
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