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It is an interesting possibility that the Universe underwent a period of thermal equilibrium at very early

times. One expects a residue of this primordial state to be imprinted on the large scale structure of space

time. In this paper, we study the morphology of this thermal residue in a universe whose early dynamics is

governed by a scalar field. We calculate the amplitude of fluctuations on large scales and compare it with

the imprint of vacuum fluctuations. We then use the observed power spectrum of fluctuations on the

cosmic microwave background to place a constraint on the temperature of the Universe before and during

inflation. We also present an alternative scenario, where the fluctuations are predominantly thermal and

near scale-invariant.
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A cornerstone of modern cosmology is that the Universe
underwent a sustained period of thermal equilibrium at
early times. Two of the key predictions of the big bang
cosmology, the spectrum of the cosmic microwave back-
ground, and the abundance of light elements hinge on the
existence of this primordial hot phase [1]. A key character-
istic of systems in thermal equilibrium is the presence of
fluctuations. These are, to some extent, uniquely defined
and can be derived from the microphysical properties of
the system [2]. Hence, we expect to be able to characterize
the fluctuations of the energy density of the early universe,
which in turn lead to irregularities in the fabric in space
time. These should be reflected in the distribution of large
scale structure, the propagation of light rays, and other
such cosmological observables.

There have been a number of attempts at pinning down
the fine details of the thermal fluctuations in the early
universe. Under standard assumptions, it can be shown
that thermal models are observationally unsound. A ge-
neric ns ¼ 4 prediction for the spectral index follows,
unless there is a phase transition, in which case ns ¼ 0.
This can be bypassed, and a more congenial ns � 1 can be
predicted, by considering nonstandard assumptions, e.g. by
considering a gas of strings at the Hagedorn phase [3] (see
also [4]), or by invoking an early holographic phase in loop
quantum cosmology [5], followed by a phase transition.
One can also appeal to the technicalities of loop quantum
cosmology [6] or postulate a mildly subextensive contri-
bution to the energy density [7]. All these scenarios require
speculative new physics.

In this paper, we revisit this issue by focusing on what
has become a standard and fruitful model of the Universe: a
perturbed homogeneous and isotropic spacetime whose
dynamics is driven by a scalar field. Without loss of gen-
erality, we will restrict ourselves to a scalar field with an
exponential potential but will allow both positive and
negative kinetic energies [8]. If the field rolls sufficiently
slowly away from the origin, we have power law, accel-

erated expansion. If the field rolls sufficiently quickly, the
energy density in the scalar field will mimic the behavior of
an assortment of cosmological fluids (such as radiation or
dust). If the kinetic energy of the scalar field is negative, we
obtain ‘‘phantom’’-like behavior: the effective equation of
state w � P=� (where � and P are the energy density and
pressure in the scalar field) is such that w<�1. Such a
setup allows us to analytically calculate the amplitude and
spectrum of thermal fluctuations including gravitational
backreaction. In this paper, we will focus on universes
that underwent superluminal expansion.
Let us briefly revisit the model. We will consider a

potential for the scalar field of the form Vð�Þ ¼
V0 expð�� �

MPl
Þ, where MPl is the reduced Planck mass.

The evolution of the scalar field is given by � ¼
2
�MPl lnðMPljtjÞ with the origin of � (and so the value of

V0) suitably adjusted. For a positive kinetic energy, the
Friedman equations lead to a simple solution of the form
a / tp with p ¼ 6=�2 > 0; here, H � _a

a ¼ p=t, where _�
d=dt. Note that if p > 1, the expansion is superluminal.
For a negative kinetic energy (i.e. the phantom scenario),

we find that p ¼ �6=�2 < 0, so that a / ð�tÞp ¼
1=ð�tÞjpj with the ‘‘big rip’’ occurring at t ¼ 0. It is
convenient to rewrite some of these results in terms of
conformal time �. If p > 1 or p < 0, we have that the
past is at � ¼ �1 and blows up at � ¼ 0. We then have
that the scale factor and the conformal Hubble parameter is

given by a / ð��Þ�p=ðp�1Þ, and the conformal Hubble

parameter is given by H � a0
a ¼ �p

p�1
1
� where 0 ¼ d=d�.

Note that the phantom solution, like all other scaling
solutions, is stable [9].
Let us now focus on how perturbations on these back-

ground cosmologies are seeded and evolve [10,11]. Recall
that we can expand a scalar field and spacetime metric
around a homogeneous background, � ¼ �0 þ ’ and
ds2 ¼ a2½ð1þ 2�Þd�2 � ð1� 2�Þdr2�. The quantity of

PHYSICAL REVIEW D 78, 061301(R) (2008)

RAPID COMMUNICATIONS

1550-7998=2008=78(6)=061301(5) 061301-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.061301


choice is the gauge invariant variable

v ¼ a

�
�’þ

_�0

H
�

�
;

which can be related to the curvature perturbation, R ¼
�v=z, where z ¼ a _�0

H The gauge invariant Newtonian (or

‘‘Bardeen’’) potential � can be found from R through

k2� ¼ 4�G _�0zR0. For our choice of background cos-
mologies, the gauge invariant perturbation variable obeys
a Bessel equation with a general solution given by

vkð�Þ ¼ Akðj�jÞ1=2J�ðkj�jÞ þ Bkðj�jÞ1=2Y�ðkj�jÞ;
where J�ðxÞ and Y�ðxÞ are Bessel functions with � ¼ 3

2 þ
1

p�1 . (For definitions and conventions we use [10], not

[11]).
In a universe undergoing superluminal expansion there

is a natural mechanism by which fluctuations can be
seeded. We assume that v is promoted to a quantum
operator

v̂ð�;xÞ ¼
Z d3k

ð2�Þ3=2 ½vkð�Þâke
ik�x þ v�kð�Þâyke�ik�x�;

where âk and its conjugate are the annihilation and crea-
tion operators for the n particle state. We are interested in

two point correlators for operators Â (such as v̂), with
averages h� � �i understood as a quantum expectation value

dependent on the state one is considering, i.e. hAi ¼
h�jÂj�i. A natural choice is the ground state or vacuum
state of each mode j�i ¼ j0i. In the past, where ð�k�Þ !
�1, a given mode was well within the horizon. This
allows us [10] to uniquely define the solution (i.e. the
coefficients Ak and Bk) to the mode equation to be

vkð�Þ ¼
ffiffiffi
�

p
2 e

ið�þ1=2Þ�=2ð��Þ1=2Hð1Þ
� ð�k�Þ (where Hð1Þ

� ðxÞ
is a Hankel function). This solution has a unique behavior
at late times (i.e. when ð�k�Þ ! 0)

vkð�Þ ! eið��1=2Þ�=22��3=2 �½��
�½3=2�

1ffiffiffiffiffi
2k

p ð�k�Þ��þ1=2

�
�
1� ð�k�Þ2

4ð1� �Þ
�
:

R can be trivially obtained from the above solution, and
we find that

P 0
RðkÞ ¼ 22��4

2�2

�
�½��
�½3=2�

�
2 ð��Þ�2�þ1

z2
k�2=ðp�1Þ; (1)

which goes to a constant as p! 1. We find the well-

known result that the scalar spectral index is given by nS �
1 ¼ 2

1�p ¼ 6ð1þwÞ
1þ3w . We can see that in the limit of w! �1

we have pure scale invariance.
Throughout the above calculation we have discarded any

reference to the hot origins of the Universe. Yet we are
starting off at high energies, when the Universe would have
been strongly interacting. It would be natural to expect the

imprint of these thermal initial conditions on the scalar
field in some way. Indeed, one would expect fluctuations in
the scalar field to be thermalized through a variety of
different mechanisms. The Universe may have entered a
scalar field dominated regime from a preceding radiation
dominated regime; interactions with the hot radiation
would have led the fluctuations in the scalar field to be
thermal. Furthermore, the scalar field model we are con-
sidering has nonlinear self-interactions through the expo-
nential potential. Very short wave modes would play the
role of a heat bath even through the period of superluminal
expansion and scalar field domination.
A simple example estimate of how different effects

come into play can come from looking at a ��4 theory,
interacting with a light fermion with an interaction of the
form g� �  . For fluctuations to be thermalized, one must
have that the interaction rate between the inflaton and
fermions is greater than H, which leads to g� M=MPl,
whereM is the mass scale of inflation (i.e. the value of the
inflaton during the slow roll regime). Yet, for thermal
effects to be subdominant in the background evolution,
one must be at a temperature such that T4 	 �M4 (so
that the energy is potential dominated) or g2T2 	
�M4=MPl (so that thermal corrections to the effective
potential are negligible) depending on the size of g. All
these conditions can be easily satisfied. The details of how
primordial fields undergo evolution in a hot phase have
been studied in great detail in [12,13], where a number of
effects were identified emerging from the nonequilibrium
nature of the problem.
In what follows, we will disregard nonequilibrium ef-

fects: these will introduce small corrections and can be
included in a more detail calculation. Our calculation is
therefore undertaken in the setting of equilibrium statisti-
cal mechanics: the appropriate expectation value to con-

sider is given by hAi ¼ P
n�nnhnjÂjni=ð

P
n�nnhnjniÞ,

where jni is the n-particle state (referring to a given
momentum k). The simplest approach is to simply posit
that each mode is Boltzman weighted. Recall that this
involves setting the density matrix above to �nn ¼ e�	En ,
where En is the energy of a given mode with occupation
number n, 	 ¼ 1=KBT,KB is the Boltzman constant and T
is the temperature. Hence, we find that

hv̂ðxþ rÞv̂ðxÞi ¼
Z d3k

ð2�Þ3=2 jvkð�Þj
2½2nðkÞ þ 1�eik�r;

where the resulting number density (subtracting out the
vacuum state) is given by nðkÞ ¼ 1

e	Eðk;�Þ�1
[14].

The energy of the perturbation can be found from the
Hamiltonian density of v. With the above solutions, we

have that Eðk; �Þ ¼ @�j�j
4 Bðk; �ÞjH�ðkj�jÞ with Bðk; �Þ ¼

ð3p2 � pÞ=½�2ðp� 1Þ2� þ k2. Note that in the short wave
length limit we recover the standard for plane waves
Eðk; �Þ ¼ @k. Also note that the energy is defined in terms
of conformal quantities (derivatives are taken with regards
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to � and conformal x). This means that the temperature we
use must also be in the same conformal frame T ¼ Tphysa,

where Tphys is the physical temperature. If we assume that

thermalization is maintained through a heat bath that
evolves as radiation, and there is no generation of entropy
during inflation, we have that T ¼ constant. This value of
T will be crucial in what follows.

We have not yet arrived at the final result. Any mecha-
nism that keeps the scalar field in thermal equilibriummust
break down as a given mode becomes larger than any
causal scale, i.e. around the horizon scale. On superhorizon
scales, we expect the spectrum to be frozen in—the heat
bath or interactions are irrelevant. In other words, nðkÞ will
be frozen at the value it has when kj�j ’ 1. This means that
the above expression is not entirely accurate, and we must
replace Eðk; �Þ with Eðk; �Þjk�j’1. We can now express our

main result: the full spectrum of fluctuations, including the
thermal contribution is

P Total
R ðkÞ ¼ P Th

R ðkÞ þ P 0
RðkÞ

¼ P 0
RðkÞ½2nðk; �Þjk�j’1 þ 1�: (2)

This result is slightly different from that in [15] (the model
is not the same). It also cannot be directly compared with
the results of warm inflation [13].

Let us now explore the consequences of Eq. (2). As a
first guess, one would expect to be in the Rayleigh-Jeans
regime when the modes exit the horizon. We then have, on
superhorizon scales,

P Th
R ðkÞ ’ ðp� 1Þ2

4p2 � 3pþ 1

ð��Þ�2�þ1

z2
kð1þpÞ=ð1�pÞ

	�2
: (3)

If we re-express Eq. (3) in terms of the equation of state, we
have that

ns � 1 ¼ 5þ 3w

1þ 3w
:

Close to de Sitter we find that ns ’ 0, that is white noise:
we do not get scale invariance, because the temperature is
decreasing like 1=a, breaking the de Sitter invariance (this
is to be contrasted with the work of [16]). Instead, we find
that a scale-invariant spectrum arises if we assume a phan-
tom regime with w ¼ �5=3.

Our expression is insensitive to the details of thermal-
ization and horizon crossing, and it gives us a reasonable
idea of what to expect. A useful exercise is to compare the
contribution of thermal fluctuations relative to vacuum
fluctuations during an inflationary period. We have that

P Th
R

P 0
R

’ ðp� 1Þ2
4p2 � 3pþ 1

8

�jH�ð1Þj2
KBT

@k
:

For p� 1 we find

P Th
R

P 0
R

’ 0:1
KBT

@k
:

In general, the prediction of this model is a break in the
power spectrum at pivot scale kp ’ 0:1T. For k < kp, the

fluctuations are predominantly thermal with spectral index
nThs ¼ n0s � 1, with the quantum fluctuations spectral in-
dex n0s given by the usual formula. In this regime, we are
invariably in the Rayleigh-Jeans limit. For k > kp, the

fluctuations are predominantly quantum, with thermal fluc-

tuations suppressed by a factor of e�k=kp , given that we are
in the Wien regime. At horizon crossing we always have
E
 k, so this can be replaced in the formula for nðkÞ in
either regime.
We now examine the implications of this result for two

viable scenarios, where the fluctuations are predominantly
quantum and thermal, respectively. If we have an infla-
tionary scenario (w � �1), then the dominant fluctuations
on observable scales should be quantum, for these are near-
scale-invariant. A priori the prediction of this model is a
turnover in the spectral index from ns � 1 to ns ¼ 0 on
large scales (for k < kp). There is clearly no evidence for

higher power in the lowest multipoles of the CMB so, at
best kp could be the current horizon scale kH0. This is

reflected on an upper bound on the temperature during and
before inflation or alternatively on a constraint on the ratio
of the temperature before and after reheating (Tb and Ta).
Recall that the conformal temperature T ¼ Tphysa is only a

constant if there is no entropy production, so that it does
suffer a jump from Tb to Ta at reheating. Bearing this in
mind, kp 
 0:1Tb, but kH0


 aH0. Therefore, kp < kH0

translates into

Tb
Ta

< 10� @kH0

KBT0
’ 10�28: (4)

A marginally tighter bound can probably be obtained
through the Grischuk-Zeldovich effect: superhorizon fluc-
tuations with such a red spectrum will further boost the
quadropole [17]. We can convert our constraint into a
physical temperature during inflation if we assume a spe-
cific model. For example, if the inflation ended at the grand
unified theory scale, when the energy scale is of order
1017 GeV and at a redshift of z ’ 1028, the temperature
of the Universe just before reheating would have been, at
most, 10�2 eV. This means that the Universe hits the
Planck temperature more than 68 efoldings before reheat-
ing, so that there is scope for producing the observed
structure of the Universe (for which 50 to 60 efoldings
before reheating is enough), but, if the bound is saturated,
not much more. In general, the bound (4) forces the maxi-
mum number of efoldings to be

N max >N min þ 2 ln
EPl

EInf

� 2:3: (5)

If we can assume that H does not vary by much during
inflation, and if all the energy in the inflaton field is
converted into radiation during reheating, we can translate
the bound (4) into N > 64. Relaxing these assumptions
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produces a tighter bound. This seems to rule out open
inflationary models.

If we have a phantom scenario with w � �5=3, the
observed structure of the Universe should be thermal.
The prediction is a near-scale-invariant spectrum breaking
into ns ¼ 2 for k > kp. Thus, we should have kp > kS0,

where kS0 is the smallest scale for which the primordial
power spectrum is observable. The constraint is now an
upper bound on how much entropy has been produced,
since the observed structure left the horizon; specifically,

Tb
Ta

> 5� @kS0
KBT0

’ 10�22; (6)

where we have assumed that the smallest scales that can be
probed are of the order of a Kpc. In this scenario, we have
roughly that a / 1=ð�tÞ, with t < 0 (i.e. p ¼ �1), � / a2,
and H�1 ¼ �t (the horizon’s physical size decreases).
Also a ¼ �1=ð2H�Þ.

The normalization in this model is obtained from a
constant of motion combining the energy in the thermal
bath and that in the background field. The relevant factor in
(3) is T=ðz2�Þ, which can be rewritten into TphysH=M2

Pl, i.e.

�1=4
���

1=2
� =M3

Pl, or 
Tphys=ðjtjM2
PlÞ. It is this important con-

stant that must be 
10�10 to match observations. Should
all the energy in the ‘‘phantom’’ field be converted into
radiation at the end of this phase, we therefore get the
rather undemanding bound Ta < 104MPl [in combination
with (6)]. But by requiring that the current Hubble volume
was once inside the phantom Hubble volume (in a calcu-
lation mimicking the inflationary counterpart) we find that
Tphys=TPl 
 0:1 at the start of the phantom phase [and that
requires saturating bound (6)]. If the thermal bath is set up
at Tphys 
 TPl, the break into ns ¼ 2 should happen only an
order of magnitude or so above kS0. Whether this could be
observed is debatable.

Note that for simplicity we have considered w ¼ �5=3,
but strict scale invariance in this scenario is actually patho-
logical, as it is only for �5=3<w<�1=3 that the
Newtonian potential � stays constant and has the same
spectrum as R on large scales. For w � �5=3, the poten-
tial diverges. However, as long as the spectrum is slightly
red, this is not a problem, and we have for the growing
mode

R ¼ � 5þ 3w

3ð1þ wÞ�: (7)

We do not discuss the mechanism by which the phantom
field decays into normal matter, but an important comment
should be made on this issue. If such mechanism involves
direct couplings to matter fields, an instability would result
in the vacuum. A cutoff scale would then have to be
introduced in the theory, and if care is not taken, the cutoff
might be below the energy scales necessary to induce
fluctuations on the current cosmological scales. This is a
danger one should bear in mind, but it is possible that it

might be bypassed. If decay into normal matter happens
due to a coupling to another type of field, which then
decays into normal matter, perhaps no constraint upon
the structure formation scenario would arise. Notice that
the curvature fluctuations themselves, once produced and
pushed outside the horizon, are insensitive to reheating
details.
We conclude with a few comments on aspects of this

model, and how they relate to other work. We stress that
our system is very different from a single thermal fluid, as
previously studied [5–7]. Here, the unperturbed field �0 is
not thermalized; only its fluctuations �� are thermalized.
The fluid �0 drives the expansion and provides the leading
order energy, but no entropy. Whatever the equation of
state w for �0, the �� behave like standard thermal
radiation, with w1 ¼ 1=3 and supply the entirety of the
entropy of the system. This feature allows us to bypass a
number of thermodynamical constraints pertaining to
single thermal fluids, namely, the relation � ¼ 1þ 1=w
between the � exponent appearing in � / T� and w. If we
insist on a Stephan-Boltzman law of the form �0 / T�
(where �0 is the energy in �0, and T is the temperature
of ��) we find instead that � ¼ 3ð1þ wÞ. This does not
contradict any fundamental thermodynamical constraint:
the usual result merely indicates that the second order
energy, contained in �� should go like T4.
But even a two-fluid model breaks down when discus-

sing thermal fluctuations. Indeed Maxwell’s formula,

2
EðRÞ ¼ T2dU=dT, which is the workhorse of much pre-

vious work [3,5,6], is not applicable here. The energy

fluctuation is of the form ��
 _�0� _�, i.e. a cross term
between the unthermalized �0 and the thermalized ��. So
the energy fluctuation of the system is, to leading order,

2
EðRÞ / U0U1ðRÞ, where U0 ¼ �0V is the average energy

in �0, and U1ðRÞ is the average energy in �� smoothed on
scale R (which is 
T). Unusually, we only need to know
the average energy of the thermalized system to work out
the leading order energy fluctuation in the overall system.
These novelties conjure to bypass the general prediction
ns ¼ 4, allowing for scale-invariant thermal fluctuations
without appealing to any new physics.
Regarding the Gaussianity of these fluctuations, it has

been shown [18] that for a single thermal fluid thermal
fluctuations are very approximately Gaussian in the
Rayleigh-Jeans limit (but not in the Wien limit).
However, just as it happens with the equivalent calculation
of the variance, the calculation of the cumulants in a single
thermal fluid is not applicable to our system. Instead, we
note that the derivation of Gaussianity usually used for
linear inflation applies to any density matrix that is diago-
nal in the number operator, including a thermal state. We
therefore expect the thermal component to be Gaussian,
too, rendering the thermal scenario presented above viable.
This is in contrast with nonlinear inflationary couplings,
that may produce a certain degree of non Gaussianity [19].
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Finally, we remind the reader that we are considering a
universe that starts off in thermal equilibrium. The hal-
lowed example is that of what has become known as new
inflation: as the Universe cools down, the scalar field
settles down into a slow roll regime, and it is potential
energy dominated. This is not, however, a generic feature
of the inflationary cosmology. One appealing alternative is
a universe that emerges through quantum tunnelling into an
inflationary era [20]. Another possibility is that our local
patch has entered into an inflationary regime as a result of a
Planck scale fluctuation of the Inflaton [21]. The initial
state for the onset inflation would not necessarily be ther-

mal. In both of these scenarios, we do not expect a thermal
imprint on spacetime on large scales. Other studies of the
preinflationary vacuum have been made elsewhere [22].
The work of [23] has particular similarities with our work
in the w � �1 regime.
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