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We revisit an extension of the minimal supersymmetric standard model (MSSM) by adding a

hypercharge-neutral, SUð2Þ-triplet chiral superfield. Similar to the next-to-minimal supersymmetric

standard model , the triplet gives an additional contribution to the quartic coupling in the Higgs potential,

and the mass of the lightest CP-even Higgs boson can be greater than MZ at tree level. In addition to

discussing the perturbativity, fine-tuning, and decoupling issues of this model, we compute the dominant

1-loop corrections to the mass of the lightest CP-even Higgs boson from the triplet sector. When the

Higgs-Higgs-Triplet coupling in the superpotential is comparable to the top Yukawa coupling, we find that

the Higgs mass can be as heavy as 140 GeV even without the traditional contributions from the top–s-top

sector, and at the same time consistent with the precision electroweak constraints. At the expense of

having Landau poles before the grand unified theory scale, this opens up a previously forbidden region in

the MSSM parameter space where both s-tops are light. In addition to having relatively small fine-tuning

(about one part in 30), this leads to a gluophilic Higgs boson whose production via gluon-gluon fusion at

the CERN LHC can be twice as large as the standard model prediction.
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I. INTRODUCTION

The electroweak sector of the standard model (SM)
predicts new physics at sub-TeV scales to unitarize WW
scattering. With a Higgs boson, the hierarchy problem
suggests additional new physics near the TeV scale to
stabilize the electroweak scale, and the minimal super-
symmetric standard model (MSSM) is one of the leading
candidates of such new physics. For reviews of the MSSM,
see, for example, Drees [1], Martin [2], Dine [3], and
Peskin [4].

In the MSSM, the mass of the lightest CP-even Higgs
boson is bounded at tree level byMZ because the tree-level
quartic couplings are parameterized by gauge couplings,
and such a light Higgs boson is ruled out by the CERN LEP
searches of the SM Higgs boson [5–9] that impose

mSM
h > 114:4 GeV: (1)

At one-loop level, however, there can be large radiative
corrections due to heavy scalar tops ( ~Q3 and ~�U3, super-
partners of the top quark) and/or a large coupling of the

trilinear interaction ~Q3Hu
~�U3 [10–19]. While such radiative

corrections can be large enough to satisfy the LEP bounds,
they also contribute to the quadratic term of the Higgs
potential, leading to the ‘‘little hierarchy problem.’’ The
MSSM also suffers from a � problem in that its lone
dimensionful SUSY-invariant parameter, �, is phenom-
enologically required to be of order 100 GeV, while its
natural scale can in principle be much larger.

The next-to-minimal supersymmetric standard model
(NMSSM) solves the � problem and alleviates the little

hierarchy problem [20] by extending the MSSM with a
singlet chiral superfield S. For reviews of the NMSSM, see
Balazs et al. [21] and references therein. The Higgs cou-
plings with S lead to additional contributions to the quartic
couplings in the Higgs potential, while the � term is dy-
namically generated from the vacuum expectation value
(vev) of the scalar component of S. With these additional
contributions to the quartic couplings, the mass of the
lightest CP-even Higgs boson may be larger than MZ at
tree level, and the NMSSM can satisfy the LEP bounds on
the Higgs mass with lighter s-tops compared to the MSSM
[22–28].
In this paper, we extend the MSSM with a hypercharge-

neutral, SUð2Þ-triplet chiral superfield T and name the
model triplet-extended supersymmetric standard model
(TESSM). Extensions of this type have been studied ex-
tensively by Espinosa and Quiros [29,30], Felix-Beltran
[31], Setzer and Spinner [32], and Diaz-Cruz et al. [33].
While this model does not solve the � problem, it is an
interesting alternative to the NMSSM, as an economical
extension of the MSSM, because it can also achieve a mass
of the lightest CP-even Higgs boson that is larger thanMZ

at tree level. Furthermore, compared to the MSSM and the
NMSSM, we expect there to be more radiative corrections
to the mass of the lightest CP-even Higgs boson due to the
additional states in the triplet. To the extent that these
triplet-induced radiative corrections are significant, we
may further alleviate the little hierarchy problem.
Unfortunately, in both the NMSSM and the TESSM,

the respective singlet-induced and triplet-induced radiative
corrections are typically small when we demand perturba-
tivity at the scale of grand unified theory (GUT) near
1016 GeV. This is because perturbativity at the GUT scale
imposes the bound � & 0:7 at the weak scale, where �
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is, respectively, the Higgs-singlet-Higgs and the Higgs-
triplet-Higgs coupling in the superpotential of the NMSSM
and TESSM. In both models, while the tree-level mass
of the lightest CP-even Higgs boson can be as large as
100 GeV, the Oð�4Þ radiative corrections are not large
enough to lift the Higgs mass over the LEP bounds. On
the other hand, in the TESSM, when we have �� 0:9 (so
that � is comparable with the top Yukawa coupling) at the
weak scale, we find the tree-level mass of the lightest
CP-even Higgs boson to be close to the LEP bound and
the Oð�4Þ radiative corrections alone can easily lift the
Higgs mass over the LEP bound even with small SUSY
breaking in the triplet sector. As the small SUSY breaking
in the triplet sector translate into small fine-tuning, we can
solve the little hierarchy problem at the expense of giving
up perturbativity at the GUT scale.

Without demanding perturbativity at the GUT scale, we
also expect the NMSSM to be a solution to the little
hierarchy problem, with the mass of the lightest CP-even
Higgs boson that satisfies the LEP bounds without signifi-
cant contribution from the top–s-top sector. However, as an
alternative to the NMSSM and a reasonably economical
extension of the MSSM, the TESSM and its phenomenol-
ogy are interesting in their own right. For example, as we
show in this paper, the MSSM limit of the TESSM is
achieved with MT ! 1, where MT is the SUSY-invariant
mass of the triplet, keeping � fixed, whereas in the
NMSSM one requires �! 0 to achieve the MSSM limit.
As another example, even though the sub-TeV, electrically-
neutral component of the triplet acquires a vev, we can still
satisfy the precision electroweak constraints without the
extreme fine-tuning noted in the triplet-extended SM [34].
Moreover, there may be other considerations that motivate
extending the MSSM by a triplet instead of a singlet. For
example, in obtaining neutrino masses through the type-II
[35] and type-III seesaw mechanisms, the SM is commonly
extended with Higgs triplets. Though the Higgs triplets
may have nonzero hypercharge, hypercharge-neutral trip-
lets are often present when the models are supersymme-
trized and embedded in a unified gauge group [32,36,37].

We organize our paper as follows. In Sec. II, we lay
out the superpotential and the Lagrangian of the TESSM,
compare it to the NMSSM, and discuss constraints on its
parameter space from electroweak precision tests and the
requirement of perturbativity at the GUT scale. In Sec. III,
we numerically evaluate the mass of the lightest, CP-even
Higgs boson to one loop, and show that we can satisfy the
LEP2 bounds without the contributions from the top–s-top
sector when � is comparable with the top Yukawa cou-
pling. We also discuss the gluon-gluon fusion production
and diphoton decay of the lightest, CP-even Higgs boson
in Sec. III. Our discussions of the gluon-gluon fusion
production rely only on the existence of light s-tops and
the minimal color sector of the MSSM, and are therefore
applicable to any extensions of the MSSM that solves the

little hierarchy problem without invoking additional col-
ored states. In Sec. IV, we estimate two sources of fine-
tuning in this model, and find that we can achieve a small
fine-tuning of about one part in 30 in the Higgs sector. Fi-
nally, we conclude with Sec. V that summarizes our results.

II. TRIPLET-EXTENDED SUPERSYMMETRIC
STANDARD MODEL

A. The model

We extend the MSSM with a hypercharge-neutral,
SUð2Þ triplet T � 1

2�
ATA with the superpotential

WTESSM ¼ �HdHu þMT TrðTTÞ þ 2�HdTHu

þ �T TrðTÞ þWYukawa; (2)

where Hu;d are the Higgs doublets of the MSSM, �T is a

Lagrange multiplier determined from the potential, and
WYukawa is the MSSM superpotential sans the � term

WYukawa ¼ ytQHuU
c þ ybQHdD

c þ y�LHdE
c: (3)

Note that, since T is a chiral superfield, its scalar compo-
nent necessarily contains a complex SUð2Þ triplet, whereas
in non-SUSY extensions of the SM [34,38–42], we can
extend the SMwith a real SUð2Þ triplet. In components, we
have the fields

Hu ¼ Hþ
u

H0
u

� �
; Hd ¼ H0

d

H�
d

� �
;

T ¼ 1

2
T0

ffiffiffi
2

p
Tþffiffiffi

2
p
T� �T0

 !
;

(4)

and the superpotential (sans the SM Yukawa couplings)

WTESSM � �ðHþ
u H

�
d �H0

uH
0
dÞ þ

MT

2
ðT0T0 þ 2TþT�Þ

þ �ðH0
dT

0H0
u þH�

d T
0Hþ

u Þ
þ ffiffiffi

2
p
�ðH�

d T
þH0

u �H0
dT

�Hþ
u Þ: (5)

The factor of 2 in front of � in Eq. (2) gives us a coefficient
of unity for the term

WTESSM � �H0
dT

0H0
u; (6)

as with the case of the NMSSM when T0 is replaced by a
singlet S, and facilitates direct comparisons between
TESSM and NMSSM.
We can achieve gauge coupling unification at MGUT by

including additional chiral superfields with quantum num-
bers

D� ð1; 2Þ1=2; �D� ð1; 2Þ�1=2; G� ð8; 1Þ0; (7)

where the first and second entries inside the parenthesis
denote, respectively, the representations under the color
SUð3Þc and weak SUð2Þw gauge groups, and the subscripts
denote the charge under hypercharge Uð1ÞY gauge group.
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This added content can have both SUSY-invariant and
SUSY-breaking masses sufficiently large (say, 2 TeV) so
that they decouple from the electroweak scale physics,
while still allowing for gauge coupling unification. The
added matter content [triplet plus those in Eq. (7)] does
not constitute a complete multiplet of SUð5Þ, but can form
a complete multiplet of trinification group SUð3Þ3 � Z3

[43–45].
In addition to the MSSM soft SUSY-breaking parame-

ters, we also have soft terms involving T

� �L ¼ 2m2
T TrðTyTÞ þ BTðTrðTTÞ þ H:c:Þ

þ 2�A�ðHdTHu þ H:c:Þ: (8)

B. Comparison to the NMSSM

1. Perturbativity

For simplicity, we assume that all couplings and masses
in the superpotential are real. The tree-level potential in-
volving the Uð1Þem-neutral Higgs doublets and triplet
is then

VTESSM ¼ VH þ VT þ Vmix; (9)

where

VH ¼ ð�2 þm2
Hu
ÞjH0

uj2 þ ð�2 þm2
Hd
ÞjH0

dj2
� B�ðH0

uH
0
d þ c:c:Þ þ 1

8ðg22 þ g21ÞðjH0
uj2 � jH0

dj2Þ2
þ �2jH0

uj2jH0
dj2; (10)

VT ¼ ðM2
T þm2

TÞjT0j2 þ BT
2
ðT0T0 þ c:c:Þ; (11)

Vmix ¼ �2jT0j2ðjH0
uj2 þ jH0

dj2Þ þ �MTðH0
dT

0�H0
u þ c:c:Þ

þ �A�ðH0
dT

0H0
u þ c:c:Þ

� ��ðH0�
u T

0H0
u þH0�

d T
0H0

d þ c:c:Þ: (12)

Compared with the Higgs potential in the MSSM, we
have an enhancement in the quartic coupling of the form

V � �2jHuj2jHdj2; (13)

and this in principle allows for a tree-level mass eigenvalue
larger than MZ after electroweak symmetry breaking
(EWSB). This is similar to the case in the NMSSM, where
such quartic couplings are also generated from a super-
potential of the form

WNMSSM ¼ �SHdHu þ �

3
S3: (14)

As with the NMSSM, where the requirement of perturba-
tivity at the GUT scale limits � & 0:7 at the TeV scale, the
TESSM also has a bound � & 0:7 at the TeV scale while
still preserving perturbativity at the GUT scale. Though
the bounds are similar, the details of obtaining such bounds
are different and may be important for further model build-

ing where perturbativity at the GUT scale is imposed. We
elaborate briefly on some key differences between the two
models from the relevant renormalization group equations
(RGEs) given by

�TESSM
� ¼ �

16�2
ð8�2 þ 3y2t � 9g22 � g21Þ; (15)

�NMSSM
� ¼ �

16�2
ð4�2 þ 2�2 þ 3y2t � 3g22 � g21Þ; (16)

�NMSSM
� ¼ �

16�2
ð6�2 þ 6�2Þ; (17)

and note the following points:
(i) In the NMSSM, there are two possible Landau

poles in � and �. The RGE of � is such that �
always increases when evolving to higher energies,
and � feeds into the evolution of �. In the TESSM,
there is no such contribution because TrðT3Þ ¼ 0,
but there are now additional contributions to the �3

coefficient in �� in the TESSM.
(ii) In the TESSM, �� has a larger coefficient for

the negative contribution of the form �g22 because
T is charged under SUð2Þ. As the coupling g2
is non-asymptotically-free in the TESSM (also in
the NMSSM), this gives a stronger suppression at
higher energies and could potentially delay the
appearance of the � Landau pole.

(iii) The coupling g2 also flows to larger values in the
TESSM than in the NMSSM because of the added
matter content. This again gives a suppression at
higher energies and may delay the � Landau pole.
(This can be achieved in the NMSSM with added
matter content, for example, in the NMSSM with
gauge-mediated SUSY breaking.)

Thorough studies on the upper bounds of � in TESSM
and its extensions would require examining fixed points
from the RGEs, and we leave these investigations for the
future. For our work, it suffices to note that perturbativity at
the GUT scale imposes � & 0:7 at the weak scale, so that �
is of similar strength to the weak gauge coupling. As such,
while the tree-level mass of the lightest CP-even Higgs
boson can be 100 GeV (as we later show), we expect the
Oð�4Þ radiative corrections to the mass of the lightest
CP-even Higgs boson to be insufficient to lift the Higgs
mass above the LEP bounds. However, motivated by solv-
ing the hierarchy problem, we take the viewpoint that
the Landau pole we encounter at a higher scale (around
1010 GeV) is rescued by some other new physics and
analyze the Higgs spectra and the phenomenology for
larger values of �. We take values of � comparable to the
top Yukawa coupling, so that the TeV-scale physics is still
perturbative. As � is now near unity at the TeV scale in the
TESSM and we expect there to be more Oð�4Þ radiative
corrections to the mass of the lightest CP-even Higgs
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boson compared to the NMSSM, it is worthwhile to inves-
tigate these radiative corrections in detail.

In extensions of the NMSSM, such as fat Higgs models
[46–49], � can achieve much larger values and give rise to
a very large mass for the lightest CP-even Higgs boson.
The model-building techniques of fat Higgs models can
also be applied to the TESSM, but in this work we focus on
the TESSM as a simple extension of the MSSM and an
alternative to the NMSSM without imposing the constraint
of perturbativity at the GUT scale.

2. The MSSM limit

In the NMSSM, the� term and the masses of the singlet
(ino) are related by

�� �NMSSMhSi; MS � �NMSSMhSi; (18)

and the MSSM limit is MS ! 1 while keeping � fixed.
Keeping � perturbative in the MSSM limit then gives �!
0. As � is the only coupling between the singlet and the
MSSM sector, the MSSM limit of �! 0 with fixed �
decouples the singlet.

In the TESSM, the MSSM limit is achieved withMT !
1, holding the values of all other masses and couplings at
the weak scale fixed, and, in particular, we do not need �!
0 to achieve the MSSM limit. The decoupling of the addi-
tional contribution to the Higgs quartic coupling in
Eq. (13) is accomplished by the effective operator obtained
by integrating out the heavy triplet fields whenMT � MZ.
Setting BT ¼ 0 for simplicity, the equation of motion for
T0, among other terms, has contributions of the form

T0 ¼ � �

M2
T þm2

T

ðMTH
0
dH

0
u þ A�H

0�
d H

0�
u

��ðH0�
u H

0
u þH0�

d H
0
dÞÞ þ � � � ; (19)

and this induces a contribution in the effective Lagrangian

��Leff ¼ ��2M
2
T þ A2

� þ 2�2

M2
T þm2

T

jH0
dj2jH0

uj2 þ � � � ;
(20)

that cancels the �2 contribution to the quartic in the Higgs
potential when M2

T � A2
�, m

2
T , �

2. In terms of Feynman
diagrams, this effective operator arises from the diagrams
such as the one shown in Fig. 1 with the amplitude (in the
limit of large M2

T � A2
�, m

2
T , �

2)

iA ¼ �2 M2
T

p2 �M2
T

; (21)

where p�MZ is the scale of external momenta of the
Higgs bosons. In the limitM2

T � p2, this gives the cancel-
ing contribution to the Higgs potential, and the resulting
theory is the MSSM.

When we do not explicitly integrate out the heavy triplet
sector, the full mass matrices (involving both Higgs dou-
blets and the triplet) provide a seesawlike mechanism in

the limit ofMT ! 1 that seesaws away any � dependence
in the Higgs doublets sector. We will demonstrate this in
the next section when we compute the mass of the lightest
CP-even Higgs boson.

C. EWSB in TESSM

As we are assuming real couplings and masses for
simplicity, there is no mixing between the real and imagi-
nary components of the complex scalar fields H0

u;d and T
0

and it is convenient to separate them into real and imagi-
nary parts

H0
u ¼ 1ffiffiffi

2
p ðau þ {buÞ ¼ 1ffiffiffi

2
p ða0u þ {buÞ þ 1ffiffiffi

2
p vu; (22)

H0
d ¼

1ffiffiffi
2

p ðad þ {bdÞ ¼ 1ffiffiffi
2

p ða0d þ {bdÞ þ 1ffiffiffi
2

p vd; (23)

T0 ¼ 1ffiffiffi
2

p ðat þ {btÞ ¼ 1ffiffiffi
2

p ða0t þ {btÞ þ 1ffiffiffi
2

p vt; (24)

where we have also shifted the real components (ai) to the
physical modes (a0i) by the respective vacuum expectation
values (vi). Prior to EWSB, all the vevs vanish and the real
components of the Higgses have the mass matrix (in the
basis ðau; ad; atÞ)

M 2
a ¼

m2
Hu

þ�2 �B� 0

�B� m2
Hd

þ�2 0

0 0 M2
T þm2

T þ BT

0
B@

1
CA:

(25)

The corresponding mass matrix for the imaginary compo-
nents can be obtained from Eq. (25) by changing the signs
of BT and B� in the (1,2), (2,1), and (3,3) elements.

In the MSSM, the conditions for successful EWSB
breaking are that (i) the (top-left 2� 2) mass matrix in
Eq. (25) has one negative eigenvalue, and (ii) the potential
is bounded from below along the D-flat direction H0

u ¼
H0
d. In the TESSM model, the first condition gives us the

same condition as the MSSM

B2
� > ðm2

Hu
þ�2Þðm2

Hd
þ�2Þ; (26)

T
Hu

Hd Hd

Hu

MTMTλ λ

FIG. 1. An example of Feynman diagrams that give the con-
tributions which cancel � contributions in the Higgs potential
when the triplet field, T, decouples.
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while the second condition is automatically satisfied by the
presence of the quartic coupling �2jH0

dj2jH0
uj2. However,

the minimization conditions now demand

vt ¼
ffiffiffi
2

p
2

ð�v2Þ �� ðA� þMTÞc�s�
M2
T þm2

T þ BT þ �2

2 v
2
; (27)

m2
Hu

þ�2
eff ¼ t�1

� B� þ c2�
2
M2
Z �

1

2
�2c2�v

2

� �vtffiffiffi
2

p ðMT þ A�Þt�1
� ; (28)

m2
Hd

þ�2
eff ¼ t�B� � c2�

2
M2
Z �

1

2
�2s2�v

2

� �vtffiffiffi
2

p ðMT þ A�Þt�; (29)

where we have defined

�eff � �� 1ffiffiffi
2

p �vt; (30)

tan� � vu
vd
; v2 � v2u þ v2d; (31)

vu ¼ v sin�; vd ¼ v cos�; (32)

so that the gauge bosons receive masses of

M2
Z ¼ 1

4ðg22 þ g21Þv2; (33)

M2
W ¼ 1

4g
2
2v

2 þ g22v
2
t ; (34)

where g2 and g1 are, respectively, the gauge couplings of
the SUð2Þ and Uð1ÞY groups. We have also abbreviated for
convenience the trigonometric functions

s� � sin�; c� � cos�; t� � tan�;

s2� � sin2�; c2� � cos2�:
(35)

D. Oblique corrections

While the condition of successful EWSB in Eq. (26)
gives a constraint on the parameters, electroweak precision
tests offer a much more stringent constraint. The induced
vev vt contributes to the oblique parameter �T because it
contributes to the mass of the charged gauge bosons W	,
but not to that of the neutral gauge boson Z. We find the
oblique contribution to be

��T ¼ 	M2
W

M2
W

¼ 4
v2t
v2

¼ �2v2

2

�
2�� ðA� þMTÞ sin2�
M2
T þm2

T þ BT þ �2

2 v
2

�
2
:

(36)

The oblique correction due to the triplet vanishes in the
limit of MT ! 1 holding all other parameters fixed, as
expected. However, even if MT is of the same order of �
and A�, �T can be small due to a partial cancellation
between � and sin2�ðA� þMTÞ.
We impose the constraint that j�Tj< 0:1, which in turn

translates to an upper bound on vt

jvtj< 3:43 GeV;

and provides the main constraint on the parameters � and
MT . In Fig. 2, we plot the allowed regions onMT � � plane
with BT ¼ m2

T ¼ A2
� ¼ ð200 GeVÞ2, for various values of

tan� and �. For small values of tan� and �, ��T is only
viable with either small � or a cancellation in the numera-
tor of Eq. (36). In Fig. 3, we plot the allowed region in��
tan� plane for � ¼ 0:9, BT ¼ m2

T ¼ A2
� ¼ ð200 GeVÞ2,

for various values of MT . As expected, for larger values
ofMT , there is a thicker band on the�� tan� plane that is
allowed.
We will quantify the degree of fine-tuning in the can-

cellation for allowed ��T in Sec. IV. For now, we may
estimate the fine-tuning along the ideas of Athron et al.
[50]. For example, with the parameters that require a fine-
tuning in MT

tan� ¼ 3; � ¼ 0:9; � ¼ 150 GeV;

m2
T ¼ BT ¼ A2

� ¼ ð200 GeVÞ2; (37)

we have viable �T in the regions

250 GeV<MT < 375 GeV; or MT > 3:0 TeV:

(38)

ForMT below 3.0 TeV, we would typically have unaccept-
ably large �T that violates precision electroweak con-
straints except in the a small region of MT between
250 GeV and 375 GeV because of cancellations in the
numerator of Eq. (36). If we sample MT at random in the
range between 0 and 3.0 TeV, the only region with viable
�T is only 125ð¼ 375� 250Þ GeV wide, and we can thus
estimate the fine-tuning as

3:0 TeV

375 GeV� 250 GeV
¼ 24; (39)

so a cancellation of 1 part in 24 is required to have small
��T for the parameters in Eq. (37).

E. Neutralino and charginos

After EWSB, the neutralino ( ~N) and chargino ( ~C) mass
matrices are now extended with the triplet sector. The mass

matrix for the neutralinos in the basis (~b, ~w0, ~H0
d,

~H0
u, ~T

0) is

given by
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FIG. 3. Regions allowed by �T (in gray) on tan��� plane for various values of MT as indicated in each plot.

FIG. 2. Regions allowed by �T (in gray) on ��MT plane for various values of tan� and � as indicated in each plot.
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M ~N ¼

M1 0 � 1
2g1vd

1
2 g1vu 0

0 M2
1
2g2vd � 1

2g2vu 0

� 1
2g1vd

1
2g2vd 0 ��eff

1ffiffi
2

p �vu
1
2g1vu � 1

2 g2vu ��eff 0 1ffiffi
2

p �vd

0 0 1ffiffi
2

p �vu
1ffiffi
2

p �vd MT

0
BBBBBBB@

1
CCCCCCCA
; (40)

where M1 and M2 are, respectively, the SUSY-breaking
bino and wino masses, and �eff is as defined in Eq. (30).

For the charginos, in the basis  	 ¼
ð ~wþ; ~Hþ

u ; ~T
þ; ~w�; ~H�

d ; ~T
�Þ, the chargino mass matrix

appears in the Lagrangian as

L � � 1

2
ð 	ÞT 0 MT

~C
M ~C 0

� �
 	; (41)

where

M ~C ¼
M2

ffiffi
2

p
2 g2vd g2vtffiffi

2
p
2 g2vu �eff þ

ffiffiffi
2

p
�vt ��vd

�g2vt �vu MT

0
B@

1
CA: (42)

III. LIGHTEST CP-EVEN HIGGS BOSON
IN THE TESSM

A. Tree-level mass

The lightest CP-even Higgs boson in TESSM is a linear
combination of the CP-even components of the Higgs
doublets Hu;d and the neutral component of the triplet

T0. After EWSB, the squared-mass matrix for the neutral
scalar has the entries

ðM2
aÞ11 ¼ c2�M

2
A þ s2�M

2
Z �

�ffiffiffi
2

p t�1
� vtðMT þ A�Þ; ðM2

aÞ12 ¼ �s�c�ðM2
A þM2

ZÞ þ c�s��
2v2 þ �ffiffiffi

2
p vtðMT þ A�Þ;

ðM2
aÞ13 ¼ �v

�
1ffiffiffi
2

p ðA� þMTÞc� þ ð�vt �
ffiffiffi
2

p
�Þs�

�
ðM2

aÞ22 ¼ s2�M
2
A þ c2�M

2
Z �

�ffiffiffi
2

p t�vtðMT þ A�Þ;

ðM2
aÞ23 ¼ �v

�
1ffiffiffi
2

p ðA� þMTÞs� þ ð�vt �
ffiffiffi
2

p
�Þc�

�
ðM2

aÞ33 ¼ M2
T þm2

T þ BT þ 1

2
�2v2; (43)

where vt should be considered as a function of the input
parameters via the minimization condition in Eq. (27) and
we define MA as in the case of the MSSM

M2
A � 2

B�

sin2�
: (44)

As in the case of the NMSSM, the lightest mass-squared
eigenvalue is bounded by the lightest eigenvalue of top-left
2� 2 block of the mass matrix,

m2
h 
 M2

Z

�
cos2�þ 2�2

g22 þ g21
sin2�

�
: (45)

In Fig. 4, we plot this tree-level upper bound as a function
of tan� for � ¼ 0:7, 0.8, and 0.9. For � ¼ 0:9, it is possible
to obtain a tree-level Higgs mass larger than 100 GeV for
tan� & 6, and even satisfy the LEP2 bounds at tree-level
for small tan� & 3:5.

We can also see the MSSM limit in the mass matrix
when the triplet decouples with fixed �. In the limitMT !
1, keeping all other parameters fixed, we have

MTvt ! � �v2

2
ffiffiffi
2

p sin2�; (46)

and the mass matrix has the form

M 2
a !MT!1 M2

MSSM þ �M2 


T M2

T

� �
; (47)
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Tree level Higgs Mass

FIG. 4 (color online). Tree-level upper bound on the mass of
the lightest CP-even Higgs boson as given by Eq. (45) as a
function of tan� for � ¼ 0:7 (lowest line), 0.8 (middle line), and
0.9 (top line).
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where M2
MSSM is the 2� 2 MSSM mass matrix for the

CP-even Higgs bosons, and

�M2 ¼ �2 v
2

2

c2� c�s�
c�s� s2�

 !
; (48)


 ¼ �ffiffiffi
2

p MTv
c�
s�

� �
: (49)

Integrating out the third row and column of the mass matrix
in Eq. (47), the effective top-left 2� 2 submatrix becomes

M2
eff ¼ M2

MSSM þ �M2 � 
ðM2
TÞ�1
T þO

�

3

M4
T

�

¼ M2
MSSM þO

�
�3v3

MT

�
; (50)

and we recover the MSSM limit asMT ! 1. In Fig. 5, we
show this decoupling behavior by plotting the tree-level
mass of the lightest Higgs boson as a function of MT for
various values of tan�, and see that, for MT * 104 GeV,
we recover the MSSM results.

1. Numerical results

In this subsection, we numerically evaluate the mass of
the lightest CP-even Higgs boson at tree level. With the
minimization conditions, we can take as input parameters

tan�;�;MA; �;MT;m
2
T; BT; (51)

and fix m2
Hu
, m2

Hd
, and vt by solving the minimization con-

ditions with the experimental inputs of MZ ¼ 91:19 GeV
and the gauge couplings g2ðMZÞ ’ 0:65, g1ðMZÞ ’ 0:36
(this fixes v ’ 245 GeV). We discard sets of input parame-
ters that give large vt inconsistent with electroweak con-

straints. For all our numerical studies, we analyze two the
cases of � ¼ 0:8 and � ¼ 0:9, and scan the parameter
space in the range

3 
 tan� 
 30; 100 GeV 
 �;

MA 
 500 GeV; 300 GeV 
 MT 
 1000 GeV;

�2000 GeV 
 A� 
 2000 GeV;

�ð1000 GeVÞ2 
 m2
T; BT 
 ð1000 GeVÞ2: (52)

The range of tan� is chosen so that the bottom Yukawa
coupling is smaller than the top Yukawa coupling, and
we can neglect the bottom Yukawa coupling when we
study the production and decay properties of the lightest
CP-even Higgs boson.
Since solutions to the minimization conditions only

guarantee an extremum, we only keep solutions that give
a local minimum by checking that all scalar masses are
positive at the desired vev. We also discard any points that
give unacceptably large ��T or contain charged scalar
particles lighter than 100 GeV.
For the range of parameters listed in Eq. (52), we show

the mass of the lightest CP-even boson as a function of
tan� in Fig. 6. In Fig. 6, we also plot the upper bound of the
tree-level Higgs mass given in Eq. (45). The plots show
that we can indeed achieve large (greater than MZ) tree-
level Higgs mass with large �, and we can even satisfy
LEP2 bounds at tree level for small values of tan�
( tan� & 3:5) when � ¼ 0:9.

B. Mass at the one-loop level

Since the lightest CP-even Higgs boson is a linear
combination of a0i for i ¼ u, d, t we will construct the
Coleman-Weinberg (CW) potential [51] only for the fields
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FIG. 5. Tree-level mass of the lightest CP-even Higgs boson as a functionMT for � ¼ 0:8 (left panel) and � ¼ 0:9 (right panel). The
other parameters are kept fixed as A� ¼ m2

T ¼ BT ¼ 0, � ¼ 200 GeV, and MA ¼ 300 GeV. The three curves have values of tan� of
10 (solid line), 5 (dashed line), and 3 (dotted line). For each case, we see decoupling in largeMT , and the limiting value agrees with the
MSSM result.

STEFANO DI CHIARA AND KEN HSIEH PHYSICAL REVIEW D 78, 055016 (2008)

055016-8



ai, and extract the corrections tom
2
h from the CW potential.

Furthermore, we will make the two following assumptions:
(i) We assume that both the s-top masses are close to

the top-quark mass, and the famous Oðy4t Þ contri-
butions in the MSSM are small. In other words, we
only consider the corrections from the Higgs boson,
neutralino, and chargino sectors. These contribu-
tions are dominated by the coupling � and the
SUSY-breaking parameters in the triplet sector.
Our results will show that these contributions are
sufficient to satisfy the LEP2 bounds on the Higgs
mass, and we do not need large contributions from
the top–s-top sector as in the case of the MSSM.

(ii) In the neutralino and chargino mass matrices, we
ignore the mixing induced by gauge interactions.
This removes dependencies on the bino and wino
SUSY-breaking masses in our analysis as we do not
include the bino and wino states, and we expect
their contributions to be small when M1;2 �MZ.

(If we include the bino and wino states, we would
also have to include the corresponding superpart-
ners in the W and Z gauge bosons.)

The Coleman-Weinberg potential is given by

VCW ¼ 1

64�2
S Tr

�
M4

�
ln
M2

�2
r

� 3

2

��
; (53)

where M2 are field-dependent mass matrices in which
the fields are not replaced with their vevs, �r is the renor-
malization scale, and the supertrace includes a factor of
ð�1Þ2Jð2J þ 1Þ so that fermions contribute oppositely to
bosons, and the spin degrees of freedoms are appropriately
summed over. Since here we are only interested in the CW
potential of the fields ai that always appear in the combi-
nation (a0i þ vi), the field-dependent matrices for the char-
ginos and neutralinos are simply those in Eqs. (40) and (42)
with the vevs vi replaced by the corresponding fields ai.

For the scalars, the naive replace-vev-by-field method
fails and we need to distinguish between the contributions

from the minimization conditions and those from the re-
placement of the fields with their corresponding vevs. For
example, while the (11)-element of the mass matrix of the
CP-even neutral Higgs boson is

ðM2
aÞ11 ¼ c2�M

2
A þ s2�M

2
Z �

�ffiffiffi
2

p t�1
� vtðMT þ A�Þ; (54)

¼ B�
vd
vu

þ 1

4
ðg22 þ g21Þv2u �

�ffiffiffi
2

p vtðMT þ A�Þvdvu ; (55)

it is incorrect to have the field dependence

ðM2
aÞ11 � B�

ad
au

þ 1

4
ðg22 þ g21Þa2u �

�ffiffiffi
2

p atðMT þ A�Þ adau ;
(56)

because some of the vev dependence in Eq. (55) comes
from the minimization conditions Eq. (28). The correct
field-dependent (11)-element of theCP-even neutral Higgs
boson is

ðM2
aÞ11 ¼ m2

Hu
þ�2 þ g22 þ g21

8
ð3a2u � a2dÞ

þ �2

2
ða2d þ a2t Þ �

ffiffiffi
2

p
��at; (57)

wherem2
Hu

is related to the vevs (but not the fields) through

the minimization condition in Eq. (28). In Appendix A, we
give the field-dependent mass matrices used in the calcu-
lation of the Coleman-Weinberg potential.
Since the analytical results for the mass eigenvalues

of the field-dependent matrices are complicated, we will
compute the Higgs mass numerically. The one-loop mass
matrix can be extracted from the Coleman-Weinberg
potential by numerically evaluating the derivatives of
the mass eigenvalues with respect to the fields about the
vevs [24] (dropping the prefactor from the supertrace for
convenience)
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FIG. 6. Tree-level mass of the lightest CP-even Higgs boson as a function tan� scanned over the parameter space as listed in
Eq. (52). The plot on the left (right) has � ¼ 0:8 (� ¼ 0:9), and the top curve indicates the upper bound as computed from Eq. (45).
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ð�M2
aÞij ¼ @2VCWðaÞ

@ai@aj

��������vev
� 	ij
haii

@VCWðaÞ
@ai

��������vev
(58)

¼X
k

1

32�2

@m2
k

@ai

@m2
k

@aj
ln
m2
k

�2
r

��������vev

þX
k

1

32�2
m2
k

@2m2
k

@ai@aj

�
ln
m2
k

�2
r

� 1

���������vev

�X
k

1

32�2
m2
k

	ij
haii

@m2
k

@ai

�
ln
m2
k

�2
r

� 1

���������vev
(59)

where the second term in Eq. (58) takes into account the
shift in the minimization conditions, and fm2

kg is the set of
mass eigenvalues that enter the Coleman-Weinberg poten-
tial. Our set of fm2

kg includes the eigenvalues of the mass

matrices of the CP-even, CP-odd, and charged Higgs
bosons, as well as the neutralinos and charginos mass
matrices. These field-dependent mass matrices are given
in Appendix A.

1. Numerical results

We numerically compute the mass of the lightest
CP-even Higgs boson to one loop using the Coleman-
Weinberg potential for the parameter space in Eq. (52). For
the same input parameters that give rise to the tree-level
results shown in Fig. 6, we show the corresponding Higgs
mass computed to one loop in Fig. 7, and the difference
between the loop-level and tree-level masses in Fig. 8. We
use the value of MT as the renormalization scale �r that
enters the Coleman-Weinberg potential. From these plots,
we see that the triplet sector can give a large contribution to
the mass of the lightest CP-even Higgs boson, and we can
satisfy the LEP bounds without the s-top contributions for
all values of tan� in our scanned range.

In Table I, we give some sample points in our scan.
Points 1 and 2 are sample points that have small fine-tuning

[as will be defined later in Eq. (77)]. The TESSM can
achieve small fine-tuning because the Higgs mass can be
large at tree level and does not require large contributions
from radiative corrections. Points 3 and 4 are samples of
the points with the largest Higgs masses (and therefore
fine-tuning) in our scanned range of parameter space, as
evident in the values of SUSY-breaking parametersm2

T , A�,
and BT being near the boundary of the scanned range.
Points 5 and 6 are samples of points having a large tan�ð�
20Þ, where the tree-level Higgs mass is only slightly larger
than MZ, and there is a significant one-loop contribution,
and, correspondingly, large fine-tuning.

C. Collider signatures of the lightest CP-even
Higgs boson in TESSM

With large � in both the TESSM and the NMSSM, we do
not require heavy s-tops. In these cases, the gluon-gluon
fusion production of the lightest CP-even Higgs boson,
�ðgg! hÞ, and its diphoton partial decay width, �ðh!
��Þ, can be very different from the MSSM because these
processes involve s-top loops. In this section, we perform a
simplified analysis showing that in the TESSM there may
be a gluophilic Higgs boson whose gluon-gluon fusion
production cross section can be larger than that of the SM
by a factor of 1.8. As stated in the introduction, our dis-
cussions of the gluon-gluon fusion production rely only on
the existence of light s-tops and the minimal color sector of
the MSSM, and are therefore applicable to any extensions
of the MSSM that solves the little hierarchy problem
without invoking additional colored states. For the dipho-
ton partial decay width, there are several sources of sup-
pression, and we may have a partial decay width that is
about 0.8 times that in the SM.
Of course, at the LHC the relevant quantity is the

product of the gluon-gluon fusion production cross section
and the diphoton branching ratio

�ðgg! hÞBrðh! ��Þ;
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FIG. 7. Mass of the lightest CP-even Higgs boson, including one-loop contributions from the triplet sector, as a function tan�,
scanned over the parameter space as listed in Eq. (52). The plot on the left has � ¼ 0:8, and the plot on the right has � ¼ 0:9. The input
parameters of the individual points are the same as those that give rise to the points shown in the corresponding plot of Fig. 6.
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and a more complete analysis would have to take into
account the effects of light s-tops to all the decay channels
as well as the large, higher-loop corrections from QCD and
large couplings. We leave the complete analysis of the
Higgs production and decay for future work.

The well-known formula for the decay width of a real
scalar decaying into two photons can be found in Gunion
et al. [52]. This formula is also presented in the Ap-
pendix B.

1. Gluophilic Higgs boson

In the SM, ignoring all the Yukawa couplings except for
the top Yukawa coupling, the process h! gg proceeds

only through a top-quark loop. In the MSSM, we have
additional contributions from the s-tops (see Fig. 9), as
well as all the other s-quarks through D-term interactions
of the form h~q�~q with coupling of the order MZ. To
simplify our analysis, we will ignore the D-term interac-
tions except those in the s-top sector, but we note that these
contributions can be important when there are light s-
quarks and must be taken into account in a full analysis.
In the MSSM with small s-top mixing, the s-top contri-

butions interfere constructively with the top-quark contri-
bution for the gluon-gluon fusion production cross section
[53,54]. However, with small s-top mixing, the s-tops need
to be heavy to satisfy the LEP bounds on the Higgs mass,
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FIG. 8. Difference between the mass of the lightest CP-even Higgs boson with and without the one-loop contribution from the triplet
sector for the points shown in the corresponding plots of Figs. 6 and 7. The plot on the left has � ¼ 0:8, and the plot on the right has
� ¼ 0:9.

TABLE I. Sample Higgs spectra. All dimensionful parameters are in units of GeV, except for m2
T and BT , which are in units of

ðGeVÞ2. The definitions of fine-tuning fT , �T , and �0
T are given, respectively, in Eqs. (77), (79), and (80). The value of fT indicates the

percent change in v2 induced by a 1% change in m2
Hu

at a fundamental scale of SUSY breaking, and the value of �T indicates the

percent change in �T induced by a 1% change in MT . The measure �0
T is only applicable to Points 1 and 2, and shows that there is a

cancellation of one part in 23 to give a viable value of �T. Points 1 and 2 show examples of input parameters that give a viable Higgs
mass with a small fine-tuning in the electroweak sector. Points 3 and 4 differ only in � and are samples that give large Higgs masses of
about 120 GeV (for � ¼ 0:8) and about 135 GeV (for � ¼ 0:9). Points 5 and 6 have large tan�ð� 20Þ and mh �MZ at tree level, but
there are large radiative corrections to have viable Higgs masses at one loop.

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

tan� 3.20 3.20 3.20 3.20 20.0 27.7

� 270 270 400 400 200 165

MA 430 430 280 280 300 410

� 0.8 0.9 0.8 0.9 0.8 0.9

MT 370 400 400 400 350 330

m2
T ð500Þ2 ð280Þ2 ð1970Þ2 ð1970Þ2 ð1600Þ2 ð1500Þ2

A� 600 460 1860 1860 1800 1300

BT ð400Þ2 ð400Þ2 ð1730Þ2 ð1730Þ2 ð500Þ2 ð1400Þ2
mTree
h 108 113 105 111 88 90

m
TreeþLoop
h 114 117 122 137 114 121

fT 33 19 399 505 315 271

�T 33 11 0.8 0.8 0.5 0.3

�0
T 4.7 6.4
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and the s-top contributions decouple. (With large-stop mix-
ing, it is possible to have s-top contributions that interfere
destructively with the top-quark contribution, leading to a
gluophobic Higgs boson.)

In the TESSM and NMSSM, we can have light s-tops at
the expense of perturbativity at the GUT scale, and a large
enhancement in the production rate. Assuming large tan�
so that v ’ vu and there is no s-top mixing, and approx-
imating the lightest CP-even Higgs boson h as being dom-
inantly composed of a0u (the CP-even component of Hu),
we have the interactions

�L � ytffiffiffi
2

p h�ttþ
�
y2t þ 1

12
g21 �

1

4
g22

�
vh ~Q�

3
~Q3

þ
�
y2t � 1

3
g21

�
vh~�U

�
3
~�U3; (60)

where t is the top quark, and ~Q3 (
~�U3) is the superpartner to

the left-(right-)handed component of the top quark. From
Eqs. (B2), (B9), and (B10), the ratio of the amplitudes
Aðgg! hÞ due to the s-top s-quarks and top quark is then

rgg!h � A~t

At

¼ m2
t þ 1

4 ð16g21 � 1
2g

2
2Þv2

m2
~Q3
þm2

t

F ~Q3

Ft
þm2

t � 1
6g

2
1v

2

m2
~�U3

þm2
t

F~�U3

Ft
;

(61)

where m2
~Q3
and m2

~�U3

are SUSY-breaking soft masses of the

corresponding s-tops, and we have used the relationships

mt ¼ ð ffiffiffi
2

p Þ�1ytvu. In Fig. 10, we plot rgg!h as a function of

a common soft s-top massm2
~Q3

¼ m2
~�U3

¼ m2
SUSY, assuming

mh ¼ 114 GeV. Since the s-top mass eigenvalues in this
simplified analysis are given by

m2
~t ¼ m2

SUSY þm2
t ; (62)

and the current searches limit the s-tops masses to be
greater than 120 GeV [55], we can have mSUSY � 0 (so
m~t ¼ mt) and rgg!h can be as large as 0.48. This gives a

gluophilic Higgs boson whose production cross section via
gluon-gluon fusion may be enhanced relative to the SM
prediction by a factor of ð1:48Þ2 � 2:2.

Imposing perturbativity at the GUT scale, we can have
a milder gluophilic Higgs boson when one of the s-top
is light (the other is required to be heavy to have a Higgs

mass satisfying the LEP2 bounds). However, when only
one s-top is light, the enhancement in the gluon-gluon
fusion production cross section is only a factor of ð1þ
0:5� 0:48Þ2 � 1:5 larger than that of the SM.

2. Diphoton decay of the Higgs boson

In the SM, the diphoton decay of the Higgs boson pro-
ceeds throughW-boson loop in addition to top-quark loop,
and the contribution from the top quark destructively in-
terferes with the dominant W-boson contribution. In the
MSSM, we have additional contributions from the s-tops
and charginos (the corresponding superpartners of the top
quark and W-boson), and, as in the case of �ðh! ggÞ,
contributions from all the electrically charged s-quarks and
s-leptons through D-term interactions.
In the TESSM, we have the additional contributions

from the states composed dominantly of the charged trip-
lets, and also new contributions from the MSSM matter
content induced by � (see Fig. 11). These contributions
may be important when � is as large as the top Yukawa
coupling, and so in this subsection we use � ¼ 0:9 for our
numerical studies. In this work, we will simplify our
analysis by ignoring contributions from the D-term inter-
actions except those involving the s-tops, and, using the
same approximations as in the previous subsection of large
tan� and h ’ a0u, we have the interactions and fermion
masses

h h h

t~
t
~t

g

g

g

g

g

g

FIG. 9. The diagrams that contribute to the amplitude Aðh! ggÞ in the TESSM.

FIG. 10. The amplitude Aðgg! hÞ through s-top loops nor-
malized with respect to the amplitude through top-quark loop, as
a function of a common s-top soft mass m~t, assuming no mixing
in the s-top sector.

STEFANO DI CHIARA AND KEN HSIEH PHYSICAL REVIEW D 78, 055016 (2008)

055016-12



�L � 2�2vhðjTþj2 þ jH�
d j2Þ

þ �ðhþ vÞð �~HPL ~Tþ þ �~TPR ~HþÞ
þ�ð �~H ~HþÞ þMTð �~T ~TþÞ; (63)

where ~Hþ and ~Tþ are Dirac spinors formed from the
Higgsinos and the fermionic components of the charged
triplet states

~H þ � ~Hþ
u

~H�y
d

 !
; ~Tþ � ~Tþ

~T�y
� �

; (64)

and PL;R are the projection operators

PL � 1 0
0 0

� �
; PR � 0 0

0 1

� �
: (65)

Although none of the charged states in Eq. (63) is a mass
eigenstate, we approximate the scalar states as mass eigen-
states with masses

m2
Tþ ’ M2

T þm2
T; m

2
H�
d
’ M2

A; (66)

so that the contributions of these states to the amplitude
Aðh! ��Þ have the same form. In the fermionic sector,
the contribution to the amplitude Aðh! ��Þ comes ex-
clusively from the mixing between ~Hþ and ~Tþ. We can
diagonalize the fermionic mass matrix with two unitary
transformations

�~H
�~T
þ

 !
T

VyV � �v
0 MT

� �
UyUPL

~Hþ
~Tþ

� �

¼
�~C1
�~C2

 !
T m ~C1

0
0 m ~C2

 !
PL

~C1
~C2

 !
; (67)

where U and V are, respectively, parameterized by ’
and ’0,

U � c’ �s’
s’ c’

� �
; V � c’0 �s’0

s’0 c’0

� �
; (68)

where c’ ¼ cos’ and s’ ¼ sin’, and c’0 and s’0 are

similarly defined. These mixing angles are given by

tan2’ ¼ 2��v

M2
T ��2 þ �2v2

;

tan2’0 ¼ 2�vMT

M2
T ��2 � �2v2

:

(69)

In terms of the mass eigenstates and mixing angles, the
chargino interactions in Eq. (63) take the form

�L � �hð�c’0s’
�~C1

~C1 þ c’s’0 �~C2
~C2Þ

þ �hðc’0c’
�~C1PL ~C2 � s’s’0 �~C2PL ~C1 þ H:c:Þ:

(70)

In Figs. 12 and 13, we illustrate the contributions of light
s-tops and the additional charged states to the diphoton
partial decay width, normalized with respect to the domi-
nant W-boson contribution, assuming mh ¼ 114 GeV. In
Fig. 12, we show the contributions from the top quark
(constant line), s-tops (solid line), and the charged scalar
states (dotted line). For the s-tops (charged scalar statesH�

d

and Tþ), the horizontal axis should be interpreted as a
common soft SUSY-breaking mass MSUSY (mass of these
charged scalar states). In Fig. 13, we show the sum of the
fermion contributions as a function of MT for different
values of �, and see that even for small values of � and
MT (�, MT & 200 GeV), these contributions tend to be
small. We can partially attribute the smallness to a cancel-

lation between the contributions from the two states ~C1 and
~C2, as evident in the relative sign difference between the

coefficients of the h �~C1
~C1 and h

�~C2
~C2 interactions. Though

these fermionic contributions are small, it is interesting to
note that, while the top-quark contribution interferes de-

h

t~

h hh

hh

t

γ

γ

γ

γ γ

γ

γ

γ
t~

γ

γ

γ

γ

T+, Hd
−T+, Hd

−C1, C2
~ ~

FIG. 11. The diagrams that contribute to the amplitude Aðh! ��Þ in the TESSM. The top three diagrams are present in the
MSSM, and the bottom three diagrams involve the coupling �.
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structively with theW-boson contribution, the sum of these
fermionic contributions interferes constructively. In any
case, the additional �-induced contributions (both bosonic
and fermionic) to the partial decay width �ðh! ��Þ are
small compared to the s-top contributions.

Combining all these contributions to Aðh! ��Þ, the
diphoton partial width can be significantly reduced (mostly
from the s-top contributions). For example, withM2

SUSY ¼
m2
T ¼ 0, � ¼ 150 GeV, MA ¼ 200 GeV, and MT ¼

500 GeV, the amplitude Aðh! ��Þ is decreased by
(relative to the SM) a factor of

AW þAt þA~t þAH�
d
þATþ þ ðA ~C1

þA ~C2
Þ

AW þAt

� 1� 0:23� 0:11� 0:05� 0:008þ 0:001

1� 0:23
� 0:78;

and the diphoton decay partial width is decreased, relative
to the SM partial decay width, by a factor of ð0:78Þ2 ’ 0:6.
We therefore can have a photophobic Higgs boson in the
TESSM from the contribution of light s-tops.

IV. FINE-TUNINGS IN TESSM

A. Electroweak sector

Before discussing the fine-tuning in the electroweak
sector of the TESSM, we briefly review the little hierarchy
problem in the MSSM. In the MSSM with large tan�, the
Higgs doublet Hu is responsible for most of the EWSB

since v ’ ffiffiffi
2

p hHui, and it has the potential

VHu
¼ ðm2

Hu
þ�2ÞjHuj2 þ 1

8ðg22 þ g21ÞjHuj4: (71)

Minimizing the potential then gives

2hH2
ui ¼ v2u ¼ �8

m2
Hu

þ�2

g22 þ g21
; (72)

so that

m2
Hu

¼ �1
8ðg22 þ g21Þv2u ��2: (73)

Under radiative corrections,m2
Hu

receives large logarith-

mic corrections from the s-top sector, and we can use the
renormalization group equations to infer the value of m2

Hu

at a fundamental scale �,

m2
Hu
ð�Þ ’ m2

Hu
ðMZÞ þ 3y2t

8�2

�
m2

~Q3
þm2

~�U3

þ A2
t

��
ln

�

MZ

�
;

(74)

where m2
~Q3

and m2
~�U3

are the SUSY-breaking s-top masses,

ytAt is the coupling of the trilinear interaction ~Q3Hu
~�U3,

and � can be taken as the scale of SUSY breaking. The
large radiative correction leads to fine-tuning fs because
the electroweak scale v depends sensitively on the value of
m2
Hu

at the fundamental scale of SUSY breaking�. We can

quantify this fine-tuning as [56]

fs � 	 lnv2

	 lnm2
Hu
ð�Þ ’

3y2t
4�2

�m2
~Q3
þm2

~�U3

þ A2
t

M2
Z

��
ln

�

MZ

�
:

(75)

As a reference of comparison, for m2
~Q3

¼ m2
~�U3

¼ At ¼
1 TeV, and � ¼ 103 TeV, we have fs ¼ 80 so that the
Higgs sector needs to be fine-tuned to one part in 80. Thus,
even though the electroweak scale is no longer quadrati-
cally sensitive to the fundamental scale � with softly
broken SUSY, it is quadratic sensitive to the s-top masses
and trilinear coupling At, which are required to be large to
have a Higgs mass that satisfies the LEP bounds, and this
leads to a fine-tuning in the Higgs sector of about one part
in 100. This is the little hierarchy problem in the MSSM.
We can also define other measures of fine-tuning when

given a more fundamental theory (for example, an organ-
izing principle of the soft SUSY-breaking parameters)

FIG. 12. The ratio of amplitudes Aðh! ��Þ through scalar
s-tops, H�

d , and T
þ loops, compared to the dominant W-boson

loop contribution, as a function, respectively, of a common soft
mass for the s-top (solid curve), and of the mass of the states H�

d

and Tþ (dashed line). We use � ¼ 0:9. The constant, solid line
denotes the top-quark contribution.

FIG. 13. The sum of amplitudes Aðh! ��Þ given by ~C1 and
~C2 loops normalized to the dominant W-boson loop amplitude,
as a function of MT for � ¼ 150 GeV (solid line), 200 GeV
(dashed line), and 300 GeV (dot-dashed line). Note that these
fermionic contributions are small compared to the s-top contri-
butions shown in Fig. 12.

STEFANO DI CHIARA AND KEN HSIEH PHYSICAL REVIEW D 78, 055016 (2008)

055016-14



[50,57,58]. However, in this work we are mainly interested
in the low-energy phenomenology of the TESSM without
appealing to a particular fundamental theory, and we will
simply define fine-tuning as in Eq. (75).

In the TESSM with � comparable to the top Yukawa
coupling, we do not need heavy s-top masses nor signifi-
cant mixing in the s-top sector for the Higgs mass to satisfy
the LEP bound, and as such there is little or no fine-tuning
from the s-top sector. On the other hand, m2

Hu
now receives

radiative corrections from the triplet sector as well as the
s-top sector

m2
Hu
ð�Þ ’ m2

Hu
ðMZÞ þ 3y2t

8�2
ðm2

~Q3
þm2

~�U3

þ A2
t Þ
�
ln

�

MZ

�

þ 3�2

8�2
ðm2

T þ A2
�Þ
�
ln

�

MZ

�
; (76)

and we can follow the same steps and reasoning as before
to have an estimate of the fine-tuning due to the triplet
sector fT

fT ’ 3�2

4�2

�
m2
T þ A2

�

M2
Z

��
ln

�

MZ

�
; (77)

so that fT ¼ 40, for example, would mean a tuning in
m2
Hu
ð�Þ to one part in 40. The value of fT indicates the

percent change in v2 per a one-percent change in m2
Hu

at a

fundamental scale of SUSY breaking, Generally, with
large �, for a given mass of the lightest CP-even Higgs
boson, the fine-tuning inm2

Hu
is less in the TESSM than the

MSSM. In Fig. 14, we plot fT for the data points shown in
Fig. 7, where we see a rough general trend of increasing
fine-tuning with increasing Higgs mass. On the other hand,
it is possible to have points with relatively small fTðfT &
20Þ that satisfy the LEP2 bound of mh > 114:4 GeV, as
demonstrated in Point 1 of Table I. This is a great improve-
ment over the MSSM, and it is a consequence of the large

tree-level mass we can obtain in TESSM, sowe do not have
to rely on large radiative corrections from m2

T and A�.

B. Triplet sector

The vev of T0 is induced by the vevs of the Higgs dou-
blets because the vevs of the Higgs doublets vu;d induce a
tadpole from the trilinear interactions of the form HTH in
the second line of Eq. (12). We noted earlier that some
cancellation between a priori unrelated parameters (� and
MT sin2�, for example) is required to keep vt (and thus
�T) small and this leads to fine-tuning in the triplet sector.
However, it is worth pointing out that vt here does not
receive a large radiative correction that requires a fine-
tuning as severe as the fine-tuning in the hierarchy problem
in the triplet-extended standard model potential analyzed
in Chivukula et al. [34]. It is easiest to see this in the limit
m2
T ¼ BT ¼ A2

� ¼ 0 (SUSY limit in the triplet sector)
where the triplet vev vt in Eq. (27) takes a particularly
simple form

vt ¼
ffiffiffi
2

p
2

ð�v2Þ��MTs�c�

M2
T þ �2

2 v
2
; (78)

and the 1-loop corrections to vt then involve 1-loop cor-
rections to the parameters �, vu;d, andMT . The parameters

�, �, and MT come from the superpotential, and the non-
renormalization theorem dictates that the radiative cor-
rections to these parameters run only in a logarithmical
manner due to wave function renormalizations only.
Though the loop corrections to vu;d may require a fine-

tuning of one part in a few hundreds (this is the little
hierarchy problem in the MSSM), this is much more be-
nign than the fine-tuning in the triplet-extended SM studied
in Chivukula et al. [34].
On the other hand, there is a source of fine-tuning in vt

because we often require some degree of cancellation to
make �T small. We can define a quantitative measure of
fine-tuning in �T by

90 100 110 120 130 140
0

100

200

300

400

500

mh GeV

f T

90 100 110 120 130 140
0

100

200

300

400

500

mh GeV

f T

FIG. 14. Fine-tuning [as defined in Eq. (77)] as a function of the mass lightest CP-even Higgs boson. This is typically less than the
fine-tuning of the MSSM [as defined in Eq. (75)] and the NMSSM. The plot on the left has � ¼ 0:8, and the plot on the right has
� ¼ 0:9.
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�T � 	 ln�T

	 lnMT

¼ 2
	 lnvt
	 lnMT

¼
�

2MT

sin2�ðA� þMTÞ � 2�

��
4�MT þ sin2�ðm2

T þ BT � 2A�MT �M2
T þ �2

2 v
2Þ

M2
T þm2

T þ BT þ �2

2 v
2

�
; (79)

so that �T is large when there is a large cancellation in the
combination

sin2�ðA� þMTÞ � 2�;

that makes �T unnaturally small.
The definition in Eq. (79), however, may not be satis-

factory because it does not take into account the range of
allowed �T. For example, for the parameters listed in
Eq. (37)

tan� ¼ 3; � ¼ 0:9; � ¼ 150 GeV;

m2
T ¼ BT ¼ A2

� ¼ ð200 GeVÞ2;
we have viable �T in the regions

250 GeV<MT < 375 GeV; or MT > 3:0 TeV;

and it may be reasonable to expect that any value ofMT in
the small range between 250 GeV and 375 GeV is equally
fine-tuned. However, Eq. (79) would give different values
of �T for different values of MT , and may even diverge if
MT is such that we have vt ¼ 0. It is true that when vt ¼ 0
we have unnatural, complete cancellation, but in our work
we only use vt in a binary way: to distinguish cases with
viable�T from those with unacceptably large�T. Once vt
is small enough to have viable �T, we do not care whether
vt ¼ 1 GeV or vt ¼ 0:01 GeV, for example.

As in Sec. II, we can also estimate the fine-tuning in �T
due to MT as shown in Athron et al. [50] when there is a
cancellation in the numerator of Eq. (36) that makes �T
small. With all parameters other than MT fixed, we first
compute M�

T such that for MT >M�
T , �T is always viable

(�T < 0:1), and define fine-tuning as

�0 � M�
T

Range of MTðwith MT <M�
TÞ that gives viable �T

:

(80)

This definition of fine-tuning is harder to implement be-
cause, given a set of parameters exceptMT , we first have to
find out if regions of MT allowed by �T comes about
because of cancellations, before we can apply Eq. (80).
For example, it is possible that �T is always viable for any
value of MT (as are the cases for Points 3 through 6 of
Table I), so that we can not apply Eq. (80) as there is no
fine-tuning in �T. Despite its limited applicability com-
pared to �T , �

0
T may be a more reasonable measure of fine-

tuning when there is a cancellation that leads to a small
value for �T. For Point 1(2) in Table I, we have �T �
33ð11Þ and �0

T � 4:7ð6:4Þ, corresponding to a 33(11)%
change in�T per a 1% change inMT , and also cancellation
of one part in 4.7(6.4). For the other four points in Table I
where �0

T in Eq. (80) is not well defined, the values of �T

are small, indicating small fine-tuning for these sets of
parameters. Since a complete analysis of fine-tuning in
the triplet sector in the TESSM is outside the scope of
this work, we will conclude this section noting that in an
extreme case [Eq. (37)], �0

T � 24, so we suspect that the
typical fine-tuning in the triplet sector be less than one part
in 24.

V. CONCLUSIONS

In this work, we have revisited a very simple extension
to the MSSM by adding a hypercharge-neutral,
SUð2Þ-triplet chiral superfield. We considered this model
as a reasonably economical extension of the MSSM and an
alternative to the NMSSM, and extended the phenomeno-
logical studies in several directions. In addition to discus-
sing the decoupling behavior of the triplets and comparing
it to the decoupling behavior of the singlet of the NMSSM,
we have computed the mass of the lightest CP-even Higgs
boson to one loop in the large quartic coupling �. With �,
the Higgs-triplet-Higgs coupling in the superpotential,
being comparable with the top Yukawa coupling, we find
that the model is able to satisfy LEP2 bounds on the Higgs
mass without contributions from the s-top sector. At the
expense of perturbativity at the GUT scale, we have
checked that the model can give much smaller fine-tuning
in the electroweak sector than the MSSM. In the triplet
sector, there may be fine-tuning in having small oblique
corrections, but we estimate this fine-tuning to be no worse
than about one part in 30.
With large �, the TESSM opens up previously forbidden

regions of parameters in the MSSM. In particular, both
s-tops can be light in the TESSM. The light s-tops can
then lead to phenomenology that is very different from
the MSSM with important implications for the LHC, such
as a Higgs boson that is both gluophilic and photophobic.
Our simple analysis here can be extended in many

directions, and these further studies must be done if the
model is going to make precise predictions at the LHC.
With large �, there can be important higher-loop effects to
the mass of the lightest, CP-even Higgs boson. Further-
more, important higher-loop QCD effects must also be
included to properly study the gluon-gluon fusion produc-
tion and the diphoton decay of the Higgs boson. We leave
these open projects for the future and hope they may add to
the already rich possibilities of phenomenology that will be
seen at the LHC.
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APPENDIX A: FIELD-DEPENDENT
MASS MATRICES

In this appendix, we list the field-dependent matrices
that enter into the Coleman-Weinberg potential in Eq. (55).
We have five mass matrices, one for each set of particles:
the CP-even Higgs bosons (Ma), the CP-odd Higgs bo-
sons (Mb), the charged Higgs bosons (Mc), the neutrali-
nos (M ~N), and the charginos (M ~C). We first list the
elements of the Higgs bosons.

ðM2
aÞ11 ¼ m2

Hu
þ�2 þ 1

8
ðg21 þ g22Þð3a2u � a2dÞ

þ �2

2
ða2t þ a2dÞ �

ffiffiffi
2

p
��at; (A1)

ðM2
aÞ12 ¼ �B� � 1

4
ðg21 þ g22Þauad þ �2auad

þ �ffiffiffi
2

p ðA� þMTÞat; (A2)

ðM2
aÞ13 ¼ �2auat�

ffiffiffi
2

p
��auþ �ffiffiffi

2
p ðA�þMTÞad; (A3)

ðM2
aÞ22 ¼ m2

Hd
þ�2 þ �2

2
ða2t þ a2uÞ

þ 1

8
ðg21 þ g22Þð3a2d � a2uÞ �

ffiffiffi
2

p
��at; (A4)

ðM2
aÞ23 ¼ �2adat �

ffiffiffi
2

p
��ad þ �ffiffiffi

2
p ðA� þMTÞau; (A5)

ðM2
aÞ33 ¼ M2

T þm2
T þ BT þ �2

2
ða2d þ a2uÞ; (A6)

ðM2
bÞ11 ¼ m2

Hu
þ�2 þ 1

8
ðg21 þ g22Þða2u � a2dÞ

þ �2

2
ða2t þ a2dÞ �

ffiffiffi
2

p
��at; (A7)

ðM2
bÞ12 ¼ B� � �ffiffiffi

2
p ðMT þ A�Þat; (A8)

ðM2
bÞ13 ¼

�ffiffiffi
2

p ðMT � A�Þad; (A9)

ðM2
bÞ22 ¼ m2

Hd
þ�2 þ 1

8
ða2d � a2uÞðg21 þ g22Þ

þ �2

2
ða2t þ a2uÞ �

ffiffiffi
2

p
��at; (A10)

ðM2
bÞ23 ¼

�ffiffiffi
2

p ðMT � A�Þau; (A11)

ðM2
bÞ33 ¼ M2

T þm2
T � BT þ �2

2
ða2d þ a2uÞ; (A12)

ðM2
cÞ11 ¼ m2

Hu
þ�2 þ

�
�2 � g21 � g22

8

�
a2d

þ 1

8
ðg21 þ g22Þa2u þ

ffiffiffi
2

p
��at þ �2

2
a2t ; (A13)

ðM2
cÞ12 ¼ B� þ 1

2

�
�2 þ g22

2

�
adau þ �ffiffiffi

2
p ðMT þ A�Þat;

(A14)

ðM2
cÞ13 ¼ ��au þ 1ffiffiffi

2
p

�
�2 � g22

2

�
auat � �MTad; (A15)

ðM2
cÞ14 ¼ ��au � 1ffiffiffi

2
p

�
�2 � g22

2

�
auat � �A�ad; (A16)

ðM2
cÞ22 ¼ m2

Hd
þ�2 þ

�
�2 � g21 � g22

8

�
a2u

þ 1

8
ðg21 þ g22Þa2d þ

ffiffiffi
2

p
��at þ �2

2
a2t ; (A17)

ðM2
cÞ23 ¼ ���ad þ 1ffiffiffi

2
p

�
�2 � g22

2

�
adat þ �A�au;

(A18)

ðM2
cÞ24 ¼ ���ad � 1ffiffiffi

2
p

�
�2 � g22

2

�
adat þ �MTau;

(A19)

ðM2
cÞ33 ¼ M2

T þm2
T þ

g22
4
ða2d þ 2a2t � a2uÞ þ �2a2u;

(A20)

ðM2
cÞ34 ¼ BT � g22

2
a2t ; (A21)

ðM2
cÞ44 ¼ M2

T þm2
T þ

g22
4
ða2u þ 2a2t � a2dÞ þ �2a2d;

(A22)

where m2
Hu;d

satisfy the minimization conditions Eqs. (28)

and (29).
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For the neutralino and charginos, since we do not take
into account mixing with the gauginos, we have reduced
matrices compared to those in Eqs. (40) and (42), and here
we can simply replace the vevs by the corresponding
particle

M ~N ¼
0 ��þ �ffiffi

2
p at

1ffiffi
2

p �au

��þ �ffiffi
2

p at 0 1ffiffi
2

p �ad
1ffiffi
2

p �au
1ffiffi
2

p �ad MT

0
BB@

1
CCA; (A23)

M ~C ¼ �þ �ffiffi
2

p at ��ad
�au MT

 !
: (A24)

APPENDIX B: DIPHOTON DECAY WIDTH
OFA REAL SCALAR

In this appendix, we review the formula for the de-
cay width of a real scalar �0 (with mass m�) decaying

into two photons �ð�0 ! ��Þ [52]. Generally, given the
interactions

L � �Assþs��0 � A 
2
�0 �  þ AWW

þ�W�
��

0; (B1)

where s	 ( ) fW	
� g is a charged scalar (fermion)

fgauge bosongwith massms (m ) fmWg and electric charge
Qs (Q ) fQWg, the diphoton partial decay width is given by
�ð�0 ! ��Þ

¼ �2
em

1024�3
m�

��������N A Q2
 

m�

m 

F þ NsAsQ
2
s

m�

m2
s

Fs

þ NWAWQ
2
W

m�

m2
W

FW

��������
2

; (B2)

where Ni are factors to account for additional degrees of
freedom (such as color) and

Fs ¼ �s½1� �sfð�sÞ�; (B3)

F ¼ �2� ½1þ ð1� � Þfð� Þ�; (B4)

FW ¼ 2þ 3�W þ 3�Wð2� �WÞfð�WÞ; (B5)

where

�i � 4
m2
i

m2
�

; for i ¼ s;  ;W; (B6)

fð�Þ ¼
� ðarcsin ffiffi

1
�

q
Þ2 if � > 1;

� 1
4 ðlnþ

�
� i�Þ2 if � < 1;

(B7)

	 � 1	 ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
: (B8)

In the case of colored particles, we can make the
replacement

NQ4�2
em ! 2�2

s (B9)

to compute the digluon decay width �ð�0 ! ggÞ, which
is related to the gluon-gluon fusion production cross sec-
tion by

�ðgg! �0Þ ¼ �2

8m3
�

�ð�0 ! ggÞ: (B10)
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