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In the quasilinear Regge trajectory ansatz, some useful linear mass inequalities, quadratic mass

inequalities, and quadratic mass equalities are derived for mesons and baryons. Based on these relations,

mass ranges of some mesons and baryons are given. The masses of �bc and s �s belonging to the

pseudoscalar, vector, and tensor meson multiplets are also extracted. The JP of the baryon �þ
ccð3520Þ

is assigned to be 1
2
þ. The parameters of the 1

2
þ and 3

2
þ SU(4) baryon trajectories are extracted and the

masses of the orbital excited baryons lying on the 1
2
þ and 3

2
þ trajectories are estimated. The JP assignments

of baryons�cð2980Þ,�cð3055Þ,�cð3077Þ, and�cð3123Þ are discussed. The predictions are in reasonable
agreement with the existing experimental data and those suggested in many other different approaches.

The mass relations and the predictions may be useful for the discovery of the unobserved meson and

baryon states and the JP assignment of these states.
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I. INTRODUCTION

The study of hadronic physics has been a subject of
intense interest. There are many hadronic states reported
in recent years: B�

2 [1], B�
s2 [2], �þ

ccð3520Þ [3], �þ
c ð2880Þ

[4–6], �þ
c ð2940Þ [5,6], �0;þ

c ð2980; 3077Þ [7,8],

�þ
c ð3055; 3123Þ [9], �ð�Þ�

b [10], and ��
b [11]. More and

more states will be discovered in the near future. However,
the properties of some states such as�þ

ccð3520Þ are still not
very clear. �þ

ccð3520Þ was reported as the doubly charmed
baryon state by SELEX in two different decay modes [3],
but the JP number has not been determined. Moreover, it
has not been confirmed by other experiments (notably by
BABAR [12], BELLE [13], and FOCUS [14]). According
to the Particle Data Group’s ‘‘Review of Particle Physics’’
in 2006 [15], many hadrons, especially heavy hadrons, are
still absent from the summary tables. Obviously, there is
still a lot of work to be done both theoretically and
experimentally.

The eightfold way and the standard SU(3) Gell-Mann–
Okubo (GMO) formula [16] have played an important role
in the historical progress in particle physics. However, the
direct generalization of the GMO formula to the charmed
and bottom hadrons cannot agree well with experimental
data due to higher-order breaking effects. Consequently,
there are many works focused on the mass relations, in-
cluding inequalities [17–20] and equalities [21–36].

Quantum chromodynamics (QCD) has been verified as
an appropriate theory to describe strong interaction at short

distances. However, the application of QCD to the pro-
cesses of hadronic interactions at large distances is still
limited by the unsolved confinement problem. Nowadays
calculations of hadronic properties, which are related to the
nonperturbative effects, are frequently carried out with the
help of phenomenological models. Regge phenomenology
(which was derived from the analysis of the properties of
the scattering amplitude in the complex angular momen-
tum plane [37]) is one of the simplest ones among these
phenomenological models. Regge theory is concerned with
almost all aspects of strong interactions, including the
particle spectra, the forces between particles, and the
high energy behavior of scattering amplitudes [38]. The
quasilinear Regge trajectory ansatz, which is one of the
most effective and popular approaches for studying hadron
spectra, can (at least at present) give a reasonable descrip-
tion for the hadron spectroscopy [21–23,39,40], although
some suggestions that the realistic Regge trajectories could
be nonlinear exist [41].
As pointed out in Refs. [21,42], Regge intercepts and

slopes are useful for many spectral and nonspectral pur-
poses, for example, in the recombination [43] and frag-
mentation [44] models. Therefore, as pointed out in
Ref. [45], the slopes and intercepts of the Regge trajecto-
ries are fundamental constants of hadron dynamics, per-
haps in general more important than the masses of
particular states. Thus, the determination of slopes and
intercepts of hadrons is of great importance since this
provides opportunities for a better understanding of the
dynamics of strong interactions [42].
In the quasilinear Regge trajectory ansatz, the numerical

values of the parameters of the Regge trajectories were
extracted for mesons of different flavors [21,22,39,40,46].
Under the approximation that mesons or baryons in the

*xhguo@bnu.edu.cn
+Corresponding author.

weikw@brc.bnu.edu.cn
‡singhwa.wu@gmail.com

PHYSICAL REVIEW D 78, 056005 (2008)

1550-7998=2008=78(5)=056005(21) 056005-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.056005


light quark sector have the common Regge slopes,
Burakovsky et al. derived two 6th power and one 14th
power meson mass relations in Ref. [22] and derived some
new quadratic Gell-Mann–Okubo–type baryon mass
equalities in Ref. [23]. Using those new quadratic baryon
mass relations they predicted the masses of 1

2
þ and 3

2
þ

charmed baryon states absent from the baryon summary
table then. (Here and below, 12

þ and 3
2
þ multiplets refer to

the ground multiplets in which the total orbital angular
momenta L ¼ 0.) However, the numerical values for the
parameters of the charmed baryon Regge trajectories were
not given in Ref. [23].

In the present work, under the assumption that the quasi-
linear Regge trajectory ansatz is suitable to describe meson
spectra and baryon spectra with the requirements of the
additivity of intercepts and inverse slopes, the relations
between slope ratios and masses of hadrons with different
flavors and the mass relations among hadrons will be
studied. We will show that the linear mass GMO formula
is virtually an inequality and the quadratic mass GMO
formula is also an inequality with the sign opposite to the
linear case. We will get a high-power mass equation which
is very useful to predict the masses of �bc states and the
masses of pure s�s states. We will also get some useful
quadratic mass equations for baryons. The JP assignment
of �þ

ccð3520Þ, �cð2980Þ, �cð3055Þ, �cð3077Þ, and
�cð3123Þ baryons will be discussed. The numerical values
for the parameters of the 1

2
þ and 3

2
þ trajectories will be

extracted and the masses of the baryon states lying on the
1
2
þ and 3

2
þ trajectories will be estimated.

The remainder of this paper is organized as follows. In
Sec. II we briefly introduce the quasilinear Regge trajec-
tory ansatz. Then, we extract the mass inequalities and
mass equalities for mesons and baryons. In Sec. III we
present some applications of the relations derived in Sec. II
and discuss the JP assignment of �þ

ccð3520Þ, �cð2980Þ,
�cð3055Þ, �cð3077Þ, and �cð3123Þ baryons. The parame-
ters of the 1

2
þ and 3

2
þ trajectories are extracted and the

masses of the baryon states lying on the 1
2
þ and 3

2
þ trajec-

tories are estimated. Finally, we give a discussion and
conclusion in Sec. IV.

II. FRAMEWORK

It is known from Regge theory that all mesons and
baryons are associated with Regge poles which move in
the complex angular momentum plane as a function of
energy. The trajectory of a particular pole (Regge trajec-
tory) is characterized by a set of internal quantum numbers
(baryon number B, intrinsic parity P, strangeness S,
charmness C, bottomness B, etc.) and by the evenness or
oddness of the total spin J for mesons (J � 1

2 for baryons)

[47]. The plots of Regge trajectories of hadrons in the
ðJ;M2Þ plane are usually called Chew-Frautschi plots
(where J and M are, respectively, the total spins and the

masses of the hadrons). In Fig. 1, we draw the Chew-
Frautschi plots for some meson and baryon Regge
trajectories.
Assuming the existence of the quasilinear Regge trajec-

tories for both light and heavy hadrons, one can have

J ¼ �ðMÞ ¼ að0Þ þ �0M2; (1)

where að0Þ and �0 are, respectively, the intercept and slope
of the trajectory on which the particles lie. Hadrons lying
on the same Regge trajectory which have the same internal
quantum numbers are classified into the same family. The
difference between the total spins of these hadrons is 2n
(n ¼ 1; 2; 3; . . . ), e.g., mesons with the quantum numbers
N 2Sþ1LJ, N 2Sþ1ðLþ 2ÞJþ2, N 2Sþ1ðLþ 4ÞJþ4; . . .
(where N , L, and S denote the radial excited quantum
number, the orbital quantum number, and the intrinsic spin,
respectively) lying on the same Regge trajectory. These
features can be seen from the well-known Chew-Frautschi
plots (Fig. 1).
For a meson multiplet with spin-parity JP (more exactly

speaking, with quantum numbers N 2Sþ1LJ), the parame-
ters for different quark constituents can be related by the
following relations:
the additivity of intercepts [21,22,42,46,48–52],

ai�ið0Þ þ aj �jð0Þ ¼ 2ai �jð0Þ; (2)

the additivity of inverse slopes [21,22,42,46],

1

�0
i�i

þ 1

�0
j �j

¼ 2

�0
i �j

; (3)

where i and j represent quark flavors. Equations (2) and (3)
were derived in a model based on the topological expan-
sion and the q �q-string picture of hadrons [46]. This model
provides a microscopic approach to describe Regge phe-

FIG. 1 (color online). Chew-Frautschi plots in the ðJ;M2Þ
plane for some mesons and baryons.
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nomenology in terms of quark degrees of freedom [53]. In
fact, Eq. (2) was first derived for light quarks in the dual-
resonance model [48], and was found to be satisfied in two-
dimensional QCD [49], the dual-analytic model [50], and
the quark bremsstrahlung model [51]. Also, it saturates the
inequality for Regge intercepts [52] which follows from
the Schwarz inequality and the unitarity relation. The
above two relations are usually generalized to the baryon
case [23,42,51], in which one has

aiiqð0Þ þ ajjqð0Þ ¼ 2aijqð0Þ; (4)

1

�0
iiq

þ 1

�0
jjq

¼ 2

�0
ijq

; (5)

where q represents a quark.
There are also relations about the factorization of slopes

for mesons [54,55] and baryons [55]:

�0
i�i
� �0

j �j
¼ �02

i �j
; (6)

�0
iiq � �0

jjq ¼ �02
ijq; (7)

which follow from the factorization of residues of the
t-channel poles. The paper by Burakovsky and Goldman
[42] showed that only the additivity of inverse Regge
slopes is consistent with the formal chiral and heavy quark
limits for both mesons and baryons, and that the factoriza-

tion of Regge slopes, although consistent with the formal
chiral limit, fails in the heavy quark limit. Besides, in
Sec. III B, we will show that the high-power equation (63)
derived from the relations (1), (2), and (6) is not as good as
the high-power equation (16) derived from the relations
(1)–(3) compared with the well-established meson multip-
lets. Therefore, we will use the relations (3) and (5) (the
additivity of inverse slopes) rather than the relations (6)
and (7) (the factorization of slopes) in this study. There are
also studies about the relations between the ground state
and its radial excited states [39,56,57] and there are sug-
gestions that the radial excited states lie on daughter tra-
jectories of the ground state [38]. However, we do not
discuss these relations in the present work.

A. Relations between slope ratios and hadron masses

For mesons, using Eqs. (1) and (2), one obtains

�0
i�i
M2
i�i
þ �0

j �j
M2
j �j
¼ 2�0

i �j
M2
i �j
; (8)

where the meson states i�i, j �j, and i �j belong to the same
N 2Sþ1LJ multiplet. This relation can be reduced to the
quadratic Gell-Mann–Okubo–type formula by assuming
that all the slopes are independent of flavors (�0

i�i
¼ �0

i �j
¼

�0
j �j
). Combining the relations (3) and (8), one can get two

pairs of solutions. The first pair of solutions are

8>>><
>>>:
�0
j �j

�0
i�i

¼ 1
2M2

j �j

� ½ð4M2
i �j
�M2

i�i
�M2

j �j
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

i �j
�M2

i�i
�M2

j �j
Þ2 � 4M2

i�i
M2
j �j

q
�;

�0
i �j

�0
i�i

¼ 1
4M2

i �j

� ½ð4M2
i �j
þM2

i�i
�M2

j �j
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

i �j
�M2

i�i
�M2

j �j
Þ2 � 4M2

i�i
M2
j �j

q
�;

(9)

while the second pair of solutions are8>>><
>>>:
�0
j �j

�0
i�i

¼ 1
2M2

j �j

� ½ð4M2
i �j
�M2

i�i
�M2

j �j
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

i �j
�M2

i�i
�M2

j �j
Þ2 � 4M2

i�i
M2
j �j

q
�;

�0
i �j

�0
i�i

¼ 1
4M2

i �j

� ½ð4M2
i �j
þM2

i�i
�M2

j �j
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

i �j
�M2

i�i
�M2

j �j
Þ2 � 4M2

i�i
M2
j �j

q
�:

(10)

From Eq. (1), one has

�0 ¼ ðJ þ 2Þ � J

M2
Jþ2 �M2

J

: (11)

It is obvious that the Regge slope �0 should be a single
positive real number. Thus, �0

j �j
=�0

i�i
should take only one

value for a multiplet with certain i and j. Since the relations
(3) and (8) are symmetric under the exchange of the quark
flavors i and j, we only consider the case in which quark
masses satisfy mi < mj for mesons here and after.

From Eqs. (9) and (10), we have the values of �0
c �c=�

0
n �n

and �0
b �b
=�0

n �n (n denotes u or d quark) for the well-

established multiplets. In the calculation, we do not con-
sider the small mass splittings caused by isospin breaking
effects due to electromagnetic interaction. Here and below,

all the masses of hadrons used in calculation are taken from
PDG2006 [15] except for the newly observed hadrons. The
results are shown in Table I.

TABLE I. The values of �0
c �c=�

0
n �n and �

0
b �b
=�0

n �n(n denotes u or
d quark) obtained from Eqs. (9) and (10).

N 2Sþ1LJ (9) (10)

�0
c �c=�

0
n �n 1 1S0 0.5636 0.0038

1 1P1 0.5433 0.2238

1 3S1 0.4921 0.1274

1 3P2 0.5041 0.2726

�0
b �b
=�0

n �n 1 1S0 0.2880 0.0008

1 3S1 0.2361 0.0290

1 3P2 0.2562 0.0690
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The values of �0
n �n for light nonstrange meson trajecto-

ries of different multiplets are in the range 0:7–0:9 GeV�2

[21,22,39,46]. The values of �0
c �c and �

0
b �b

for charmonium

and bottomonium trajectories of different multiplets are in
the ranges 0:3–0:5 GeV�2 and 0:18–0:25 GeV�2, respec-
tively [21,22,46,57]. Then, we have �0

c �c=�
0
n �n � 0:5 and

�0
b �b
=�0

n �n � 0:27. From Table I, one can see that the values

of �0
c �c=�

0
n �n (�

0
b �b
=�0

n �n) given by Eq. (9) are approximately

the same for different multiplets as they should be.
However, the values of �0

c �c=�
0
n �n (�0

b �b
=�0

n �n) given by

Eq. (10) are quite different for different multiplets.

Furthermore, the values of �0
c �c=�

0
n �n and �0

b �b
=�0

n �n given

by Eq. (10) are too small to be accepted. Therefore, we take
the first pair of solutions [Eq. (9)] and discard the second
pair of solutions [Eq. (10)].
For baryons, using Eqs. (1) and (4), one obtains

�0
iiqM

2
iiq þ �0

jjqM
2
jjq ¼ 2�0

ijqM
2
ijq; (12)

where q denotes an arbitrary light or heavy quark.
Combining the relations (5) and (12), one can get two pairs
of solutions,

8>>><
>>>:
�0
jjq

�0
iiq

¼ 1
2M2

jjq

� ½ð4M2
ijq �M2

iiq �M2
jjqÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

ijq �M2
iiq �M2

jjqÞ2 � 4M2
iiqM

2
jjq

q
�;

�0
ijq

�0
iiq

¼ 1
4M2

ijq

� ½ð4M2
ijq þM2

iiq �M2
jjqÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

ijq �M2
iiq �M2

jjqÞ2 � 4M2
iiqM

2
jjq

q
�;

(13)

and 8>>><
>>>:
�0
jjq

�0
iiq

¼ 1
2M2

jjq

� ½ð4M2
ijq �M2

iiq �M2
jjqÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

ijq �M2
iiq �M2

jjqÞ2 � 4M2
iiqM

2
jjq

q
�;

�0
ijq

�0
iiq

¼ 1
4M2

ijq

� ½ð4M2
ijq þM2

iiq �M2
jjqÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

ijq �M2
iiq �M2

jjqÞ2 � 4M2
iiqM

2
jjq

q
�:

(14)

From the Chew-Frautschi plots (Fig. 1), it is obvious that
the Regge slope �0 should be a single positive real number.
Thus, �0

jjq=�
0
iiq should take only one value for a multiplet

with certain i, j, and q. Since the relations (5) and (12) are
symmetric under the exchange of the quark flavors i and j,
we only consider the case in which quark masses satisfy
mi < mj for baryons here and after.

For the 1
2
þ multiplet, when i ¼ n, j ¼ s, and q ¼ n, we

have Mnnn ¼ MNð939Þ,Mnss ¼ M�, andM
2
nns ¼ 1

4 ð3M2
� þ

M2
�Þ [23]. Then, we have �0

�
=�0

N ¼ 0:89 from Eq. (13)

and �0
�
=�0

N ¼ 0:57 from Eq. (14). For the 3
2
þ multiplet,

when i ¼ n, j ¼ s, and q ¼ n, we have Mnnn ¼ M�,
Mnns ¼ M�� , andMnss ¼ M�� . Then, we have �0

��=�0
� ¼

0:89 from Eq. (13) and �0
��=�0

� ¼ 0:72 from Eq. (14).

Since the Regge trajectories of light baryons are approxi-
mately parallel, the values of �0

�
=�0

N and �0
��=�0

� should

be close to 1. Therefore, Eqs. (14) should be discarded in
the case of quark masses mi < mj. Furthermore, Eqs. (13)

and (14) can be considered as the generalization of Eqs. (9)
and (10), respectively, from the meson case to the baryon
case. Therefore, we take Eq. (13) and discard Eq. (14).

B. High-power mass equalities

From Eqs. (9) and (13), high-power mass equalities can
be derived for mesons and baryons, respectively. For me-
sons, using

�0
j �j

�0
i�i

¼ �0
k �k

�0
i�i

�
�0
j �j

�0
k �k

; (15)

and Eq. (9), when mi < mj < mk, we have

ð4M2
i �j
�M2

i�i
�M2

j �j
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

i �j
�M2

i�i
�M2

j �j
Þ2 � 4M2

i�i
M2
j �j

q
2M2

j �j

¼
½ð4M2

i �k
�M2

i�i
�M2

k �k
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

i �k
�M2

i�i
�M2

k �k
Þ2 � 4M2

i�i
M2
k �k

q
�=2M2

k �k

½ð4M2
j �k
�M2

j �j
�M2

k �k
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

j �k
�M2

j �j
�M2

k �k
Þ2 � 4M2

j �j
M2
k �k

q
�=2M2

k �k

: (16)

For baryons, using

�0
jjq

�0
iiq

¼ �0
kkq

�0
iiq

� �0
jjq

�0
kkq

; (17)

and Eq. (13), when mi < mj < mk, we have
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ð4M2
ijq �M2

iiq �M2
jjqÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

ijq �M2
iiq �M2

jjqÞ2 � 4M2
iiqM

2
jjq

q
2M2

jjq

¼
½ð4M2

ikq �M2
iiq �M2

kkqÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

ikq �M2
iiq �M2

kkqÞ2 � 4M2
iiqM

2
kkq

q
�=2M2

kkq

½ð4M2
jkq �M2

jjq �M2
kkqÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

jkq �M2
jjq �M2

kkqÞ2 � 4M2
jjqM

2
kkq

q
�=2M2

kkq

; (18)

where q denotes an arbitrary light or heavy quark.
Relations (16) and (18) are the high-power mass equal-

ities among one JP multiplet. They can be used to predict
the masses of unobserved states. In Sec. III, we will apply
Eq. (16) to predict the masses of �bc meson states and the
masses of the pure s�s meson states.

C. Linear mass inequalities and quadratic mass
inequalities

From Eqs. (9) and (13), two kinds of interesting inequal-
ities can be derived for mesons and baryons, respectively.
For mesons, as mentioned in the above discussion, �0

j �j
and

�0
i�i
ought to be positive real numbers. Thus �0

j �j
=�0

i�i
should

also be a real number. Then from Eq. (9), we have

j4M2
i �j
�M2

i�i
�M2

j �j
j � 2Mi�iMj �j: (19)

When i ¼ j, 4M2
i �j
�M2

i�i
�M2

j �j
	 0 cannot be held;

when i � j, 4M2
i �j
�M2

i�i
�M2

j �j
	 0 can be easily ruled

out by the data of the well established meson multiplets.
Therefore, 4M2

i �j
�M2

i�i
�M2

j �j
� 0. Thus, Eq. (19) can be

written as the following:

4M2
i �j
�M2

i�i
�M2

j �j
� 2Mi�iMj �j: (20)

This relation can be simplified to

2Mi �j � Mi�i þMj �j: (21)

If i ¼ j,Mi�i ¼ Mi �j ¼ Mj �j, then we have 2Mi �j ¼ Mi�i þ
Mj �j. On the other hand, if 2Mi �j ¼ Mi�i þMj �j, using

Eq. (9), we have

�0
j �j

�0
i�i

¼ Mi�i

Mj �j

: (22)

From the derivation of Eq. (22), we can see that this
equation is valid for hadrons belonging to the same mul-
tiplet. Since hadrons lying on the same Regge trajectory
(which have the total angular momenta J; J þ 2; J þ

4; . . . ) have the same slope, we have

�0
j �j

�0
i�i

¼ Mi�i;J

Mj �j;J

¼ Mi�i;Jþ2

Mj �j;Jþ2

: (23)

From Eq. (11), we have

�0
i�i
¼ 2

M2
i�i;Jþ2

�M2
i�i;J

; �0
j �j
¼ 2

M2
j �j;Jþ2

�M2
j �j;J

: (24)

Combining Eqs. (23) and (24), we have

�0
j �j

�0
i�i

¼ Mi�i;Jþ2 þMi�i;J

Mj �j;Jþ2 þMj �j;J

� Mi�i;Jþ2 �Mi�i;J

Mj �j;Jþ2 �Mj �j;J

¼
��0

j �j

�0
i�i

�
2
:

(25)

As mentioned before, the Regge slope �0 is a positive real
number. Therefore, �0

j �j
=�i�i0 ¼ 1 when 2Mi �j ¼ Mi�i þMj �j.

Consequently we have Mi�i;J ¼ Mj �j;J and Mi�i;Jþ2 ¼
Mj �j;Jþ2 from Eq. (23). This leads to i ¼ j since the i�i

and j �j states have the same JP.
From the above analysis, we can conclude that if and

only if i ¼ j, 2Mi �j ¼ Mi�i þMj �j. Therefore, when i � j,

we have

2Mi �j > Mi�i þMj �j: (26)

Many authors argued recently that the slopes of Regge
trajectories decrease with quark mass increase
[21,22,40,41,45,46,55,58,59]. Therefore, �0

j �j
=�0

i�i
< 1

when the j quark is heavier than the i quark. Then, from
Eq. (9) one can have

1

2M2
j �j

� ½ð4M2
i �j
�M2

i�i
�M2

j �j
Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

i �j
�M2

i�i
�M2

j �j
Þ2 � 4M2

i�i
M2
j �j

q
�< 1: (27)

From this relation, we obtain

8<
:
2M2

j �j
� ð4M2

i �j
�M2

i�i
�M2

j �j
Þ> 0;

ð4M2
i �j
�M2

i�i
�M2

j �j
Þ2 � 4M2

i�i
M2
j �j
< ½2M2

j �j
� ð4M2

i �j
�M2

i�i
�M2

j �j
Þ�2: (28)
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These two inequalities can be simplified to

2M2
i �j
< M2

i�i
þM2

j �j
: (29)

The relation (29) can also be derived in the same way if we
use the second equation in Eq. (9) considering �0

i �j
=�0

i�i
< 1.

The baryon mass inequalities can be extracted in the
same way as that in the meson case. Then, we have

2Mijq >Miiq þMjjq; (30)

2M2
ijq <M2

iiq þM2
jjq: (31)

It is very interesting that the inequalities (26) and (29)–
(31) are the concave and convex relations. These mass
inequalities can be used to give constrains (lower limit
and upper limit) for masses of hadrons which have not
been discovered. For example, we have from the inequal-
ities (26) and (29) that

Mi�i þMj �j

2
<Mi �j <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
i�i
þM2

j �j

2

s
; (32)

in which one inequality gives an upper limit while the other
gives a lower limit forMi �j. For baryons, we have from the

inequalities (30) and (31) that

Miiq þMjjq

2
<Mijq <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
iiq þM2

jjq

2

s
: (33)

We will use Eqs. (32) and (33) to give mass ranges for
mesons and baryons in Sec. III.

D. Quadratic mass equalities

To evaluate the deviations of relations (29) and (31)
from the equalities that would be obtained by changing
the signs of inequalities to equal signs, we introduce a
parameter �, which is denoted by �mij for mesons,

�mij ¼ M2
i�i
þM2

j �j
� 2M2

i �j
; (34)

and by �bij for baryons,

�bij ¼ M2
iiq þM2

jjq � 2M2
ijq; (35)

where i, j, and q are arbitrary light or heavy quarks. From

relations (29) and (31), we know �mðbÞ > 0. It will be
shown later that �bij is independent of q.

For mesons, from Eqs. (2) and (3), we have

ai�ið0Þ � ai �jð0Þ ¼ ai �jð0Þ � aj �jð0Þ; (36)

1

�0
i�i

� 1

�0
i �j

¼ 1

�0
i �j

� 1

�0
j �j

: (37)

Let

�i 
 an �nð0Þ � an�ið0Þ; �i 
 1

�0
n�i

� 1

�0
n �n

; (38)

where n denotes light nonstrange quark u or d. Using
Eqs. (36)–(38) we have

�i ¼ an �nð0Þ � an�ið0Þ ¼ an�ið0Þ � ai�ið0Þ; (39)

�i ¼ 1

�0
n�i

� 1

�0
n �n

¼ 1

�0
i�i

� 1

�0
n�i

: (40)

Hence,

ai�ið0Þ ¼ an �nð0Þ � 2�i; (41)

1

�0
i�i

¼ 1

�0
n �n

þ 2�i: (42)

With the help of Eqs. (41) and (42), we have from Eqs. (2)
and (3)

ai �jð0Þ ¼ 1
2½ai�ið0Þ þ aj �jð0Þ� ¼ an �nð0Þ � �i � �j; (43)

1

�0
i �j

¼ 1

2

�
1

�0
i�i

þ 1

�0
j �j

�
¼ 1

�0
n �n

þ �i þ �j: (44)

Similarly for baryons, from Eqs. (4) and (5), we have

aijqð0Þ ¼ annnð0Þ � �i � �j � �q; (45)

1

�0
ijq

¼ 1

�0
nnn

þ �i þ �j þ �q; (46)

where �x 
 annnð0Þ � annxð0Þ, �x 
 1
�0
nnx

� 1
�0
nnn

(x denotes

i, j, or q). It should be pointed out that the values of �x and
�x can be different for different multiplets.
For n �n and i �j states in a meson multiplet, from Eq. (1),

we have

J ¼ an �nð0Þ þ �0
n �nM

2
n �n; (47)

J ¼ ai �jð0Þ þ �0
i �j
M2
i �j
: (48)

With the help of Eqs. (43), (44), and (47), we have from
Eq. (48)

M2
i �j
¼ ð�0

n �nM
2
n �n þ �i þ �jÞ

�
1

�0
n �n

þ �i þ �j

�
: (49)

Therefore, from Eqs. (34) and (49), we have

�mij ¼ ð�0
n �nM

2
n �n þ 2�iÞ

�
1

�0
n �n

þ 2�i

�
þ ð�0

n �nM
2
n �n þ 2�jÞ

�
1

�0
n �n

þ 2�j

�
� 2ð�0

n �nM
2
n �n þ �i þ �jÞ

�
1

�0
n �n

þ �i þ �j

�

¼ 2ð�i � �jÞð�i � �jÞ: (50)

For baryons, in the same way, we have
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�bij ¼ M2
iiq þM2

jjq � 2M2
ijq

¼ ð�0
nnnM

2
nnn þ 2�i þ �qÞ

�
1

�0
nnn

þ 2�i þ �q

�
þ ð�0

nnnM
2
nnn þ 2�j þ �qÞ

�
1

�0
nnn

þ 2�j þ �q

�

� 2ð�0
nnnM

2
nnn þ �i þ �j þ �qÞ

�
1

�0
nnn

þ �i þ �j þ �q

�
¼ 2ð�i � �jÞð�i � �jÞ: (51)

It can be seen that �bij is independent of q from Eq. (51).
From Eq. (38), we know that �n ¼ �n ¼ 0. Since we

choosemi < mj,�
0
ii > �0

jj. Hence from the definition of �i
[Eq. (38)], we have �i < �j. Therefore, 0 ¼ �n < �s <

�c < �b. From Eqs. (9) and (26), we know that
�0
jj

�0
ii
> Mii

Mjj
.

Hence �0
jjMjj �Mjj > �0

iiMii �Mii. With the help of

Eqs. (1) and (41), we have �i < �j. Therefore, 0 ¼ �n <

�s < �c < �b. Consequently, we have 0< �mns < �mnc <
�mnb, 0< �mcb < �msb < �mnb, 0< �msc < �mnc, and 0< �msc <
�msb. If we assume that �s <

1
2�c <

1
4�b and �s <

1
2�c <

1
4�b, with the above analysis, we can have �mns < �msc <

�mnc < �mcb < �msb < �mnb. We will show later that these re-

lations indeed hold. For baryons, we can have �bns < �bsc <
�bnc < �bcb < �bsb < �bnb in the same way.

Inserting the corresponding masses into relation (34), we
have the values of �mij for some meson multiplets which are

shown in Table II. From Table II, we can see that the
relation �mns < �msc < �mnc < �mcb < �msb < �mnb is indeed sat-

isfied for different meson multiplets. These inequalities
imply that the higher-order breaking effects become
more pronounced with the quark mass increase.

1. Mass relations for the 3
2
þ multiplet

For the 3
2
þ multiplet, noticing that �ð3=2Þþ

ij in the above

relation (51) is independent of q, we have some equalities
which are given in the following:

(1) When i ¼ n, j ¼ s, q ¼ n, s, c, b,

�ð3=2Þþ
ns ¼ M2

� þM2
�� � 2M2

��

¼ M2
�� þM2

� � 2M2
��

¼ M2
��
c
þM2

��
c
� 2M2

��
c

¼ M2
��
b
þM2

��
b
� 2M2

��
b
: (52a)

(2) When i ¼ n, j ¼ c, q ¼ n, s, c, b,

�ð3=2Þþ
nc ¼ M2

� þM2
��
cc
� 2M2

��
c

¼ M2
�� þM2

��
cc
� 2M2

��
c

¼ M2
��
c
þM2

�ccc
� 2M2

��
cc

¼ M2
��
b
þM2

��
bcc

� 2M2
��
bc
: (52b)

(3) When i ¼ s, j ¼ c, q ¼ n, s, c, b,

�ð3=2Þþ
sc ¼ M2

�� þM2
��
cc
� 2M2

��
c

¼ M2
� þM2

��
cc
� 2M2

��
c

¼ M2
��
c
þM2

�ccc
� 2M2

��
cc

¼ M2
��
b
þM2

��
bcc

� 2M2
��
bc
: (52c)

(4) When i ¼ n, j ¼ b, q ¼ n, s, c, b,

�ð3=2Þþ
nb ¼ M2

� þM2
��
bb
� 2M2

��
b

¼ M2
�� þM2

��
bb
� 2M2

��
b

¼ M2
��
c
þM2

��
bbc

� 2M2
��
bc

¼ M2
��
b
þM2

�bbb
� 2M2

��
bb
: (52d)

(5) When i ¼ s, j ¼ b, q ¼ n, s, c, b,

�ð3=2Þþ
sb ¼ M2

�� þM2
��
bb
� 2M2

��
b

¼ M2
� þM2

��
bb
� 2M2

��
b

¼ M2
��
c
þM2

��
bbc

� 2M2
��
bc

¼ M2
��
b
þM2

�bbb
� 2M2

��
bb
: (52e)

(6) When i ¼ c, j ¼ b, q ¼ n, s, c, b,

�ð3=2Þ
þ

cb ¼ M2
��
cc
þM2

��
bb
� 2M2

��
bc

¼ M2
��
cc
þM2

��
bb
� 2M2

��
bc

¼ M2
�ccc

þM2
��
bbc

� 2M2
��
bcc

¼ M2
��
bcc

þM2
�bbb

� 2M2
��
bbc
: (52f)

TABLE II. The values of �mij for some multiplets (in units of
GeV2).

�mns �msc �mnc �mcb �msb �mnb

1 1S0 0.016 1.623 1.931 16.898 29.179 30.769

1 3S1 0.015 1.682 2.125 18.294 31.930 33.387

1 3P2 0.018 1.785 2.281 18.042 32.434 34.018

1 1P1 2.198
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From Eqs. (52a)–(52c), one can get the quadratic mass
Eqs. (25)–(29) in Ref. [23] derived by Burakovsky et al.
The linear forms of Eqs. (52a)–(52c) were obtained by
Hendry and Lichtenberg in the quark model [26], by
Verma and Khanna considering the second-order effects
arising from the 84 representation of SU(4) [27] and in the
framework of SU(8) symmetry [28], and by Singh et al.
studying SU(4) second-order mass-breaking effects with a
dynamical consideration [29] (bottom baryons were not
included in Refs. [23,26–29]). The linear forms of
Eqs. (52a)–(52f) were derived by Singh and Khanna in
the nonrelativistic additive quark model [30] and by Singh
using broken SU(6) internal symmetry including second-
order mass contributions [31]. We will show some argu-
ments in Sec. IV which support the quadratic form mass
formulas for mesons and baryons rather than the linear
form.

2. Mass relations for the 1
2
þ multiplet

For the 1
2
þ multiplet, it is very different from the 3

2
þ

multiplet because there are different ways for the spins of
the constituent quarks to form the total spin S ¼ 1

2 . Three

constituent quarks in a 1
2
þ baryon can be regarded as a

quark and a scalar diquark or regarded as a quark and an
axial-vector diquark. Regge slopes of �, �c, �b, �c, and
�b are slightly bigger than those of�,�c,�b,�

0
c, and�

0
b,

respectively, although sometimes they can be considered to
be approximately equal [23,60]. Regge intercepts of�,�c,
�b, �c, and �b are much bigger than those of �, �c, �b,
�0
c, and �0

b, respectively. However, these cannot be re-

flected from Eqs. (45) and (46). Therefore, some of the 1
2
þ

baryons may not be related as the 3
2
þ baryons.

The Qqq0 and QQ0q (where q and q0 denote the light
quarks and Q and Q0 denote the heavy quarks c or b)
baryon states are believed to be described by the quark-
diquark picture: Two light quarks qq0 are bound into a
color antitriplet system with the size comparable to the
QCD scale in the Qqq0 baryon state [61,62]; two heavy
quarks QQ0 are bound into a small (compared with the
QCD scale) color antitriplet system in the QQ0q baryon
state [61,63]. The heavy baryons which are composed of a
heavy quark and a light axial-vector diquark (�Q,�Q, and

�Q) belong to a 6 representation of flavor SU(3) [15].

Therefore, �ð1=2Þþ
ns can be expressed as

�ð1=2Þþ
ns ¼ M2

�c
þM2

�c
� 2M2

�0
c
¼ M2

�b
þM2

�b
� 2M2

�0
b
:

(53)

For the doubly heavy baryons which are composed of a

light quark and a heavy axial-vector diquark, �ð1=2Þþ
bc can be

expressed as

�ð1=2Þþ
bc ¼ M2

�cc
þM2

�bb
� 2M2

�0
bc

¼ M2
�cc

þM2
�bb

� 2M2
�0
bc
: (54)

Since �bqq0 is determined by the dynamics of the light

diquark system qq0 inside a heavy baryon Qqq0 and since
this dynamics is independent of flavor and spin of the
heavy quark due to the SUð2ÞfN SUð2Þs symmetry in

the heavy quark limit [64], we assume that �ð1=2Þþ
ns for the

1
2
þ charmed (bottom) sextet equals �ð3=2Þþ

ns for the 3
2
þ

charmed (bottom) sextet, �ð1=2Þþ
ns ¼ �ð3=2Þþ

ns . This relation
holds exactly when the masses of charmed and bottom
quarks are taken to be infinitely large. Deviations from
this relation are due to 1

mc
and 1

mb
corrections. Then, one can

have

M2
�c

þM2
�c

� 2M2
�0
c
¼ M2

��
c
þM2

��
c
� 2M2

��
c
; (55)

M2
�b

þM2
�b

� 2M2
�0
b
¼ M2

��
b
þM2

��
b
� 2M2

��
b
: (56)

There are two linear mass equations similar to the above
quadratic mass equations,

M�c
þM�c

� 2M�0
c
¼ M��

c
þM��

c
� 2M��

c
; (57)

M�b
þM�b

� 2M�0
b
¼ M��

b
þM��

b
� 2M��

b
; (58)

which were extracted by Jenkins in the 1=mQ and 1=Nc
expansions [33]. Similarly, assuming that �ð1=2Þþ

bc ¼
�ð3=2Þþ
bc , one can have

M2
�cc

þM2
�bb

� 2M2
�0
bc
¼ M2

�cc
þM2

�bb
� 2M2

�0
bc

¼ M2
��
cc
þM2

��
bb
� 2M2

��
bc

¼ M2
��
cc
þM2

��
bb
� 2M2

��
bc
: (59)

From Eq. (52), we can have a relation for the 3
2
þ baryons,

ðM2
��
cc
�M2

��
cc
Þ þ ðM2

�� �M2
�� Þ ¼ ðM2

��
c
�M2

��
c
Þ: (60)

Its corresponding relation for the 1
2
þ baryons is

ðM2
�cc

�M2
�cc

Þ þ ðM2
�
�M2

�Þ ¼ ðM2
�c

�M2
�c
Þ: (61)

The linear form of Eq. (61) can satisfy the instanton model
[25] and has been given by Verma and Khanna considering
the second-order effects arising from the 84 representation
of SU(4) [27]. A different relation,

ðM2
�cc

�M2
�cc

Þ þ
�
3M2

� þM2
�

4
�M2

N

�

¼ 2

�M2
�c

þM2
�0
c

2
� 3M2

�c
þM2

�c

4

�
; (62)
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has been proposed in Ref. [23]. However, the linear form of
Eq. (62) cannot satisfy the instanton model [25].
Furthermore, the value of ðM2

�cc
�M2

�cc
Þ given by

Eq. (61) (� 0:94 GeV2) is close to the value of ðM2
��
cc
�

M2
��
cc
Þ given by Eq. (60) (� 0:89 GeV2), while the value of

ðM2
�cc

�M2
�cc

Þ given by Eq. (62) (� 1:39 GeV2) is much

larger. We will use Eq. (61) rather than Eq. (62) to extract
the mass of �cc in Sec. III.

III. SOME APPLICATIONS

In this section, we will apply the relations we have
obtained in Sec. II to discuss the mass ranges of mesons
and baryons, the masses of the �bc and s�s meson states, the
properties of �þ

ccð3520Þ, the parameters of the Regge
trajectories for the 1

2
þ and 3

2
þ multiplet, and the properties

of the charm-strange baryons (some of which have just
been observed).

A. Mass ranges of mesons and baryons

Using Eqs. (32) and (33), we calculate the upper and
lower mass limits for some meson states (s�s, c �n, �bn, �bc, c�s,
and �bs) of different multiplets and some baryon states of 12

þ

and 3
2
þ multiplets. The results for mesons are shown in

Tables III and IV in comparison with the measured meson
masses [15]. The results for baryons are shown in Table V
in comparison with the measured baryon masses [15].
The masses of the pure s�s states cannot be directly

measured experimentally because of the usual mixing of
the pure isoscalar n �n and s�s states. The way to extract
masses of the pure s�s states will be displayed in the next
section. In calculating the mass limits about the c �s and �bs
states in Table IV, we approximately use the values offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K �M2
�

q
(given by the quadratic GMO formulaM2

� þ
M2
s�sð11S

0
Þ ¼ 2M2

K), M� and Mf0
2
ð1525Þ to replace Ms�sð11S

0
Þ,

Ms�sð13S
1
Þ, and Ms�sð13P

2
Þ, respectively. f02ð1525Þ was proved

TABLE III. The numerical results for upper and lower limits for the masses of mesons (s�s, c �n, and �bn) obtained from Eqs. (26) and
(29) in comparison with the experimental data (in units of GeV).

N 2Sþ1LJ Inequalities Lower and upper limits

s �s sector
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

n�s �M2
n �n

q
<Ms �s < 2Mn�s �Mn �n

1 1S0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K �M2
�

q
<Ms �s < 2MK �M� 0:687<Ms �s < 0:854

1 3S1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K� �M2
�

q
<Ms �s < 2MK� �M� 0:998<Ms �s < 1:012

1 3P2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K�
2
�M2

a2ð1320Þ
q

<Ms �s < 2MK�
2
�Ma2ð1320Þ 1:538<Ms �s < 1:547

1 1D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K2ð1770Þ �M2
�2ð1670Þ

q
<Ms �s < 2MK2ð1770Þ �M�2ð1670Þ 1:868<Ms �s < 1:874

1 3D3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2

K�
3
�M2

�3

q
<Ms �s < 2MK�

3
�M�3

1:859<Ms �s < 1:863

c �n sector ðMn �n þMc �cÞ=2<Mc �n <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

n �n þM2
c �cÞ=2

q
1 1S0 ðM� þM�cð1SÞÞ=2<MD <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

� þM2
�cð1SÞÞ=2

q
1:559< 1:867ðexpÞ< 2:110

1 3S1 ðM� þMJ= ð1SÞÞ=2<MD� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

� þM2
J= ð1SÞÞ=2

q
1:936< 2:008ðexpÞ< 2:257

1 3P2 ðMa2ð1320Þ þM	c2ð1PÞÞ=2<MD�
2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

a2ð1320Þ þM2
	c2ð1PÞÞ=2

q
2:437< 2:460ðexpÞ< 2:682

1 1P1 ðMb1ð1235Þ þMhcð1PÞÞ=2<MD1ð2420Þ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

b1ð1235Þ þM2
hcð1PÞÞ=2

q
2:378< 2:423ðexpÞ< 2:640

1 3P1 ðMa1ð1260Þ þM	c1ð1PÞÞ=2<MD1ð13P1
Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

a1ð1260Þ þM2
	c1ð1PÞÞ=2

q
2:370<MD1ð13P1

Þ < 2:630

1 3D1 ðM�ð1700Þ þM ð3770ÞÞ=2<MD�ð13D
1
Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

�ð1700Þ þM2
 ð3770ÞÞ=2

q
2:746<MD�ð13D

1
Þ < 2:931

2 1S0 ðM�ð1300Þ þM�cð2SÞÞ=2<MDð21S
0
Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

�ð1300Þ þM2
�cð2SÞÞ=2

q
2:419<MDð21S

0
Þ < 2:756

2 3S1 ðM�ð1450Þ þM ð2SÞÞ=2<MD�ð23S
1
Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

�ð1450Þ þM2
 ð2SÞÞ=2

q
2:573<MD�ð23S

1
Þ < 2:803

�bn sector ðMn �n þMb �bÞ=2<M �bn <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

n �n þM2
b �b
Þ=2

q
1 1S0 ðM� þM�bð1SÞÞ=2<MB <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

� þM2
�bð1SÞÞ=2

q
4:719< 5:279ðexpÞ< 6:577

1 3S1 ðM� þM�ð1SÞÞ=2<MB� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

� þM2
�ð1SÞÞ=2

q
5:118< 5:325ðexpÞ< 6:712

1 3P2 ðMa2ð1320Þ þM	b2ð1PÞÞ=2<MB�
2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

a2ð1320Þ þM2
	b2ð1PÞÞ=2

q
5:615< 5:743ðexpÞ< 7:071

1 3P1 ðMa1ð1260Þ þM	b1ð1PÞÞ=2<MB1ð13P1
Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

a1ð1260Þ þM2
	b1ð1PÞÞ=2

q
5:561<MB1ð13P1

Þ < 7:049

2 3S1 ðM�ð1450Þ þM�ð2SÞÞ=2<MB�ð23S
1
Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

�ð1450Þ þM2
�ð2SÞÞ=2

q
5:741<MB�ð23S

1
Þ < 7:162

2 3P2 ðMa2ð1700Þ þM	b2ð2PÞÞ=2<MB�
2
ð23P

2
Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

a2ð1700Þ þM2
	c2ð2PÞÞ=2

q
6:000<MB�

2
ð23P

2
Þ < 7:363
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to be a nearly pure tensor s�s state (� 98:2%) [65]. These
approximations shift the mass limits of the c�s and �bs states
only a few MeV.

It can be seen from Tables III, IV, and V that the
inequalities (32) and (33) [which were given from the

inequalities (26) and (29)–(31)] agree well with the exist-
ing experimental data [15]. The inequalities (32) and (33)
also give predictions for the mass ranges of some hadrons
which have not been observed. More detailed discussions

TABLE IV. The numerical results for upper and lower limits for the masses of mesons ( �bc, c�s, and �bs) obtained from Eqs. (26) and
(29) in comparison with the experimental data (in units of GeV).

N 2Sþ1LJ Inequalities Lower and upper limits

�bc sector ðMc �c þMb �bÞ=2<M �bc <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

c �c þM2
b �b
Þ=2

q
1 1S0 ðM�cð1SÞ þM�bð1SÞÞ=2<MBc <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

�cð1SÞ þM2
�bð1SÞÞ=2

q
6:140< 6:286ðexpÞ< 6:906

1 3S1 ðMJ= ð1SÞ þM�ð1SÞÞ=2<MB�
c
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

J= ð1SÞ þM2
�ð1SÞÞ=2

q
6:279<MB�

c
< 7:039

1 3P2 ðM	c2ð1PÞ þM	b2ð1PÞÞ=2<MB�
c2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

	c2ð1PÞ þM2
	b2ð1PÞÞ=2

q
6:734<MB�

c2
< 7:446

1 3P0 ðM	c0ð1PÞ þM	b0ð1PÞÞ=2<MB�
c0
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

	c0ð1PÞ þM2
	b0ð1PÞÞ=2

q
6:637<MB�

c0
< 7:378

1 3P1 ðM	c1ð1PÞ þM	b1ð1PÞÞ=2<MBc1ð13P1
Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

	c1ð1PÞ þM2
	b1ð1PÞÞ=2

q
6:702<MBc1ð13P1

Þ < 7:423

1 3S1 ðM ð2SÞ þM�ð2SÞÞ=2<MB�
cð23S1Þ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

 ð2SÞ þM2
�ð2SÞÞ=2

q
6:855<MB�

cð23S1Þ < 7:552

c�s sector ðMc �c þMs �sÞ=2<Mc �s <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

c �c þM2
s�sÞ=2

q
1 1S0 ðM�cð1SÞ þMs�sð11S

0
ÞÞ=2<MDs

<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2

�cð1SÞ þM2
s�sð11S

0
ÞÞ=2

q
1:834< 1:968ðexpÞ< 2:163

1 3S1 ðMJ= ð1SÞ þMs �sð13S
1
ÞÞ=2<MD�

s
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2
J= ð1SÞ þM2

s �sð13S
1
ÞÞ=2

q
2:058< 2:112ðexpÞ< 2:305

1 3P2 ðM	c2ð1PÞ þMs�sð13P
2
ÞÞ=2<MD�

s2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2
	c2ð1PÞ þM2

s�sð13P
2
ÞÞ=2

q
2:541< 2:574ðexpÞ< 2:736

�bs sector ðMb �b þMs �sÞ=2<M �bs <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

b �b
þM2

s �sÞ=2
q

1 1S0 ðM�bð1SÞ þMs �sð11S
0
ÞÞ=2<MBs <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2
�bð1SÞ þM2

s �sð11S
0
ÞÞ=2

q
4:994< 5:368ðexpÞ< 6:594

1 3S1 ðM�ð1SÞ þMs�sð13S
1
ÞÞ=2<MB�

s
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2
�ð1SÞ þM2

s�sð13S
1
ÞÞ=2

q
5:240< 5:413ðexpÞ< 6:728

1 3P2 ðM	b2ð1PÞ þMs �sð13P
2
ÞÞ=2<MB�

s2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2
	b2ð1PÞ þM2

s �sð13P
2
ÞÞ=2

q
5:719< 5:840ðexpÞ< 7:091

TABLE V. The numerical results for upper and lower limits for the masses of baryons obtained from Eqs. (30) and (31) in
comparison with the experimental data (in units of GeV).

JP ¼ 1
2
þ inequalities Lower and upper limits

ðMN þM�Þ=2< ð3M� þM�Þ=4<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

N þM2
�
Þ=2

q
1:128< 1:135ðexpÞ< 1:144

ðM�c
þM�c

Þ=2<M�c
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

�c
þM2

�c
Þ=2

q
2:576< 2:577ðexpÞ< 2:578

ðMN þM�cc
Þ=2< ð3M�c

þM�c
Þ=4<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

N þM2
�cc

Þ=2
q

3:156<M�cc
< 3:718

ðMN þM�bb
Þ=2< ð3M�b

þM�b
Þ=4<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

N þM2
�bb

q
Þ=2 7:965<M�bb

< 10:403

JP ¼ 3
2
þ inequalities Lower and upper limits

ðM� þM�� Þ=2<M�� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

� þM2
�� Þ=2

q
1:383< 1:385ðexpÞ< 1:391

ðM�� þM�Þ=2<M�� <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

�� þM2
�Þ=2

q
1:529< 1:533ðexpÞ< 1:535ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
��
c
�M2

��
c

q
<M��

c
< 2M��

c
�M��

c
2:766< 2:768ðexpÞ< 2:778ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
��
c
�M2

�

q
<M��

cc
< 2M��

c
�M� 3:341<M��

cc
< 3:804ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
��
c
�M2

�

q
<M��

cc
< 2M��

c
�M� 3:414<M��

cc
< 3:759ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
��
c
�M2

�

q
<M��

cc
< 2M��

c
�M� 3:477<M��

cc
< 3:908ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
�c

�M2
�

q
<M��

cc
< 2M�c

�M� 3:544<M��
cc
< 3:869ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
��
b
�M2

�

q
<M��

bb
< 2M��

b
�M� 8:156<M��

bb
< 10:433
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about the inequalities derived in this work and those in
Refs. [17–20] will be given in Sec. IV.

B. Masses of the �bc and s�s meson states

1. Masses of the �bc meson states

The �bc (or b �c) meson states are special systems with two
heavy quarks of different flavors. The presence of both
such quarks impacts the production, decay, and mass prop-
erties of the �bc mesons. Until recently, only the pseudo-
scalar mesons B�

c have been observed experimentally
[15,66]. The copious productions of Bc mesons and their
radial and orbital excitations are expected at the experi-
mental facilities such as the Large Hadron Collider (LHC)
at CERN. The masses of �bcmesons have been predicted in
many different approaches [21,67–78]. In the following,
we will use Eq. (16) to calculate the masses of Bc, B

�
c, and

B�
c2 meson states and compare the results with those given

in Refs. [21,67–78].

For the 11S0 multiplet, when i ¼ n, j ¼ c, and k ¼ b,
inserting the masses of �, �cð1SÞ, �bð1SÞ, D, and B into
Eq. (16), the mass of Bc can be extracted. For the 13S1
multiplet, when i ¼ n, j ¼ c, and k ¼ b, inserting the
masses of �, J= ð1SÞ, �ð1SÞ, D�, and B� into Eq. (16),
the mass of B�

c can be extracted. For the 13P2 multiplet,
when i ¼ n, j ¼ c, and k ¼ b, inserting the masses of
a2ð1320Þ, 	c2ð1PÞ, 	b2ð1PÞ, D�

2ð2460Þ, and B�
2ð5740Þ

which was observed recently [1] into Eq. (16), the mass
of B�

c2 can be extracted. Comparison of the masses of Bc,
B�
c, and B

�
c2 extracted in the present work and those given

by other references is shown in Table VI. The application
of Eq. (18) (baryon case) will be performed in Sec. III D.
If Eq. (2) (the additivity of inverse slopes) were replaced

by Eq. (6) (the factorization of slopes) in the derivation of
Eq. (16), we would have the following equation instead of
Eq. (16):

ð2M4
i �j
�M2

i�i
M2
j �j
Þ þ 2M2

i �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M4

i �j
�M2

i�i
M2
j �j
Þ

q
M4
j �j

¼
½ð2M4

i �k
�M2

i�i
M2
k �k
Þ þ 2M2

i �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M4

i �k
�M2

i�i
M2
k �k
Þ

q
�=M4

k �k

½ð2M4
j �k
�M2

j �j
M2
k �k
Þ þ 2M2

j �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M4

j �k
�M2

j �j
M2
k �k
Þ

q
�=M4

k �k

: (63)

Applying this equation to the 11S0, 1
3S1, and 1

3P2 multiplets wewould extract the masses ofBc,B
�
c, andB

�
c2 which are also

shown in Table VI.
In Ref. [22], under the approximation that mesons in the light quark sector have the common Regge slopes, a 14th power

meson mass relation,

½ðM2
s�s �M2

n �nÞðM2
c �cM

2
n �b
ðM2

c�s �M2
c �nÞ þM2

b �b
M2
c �nðM2

s �b
�M2

n �b
ÞÞ �M2

n �nðM2
c �c þM2

b �b
ÞðM2

c�s �M2
c �nÞðM2

s �b
�M2

n �b
Þ�

� ½ðM2
s �s �M2

n �nÞðM2
n �b
ðM2

c�s �M2
c �nÞ þM2

c �nðM2
s �b
�M2

n �b
ÞÞ � 2M2

n �nðM2
c�s �M2

c �nÞðM2
s �b
�M2

n �b
Þ�

¼ 4M2
b �cðM2

c�s �M2
c �nÞðM2

s �b
�M2

n �b
ÞðM2

c �nM
2
s �s �M2

c�sM
2
n �nÞðM2

n �b
M2
s�s �M2

s �b
M2
n �nÞ; (64)

was derived to predict the mass of B�
c with the valueMB�

c
¼

6:285 GeV. The results of applying Eq. (64) with the
existing experimental data [15] for the 11S0, 1

3S1, and
13P2 multiplets to extract the masses of Bc, B

�
c, and B

�
c2

are also shown in Table VI.

2. Masses of the pure s�s states

The masses of the pure s�s states cannot be directly
measured experimentally because of the usual mixing of
the pure isoscalar n �n and s�s states. However, the compari-
son of the mass of the pure s�s state with that of the physical

TABLE VI. The masses of Bc, B
�
c, and B

�
c2 (in units of GeV).

States (N 2Sþ1LJ) Present work Eq. (63) Eq. (64) Exp [21] [67] [68] [69] [70]

Bc (1
1S0) 6.264 6.404 6.142 6.276a 6.263 6.270 6.253 6.264 6.247

B�
c (1

3S1) 6.356 6.502 6.292 6.354 6.332 6.317 6.337 6.308

B�
c2 (1 3P2) 6.814 6.940 6.767 6.781 6.762 6.743 6.747 6.773

States (N 2Sþ1LJ) Present work [71] [72] [73] [74] [75] [76] [77] [78]

Bc (1
1S0) 6.264 6.271 6.286 6.310 6.255 6.280 6.255 6.258 6.28

B�
c (1

3S1) 6.356 6.338 6.341 6.355 6.320 6.321 6.333 6.334 6.35

B�
c2 (1 3P2) 6.814 6.768 6.772 6.773 6.770 6.783

aThe CDF Collaboration confirms their earlier report [79] with higher statistical samples with a significance greater than 8
 [66].
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state can help us to understand the mixing of the two
isoscalar states of a meson nonet.

The masses of the pure s�s states can be calculated from
Eq. (16). When i ¼ n, j ¼ s, k ¼ b or c, inserting the
corresponding masses into Eq. (16), the masses of s�s for
the 11S0, 13S1, and 13P2 multiplets are extracted and

shown in Table VII.
In Ref. [22], under the approximation that mesons in the

light quark sector have the common Regge slopes, two 6th
power meson mass relations were derived to predict the
masses of c �c and b �b meson states, respectively. Those two
6th power meson mass relations can be written as follows:

ðM2
s�sM

2
n �Q

�M2
n �nM

2
s �Q
ÞðM2

s�s �M2
n �nÞ

þM2
QQðM2

s �Q
�M2

n �Q
ÞðM2

s �s �M2
n �nÞ

¼ 4ðM2
s�sM

2
n �Q

�M2
n �nM

2
s �Q
ÞðM2

s �Q
�M2

n �Q
Þ; (65)

where Q denotes c or b. The results of applying Eq. (65)
for the 11S0, 13S1, and 13P2 multiplets to extract the

masses of the s�s states are also shown in Table VII.
From Table VI, one can see that the masses of Bc, B

�
c,

and B�
c2 given by Eq. (63) are bigger than those given in

Refs. [21,67–78]. The mass of the Bc meson given by
Eq. (16) (present work) is better than those given by
Eqs. (63) and (64) comparing with experimental data.
The masses of Bc, B

�
c, and B

�
c2 given by Eq. (16) (present

work) are in reasonable agreement with those given in
Refs. [21,67–78]. From Table VII, one can see that the
masses of the pure s�s state in the same multiplet given by
Eq. (16) are approximately the same when we choose k ¼
c and k ¼ b and they all satisfy the mass ranges shown in
Table III which are given by the linear mass inequality (26)
and quadratic mass inequality (29). However, the masses of
the pure s�s states given by Eq. (65) do not satisfy these
constrains.

As mentioned above, Eq. (65) was derived under the
approximation that mesons in the light quark sector have
the common Regge slopes and was applied for predicting
the masses of charmonium and bottomonium [22].
Obviously, Eq. (65) may be limited by this approximation
while predicting the masses of light hadrons. Equation (64)
was extracted under the same arguments on which Eq. (65)
is based [22]. When i ¼ n, j ¼ s, and k ¼ Q, Eq. (16) can
be reduced to Eq. (65) if we choose �s�s

�n �n
¼ 1. Furthermore,

with Eq. (16) one needs less meson states than those in the
case of Eq. (64) to predict the masses of �bc states.
Therefore, Eq. (16) can properly describe the present me-
son spectroscopy [15].

C. Doubly charmed baryon �þ
ccð3520Þ

The doubly charmed baryon �þ
ccð3520Þ, which is com-

posed of two charm quarks and one down quark, was first
reported in the charged decay mode �þ

cc ! �þ
c K

��þ
(SELEX 2002) and confirmed in the decay mode �þ

cc !
pDþK� (SELEX 2005). These reports were adopted by
the Particle Data Group [15] with the average mass
3518:9� 0:9 MeV. However, the JP number has not
been determined experimentally. Moreover, it has not
been confirmed by other experiments (notably by BABAR
[12], BELLE [13] and FOCUS [14]), even though they
have O(10) (FOCUS) and O(100) (BABAR, Belle) more
reconstructed charm baryons than SELEX. This experi-
mental puzzle raised many theoretical discussions [80–
82]. It was suggested that �þ

ccð3520Þ should be the ground
state (L ¼ 0) with JP ¼ 1

2
þ or 3

2
þ due to its mass [80–82].

Now we will see whether the state �þ
ccð3520Þ could be

assigned as a 3
2
þ doubly charmed baryon. Let us first

assume that �þ
ccð3520Þ belongs to the 3

2
þ multiplet. When

j ¼ c, i ¼ n, and q ¼ n, from Eq. (13), we have

�0
��
cc

�0
�

¼ 1

2M2
�ccð3520Þ

� ½ð4M2
��
c
�M2

� �M2
�ccð3520ÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

��
c
�M2

� �M2
�ccð3520ÞÞ2 � 4M2

�M
2
�ccð3520Þ

q
�; (66)

�0
��
c

�0
�

¼ 1

4M2
��
c

� ½ð4M2
��
c
þM2

� �M2
�ccð3520ÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

��
c
�M2

� �M2
�ccð3520ÞÞ2 � 4M2

�M
2
�ccð3520Þ

q
�: (67)

When j ¼ c, i ¼ s, and q ¼ n, from Eq. (13), we have

TABLE VII. The masses of the pure s�s states in pseudoscalar, vector, and tensor meson multiplets given by Eqs. (16) and (65) (in
units of GeV).

N 2Sþ1LJ Eq. (16), i, j, k ¼ n, s, c Eq. (16), i, j, k ¼ n, s, b Eq. (65), Q ¼ c Eq. (65), Q ¼ b

1 1S0 0.697 0.698 0.761 or 0.157 0.927 or 0.147

1 3S1 1.009 1.006 0.891 or 1.079 0.841 or 1.145

1 3P2 1.546 1.544 1.492 or 1.582 1.423 or 1.627
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�0
��
cc

�0
��

¼ 1

2M2
�ccð3520Þ

� ½ð4M2
��
c
�M2

�� �M2
�ccð3520ÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

��
c
�M2

�� �M2
�ccð3520ÞÞ2 � 4M2

��M2
�ccð3520Þ

q
�: (68)

From Eq. (46), we have

1

�0
�

þ 2

�0
�

¼ 3

�0
��
: (69)

Inserting the masses of�,��
c, and�

þ
ccð3520Þ into Eq. (67),

we have

�0
��
c
¼ 0:867�0

�:

Inserting the masses of �, ��
c,�

�,��
c, and�

þ
ccð3520Þ into

Eqs. (66) and (68), with the aid of Eq. (69), we have

�0
� ¼ 0:860�0

�:

Therefore, �0
� & �0

��
c
. This does not agree with the

usual belief that the slopes of charmed baryons should be
much smaller than the slopes of light noncharmed baryons.
We have calculated the numerical results of �0

�=�
0
��
c
and

find that it increases with the mass increase of ��
cc.

Therefore, the mass of ��
cc should be much bigger than

the mass of �þ
ccð3520Þ. In other words, the mass of

�þ
ccð3520Þ is too small to be assigned as the 3

2
þ doubly

charmed baryons.
According to the quark model, the lowest lying baryon

states should be the ground states (L ¼ 0) including the
J ¼ 1

2
þ and J ¼ 3

2
þ doublets. In the above discussion, we

have manifested that the mass of �þ
ccð3520Þ is too small to

be assigned as the 3
2
þ doubly charmed baryons in Regge

phenomenology. Therefore, we can conclude that
�þ
ccð3520Þ should be the ground state with its JP as 1

2
þ.

This assignment coincides with the fact that �þ
ccð3520Þ is

observed to decay only weakly [3] [if the JP of �þ
ccð3520Þ

were 3
2
þ, it should decay electromagnetically [80]].

Inserting the masses of �, �, �c, �c, and �þ
ccð3520Þ

into Eq. (60), we can get the mass of �cc, M�cc
¼

3650:4� 6:3 GeV, where the uncertainty comes from the
errors of the input data. Comparison of the masses of �cc

and �cc extracted in the present work and those given in
other references is shown in Table VIII.

D. Parameters of Regge trajectories for the 3
2
þ SU(4)

multiplet

In Ref. [21], the parameters of Regge trajectories for
different meson multiplets and the masses of the meson
states lying on those Regge trajectories were estimated. In
this section, we will first extract the masses of the 3

2
þ SU(4)

baryons absent from the baryon summary table so far. And
then, with all the 3

2
þ SU(4) baryon masses and the value of

��, we will calculate all the parameters (Regge slopes and
intercepts) for the 3

2
þ baryon trajectories. After that, we

will estimate the masses of the orbital excited baryons
lying on these Regge trajectories.
All the masses of 3

2
þ light baryons and charmed baryons

are known experimentally. We need to know one of the
masses of the baryons ��

cc, �
�
cc, and �ccc to calculate the

masses of the other two states using the quadratic mass
equalities (52). First, we apply Eq. (18) to extract the mass
of ��

cc or �
�
cc. When i ¼ n, j ¼ c, and q ¼ s, we could

TABLE VIII. The masses of doubly and triply charmed baryons (in units of MeV). The numbers in boldface are the experimental
values taken as the input.

�cc �cc ��
cc ��

cc �ccc

Pre. 3518:9�0:9 3650:4� 6:3 3684:4� 4:4 3808:4� 4:3 4818:9� 6:8
[23] 3610� 3 3804� 8 3735� 17 3850� 25 4930� 45
[83] 3511 3664 3630 3764 4747

[84] 3524 3524 3548 3548 4632

[82] 3510 3719 3548 3746 4803

[85] 3642 3732 3723 3765 4473

[86] 3676 3815 3753 3876 4965

[87] 3635 3800 3695� 60 3840� 60 4925� 90
[88] 3549� 13� 19� 92 3663� 11� 17� 95 3641� 18� 8� 95 3734� 14� 8� 97
[89] 3660� 70 3740� 80 3740� 70 3820� 80
[90] 3620 3778 3727 3872

[91] 3520 3619 3630 3721

[92] 3478 3594 3610 3730

[93] 3737 3797 4787

[94] 3550� 80 3650� 80
[95] 4760� 60
[96] 4790

SOME MASS RELATIONS FOR MESONS AND BARYONS IN . . . PHYSICAL REVIEW D 78, 056005 (2008)

056005-13



insert the masses of�,��,��,��
c, and�

�
c into the relation

(18) to calculate M��
cc
. When i ¼ s, j ¼ c, and q ¼ s, we

could insert the masses of ��, ��, �, ��
c, and ��

c into the
relation (18) to calculate M��

cc
. However, we find that the

numerical results of M��
cc
and M��

cc
are very sensitive to

the errors of the light baryon masses. Therefore, another
way is needed to calculate the mass of ��

cc or ��
cc. In

Sec. III C,�þ
ccð3520Þwas assigned as the ground 1

2
þ doubly

charmed baryon. This may open a window to extract the
masses of 3

2
þ doubly charmed baryons.

The first-order GMO formula for the baryon octet,

2ðMN þM�Þ ¼ ð3M� þM�Þ; (70)

is usually generalized to charmed cases by replacing the
s quark with the c quark,

2ðMN þM�cc
Þ ¼ 3M�c

þM�c
: (71)

The quadratic form of Eq. (71) is

2ðM2
N þM2

�cc
Þ ¼ 3M2

�c
þM2

�c
: (72)

However, the existence of high-order breaking effects in

Eqs. (71) and (72) is obvious [23]. We use �ð1=2Þþ
nc to denote

this effect in Eq. (72),

�ð1=2Þþ
nc ¼ M2

N þM2
�cc

� 2

�3M2
�c

þM2
�c

4

�
: (73)

Assuming that �ð1=2Þþ
nc ¼ �ð3=2Þþ

nc , we have

�ð1=2Þþ
nc ¼ M2

N þM2
�cc

� 2

�3M2
�c

þM2
�c

4

�
¼ �ð3=2Þþ

nc

¼ M2
� þM2

��
cc
� 2M2

��
c
: (74)

Inserting the masses of N, �c, �c, �
þ
ccð3520Þ, �, and ��

c

into Eq. (74), we have M��
cc
¼ 3684:4� 4:4 MeV, where

the uncertainty comes from the errors of the input data.
Then, inserting the masses of�,�,��

c,�
�
c, and�

�
cc into

Eqs. (18) and (52a), we have

ð4M2
�� �M2

� �M2
�� Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

�� �M2
� �M2

�� Þ2 � 4M2
��M2

��
q

2M2
��

¼
½ð4M2

��
c
�M2

� �M2
��
cc
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

��
c
�M2

� �M2
��
cc
Þ2 � 4M2

�M
2
��
cc

q
�=2M2

��
cc

½ð4M2
��
c
�M2

�� �M2
��
cc
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4M2

��
c
�M2

�� �M2
��
cc
Þ2 � 4M2

��M2
��
cc

q
�=2M2

��
cc

; (75)

M2
� þM2

�� � 2M2
�� ¼ M2

�� þM2
� � 2M2

�� : (76)

Then, we have the masses of �� and ��. Inserting the
masses of ��, ��, �, ��

c, �
�
c, and ��

cc into the quadratic
mass equations in Eq. (52), we have the masses of��

c,�
�
cc,

and �ccc.
In this way, all the masses of 3

2
þ SU(4) baryons are

known. With these masses and the value �0
� ¼

2=ðM2
�ð1950Þ �M2

�Þ ¼ 0:9022� 0:0285 GeV�2 [where

the uncertainty comes from the errors of the input masses
of �ð1950Þ and �], we have all the Regge slopes of 3

2
þ

trajectories from Eq. (13). Then, with these masses and the
obtained Regge slopes, we have all the Regge intercepts of
3
2
þ trajectories from Eq. (1).

From Eq. (1), one has

MJþ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
J þ

2

�0

s
: (77)

Then, using this equation, the masses of the orbital excited
baryons (JP ¼ 7

2
þ, 112

þ) lying on the 3
2
þ trajectories can be

calculated. The Regge intercepts and the Regge slopes of
the 3

2
þ trajectories are shown in Table IX. The masses of

light baryons, charmed baryons, and doubly and triply
charmed baryons lying on the 3

2
þ trajectories are shown

in Tables X, XI, and XII, respectively.

TABLE IX. The Regge slopes (in units of GeV�2) and the Regge intercepts of the 3
2
þ trajectories.

� �� �� � ��
c ��

c ��
c ��

cc ��
cc �ccc

�0 0.902 0.862 0.825 0.791 0.644 0.623 0.604 0.501 0.488 0.410

�0:029 �0:036 �0:042 �0:047 �0:023 �0:026 �0:029 �0:019 �0:021 �0:016

að0Þ 0.131 �0:151 �0:432 �0:713 �2:583 �2:864 �3:145 �5:296 �5:577 �8:009
�0:046 �0:074 �0:102 �0:133 �0:147 �0:174 �0:203 �0:249 �0:276 �0:351
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The masses of ��
cc, �

�
cc, and �ccc extracted in the

present work and those given in other references are also
shown in Table VIII. From Table VIII, we can see that the
masses of 1

2
þ and 3

2
þ doubly and triply charmed baryons

predicted by us agree well with those given in most other
references. The predictions in Ref. [23] are bigger than

ours because of the approximation adopted there that bary-
ons in the light quark sector have common Regge slopes.
The mass splitting obtained in the framework of nonrela-
tivistic effective field theories of QCD, M��

cc
�M�cc

¼
120� 40 MeV (see Ref. [103], and references therein),
agrees with our present results shown Table VIII.

TABLE XI. The masses of the charmed baryons lying on the 3
2
þ trajectories (in units of MeV).

M��
c

M��
c

M��
c

J ¼ 3=2 J ¼ 7=2 J ¼ 11=2 J ¼ 3=2 J ¼ 7=2 J ¼ 11=2 J ¼ 3=2 J ¼ 7=2 J ¼ 11=2

Pre. 2518:0�1:9 3073� 18 3543� 30 2646:4�1:6 3196� 22 3664� 37 2774:1� 5:5 3318� 28 3784� 46
Exp 2518:0� 1:9 2646:6� 1:4 2768:3� 3
[83] 2481 2642 2764

[85] 2539 2651 2721

[86] 2519 3015 2650 3100 2776 3206

[89] 2520� 20 2650� 20 2770� 30
[90] 2518 3015 2654 3136 2768 3237

[101] 2495 3090

[102] 2510 3010

TABLE XII. The masses of the doubly and triply charmed baryons lying on the 3
2
þ trajectories (in units of MeV).

M��
cc

M��
cc

M�ccc

J ¼ 3=2 J ¼ 7=2 J ¼ 11=2 J ¼ 3=2 J ¼ 7=2 J ¼ 11=2 J ¼ 3=2 J ¼ 7=2 J ¼ 11=2

Pre. 3684:4� 4:4 4192� 19 4644� 32 3808:4� 4:3 4313� 23 4765� 39 4818:9� 6:8 5302� 21 5744� 34
Exp

[86] 3753 4097 3876 4230 4965 5331

[92] 3610 4089 3730

TABLE X. The masses of the light baryons lying on the 3
2
þ trajectories (in units of MeV). The numbers in boldface are the

experimental values taken as the input.

M� M��

J ¼ 3=2 J ¼ 7=2 J ¼ 11=2 J ¼ 3=2 J ¼ 7=2 J ¼ 11=2

Pre. 1232�1 1932:5�17:5 2440� 28 1383:9� 2:3 2058� 22 2560� 36
Exp 1232� 1 1915� 1950 2300� 2500 1384:6� 2:6 2015� 2040
[85] 1261 1951 2442 1411 2027

[97] 1232 1921 2175

[98] 1232 1950 2467 1394 2056

[99] 1290 1954 1377 2029

[100] 1232:9� 1:2 1923:3� 0:5
[101] 1230 1940 2450 1370 2060

[102] 1240 1915 1390 2015

M�� M�

J ¼ 3=2 J ¼ 7=2 J ¼ 11=2 J ¼ 3=2 J ¼ 7=2 J ¼ 11=2
Pre. 1530:2� 1:9 2183� 27 2681� 45 1672:45�0:29 2308� 32 2802� 54
Exp 1533:4� 2:1 1672:45� 0:29
[85] 1539 2169 1636 2292

[97]

[98] 1540 2157 1672

[99] 1502 2142 1665 2293

[101] 1505 2180 1635 2295

[102] 1530 1675
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E. Parameters of Regge trajectories for the 1
2
þ SU(4)

multiplet

Up to now, all the masses of ground 1
2
þ SU(4) baryons

are known. We will determine the Regge slopes and inter-
cepts of the 1

2
þ SU(4) multiplet and give predictions for

masses of the 5
2
þ and 9

2
þ baryon states lying on these Regge

trajectories.
Recently, the spin parity of the �þ

c ð2880Þ baryon was
determined by experiment. �þ

c ð2880Þ was observed by
CLEO in the �c�

þ�� mode [4] and then confirmed by
BABAR in theD0pmode recently [6]. From the analysis of
the angular distribution in its �cð2455Þ� decays and the
small ratio, ��cð2520Þ�=��cð2455Þ� ’0:23, measured by

BELLE it is concluded that the JP of �þ
c ð2880Þ is 5

2
þ [5].

This spin-parity assignment is in agreement with the theo-
retical investigation that �þ

c ð2880Þ is the orbital (L ¼ 2)
excitation of �þ

c [90,104]. Therefore, �þ
c ð2880Þ and �þ

c

lie on the common Regge trajectory. We can have the
Regge slope of �þ

c from Eq. (11),

�0
�c

¼
5
2 � 1

2

M2
�þ
c ð2880Þ �M2

�þ
c

¼ 0:650� 0:005 GeV�2: (78)

From Eq. (11), we also have

�0
N ¼ 2

M2
Nð1680Þ �M2

N

¼ 1:022� 0:009 GeV�2;

�0
� ¼ 2

M2
�ð1820Þ �M2

�

¼ 0:967� 0:009 GeV�2:

(79)

We assume that�0
� ¼ �0

�� ,�0
�
¼ �0

�� ,�0
�c

¼ �0
��
c
,�0

�0
c
¼

�0
��
c
, �0

�c
¼ �0

��
c
, �0

�cc
¼ �0

��
cc
, and �0

�cc
¼ �0

��
cc
.

Although the slopes of a heavy baryon containing a scalar
diquark and that containing an axial-vector diquark are
different, we assume that �s for the heavy baryons con-
taining scalar diquarks is approximately the same as �s for
heavy baryons containing axial-vector diquarks, i.e.,

1

�0
�c

� 1

��c

¼ 1

�0
�0
c

� 1

��c

:

Then, all the Regge slopes of 1
2
þ SU(4) baryons are known

and shown in Table XIII.
With the masses and the obtained Regge slopes for the

1
2
þ baryons, we have all the Regge intercepts of 1

2
þ trajec-

tories from Eq. (1). Then, using Eq. (77), the masses of
orbital excited baryons (JP ¼ 5

2
þ, 9

2
þ) lying on the 1

2
þ

trajectories can be calculated. The Regge intercepts of
the 1

2
þ trajectories are also shown in Table XIII. The masses

of light baryons, charmed baryons, and doubly charmed
baryons lying on the 1

2
þ trajectories are shown in

Tables XIV, XV, and XVI, respectively.

F. Charm-strange baryons

There are five charm-strange baryons presented in PDG
2006 [15]: �c, �0

c, ��
c, �cð2790Þ, and �cð2815Þ.

�cð2790Þ and �cð2815Þ were assigned as the first orbital
(1P) excitations of �c with JP ¼ 1�

2 and JP ¼ 3�
2 ,

respectively.

TABLE XIII. The Regge intercepts and Regge slopes of the 1þ
2 trajectories.

N � � � �c �c �c �0
c �c �cc �cc

að0Þ �0:401 �0:704 �0:727 �0:933 �2:900 �3:377 �3:337 �3:638 �3:892 �5:699 �6:002
�0:010 �0:011 �0:059 �0:082 �0:003 �0:137 �0:043 �0:184 �0:217 �0:228 �0:291

�0 1.022 0.967 0.862 0.825 0.650 0.644 0.629 0.623 0.604 0.501 0.488

�0:009 �0:009 �0:036 �0:042 �0:005 �0:022 �0:006 �0:026 �0:029 �0:018 �0:020

TABLE XIV. The masses of the light baryons lying on the 1þ
2 trajectories (in units of MeV). The numbers in boldface are the

experimental values taken as the input.

MN M� M� M�

J ¼ 1=2 J ¼ 5=2 J ¼ 9=2 J ¼ 1=2 J ¼ 5=2 J ¼ 9=2 J ¼ 1=2 J ¼ 5=2 J ¼ 9=2 J ¼ 1=2 J ¼ 5=2 J ¼ 9=2

Pre. 938:92 1685 2190 1115:683 1820 2319 1193:17 1935 2463 1318:07 2040 2566

�0:65 �5 �8:0 �0:006 �5 �7:8 �4:11 �27 �41 �4:31 �33 �50

Exp 938.92 1680 2200 1115.683 1815 2340 1193.17 1900 1318.07 2025

�0:65 �1690 �2300 �0:006 �1825 �2370 �4:11 �1935 �4:31 �5

[85] 939 1723 2221 1108 1834 2340 1190 1956 1310 2013

[97] 940 1722 2378

[98] 939 1779 2334 1144 1895 2424 1144 1895 2424 1317 2004 2510

[99] 990 1744 1115 1844 1192 1906 1317 2014

[100] 1683:2� 0:7 2270� 11
[101] 960 1770 2345 1115 1890 1190 1955 1305 2045

[102] 940 1715 1110 1815 1915 1940 1320
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Recently,�cð2980Þ and�cð3077Þ were first reported by
Belle [8] and then confirmed by BABAR [7]. BABAR also
reported the observation of �þ

c ð3055Þ and �þ
c ð3123Þ [9].

The JP of �cð2980Þ, �cð3055Þ, �cð3077Þ, and �cð3123Þ
have not been measured. The masses of these states imply
that they could be the states with the total quark orbital
angular momentumL ¼ 2. Here we attempt to study which
Regge trajectory these states may lie on.

From Table XV, it can be seen that the mass of�cð3123Þ
coincides with the mass of �0

cð52þÞ. Therefore, �cð3123Þ
probably lies on the Regge trajectory of�0

c. In other words,
�cð3123Þ may be the orbital excited (JP ¼ 5

2
þ) state of�0

c

containing an axial-vector diquark. This assignment is in
agreement with Ebert’s assignment in the relativistic quark
model [90]. We can also see that both the masses of
�cð3055Þ and �cð3077Þ are near the mass of �cð52þÞ.
The mass of �cð2980Þ is lower compared with that of
�cð52þÞ or �0

cð52þÞ.
The above comments can be seen more clearly when

combining with the slopes of these baryons. As mentioned
above, the slopes of Regge trajectories decrease with quark
mass increase. Therefore, the slope of �c (�

0
c, �

�
c) is less

than the slope of �c,

�0
�ð0;�Þ
c

< 0:650 GeV�2: (80)

Assuming that �cð2980Þ, �cð3055Þ, �cð3077Þ, or

�cð3123Þ lies on the same Regge trajectory with �ð0;�Þ
c ,

respectively, so that the difference between the angular

momenta of these baryons with those of �ð0;�Þ
c is �L ¼ 2,

we obtain the values of the Regge slopes for�ð0;�Þ
c shown in

Table XVII.
From the relation (80), Tables XIII, XV, and XVII, we

can conclude that �cð2980Þ cannot lie on the Regge tra-
jectory of�c,�

0
c, and�

�
c. [�cð2980Þ can be interpreted in

the relativistic quark as the first radial (2S) excitation of the
�c with J

P ¼ 1
2
þ containing the light axial-vector diquark

[90].] Both�cð3055Þ and�cð3077Þ can be assigned as the
JP ¼ 5

2
þ state. �cð3123Þ probably lies on the Regge tra-

jectory of�0
c. In other words,�cð3123Þ may be the orbital

excitated (�L ¼ 2) state of�0
c with J

P ¼ 5
2
þ containing an

axial-vector diquark. Further study is needed to determine
the JP of these states more accurately.

TABLE XV. The masses of the charmed baryons lying on the 1
2
þ trajectories (in units of MeV). The numbers in boldface are the

experimental values taken as the input.

M�c
M�c

M�c
M�0

c
M�c

J ¼ 1=2 J ¼ 5=2 J ¼ 9=2 J ¼ 1=2 J ¼ 5=2 J ¼ 9=2 J ¼ 1=2 J ¼ 5=2 J ¼ 9=2 J ¼ 1=2 J ¼ 5=2 J ¼ 9=2 J ¼ 1=2 J ¼ 5=2 J ¼ 9=2

Pre. 2286:46 2881:5 3737 2453:56 3021 3497 2469:5 3046 3529 2576:9 3138 3614 2697:5 3254 3729

�0:14 �0:3 �0:61 �0:85 �18 �31 �2:0 �7 �10 �4:2 �24 �40 �2:6 �26 �44

Exp 2286.46 2881.5 2453.56 2469.5 2576.9 2697.5

�0:14 0.3 �0:85 �1:2 �4:2 �2:6

[83] 2243 2380 2425 2530 2678

[85] 2272 2459 2469 2595 2688

[86] 2268 2887 2455 3003 2492 2995 2592 3100 2718 3196

[89] 2285� 1 2453� 3 2468� 3 2580� 20 2710� 30

[90] 2294 2883 2439 2960 2481 3042 2578 3087 2698 3187

[101] 2265 2910 2440 3065

[102] 2260 2810 2440 3010

TABLE XVI. The masses of the doubly charmed baryons lying on the 1
2
þ trajectories (in units of MeV). The numbers in boldface are

the experimental values taken as the input.

M�cc
M�cc

J ¼ 1=2 J ¼ 5=2 J ¼ 9=2 J ¼ 1=2 J ¼ 5=2 J ¼ 9=2

Pre. 3518:9�0:9 4047� 19 4514� 33 3650:4� 6:3 4174� 26 4639� 41
Exp 3518:9� 0:9
[86] 3676 4047 3815 4202

[92] 3478 4050 3594

TABLE XVII. The values (in units of GeV�2) of the Regge

slope for �ð0;�Þ
c given from Eq. (1) under the assumption that

�cð2790Þ, �cð2815Þ, �þ
c ð3055Þ, or �cð3123Þ lies on the same

Regge trajectory with �ð0;�Þ
c , respectively.

�cð2980Þ �cð3055Þ �cð3077Þ �cð3123Þ
�0
�c

0.728 0.619 0.591 0.547

�0
�0
c

0.907 0.944 0.703 0.643

�0
��
c

1.086 0.860 0.806 0.727
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IV. DISCUSSION AND CONCLUSION

In this work, under the main assumption that the quasi-
linear Regge trajectory ansatz is suitable to describe meson
spectra and baryon spectra, with the requirements of the
additivity of intercepts and inverse slopes, some useful
linear mass inequalities, quadratic mass inequalities, and
quadratic mass equalities are derived for mesons and
baryons.

Based on these relations, we have given upper limits and
lower limits for some mesons and baryons. The masses of
�bc and s�s belonging to the pseudoscalar ð11S0Þ, vector
ð13S1Þ, and tensor ð13P2Þ meson multiplets are also ex-
tracted. We suggest that the JP of�þ

ccð3520Þ should be 1
2
þ.

The parameters of the 1
2
þ and 3

2
þ SU(4) baryon trajectories

are extracted and the masses of the orbital excited baryons
lying on the 1

2
þ and 3

2
þ trajectories are estimated. We

propose that �cð3123Þ may be a candidate for the orbital
excitated (�L ¼ 2) state of�0

c with J
P ¼ 5

2
þ containing an

axial-vector diquark. The predictions are in reasonable
agreement with the existing experimental data and those
suggested in many other different approaches.

In Sec. II C, we showed that the linear mass GMO
formula is an inequality in fact and the quadratic mass
GMO formula is also an inequality with the sign opposite
to the linear case. Encouragingly, the linear meson mass
inequalities (26) and the linear baryon mass inequalities
(30) are similar to those derived from a general illation in
QCD for the ground hadron states [18–20] [The authors of
Ref. [20] also point out that the linear mass inequalities
(26) and (30) hold for many potentials, although the linear
baryon mass inequality (30) does not hold for some special
potentials.] In Ref. [19], Nussinov and Lampert showed
that the linear meson mass inequality (26) satisfies the
experimental data of the well-established multiplets (vec-
tor 13S1, tensor 1

3P2, axial-vector 1
3P1, and scalar 13P0)

with different flavor combinations of i and j, and the linear
baryon mass inequality (30) satisfies the experimental data
of the baryon octet and the baryon decuplet. They gave the
lower limits for the masses of some unobserved mesons
and baryons with the linear mass inequalities. In our work,
in addition to the lower limits, we also give the upper limits
for the masses of hadrons. We can see from Tables III, IV,
and V that these limits agree with the existing data. The
mass ranges in Tables III, IV, and V are narrow (smaller
than 0.5 GeV) for hadrons which do not contain a b quark.
These mass ranges will be useful for the discovery of the
unobserved hadron states. When a b quark is involved, the
mass ranges in Tables III, IV, and V become large (could be
as large as 1 to 2 GeV) and consequently, the constraints
become weaker. However, since many hadrons containing
a b quark have not been observed in experiments, these
mass ranges may also provide helpful guidance for the
discovery of these hadrons.

As far as we know, there is only one work to study the
quadratic meson mass inequalities. In Ref. [17], with the

current-algebra technique, corrections to the GMO qua-
dratic mass formula due to second-order SU(4) breaking
was discussed by Simard and Suzuki. They gave a qua-
dratic mass inequality for pseudoscalar mesons,

1
2 ½M2

� þ ð23M2
� þ 1

3M
2
�0 Þ� þM2

�cð1SÞ � 2M2
D > 0; (81)

and two quadratic mass inequalities for vector mesons,

1
2 ðM2

� þM2
!Þ þM2

J= ð1SÞ � 2M2
D� < 0; (82)

M2
� þM2

J= ð1SÞ � 2M2
D�
s
< 0: (83)

The sign of the quadratic mass inequality (81) is the
same as that of our quadratic mass inequality (29), but the
signs of the quadratic mass inequalities (82) and (83) are
opposite to that of our quadratic mass inequality (26). The
calculations (shown in Tables III and IV) manifest that the
quadratic mass inequalities (29) and (81) do satisfy the
present experimental data [15] while the quadratic mass
inequalities (82) and (83) do not.
We stress that quadratic baryon mass inequality (31) has

not been given before. From Tables III, IV, and V, we can
see that the inequalities (26) and (29)–(31) agree well with
the existing experimental data [15]. These inequalities (26)
and (29)–(31) indicate the existence of higher-order break-
ing effects.
For the Regge slopes of 3

2
þ SU(4) baryons, from

Table IX, we can see that �0
� >�0

�� >�0
�� >�0

� >

�0
��
c
> �0

��
c
> �0

��
c
> �0

��
cc
> �0

��
cc
> �0

�ccc
and a�ð0Þ >

a�� ð0Þ > a�� ð0Þ > a�ð0Þ > a��
c
ð0Þ > a��

c
ð0Þ > a��

c
ð0Þ >

a��
cc
ð0Þ > a��

cc
ð0Þ > a�ccc

ð0Þ. These inequalities coincide

with the expectation that the slopes of Regge trajectories
decrease with quark mass increase (flavor dependent).
From Table II, we can see that the values of �mij are very

sensitive to quark flavors i and j. For the same i and j, �mij
are approximately a constant (only a little different among
different multiplets). This character may be used to predict
meson masses approximately in some cases. The calcula-
tions (Table II) show that �ns < �sc < �nc < �cb < �sb <
�nb. For the light mesons and baryons, �ns is close to zero.
Letting �! 0, one can get the usual Gell-Mann–Okubo
quadratic relations, namely, the first order of Gell-Mann–
Okubo relations. For the heavy mesons or baryons, �Qq are

large. In this case, the quadratic mass inequalities are far
from equalities. These features imply that the higher-order
breaking effects arise with the quark mass increase.
To the second order, for baryons, as shown by Okubo

long ago [34], both the well-known mass relation for
the baryon octet [Eq. (70)] and the equal spacing rule for
the baryon decuplet (M� �M�� ¼ M�� �M�� ¼ M�� �
M�) do not hold. Only one relation remains,

M� �M� ¼ 3ðM�� �M�� Þ: (84)

This second-order linear mass equation was given by
Morpurgo in the relativistic field theory [35] and by
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Lebed in the chiral perturbation theory [36] and was also
given in Refs. [26–31] mentioned above.

A special equation among the masses of baryons involv-
ing only two flavors can be derived by taking �bijjq¼i ¼
�bijjq¼j in Eq. (51)

�bijjq¼i ¼ M2
iii þM2

jji � 2M2
iij ¼ �bijjq¼j

¼ M2
iij þM2

jjj � 2M2
ijj; (85)

namely,

M2
jjj �M2

iii ¼ 3ðM2
ijj �M2

iijÞ: (86)

In the light quark sector, when i ¼ n, j ¼ s, for the 3
2
þ

multiplet, we have

M2
� �M2

� ¼ 3ðM2
�� �M2

�� Þ: (87)

The quadratic equation (87) was also given by Tait in the
study of the unification SOð6; 1Þ as a spectrum generating
algebra [32].

In the light sector, both the linear mass equation,
Eq. (84), and the quadratic mass equation, Eq. (87), can
be satisfied by the experimental data. The deviations from
both of them are not more than 2%.

However, generally speaking, the linear mass relation
and the quadratic mass relation may not be held at the same
time. On the other hand, the quadratic mass equation (86)
and the linear form of Eq. (86) should give very different
mass values for heavy baryons. The masses of the charmed
and bottom particles discovered in the near future will
numerically test which of them is realized in nature.

Theoretically, we also have some reasons besides the
Regge theory to believe that mass formulas for mesons and
baryons should take the quadratic form rather than the
linear form: (1) The square of the mass operator ðM2Þ is
the Casimir invariant of the Poincare group independent of
any certain frame [105]; (2) formulas given by asymptotic
chiral symmetry are indeed in quadratic form [106]; (3) in
the infinite-momentum frame, formulas between energy
eigenvalues of hadrons spontaneously lead to quadratic
mass formulas [107]; (4) analysis on the algebraic ap-
proach indeed leads to quadratic mass formulas [32,108].
It was pointed out that the quadratic mass formula can be
approximately written as the relevant linear mass formula
when the mass splittings between the hadrons of the for-
mula are small compared with the hadron masses
[105,107].
To sum up, we conclude that quasilinear Regge trajec-

tory and the additivity of intercepts and inverse slopes are
indeed suitable to describe meson spectra and baryon
spectra at present. The mass relations and the predictions
may be useful for the discovery of the unobserved meson
and baryon states and the JP assignment of the meson and
baryon states which will be observed in the future.
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