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We develop techniques to determine the mass scale of invisible particles pair-produced at hadron

colliders. We employ the constrained mass variable m2C, which provides an event-by-event lower bound

to the mass scale given a mass difference. We complement this variable with a new variable m2C;UB which

provides an additional upper bound to the mass scale and demonstrate its utility with a realistic case study

of a supersymmetry model. These variables together effectively quantify the ‘‘kink’’ in the function max

mT2 which has been proposed as a mass-determination technique for collider-produced dark matter. An

important advantage of the m2C method is that it does not rely simply on the position at the end point, but

it uses the additional information contained in events which lie far from the end point. We found the mass

by comparing the HERWIG generated m2C distribution to ideal distributions for different masses. We find

that for the case studied, with 100 fb�1 of integrated luminosity (about 400 signal events), the invisible

particle’s mass can be measured to a precision of 4.1 GeV. We conclude that this technique’s precision and

accuracy is as good as, if not better than, the best known techniques for invisible-particle mass

determination at hadron colliders.
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I. INTRODUCTION

If dark matter is produced at a hadron collider, its
likely signature will be missing transverse momentum.
To help determine the underlying origin of the observed
dark matter, it is important to measure the masses of the
new particle states. Mass determination is a key part to
identifying the underlying theory which lies beyond the
standard model. Newly discovered particles could be
Kaluza-Klein (KK) states from extra dimensions, super-
symmetric partners of known states, technicolor
hadrons, or something else that we have not anticipated.
Models predict relationships between parameters:
Supersymmetry relates the couplings of current fermions
to the couplings of new bosons and the supersymmetric
particle masses reflect the origin of supersymmetry break-
ing; masses of KK states tell us about the size of the extra
dimensions. In general, mass determination of new particle
states is central to discerning what lies beyond the standard
model.

If dark-matter particle states are discovered at the LHC,
how will the masses of these new particles be measured?
Determining the mass of the dark-matter particle (or other
states which decay to dark matter) will be difficult because
we do not expect the dark-matter particles to leave tracks
or have a displaced vertex, and because we do not know the
rest frame of the initial parton collision.

If one has confidence about the specific model and
process responsible for the observed events, then the mag-
nitude of the process’s cross section constrains the mass. If
one does not yet know the model, then model-independent
techniques will be needed to determine properties of the
newly discovered particles such as couplings, spin, phases,
mixing angles, and masses. Proposed methods for finding
the gluino phase [1] or spin [2] rely on our ability to make
model-independent kinematic mass measurements. Thus,
model determination needs a suite of model-independent
tools to provide initial constraints on the mass.
There has been much recent work in developing model-

independent mass-determination tools. Edges in invariant-
mass combinations provide information about mass differ-
ences or mass squared differences [3,4]. If the hadron
collider accesses many new states, then we may be able
to determine the masses by combining the relationships
provided by many different invariant-mass edges of a
cascade decay [5–8]. There is also a series of approaches
called mass shell techniques (MST)1 where one uses an
assumption about the topology and on-shell conditions to
solve for the unknown masses. One MST variant assumes a
long symmetric cascade decay chain and counts which
multiplets of masses have solutions to the most events
[10], another assumes the masses in two events must be
equal [11], and another hybrid combines a MST with the
information from the many edges in cascade decays [12].2
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1The title MST is suggested in Ref. [9].
2The m2C variable is a simple example of such a hybrid

technique.
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There has been extensive work using the so-called ‘‘strans-
verse mass’’ variable, mT2, to determine the mass differ-
ence between parent particle’s and a dark-matter candidate
particle’s mass given an assumed mass for the dark-matter
candidate (Refs. [13,14] have more than 45 citations). If
the final decay to the lightest state involves a three-body
decay3 as shown in Fig. 1, then a ‘‘kink’’ in the max mT2

[13,14], will occur at a position which indicates the
invisible-particle mass, as described by Cho, Choi Kim,
Park (CCKP) [17,18] and corroborated in Refs. [16,19].
The kink in max mT2 can be quantified by the constrained
mass variable m2C that we introduced in a previous paper
[20]. Even in models where new invisible particles are
nearly massless (like the gravitino studied in [21]), one
would rather not just assume the mass of the lightest
supersymmetric particle (LSP), which is needed as an input
to the traditional mT2 analysis, without measuring it in
some model-independent way. Which approach turns out
to be best is likely to depend on what scenario nature hands
us, since the various techniques involve different assump-
tions. Having different approaches also offers the advan-
tage of providing a system of redundant checks.

In Ref. [20], we introduced the m2C kinematic variable
which gives an event-by-event lower bound on the dark-
matter particle’s absolute mass given the mass difference
between the dark-matter candidate and its parent. In this
paper, we introduce a complementary variable m2C;UB

which gives an event-by-event upper bound on the same
absolute mass. Our study shows that this technique rivals

other invisible-particle mass-determination techniques in
precision and accuracy.
In this paper, we provide a demonstration of the use of

the variable m2C and m2C;UB in LHC conditions. The

variables m2CðM�Þ and m2C;UBðM�Þ give an event-by-

event lower -bound and upper bound, respectively, on the
mass of Y assuming the topology in Fig. 1 and the mass
differenceM� ¼ mY �mN . To get the mass difference, we
use events where Y decays into N and two visible states via
a three-body decay in which we can easily determine the
mass difference from the end point of the visible states
invariant-mass distribution, m2

12. One might also conceive

of a situation with m2C supplementing an alternative tech-
nique that gives a tight constraint on the mass difference
but may have multiple solutions or a weaker constraint on
the mass scale [6,22]. Given this mass difference and
enough statistics, m2C’s end point gives the mass of Y.
However the main advantage of the m2C method is that it
does not rely simply on the position at the end point but it
uses the additional information contained in events which
lie far from the end-point. As a result it gives a mass
determination using significantly fewer events and is less
sensitive to energy resolution and other errors.
To illustrate the method, in this paper we study in detail

the performance of the m2C constrained mass variable in a
specific supersymmetric model. We study events where
each of the two branches have decay chains that end with
a ~�o

2 decaying to a ~�o
1 and a pair of opposite-sign same-

flavor (OSSF) leptons. Thus the final states of interest
contain four isolated leptons (made up of two OSSF pairs)
and missing transverse momentum. Figure 1 defines the
four momentum of the particle states with Y ¼ ~�o

2 , N ¼
~�o
1 , and the OSSF pairs forming the visible particles 1–4.

Any decay products early in the decay chains of either
branch are grouped into k which we generically refer to as
upstream transverse momentum (UTM). Nonzero k could
be the result of initial state radiation (ISR) or decays of
heavier particles further up the decay chain. Events with
four leptons and missing transverse momentum have a very
small standard-model background. To give a detailed illus-
tration of the m2C methods, we have chosen to analyze the
benchmark point P1 from [23] which corresponds to
mSUGRA with mo ¼ 350 GeV, m1=2 ¼ 180 GeV,

tan� ¼ 20, signð�Þ ¼ þ, Ao ¼ 0. Our SUSY particle
spectrum was calculated with ISAJET [24] version 7.63.
We stress that the analysis technique employed applies
generically to models involving decays to a massive parti-
cle state that leaves the detector unnoticed.
A powerful feature of the m2C distribution is that, with

some mild assumptions, the shape away from the end point
can be entirely determined from the unknown mass scale
and quantities that are measured. The ideal shape fit against
early data therefore provides an early mass estimate for the
invisible particle. This study is meant to be a guide on how
to overcome difficulties in establishing and fitting the

Y (α+p)

N (p)

N (q)

V (k)

Partons
P1

P2
Y(β+q)

1 + 2 (α)

3 + 4 (β)

FIG. 1. We assume the two decay chains share a common end
state given in this diagram. All previous decay products are
grouped into the upstream transverse momentum, k.

3The presence of a � 3-body decay is a sufficient but not
necessary condition. Two-body decays can also display kinks
[15,16] provided the decaying particles have sufficiently large
transverse boosts.
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shape: difficulties from combinatoric issues, from differing
energy resolutions for the leptons, hadrons, and missing
transverse momentum, from backgrounds, and from large
UTM.4 As we shall discuss, UTM actually provides sur-
prising benefits.

The paper is structured as follows: In Sec. II, we review
m2C and introduce the new observation that, in addition to
an event-by-event lower bound on mY , large recoil against
UTM enables one also to obtain an event-by-event upper
bound on mY . We call this quantity m2C;UB. Section III

describes the modeling and simulation employed.
Section IV discusses the implications of several effects
on the shape of the distribution including the m12 (in our
case mll) distribution, the UTM distribution, the back-
grounds, combinatorics, energy resolution, and missing
transverse momentum cuts. In Sec. V, we put these factors
together and estimate the performance. We conclude in
Sec. VI with a discussion about the performance in com-
parison to previous work.

II. UPPER BOUNDS ON mY FROM RECOIL
AGAINST UPSTREAM TRANSVERSE

MOMENTUM

Wewill now review the definition ofm2C as providing an
event-by-event lower bound on mY . In generalizing this
framework, we find a new result that one can also obtain an
upper bound on the mass mY when the two parent particles
Y recoil against some large upstream transverse momen-
tum kT .

A. Review of the lower bound on mY

Figure 1 gives the relevant topology and the momentum
assignments. The visible particles 1 and 2 and invisible
particle N are labeled with momentum �1 and �2 (which
we group into � ¼ �1 þ �2) and p, respectively � ¼
�1 þ �2 and q in the other branch. We assume that the
parent particle Y is the same in both branches so ðpþ
�Þ2 ¼ ðqþ �Þ2. Any earlier decay products of either
branch are grouped into the UTM 4-vector momentum, k.

In previous work with events of this topology, we [20]
showed how to find an event-by-event lower bound on the
true mass of mN and mY . We assume that the mass differ-
ence M� ¼ mY �mN can be accurately measured from
the invariant-mass edges max m12 or max m34. For each
event, the variable m2C is the minimum value of the mass
of Y (the second lightest state) after minimizing over the
unknown division of the missing transverse momentum 6PT

between the two dark-matter particles N:

m2
2CðM�Þ ¼ min

p;q
ðpþ �Þ2 (1)

with the constraints

ðkþ �þ �ÞT ¼ �6PT; (2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ pÞ2

q
�

ffiffiffiffiffiffiffiffiffi
ðp2Þ

q
¼ M�; (3)

ð�þ pÞ2 ¼ ð�þ qÞ2; (4)

ðp2Þ ¼ ðq2Þ: (5)

There are eight unknowns corresponding to the four mo-
mentum components of p and q and five equations of
constraint. Because the true p and q must be within the
domain over which we are minimizing, the function is
guaranteed to be less than or equal to mY .
One way of calculating m2C for an event is to use

mT2ð�NÞ [13,14,20], which provides a lower bound on
the mass of Y for an assumed mass �N of N. The true
mass of Y lies along the line �Yð�NÞ ¼ M� þ �N where
we use �Y to denote the possible masses of Y and to
distinguish it from the true mass of Y denoted with mY .
Thus we can see that for �N to be compatible with an event,
we must have mT2ð�NÞ � �Yð�NÞ ¼ �N þM�.
For a given event, if one assumes a mass �N forN, and if

the inequalitymT2ð�NÞ � �N þM� is satisfied, then there
is no contradiction, and the event is compatible with this
value of �N . If, however, mT2ð�NÞ>M� þ �N , then we
have a contradiction and the event excludes this value �N

as a viable mass of N. Using this observation, m2C can be
found for each event by seeking an intersection between
mT2ð�NÞ and �N þM� [20]. The lower bound on mY is
given by mY � M� þ �o

N where �o
N is a zero of

gð�NÞ ¼ mT2ð�NÞ � �N �M� with g0ð�o
NÞ< 0: (6)

In the case k ¼ 0, the extreme events analyzed in CCKP
[17] demonstrate that gð�Þwill only have one positive zero
or no positive zeros, and the slope at a zero will always be
negative. For no positive zeros, the lower bound is the
trivial lower bound given by M�. Note that a lower bound
on the value of mY corresponds to a lower bound on the
value of mN . The appendix in Ref. [20] shows that at the
zeros of gð�NÞ which satisfy Eq. (6), the momenta satisfy
Eqs. (2)–(5).

B. A new upper bound on mY

If there is large UTM (kT * M�) against which the
system recoils, then we find a new result. Using the mT2

method to calculatem2C gives one the immediate ability to
see that mY can also have an upper bound when requiring
Eqs. (2)–(5). This follows because for large UTM the
function gð�NÞ may have two zeros5 which provides both
an upper and a lower bound formY from a single event. We

4Our references to UTM correspond to the significant trans-
verse momentum (SPT), pair production category in [16] where
SPT indicates that the relevant pair of parent particles can be
seen as recoiling against a significant transverse momentum.

5There may be regions in parameter space where function gð�Þ
has more than two zeros, but we have not encountered such cases
in our simulations.
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have also found regions of parameter space where gð�Þ has
a single zero but g0ð�o

NÞ> 0 corresponding to an upper
bound on the true mass ofmN (andmY) and only the trivial
lower bound of mN � 0.

We can obtain some insight into the cases in which
events with large UTM provide upper bounds on the
mass by studying a class of extreme event with two hard
jets, j� and j� against which Y recoils (k ¼ j� þ j�). We

will describe this extreme event and solve for the regions of

parameter space for which one can analytically see the
intersection points giving a lower bound and/or an upper
bound. The event is extremal in that mT2ð�NÞ, which gives
a lower bound on mY , actually gives the true value of mY

when one selects �N equal to the true mass mN .
The ideal event we consider is where a heavier stateG is

pair-produced on shell at threshold. For simplicity we
assume the lab frame is the collision frame. Assume that
the Gs, initially at rest, decay into visible massless jets j�,
j� and the two Y states with the decay product momenta

�þ p and �þ q. Both jets have their momenta in the
same transverse plane along the negative x̂-axis, and both
Y’s momentum are directed along the x̂-axis. Finally, in the
rest frame of the two Ys, both decay such that the decay
products visible states have their momentum � and �
along the x̂-axis and both invisible massive states N have
their two momenta along the negative x̂-axis. In the lab
frame, the four-vectors are given by

j� ¼ j� ¼ mG

2

�
1� m2

Y

m2
G

�
f1;�1; 0; 0g; (7)

� ¼ � ¼ mG

2

�
1�m2

N

m2
Y

�
f1; 1; 0; 0g; (8)

p ¼ q ¼ mG

2

��
m2

N

m2
Y

þ m2
Y

m2
G

�
;

�
m2

N

m2
Y

� m2
Y

m2
G

�
; 0; 0

�
: (9)

For the event given by Eqs. (7)–(9), we can exactly
calculate mT2ð�NÞ:

m2
T2ð�NÞ ¼

2�2
Nm

4
Y þ ðm2

N �m2
YÞðm2

Nm
2
G �m4

YÞ þ ðm2
Y �m2

NÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

G�
2
Nm

4
Y þ ðm4

Y �m2
Nm

2
GÞ2

q
2m4

Y

: (10)

This is found by calculating the transverse mass for each
branch while assuming �N to be the mass of N. The value
of px is chosen so that the transverse masses of the two
branches are equal. Substituting this value back into the
transverse mass of either branch gives mT2ð�NÞ.

Figure 2 shows gð�NÞ, given in Eq. (6), for several
choices of mG for the process described by Eqs. (7)–(9)
with M� ¼ 53 GeV and mN ¼ 67:4 GeV. Because G is

the parent of Y, we must have mG >mY . If mY <mG <
2m2

Y=ðmN þmYÞ, then mT2ð�N <mNÞ is larger than �N þ
M� up until their point of intersection at �N ¼ mN . In this
case their point of intersection provides a lower bound as
illustrated by the dotted line in Fig. 2 for the case with

mG ¼ 150 GeV. For 2m2
Y=ðmN þmYÞ<mG <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

Y=mN

q
there are two solutions

�N;min ¼ mN; (11)

�N;max ¼ ðmN �mYÞð�2m4
Y þmNm

2
GmY þm2

Nm
2
GÞ

ðmNmG þ ðmG � 2mYÞmYÞðmNmG þmYðmG þ 2mYÞÞ : (12)

When mG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

Y=mN

q
, the function gð�NÞ has only one zero with the lower bound equalling the upper bound at mN . The

solid line in Fig. 2 shows this case. Between
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

Y=mN

q
<mG <

ffiffiffi
6

p
m2

Y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmN þmYÞð2mN þmYÞ

p
we again have two

solutions but this time with

FIG. 2 (color online). Shows gð�NÞ for the extreme event in
Eqs. (7)–(9) with M� ¼ 53 GeV and mN ¼ 67:4 GeV. The
dotted line has mG ¼ 150 GeV and shows an event providing
a lower bound on mY . The dashed line mG ¼ 170 GeV and
shows an event with both a lower bound and an upper bound

on mY . The solid line shows mG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

Y=mN

q
where the lower

bound equals the upper bound.
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�N;min ¼ ðmN �mYÞð�2m4
Y þmNm

2
GmY þm2

Nm
2
GÞ

ðmNmG þ ðmG � 2mYÞmYÞðmNmG þmYðmG þ 2mYÞÞ ; (13)

�N;max ¼ mN: (14)

The dashed line in Fig. 2 shows this case with mG ¼
170 GeV. For mG greater than this, we have �N;max ¼
mN and �N;min ¼ 0.

This example illustrates how m2C can provide both a
lower bound and an upper bound on the true mass for those
events with large UTM. The upper-bound distribution
provides extra information that can also be used to improve
early mass determination, and in what follows wewill refer
to the upper bound as m2C;UB. We now move on to discuss

modeling and simulation of this new observation.

III. MODELING AND SIMULATION

As a specific example of the application of the m2C

method, we have chosen a supersymmetry model
mSUGRA, mo ¼ 350 GeV, m1=2 ¼ 180 GeV, tan� ¼
20, signð�Þ ¼ þ, Ao ¼ 0.6 The spectrum used in the
simulation has m~�o

1
¼ 67:4 GeV and m~�o

2
¼ 120:0 GeV.

We have employed two simulation packages. One is a
Mathematica code that creates the ‘‘ideal’’ distributions
based only on very simple assumptions and input data.
The second is HERWIG [25–27] which simulates events
based on a SUSY spectrum, minimal supersymmetric stan-
dard model (MSSM) cross sections, decay chains, and
appropriate parton distribution functions. If the simple
Mathematica simulator predicts ideal shapes that agree
with HERWIG generator, then one has reason to believe
that all the relevant factors relating to the shape are iden-
tified in the simple Mathematica simulation. This is an
important check in validating the benefits of fitting the
m2C and m2C;UB distribution shape as a method to measure

the mass of new invisible particles produced at hadron
colliders.

A. Generation of ‘‘ideal’’ distributions

Our ideal distributions are produced from a home-grown
Monte Carlo event generator written in Mathematica. This
generator serves to ensure that we understand the origin of
the distribution shape. It also ensures that we have control
over measuring the parameters needed to determine the
mass without knowing the full model, coupling coeffi-
cients, or parton distribution functions. We also use this
simulation to determine on what properties the ideal dis-
tributions depend.

The simulator is used to create events satisfying the
topology shown in Fig. 1 for a set of specified masses.
We take as given the previously measured mass difference

m~�o
2
�m~�o

1
¼ 52:6 GeV, which we use in all our simula-

tions. We neglect finite widths of the particle states as most
are in the sub GeV range for the model we are considering.
We neglect spin correlations between the two branches. We
perform the simulations in the center-of-mass frame be-
cause m2C and m2C;UB are transverse observables and are

invariant under longitudinal boosts. The collision energyffiffiffi
s

p
is distributed according to normalized distribution

�ð ffiffiffi
s

p Þ ¼ 12m2
~�o
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m~�o

2

q
2

s2
(15)

unless otherwise specified. The ~�o
2 is produced with a

uniform angular distribution, and all subsequent decays
have uniform angular distribution in the rest frame of the
parent. The UTM is simulated by making kT equal to the
UTM with k2 ¼ ð100 GeVÞ2 (unless otherwise specified),
and boosting the other four-vectors of the event such that
the total transverse momentum is zero. As we will show,
these simple assumptions capture the important elements
of the process. Being relatively model independent, they
provide a means of determining the mass for various
production mechanisms. If one were to assume detailed
knowledge of the production process, it would be possible
to obtain a better mass determination by using a more
complete simulation like HERWIG to provide the ideal
distributions against which one compares with the data.
Here we concentrate on the more model-independent simu-
lation to demonstrate that it predicts the m2C and m2C;UB

distributions well enough to perform the mass determina-
tion that we demonstrate in this case study.

B. HERWIG ‘‘data’’

In order to obtain a more realistic estimate of the prob-
lems associated with collision data, we generate samples of
unweighted inclusive supersymmetric particle pair produc-
tion, using the HERWIG Monte Carlo program with LHC
beam conditions. These samples produce a more realistic
simulation of the event structure that would be obtained for
the supersymmetric model studied here, including the
(leading order) cross sections and parton distributions. It
includes all supersymmetric processes and so contains the
relevant background processes as well as the particular
decay chain that we wish to study. Figure 3 shows the
M2C and M2C;UB distributions of a sample of HERWIG
generated signal and background events.
Charged leptons (e� and ��) produced in the decay of

heavy objects (SUSY particles and W and Z bosons) were
selected for further study provided they satisfied basic
selection criteria on transverse momentum (pT >
10 GeV) and pseudorapdity (j�j< 2:5). Leptons coming6This was model P1 from [23] which we also used in [20].
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from hadron decays are usually contained within hadronic
jets and so can be experimentally rejected with high effi-
ciency using energy or track isolation criteria. This latter
category of leptons was therefore not used in this study.
The acceptance criterion used for the hadronic final state
was j�j< 5. The detector energy-resolution functions used
are described in Sec. IVB.

IV. FACTORS FOR SUCCESSFUL SHAPE FITTING

There are several factors that control or affect the shape
of the m2C and m2C;UB distributions. We divide the factors

into those that affect the in-principle distribution and the
factors that affect the observation of the distribution by the
detector like energy resolution and selection cuts.

The in-principle distribution of these events is influ-
enced by the presence or absence of spin-correlations
between the branches, the mll distribution of the visible
particles, any significant UTM against which the system is
recoiling (e.g. gluinos or squarks decaying further up the
decay chain), and background coming from other new-
physics processes or the standard model. As all these
processes effectively occur at the interaction vertex, there
are some combinatoric ambiguities. These are the factors
that influence the in-principle distribution of events that
impinges on the particle detector.

The actual distribution recorded by the detector will
depend on further factors. Some factors we are able to
regulate—for example cuts on the missing transverse mo-
mentum. Other factors depend on how well we understand
the detector’s operation—such as the energy resolution and
particle identification.

Where the effect of such factors is significant, for ex-
ample, for the m12, kT , and background distributions, our
approach has been to model their effect on the ideal dis-

tributions by using appropriate information from the data,
much as one would do in a real LHC experiment. For the
present our data are provided by HERWIG, rather than LHC
events, but the principle is the same.

A. Factors affecting the in-principle distribution

1. Mass difference and mass scale

The end point of m2C and m2C;UB distributions shown in

Fig. 3 give the mass of ~�o
2 . Therefore the mass scale, m~�o

2
,

is a dominant factor in the shape of the ideal distribution.
This is the reason we can use these distributions to deter-
mine the mass scale. Figure 4 shows the m2C and m2C;UB

distributions for five choices ofm~�o
2
assuming the HERWIG

generated mll and UTM distributions.
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FIG. 3 (color online). The m2C and m2C;UB distributions of HERWIG events before smearing (to simulate detector resolution) is
applied. The distributions’ end points show m~�o
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� 120 GeV. The top thick curve shows the net distribution, the next curve down

shows the contribution of only the signal events, and the bottom dashed curve shows the contribution of only background events.
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How does the shape change with mass scale? The shape
is typically sharply peaked atm2C ¼ M� followed by a tail
that ends at the mass of m~�o

2
. The peak at M� is due to

events that are compatible with m~�o
1
¼ 0. We say these

events give the trivial constraint. Because we bin the data,
the height of the first bin depends on the bin size. As
Mþ=M� ¼ ðm~�o

2
þm~�o

1
Þ=ðm~�o

2
�m~�o

1
Þ becomes larger,

then the nontrivial events are distributed over a wider range
and the end point becomes less clear. In general if all other
things are equal, the larger the mass, the more events in the
first bin and a longer, flatter tail.

The distribution also depends on the mass differenceM�
which we assume has been determined. We expect that
experimentally one should be able to read off the mass
difference from the mll kinematic end point with very high
precision. Gjelsten, Miller, and Osland estimate this edge
can be measured to better than 0.08 GeV [6,8] using many
different channels that lead to the same edge, and after
modeling energy resolution and background.

Errors in the mass determination propagated from the
error in the mass difference in the limit of kT ¼ 0 are given
approximately by

�m~�o
2
¼ �M�

2

�
1�M2þ

M2�

�
�m~�o

1
¼ ��M�

2

�
1þM2þ

M2�

�
;

(16)

where �M� is the error in the determination of the mass
difference M�. An error in M� will lead to an m2C distri-
bution with a shape and end point above or below the true
mass in the direction indicated by Eq. (16).

To isolate this source of error from the uncertainty in the
fit, we assume that the mass difference is known exactly in
our stated results. In our case an uncertainty of �M� ¼
0:08 GeV would lead to an additional �m~�o

1
¼ �0:5 GeV

to be added in quadrature to the error from fitting.

2. Spin correlations

There are no spin correlation effects relevant to m2C if
the ~�o

2 pairs are directly produced and the ~�o
2 three-body

decay is dominated by the Z boson (e.g. the sleptons are
much heavier that ~�o

2) [20]. There are also no spin corre-

lations if the ~�o
2 parents are part of a longer decay chain

which involves a scalar at some stage. In the model we are
studying, there are enough vertices between the two ~�o

2

decays that any correlation is very likely washed out, and
we can treat their decays as uncorrelated. In the simple
Mathematica simulations, we have assumed no spin de-
pendence in the production of the hypothetical ideal
distribution.

3. Input m12 distributions

The mll distribution affects the m2C distribution.
Figure 5 shows twomll distributions and the corresponding
m2C distributions with kT ¼ 0 (no UTM). The solid lines
show the case where the three-body decay from ~�o

2 to ~�o
1 is

completely dominated by a Z boson. The dashed line
shows the case where the mll distribution is extracted
from the realistic HERWIG simulation. We can see that
the m2C distribution is affected most strongly in the first
several nonzero bins. If we were to determine the mass
only from the shape of these first several bins using only
the Z contribution for the mll difference, we would esti-
mate the mass to be about 4 GeV below the true mass. This
can be understood because the shape change of the mll

distribution effectively took events out of the first bin and
spread them over the larger bins simulating the effect of a
smaller mass.

4. Input upstream transverse momentum distribution

As we discussed in Sec. II, if there is a large UTM
against which the two ~�o

2’s recoil, then we have both an

upper and lower bound on the mass scale. The left frame of
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FIG. 5 (color online). Dependence of m2C distribution on the mll distribution with k ¼ 0. Left: The mll distributions. Right: The
corresponding m2C distributions. The solid curves show the case where the mll distribution when the three-body decay is dominated by
the Z boson channel, and the dashed curves show the case where the mll distribution is taken directly from the HERWIG simulation.
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Fig. 6 shows the UTM distribution observed in the realistic
HERWIG data. The right frame of Fig. 6 shows them2C and
m2C;UB distributions for fixed UTM (kT) of 0, 75, 175, 275,
375, and 575 GeV all with k2 ¼ ð100 GeVÞ2. As we dis-
cuss under the next subsection, we also find the distribution
is not sensitive to the value of k2. For kT > 275 GeV, these
curves begin to approach a common shape. These are ideal
m2C upper and lower bound distributions where mN ¼
70 GeV and mY ¼ 123 GeV. Notice that there is no
upper-bound curve for the case with zero kT UTM. The
UTM makes the distribution have a sharper end point and
thereby makes the mass easier to determine. This is equiva-
lent to having a sharper kink in maxmT2 in the presence of
large UTM [16].

How do we determine kT from the data? Because we
demand exactly four leptons (two OSSF pairs), we assume
all other activity, basically the hadronic activity, in the
detector is UTM. The shape used in the ideal distribution
is a superposition of the different fixed UTM distributions,
shown in the right frame of Fig. 6, weighted by the ob-
served UTM distribution, shown in the left frame of Fig. 6.
Equivalently, we obtain the ideal distribution by selecting
kT in the Mathematica Monte Carlo code according to the
observed UTM distribution.

5. Shape largely independent of parton distributions and
collision energy

In the limit where there is no UTM, thenm2C is invariant
under back-to-back boosts of the parent particles; there-
fore, m2C is also invariant to changes in the parton distri-
bution functions.

How much of this invariance survives in the presence of
large UTM? The answer is that it remains largely indepen-
dent of the parton collision energy and largely independent
of the mass k2 as shown in Fig. 7 numerically. In the left
frame, we show three distributions and in the right frame

their difference with 2� error bars calculated from 15 000
events. The first distribution assumes kT ¼ 175 GeV, k2 ¼
ð100 GeVÞ2, ffiffiffi

s
p

distributed via 15. The second distribution
assumes kT ¼ 175 GeV, k2 ¼ ð2000 GeVÞ2, ffiffiffi

s
p

distrib-
uted via Eq. (15). The third distribution assumes kT ¼
175 GeV, k2 ¼ ð100 GeVÞ2, and a fixed collision energy
of

ffiffiffi
s

p ¼ 549 GeV.

6. Backgrounds

Backgrounds affect the shape and, if not corrected for,
could provide a systematic error in the estimated mass. In
Sec. V we will see that the position of the minimum �2 in a
fit to m~�o

1
is barely affected by the background. The main

effect of the background is to shift the parabola up, giving a
worse fit. To improve the fit, we may be able to estimate the
m2C and m2C;UB distribution and magnitude of the back-

ground from the data itself. We first discuss the sources of
background, and then we describe a generic technique
using a Dalitz-like wedgebox analysis to estimate a back-
ground model which gives approximately the correct shape
and magnitude of the background.
One reason we study the four-lepton with missing trans-

verse momentum channel is because of the very low
standard-model background [28,29]. A previous study
[29] estimates about 120 standard-model four-lepton
events (two OSSF pairs) for 100 fb�1 with a 6PT >
20 GeV cut. They suggest that we can further reduce the
standard-model background by requiring several hadronic
jets. Because we expect very little direct ~�o

2 pair produc-
tion, this would have very little effect on the number of
signal events. Also, because Zs are a part of the intermedi-
ate states of these background processes, very few of these
events will have mll significantly different from mZ.
What is the source of these standard-model back-

grounds? About 60% are from Z-pair production events
with no invisible decay products, in which the missing
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FIG. 6 (color online). Left: The UTM distribution observed in the HERWIG simulation. Right: Ideal m2C upper-bound and lower-
bound distribution for a range of UTM values (kT ¼ 0, 75, 175, 275, 375, 575 GeV) where mN ¼ 70 GeV and mY ¼ 123 GeV.
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transverse momentum can only arise from experimental
particle identification and resolution errors. This implies
that a slightly stronger 6PT cut could further eliminate this
background. Another 40% are due to t, �t, Z production. Not
explicitly discussed in their study but representing another
possible source of backgrounds are events containing
heavy baryons which decay leptonically. If we assume
b-quark hadrons decay to isolated leptons with a branching
ratio of 0.01, then LHC t, �t production will lead to about 10
events passing these cuts for 100 fb�1 where both OSSF
leptons pairs have mll < mZ.

Tau decays also provide a background for our specific
process of interest. The process ~�o

2 ! 	þ	� ~�o
1 will be

misidentified as e�eþ or �þ�� about 3% of the time.
Because the 	 decays introduce new sources of missing
transverse momentum (
	), these events will distort the
m2C calculation. This suggests that the dominant back-
ground to the ~�o

2 , ~�
o
2 ! 4lþ 6PTþ hadrons will be from

other SUSY processes.
We now create a crude background model from which

we estimate the magnitude and distribution of the back-
ground using the true HERWIG data as a guide. We follow
the suggestion of Refs. [9,29] and use a wedgebox analysis
plotting the invariant mass mee against m�� to supplement

our knowledge of the background events mixed in with our
signal events. This wedgebox analysis, seen in Fig. 8 for
our HERWIG simulation, shows patterns that tell about
other SUSY states present. The presence of the strips along
91 GeV indicate that particle states are being created that
decay to two leptons via an on-shell Z. The observation
that the intensity changes above and below m�� ¼
53 GeV shows that many of the states produced have one
branch that decays via a ~�o

2 and the other branch decays via

an on-shell Z. The lack of events immediately above and to
the right of the (53 GeV, 53 GeV) coordinate but below and
to the left of the (91 GeV, 91 GeV) coordinate suggest that

symmetric processes are not responsible for this
background.
We also see the density of events in the block above

53 GeVand to the right of 53 GeV suggest a cascade decay
with an end point near enough to 91 GeV that it is not
distinguishable from mZ. Following this line of thinking,
we model the background with a guess of an asymmetric
set of events where one branch has new states G, X, and N
with masses such that the mll end point is

max m2
llðodd branchÞ ¼ ðm2

G �m2
XÞðm2

X �m2
NÞ

m2
X

¼ ð85 GeVÞ2 (17)
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from both branches of forming a Dalitz-like wedgebox analysis.
The events outside the mll � 53 GeV signal rectangle provide
control samples from which we estimate the background shape
and magnitude. The dark events are signal, the lighter events are
background.
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and the other branch is our ~�o
2 decay. The masses one

chooses to satisfy this edge did not prove important so
long as the mass differences were reasonably sized; we
tried several different mass triplets ending with the LSP,
and all gave similar answers.

We now describe the background model used in our fits.
One branch starts with a massive state with mG ¼
160 GeV which decays to a lepton and a new state mX ¼
120 GeVwhich in turn decays to a lepton and the LSP. The
second branch has our signal decay with the ~�o

2 decaying to
~�o
1 and two leptons via a three-body decay. We added UTM

consistent with that observed in the events.
By matching the number of events seen outside the

mll < 53 GeV region, we estimate the number of the
events within the signal cuts that are due to backgrounds.
We estimate 0.33 of the events with both OSSF pairs
satisfying mll < 53 GeV are background events. The
model also gives a reasonable distribution for these events.
Inspecting the actual HERWIG results showed that an
actual fraction of background events was 0.4. If we let
the fraction be free and minimize the �2 with respect to
the background fraction, we found a minimum at 0.3.

Our background model is simplistic and does not repre-
sent the actual processes, but it does a good job of account-
ing for the magnitude and the shape of the background
mixed into our signal distribution. Most of the HERWIG
background events came from W and charginos which
introduce extra sources of missing transverse momentum.
Nevertheless, the shape fit very accurately and the per-
formance is discussed in Sec. V. It is encouraging that our
estimate of the background shape and magnitude is rela-
tively insensitive to details of the full spectrum. Even
ignoring the background, as we will see in Sec. V, still
leads to a minimum �2 at the correct mass.

7. Combinatoric ambiguities

If we assume that the full cascade effectively occurs at
the primary vertex (no displaced vertices), then the com-
binatoric question is a property of the ideal distribution
produced in the collisions. There are no combinatoric
issues if the two opposite-sign same-flavor lepton pairs
are each different flavors. However if all four leptons are
the same flavor, we have found that we can still identify
unique branch assignments 90% of the time. The unique
identification comes from the observation that both pairs
must have an invariant mass mll less than the value of the
max mll edge. In 90% of the events, there is only one
combination that satisfies this requirement. This allows one
to use 95% of the four-lepton events without ambiguity.
The first 50% are identified from the two OSSF pairs being
of different flavors and 90% of the remaining can be
identified by requiring both pairs satisfy mll < max mll

on which branch. The events which remain ambiguous
have two possible assignments, both of which are included
with a weight of 0.5 in the distribution.

B. Factors affecting distribution recorded
by the detector

As just described, the ideal in-principle distribution is
created from the observedmll distribution and the observed
UTM distribution. We include combinatoric effects from
events with four leptons of like flavors. Last, we can
estimate the magnitude of background events and their
m2C and m2C;UB shape. We now modify the in-principle

distribution to simulate the effects of the particle detector
to form our final ideal distribution that includes all antici-
pated effects. The two main effects on the m2C and m2C;UB

distributions are the energy resolution and the 6PT cuts.
In this analysis, we do not consider the effects of iso-

lation cuts. Including such effects will change the distri-
bution shape and further decreases the statistics available
with which to form the distributions. For example requiring

lepton isolation �R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ��2

p
> 0:1 excludes

about 3% of the distribution events or using �R> 0:3
excludes about 20% of the distribution events. As lepton
isolation uncertainties and energy-resolution uncertainties
are detector specific, it would be interesting to study the
distribution shape specific to different detectors.

1. Shape dependence on energy resolution

Energy resolution causes the m2C and m2C;UB distribu-

tions to be smeared. Here we assume the angular resolution
is negligible. For both the Mathematica Monte Carlo
model and the HERWIG events we simulate the detector’s
energy resolution by scaling the four vectors for electrons,
muons, and hadrons by

�Ee

Ee

¼ 0:1ffiffiffiffiffiffi
Ee

p þ 0:003

Ee

þ 0:007; (18)

�E�

E�
¼ 0:03; (19)

�EH

EH

¼ 0:58ffiffiffiffiffiffiffi
EH

p þ 0:018

EH

þ 0:025; (20)

respectively [30,31]. A more detailed detector simulation
is of course possible, but since we do not know the true
behavior of any LHC detector until the device begins
taking data, a more sophisticated treatment would be of
limited value here. In practice the dependence of the ideal
distribution shapes on the missing transverse momentum
resolution should reflect the actual estimated uncertainty of
the missing transverse momentum of the observed events.
Smearing of the distributions decreases the area differ-

ence between two normalized distributions, thereby de-
creasing the precision with which one can determine the
mass from a given number of signal events. This expanded
uncertainty can be seen in Sec. V.
Them2C calculations depend on the mass difference, the

four-momenta of the four leptons, and the missing trans-

ALAN J. BARR, GRAHAM G. ROSS, AND MARIO SERNA PHYSICAL REVIEW D 78, 056006 (2008)

056006-10



verse momentum. As the lepton energy resolution is very
tight, the missing transverse momentum’s energy resolu-
tion is dominated by the hadronic energy resolution. We
model the energy resolution of the UTM as a hadronic jet.
This significantly increases the uncertainty in the missing
transverse momentum because hadrons have about 5 times
the energy resolution error.

In our Mathematica model, we represent the UTM as a
single four-vector k, but in reality it will be the sum of
many four-vectors. Because we apply the energy resolution
smearing to k, if k is small the simple Mathematica model
will have a smaller missing energy resolution. However, an
event with almost 0 UTM could have a large missing
momentum energy resolution if it has a lot of hadronic
jets whose transverse momentum mostly cancels. Figure 6
shows that most of the time we have considerable hadronic
UTM, so this effect is a minor correction on our results.

2. Shape dependence on missing transverse momentum
cuts

A key distinguishing feature of these events is missing
transverse momentum. To eliminate the large number of
standard model events with four-lepton and with no 6PT , we
will need to cut on this parameter. Figure 9 shows the
HERWIG simulation’s missing transverse momentum ver-
sus the m2C. A nontrivial m2C requires substantial 6PT .
Small 6PT of less than about 20 GeV only affects the m2C

shape below about 65 GeV. The shape of the m2C <
65 GeV therefore will require a higher fidelity model
from which to train the shapes. Instead, we just choose to
not fit bins with m2C < 65 GeV.

All events near the end of m2C;UB distribution require

significant 6PT , therefore 6PT cuts will not affect the part of
this distribution which we fit. The number of events with
no nontrivial upper bounds will also be affected by 6PT cuts.
We only fit the m2C;UB distribution up to about 233 GeV.

V. ESTIMATED PERFORMANCE

Determining the mass based on the shape of the distri-
bution enables one to use all the events and not just those
near the end point. We fit both upper-bound and lower-
bound shapes to the data as described in the appendix A. As
one expects, fitting the lower-bound shape more tightly
constrains the mass from below and fitting the upper-bound
shape more tightly constrains the mass from above.
Combining the two gives approximately even uncertainty.
We calculate ideal distributions assuming m~�o

1
at five val-

ues 50, 60, 70, 80, and 90 GeV. We then fit a quadratic
interpolation through the points. Our uncertainties are
based on the value where �2 increases by 1 from its
minimum of this interpolation. This uncertainty estimate
agrees with about 2=3 of the results falling within that
range after repeated runs. Our uncertainty estimates do
not include the error propagated from the uncertainty in
the mass difference [see Eq. (16)].
We present results for an early LHC run, about 100 fb�1,

and for the longest likely LHC run before an upgrade,
about 400 fb�1. After about 100 fb�1, we have 700 events
(about 400 signal and 300 background). After 400 fb�1,
we have about 2700 events (about 1600 signal and 1100
background). Only 4 events out of 1600 are from direct pair
production. Most of our signal events follow at the end of
different decay chains starting from gluinos or squarks.
The upstream decay products produce significant UTM
against which the two ~�o

2 parent particles recoil.
First for the ideal case. After 400 fb�1, using only signal

events and no energy resolution, the �2 fits to the predicted
shapes give m~�o

1
¼ 67:0� 0:9 GeV (filled circles in

Fig. 10). This mass determination can practically be read
off from the end points seen in Fig. 3; the m2C end point is
near 120 GeV and subtracting the mass differences gives
m~�o

1
¼ 120 GeV�M� ¼ 67 GeV. We now explore how

well we can do with fewer events and after incorporating
the effects listed in Sec. IV.
How does background affect the fit? If we ignore the

existence of background in our sample, and we fit all the
events to the signal-only shapes, then we find a poor fit
shown as the empty circle curve in Fig. 10. By poor fit, we
mean the �2 is substantially larger than the 72 bins being
compared (36 bins from each the upper-bound and lower-
bound distributions). Despite this worse fit, the shape
fits still give a very accurate mass estimate: m~�o

1
¼ 65:4�

1:8 GeV after 100 fb�1 and m~�o
1
¼ 67:4� 0:9 GeV after

400 fb�1. At this stage, we still assume perfect energy
resolution and no missing transverse momentum cut.
Next, if we create a background model as described in

Sec. IV, we are able to improve the �2 fit to nearly 1 per
bin; the mass estimate remains about the same, but the
uncertainty increases by about 20%. We find a small
systematic shift (smaller than the uncertainty) in our
mass prediction as we increase the fraction of the shape
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FIG. 9 (color online). The missing transverse momentum vs
m2C values for HERWIG data. This shows that a 6PT > 20 GeV
cut would not affect the distribution for m2C > 65 GeV.
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due to the background model vs the signal model. As we
increased our fraction of background, we found the mass
estimate was shifted down from 66.5 at 0% background to
65.6 when we were at 60% background. The best �2 fit
occurs with 30% background; which is very close to the
33% we use from the estimate, but farther from the true
background fraction of about 40%. With 400 fb�1 of data,
the systematic errors are all but eliminated with the end
point dominating the mass estimate. These fits are shown
as the triangles with dashed lines and give m~�o

1
¼ 65:1�

2:4 GeV which after the full run becomes m~�o
1
¼ 67:3�

1:1 GeV.
Including energy resolution as described in Sec. IV

shows a large increase in the uncertainty. The dashed line
with empty square markers shows the �2 fit when we
include both a background model and the effect of includ-
ing energy resolution. These fits are shown as the empty
squares with dashed lines and givem~�o

1
¼ 63:0� 3:6 GeV

which after the full run becomes m~�o
1
¼ 66:5� 1:6 GeV.

The final shape factor that we account for is the cuts
associated with the missing transverse momentum. After
we apply cuts requiring 6PT > 20 GeV and fit only m2C >
65 GeV we have our final result shown by the thick lines
with filled squares. This includes all cuts, resolution error,
combinatorics, and backgrounds. We find m~�o

1
¼ 63:2�

4:1 GeV with 700 events (signal or background) represent-
ing 100 fb�1, and after 400 fb�1 this improves to m~�o

1
¼

66:0� 1:8 GeV. The true mass on which the HERWIG
simulation is based is m~�o

1
¼ 67:4, so all the estimates

are within about 1� of the true mass.
Figure 11 shows the ideal curve expected if m~�o

1
¼

70 GeV including all effects from energy resolution, back-

ground, combinatoric, and 6PT cuts. The �2 corresponds to
the solid square in the left panel of Fig. 10.
The error in mass determination obtained with limited

statistics can be estimated using Poisson statistics. In our
studies we find that, as one would expect, increasing the
number of events by a factor of 4, we bring down our error
by about a factor of 2. This means that one could expect
�8 GeV after about 25 fb�1 which represents 100 signal
events and 75 background events.
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FIG. 10 (color online). The result of �2 fits to the data with differing assumptions for 100 fb�1 (left panel) and 400 fb�1 (right
panel). The thick line with filled squares shows the final result with all cuts, resolution error, combinatorics, and backgrounds included
and estimated in the shape fitting. This gives usm~�o

1
¼ 63:2� 4:1 GeV with 700 events (signal or background) representing 100 fb�1.

After 400 fb�1 this improves to m~�o
1
¼ 66:0� 1:8 GeV. The error-free best case gives m~�o

1
¼ 67:0� 0:9 GeV. The correct value is

m~�o
1
¼ 67:4 GeV.
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the HERWIG gives the solid black square on the left frame of
Fig. 10.
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VI. DISCUSSION AND CONCLUSIONS

Despite adding some of the complicating effects one
would encounter with real data, we have discovered other
factors which demonstrate one could obtain an even better
precision than we originally reported in Ref. [20]. There,
we used only our simple Mathematica model that assumed
k ¼ 0 and neglected most sources of realistic uncertainty.
We assumed all the events could be modeled as being
direct production without spin-correlations. With these
simplifications, we argued the mass could be determined
to �6 GeV using 250 signal events.

In this paper, we performed a case study to show that the
relevant m2C and m2C;UB shapes can be successfully deter-

mined from the mass difference M�, the mll distribution
observation, and the UTM distribution observation. We
included and accounted for many realistic effects: we
modeled the large energy-resolution error of hadronic
jets. We also included the effects of backgrounds, 6PT

cuts, and combinatorics. Our signal and backgrounds
were generated with HERWIG. We discussed how a
Dalitz-like plot can estimate the background fraction and
shape. Observed inputs were used in a simple model to
determine ideal distribution shapes that makes no reference
to parton distribution functions, cross sections, or other
model-dependent factors that we are not likely to know
early in the process.

Despite these extra sources of uncertainty, we found a
final mass determination of �4:1 GeV with about 400
signal events which is still better than the appropriately
scaled result from Ref. [20]. The sources of the mass-
determination improvement are twofold: (1) the prediction
and fitting of upper-bound distribution and (2) the sharper
end point in the presence of the large UTM. Under equiva-
lent circumstances, the sharper end point is enough to give
a factor of 2 improvement in the uncertainty over the
direct production case assumed in [20]. Fitting the upper
bound tends to improve the determination by an additional

factor of
ffiffiffi
2

p
. This improvement is then used to fight the

large hadronic-jet energy resolution and background
uncertainty.

Mass determination using m2C and m2C;UB applies to

many other processes. We have focused on cases where the
mass difference is given by the end point of an mll distri-
bution involving a three-body decay. If there is not a three-
body decay, then the mass difference may be found by
applying other mass-determination techniques like the
MST [10–12] or edges in cascade decays [5,7,8] or mT2

at different stages in symmetric decay chains [22].
How does our method’s performance compare to pre-

vious mass-determination methods? First, this technique is
more robust than the max mT2 kink because in fitting to the
shape of the distribution, it does not rely entirely on
identification of the events near the kinematic boundary.
One can view m2C and m2C;UB as variables that event by

event quantify the kink. Other than the kink technique, the

previous techniques surveyed in the introduction apply to
cases where there is no three-body decay from which to
measure the mass difference directly. However, each of
those techniques still constrains the mass difference with
great accuracy. The closest comparison is with the analysis
done on SPS 1a with an LSP mass near 95 GeV. The
technique of [5–8] which uses edges from cascade decays
determines the LSP mass to �3:4 GeV with about 500
thousand events from 300 fb�1. The approach of [11]
assumes a pair of symmetric decay chains and assumes
two events have the same structure. They reach�2:8 GeV
using 700 signal events after 300 fb�1, but have a 2.5 GeV
systematic bias that needs modeling to remove. These
determinations are to be compared to our value for P1 of
66:0� 2:9 GeV for 700 signal events achieved without a
systematic bias after propagating an error of 0.08 GeV in
the mass difference and with all discussed effects. Note
that uncertainty calculations differ amongst groups, some
use repeated trial with new sets of Monte Carlo data, and
others use �2. Without a direct comparison under like
circumstance, the optimal method is not clear; but it is
clear that fitting the m2C and m2C;UB distributions can

determine the mass of invisible particles at least as well,
if not better than, the other known methods in both accu-
racy and precision. We will discuss the application of
constrained mass variables to the SPS 1a spectra in a future
publication.
In summary, we have developed a mass-determination

technique, based on the constrained transverse mass, which
is able to determine the mass of a dark-matter particle state
produced at the LHC in events with large missing trans-
verse momentum. The m2C method, which bounds the
mass from below, was supplemented by a new distribution
m2C;UB which bounds the mass from above in events

with large upstream transverse momentum. A par-
ticular advantage of the method is that it also obtains
substantial information from events away from the end
point allowing for a significant reduction in the error.
The shape of the distribution away from the end point
can be determined without detailed knowledge of the
underlying model, and as such, can provide an early esti-
mate of the mass. Once the underlying process and model
generating the event has been identified the structure away
from the end point can be improved using, for example,
HERWIG to produce the process dependent shape. We
performed a case study simulation under LHC conditions
to demonstrate that mass determination by fitting the m2C

and m2C;UB distributions survives anticipated complica-

tions. With this fitting procedure it is possible to get an
early measurement of the mass—with just 400 signal
events in our case study we found we would determine
m~�o

1
¼ 63:2� 4:1. The ultimate accuracy obtainable by

this method is m~�o
1
¼ 66:0� 1:8 GeV. We conclude that

this technique’s precision is as good as, if not better than,
the best existing techniques.
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APPENDIX: LEAST SQUARES FIT

In order to determine m~�o
1
we perform a �2 fit between

ideal distributions and the HERWIG data. First for defini-
tions: We define NLB as the number of m2C events in the
region to be fit, and likewise NUB is the number of m2C;UB

events in the region to be fit. The m2C of the events are
grouped into bins; Cj counts the events in the jth bin. The

variable fLBðm2Cj; m~�o
1
Þ is the normalized m2C distribution

of ideal events expected in bin j as calculated with an

assumed m~�o
1
, the measured M�, the observed mll distri-

bution, the observed UTM distribution, and the appropriate
detector simulator. We likewise define the upper-bound
distribution to be fUBðm2C;UBj; m~�o

1
Þ. We also define the

background distribution for lower-bound and upper-bound
distributions to be fB;LBðm2CjÞ and fB;UBðm2C;UBjÞ and the

fraction of the total events we estimate are from back-
ground �.
Assuming a Poisson distribution, we assign an uncer-

tainty, �j, to each bin j given by

�2
LB;jðm~�o

1
Þ ¼ 1

2ðNLBðð1� �ÞfLBðm2Cj; m~�o
1
Þ

þ �fB;LBðm2CjÞÞ þ CjÞ; (A1)

and likewise for the upper-bound distribution. The second
term has been added to ensure an appropriate weighting of
bins with very few events that does not bias the fit towards
or away from this end point. In bins with few counts,
normal Poisson statistics does not apply.7

The �2 is given by

�2ðm~�o
1
Þ ¼ X

bin j

�Cj � NLBð1� �ÞfLBðm2Cj; m~�o
1
Þ � NLB�fB;LBðm2Cj; m~�o

1
Þ

�LB;j

�
2

þ X
bin j

�CUB;j � NUBð1� �ÞfUBðm2C;UBj; m~�o
1
Þ � NUB�fB;UBðm2C;UBj; m~�o

1
Þ

�UB;j

�
2
: (A2)

We calculate ideal distributions for m~�o
1
¼ 50, 60, 70, 80, 90 GeV. We fit quadratic interplant through the points. The

minimum �2ðm~�o
1
Þ of the interplant is our estimate ofm~�o

1
. The amountm~�o

1
changes for an increase in �2 by one gives our

1� uncertainty, �m~�o
1
, for m~�o

1
[32].

[1] S. Mrenna, G. L. Kane, and L.-T. Wang, Phys. Lett. B 483,
175 (2000).

[2] G. L. Kane, A. A. Petrov, J. Shao, and L.-T. Wang,
arXiv:0805.1397.

[3] B. C. Allanach, C. G. Lester, M.A. Parker, and B. R.
Webber, J. High Energy Phys. 09 (2000) 004.

[4] B. C. Allanach, J. P. Conlon, and C.G. Lester, Phys. Rev.
D 77, 076006 (2008).

[5] H. Bachacou, I. Hinchliffe, and F. E. Paige, Phys. Rev. D
62, 015009 (2000).

[6] B. K. Gjelsten, D. J. Miller, and P. Osland, J. High Energy
Phys. 12 (2004) 003.

[7] C. G. Lester, Phys. Lett. B 655, 39 (2007).

[8] B. K. Gjelsten, D. J. Miller, P. Osland, and A. R. Raklev,
AIP Conf. Proc. 903, 257 (2007).

[9] M. Bisset, N. Kersting, and R. Lu, arXiv:0806.2492.
[10] H.-C. Cheng, J. F. Gunion, Z. Han, G. Marandella, and B.

McElrath, J. High Energy Phys. 12 076 (2007).
[11] H.-C. Cheng, D. Engelhardt, J. F. Gunion, Z. Han, and B.

McElrath, Phys. Rev. Lett. 100, 252001 (2008).
[12] M.M. Nojiri, G. Polesello, and D. R. Tovey, J. High

Energy Phys. 05 (2008) 014.
[13] C. G. Lester and D. J. Summers, Phys. Lett. B 463, 99

(1999).
[14] A. Barr, C. Lester, and P. Stephens, J. Phys. G 29, 2343

(2003).

7By this we mean that Nfðm2Cj; m~�o
1
Þ has a large percent error when used as a predictor of the number of counts Cj when

Nfðm2Cj; m~�o
1
Þ is less than about 5.

ALAN J. BARR, GRAHAM G. ROSS, AND MARIO SERNA PHYSICAL REVIEW D 78, 056006 (2008)

056006-14



[15] B. Gripaios, J. High Energy Phys. 02 (2008) 053.
[16] A. J. Barr, B. Gripaios, and C.G. Lester, J. High Energy

Phys. 02 (2008) 014.
[17] W. S. Cho, K. Choi, Y. G. Kim, and C. B. Park, Phys. Rev.

Lett. 100, 171801 (2008).
[18] W. S. Cho, K. Choi, Y. G. Kim, and C. B. Park, J. High

Energy Phys. 02 (2008) 035.
[19] M.M. Nojiri, Y. Shimizu, S. Okada, and K. Kawagoe, J.

High Energy Phys. 06 (2008) 035.
[20] G. G. Ross and M. Serna, Phys. Lett. B 665, 212 (2008).
[21] K. Hamaguchi, E. Nakamura, and S. Shirai, Phys. Lett. B

666, 57 (2008).
[22] M. Serna, J. High Energy Phys. 06 (2008) 004.
[23] W. Vandelli, Ph.D. thesis.
[24] F. E. Paige, S. D. Protopopescu, H. Baer, and X. Tata,

arXiv:hep-ph/0312045.

[25] G. Corcella et al., arXiv:hep-ph/0210213.
[26] S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, and

B. R. Webber, J. High Energy Phys. 04 (2002) 028.
[27] G. Marchesini et al., Comput. Phys. Commun. 67, 465

(1992).
[28] D. K. Ghosh, R.M. Godbole, and S. Raychaudhuri, arXiv:

hep-ph/9904233.
[29] M. Bisset, N. Kersting, J. Li, F. Moortgat, and Q. Xie, Eur.

Phys. J. C 45, 477 (2006).
[30] S. Akhmadalev et al. (ATLAS Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A 480, 508 (2002).
[31] A. Collaboration, CERN Report No. ATLAS-TDR-017,

CERN-LHCC-2005-022, 2005.
[32] P. Bevington and K. Robinson, Data Reduction and Error

Analysis in the Physics Sciences (McGraw-Hill, New
York, 1992), 2nd ed.

PRECISION DETERMINATION OF INVISIBLE-PARTICLE . . . PHYSICAL REVIEW D 78, 056006 (2008)

056006-15


