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We study light scalar mesons in the holographic QCD soft-wall model with a background dilaton field.

The masses and decay constants are compatible with experiment and QCD determinations if a0ð980Þ and
f0ð980Þ are identified as the lightest scalar mesons; moreover, the states are organized in linear Regge

trajectories with the same slope of vector mesons. Comparing the two-point correlation function of scalar

operators derived on the anti–de Sitter side and in QCD, information about the condensates can be

derived. Strong couplings of scalar states to pairs of light pseudoscalar mesons turn out to be small, at odds

with experiment and QCD estimates: we discuss how this discrepancy is related to the description of chiral

symmetry breaking in this model, and the possible solutions.
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I. INTRODUCTION

The idea of extending the anti–de Sitter/conformal field
theory (AdS/CFT) correspondence conjecture [1] to QCD-
like theories [2] has provided new hints on the possibility
of describing strong interaction processes by string-
inspired approaches. Two main ways have been followed
to achieve such a result. The first, the so-called top-down
approach, consists in starting from a string/M-theory living
on AdSdþ1 � C (C being a compact manifold) and attempt-
ing a derivation of a low-energy QCD-like theory on the
flat boundary Md of the AdS space through appropriate
compactifications of the extra dimensions [2,3]. In the
second one, the so-called bottom-up approach, one starts
from 4d QCD and attempts to construct its higher dimen-
sional dual theory (not necessarily a string one), assuming
its existence [4], with phenomenological properties as
guidelines.

An important aspect of both these approaches is the
necessity of a mechanism to break conformal invariance,
since QCD is not a conformal theory [5], and to account for
phenomena such as confinement. The way to do this usu-
ally consists in incorporating in the dual theory a mass
scale related to the QCD scale �QCD. For example, in the

bottom-up approach, one possibility is to use a five dimen-
sional ‘‘AdS-slice’’ letting the fifth (holographic) coordi-
nate z vary in a range up to zmax of Oð 1

�QCD
Þ [4,6,7]. In this

(so-called hard-wall) model, several QCD aspects have
been investigated, namely, high-energy hadron scattering
amplitudes, spectra, form factors, strong couplings, light-
front wave functions, and the Wilson loop [4,6–9].

Another proposal to break conformal invariance consists
in introducing in the 5d AdS holographic space a back-
ground dilaton field (the so-called soft-wall model)
[10,11]. While in top-down approaches the dilaton profile
must be a solution of the supergravity equations of motion,
in this kind of approach its functional form is chosen on the
basis of phenomenological information, namely, imposing

the Regge behavior for vector mesons; noticeably, the
obtained dilaton profile, found using heuristic arguments,
can be justified constructing a suitable dynamical model
[12]. Also in this framework many QCD properties have
been investigated, such as vector and tensor meson masses
and form factors, glueball masses, the static �QQ potential,
and deep inelastic scattering [10,11,13–17]. The results of
the two bottom-up models differ in many respects; the
possibility of continuously interpolating between them
has also been considered [18], trying to recognize the
essential features of the QCD dual.
Since light scalar mesons represent an important and

debated sector of QCD, it is interesting to consider them in
the holographic framework, and indeed some analyses
have been carried out [19,20]. It is worth reminding that
scalar states present particular features in the limit of a
large number of colors Nc [21,22]. For example, applying
the inverse amplitude formalism to unitarize one-loop
chiral perturbation theory, and computing meson-meson
scattering amplitudes and their Nc scaling, it was found
that f0ð980Þ appears in the scattering amplitudes as a dip
vanishing at large Nc [22]. In the case of a0ð980Þ, the
amplitude has a peak which vanishes at large Nc for
particular choices of the renormalization scale adopted in
the evaluation of the low-energy constants which deter-
mine the meson-meson scattering, thus preventing from
drawing definite conclusions. In both cases, distortion
effects due to the nearby K �K threshold make the analyses
difficult. For these reasons, scalar mesons could be not the
best candidates to test the AdS/QCD approach, which
exploits the large Nc limit of QCD. Nevertheless, keeping
in mind the above mentioned results, it is thought provok-
ing to investigate the scalar sector in the holographic soft-
wall model, looking at properties that can be described in
this approach. In particular, we consider the mass spec-
trum, the decay constants, and the strong couplings of
scalar mesons to pairs of light pseudoscalars. The com-
parison of the results obtained in the AdS framework with
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experiment and QCD calculations can shed light on the
features and drawbacks of the model.

II. THE MODEL

The model we investigate is defined in the 5d space with
metric

ds2 ¼ gMNdx
MdxN ¼ R2

z2
ð���dx�dx� þ dz2Þ; (1)

with ��� ¼ diagð�1;þ1;þ1;þ1Þ; R is the AdS curvature

radius and the coordinate z runs in the range 0 � z <þ1
(or, considering a UV cutoff, from the ultraviolet brane
zmin ¼ � to þ1).

In addition to the AdS metric, the model is characterized
by a background dilaton field

�ðzÞ ¼ ðczÞ2; (2)

the form of which is chosen to obtain light vector mesons
with linear Regge trajectories [10]; c is a dimensionful
parameter setting the scale of QCD quantities [23].

We consider the 5d action

Seff ¼ � 1

k

Z
d5x

ffiffiffiffiffiffiffi�gp
e��ðzÞ Tr

�
jDXj2 þm2

5X
2

þ 1

4g25
ðF2

L þ F2
RÞ
�
; (3)

where g is the determinant of the metric tensor gMN in (1),
� the background dilaton field (2), and k a dimensionful
parameter included to provide a dimensionless action. This
action includes fields which are dual to QCD operators
defined at the boundary z ¼ 0. There is a scalar bulk field
X, the mass of which is fixed by the AdS/CFT relation,
m2

5R
2 ¼ ð�� pÞð�þ p� 4Þ, � being the dimension of

the p-form QCD operator dual to X. This field, written as

X ¼ ðX0 þ SÞe2i�; (4)

contains a background field X0ðzÞ ¼ vðzÞ
2 , the scalar field

Sðx; zÞ, and the chiral field �ðx; zÞ. X0 only depends on z
and is dual to h �qqi; since it is different from zero, it
represents the term responsible for the breaking of chiral
symmetry. The scalar bulk field S includes singlet S1ðx; zÞ
and octet Sa8ðx; zÞ components, gathered into the multiplet

S ¼ SATA ¼ S1T
0 þ Sa8T

a; (5)

with T0 ¼ 1=
ffiffiffiffiffiffiffiffi
2nF

p ¼ 1=
ffiffiffi
6

p
and Ta the generators of

SUð3ÞF, with normalization

Tr ðTATBÞ ¼ �AB

2
(6)

(A ¼ 0, a, and a ¼ 1; . . . 8). SA is dual to the QCD operator
OA
S ðxÞ ¼ �qðxÞTAqðxÞ, so that � ¼ 3, p ¼ 0, and m2

5R
2 ¼

�3. The fact that the scalar bulk field is tachyonic does not

affect the stability of the theory, since fields with slightly
negative masses are allowed, as discussed in [24].
The action (3) also involves the fields AaL;Rðx; zÞ intro-

duced to gauge the chiral symmetry in the 5d space [25].
They are dual to the QCD operators �qL;R��T

aqL;R, with

field strengths

FMNL;R ¼ FMNaL;R Ta ¼ @MANL;R � @NAML;R � i½AML;R; ANL;R�:
(7)

The gauge fields enter in the covariant derivative, DMX ¼
@MX � iAML X þ iXAMR . Writing AL;R in terms of vector V
and axial-vector A fields, VM ¼ 1

2 ðAML þ AMR Þ and AM ¼
1
2 ðAML � AMR Þ, we obtain the action

Seff ¼ � 1

k

Z
d5x

ffiffiffiffiffiffiffi�gp
e��ðzÞ Tr

�
jDXj2 þm2

5X
2

þ 1

2g25
ðF2

V þ F2
AÞ
�
; (8)

with

FMNV ¼ @MVN � @NVM � i½VM; VN� � i½AM; AN�;
FMNA ¼ @MAN � @NAM � i½VM; AN� � i½AM; VN� (9)

and DMX ¼ @MX � i½VM; X� � ifAM; Xg.
The action (3)–(8) is the starting point of our analysis.

Following the AdS/CFT guideline, we assume that the
duality relation holds:

hei
R
d4xOðxÞf0ðxÞiQCD ¼ eiSeff ; (10)

where the lhs is the QCD generating functional in which
the sources f0ðxÞ of the 4dOðxÞ operators are the boundary
(z! 0) limits of the corresponding (dual) 5d fields. We
then derive the properties of light scalar mesons on the
basis of the AdS/CFT duality procedure applied to the soft-
wall model. The check of duality in this channel is the aim
of the forthcoming sections.

III. SPECTRUM OF SCALAR MESONS

Let us consider the quadratic part of the action (3)–(8)
involving the scalar fields SAðx; zÞ,

Sð2Þeff ¼ � 1

2k

Z
d5x

ffiffiffiffiffiffiffi�gp
e��ðzÞðgMN@MSA@NSA

þm2
5S

ASAÞ: (11)

From this term, it is straightforward to derive the equation
of motion for the field SA (for any flavour index A, which is
dropped below),

�MN@M

�
R3

z3
e��ðzÞ@NS

�
þ 3

R3

z5
e��ðzÞS ¼ 0 (12)

or, in the 4d Fourier space, defining Sðx; zÞ ¼R d4q
ð2�Þ4 e

iq�x ~Sðq; zÞ (from now on the tilde will always de-
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note 4d Fourier-transformed fields),

@z

�
R3

z3
e��ðzÞ@z ~S

�
þ 3

R3

z5
e��ðzÞ ~S� q2

R3

z3
e��ðzÞ ~S ¼ 0:

(13)

Scalar meson states correspond to the normalizable solu-
tions of this equation. The solutions can be obtained con-
sidering the transformation

~S ¼ eðẑ2þ3 logẑÞ=2Y; (14)

with ẑ ¼ cz and the function Y satisfying the one dimen-
sional Schrödinger-like equation

� Y00 þ VðẑÞY ¼ m2

c2
Y; (15)

the derivatives act on ẑ, and the potential is VðẑÞ ¼ ẑ2 þ
3
4ẑ2

þ 2. The normalizable solutions of Eq. (15) correspond

to the discrete mass spectrum [20]

� q2n ¼ m2
n ¼ c2ð4nþ 6Þ; (16)

with integer n, and eigenfunctions expressed in terms of
the generalized Laguerre polynomials

~S nðẑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

s
ẑ3L1

nðẑ2Þ: (17)

The results of this simple calculation can be compared to
current phenomenology. Scalar mesons are organized in
linear Regge trajectories, as a consequence of the choice of
the dilaton field (2). The slope of the trajectories is the
same as for vector mesons, the spectral condition of which
is [10]

m2
�n ¼ c2ð4nþ 4Þ: (18)

In the same soft-wall model scalar glueballs also appear in
Regge trajectories with the same slope, since their masses
are given by [16]

m2
Gn

¼ c2ð4nþ 8Þ; (19)

therefore the parameter c sets the scale of all hadron
masses.

Scalar mesons turn out to be heavier than vector mesons.
This is in agreement with experiment if a0ð980Þ and
f0ð980Þ are identified as the lightest scalar mesons. The
agreement is quantitative, since Eqs. (16) and (18) allow to

predict Rf0ða0Þ ¼
m2
f0ða0Þ
m2

�0

¼ 3
2 , to be compared to Rexp

f0
¼

1:597� 0:033 and Rexp
a0 ¼ 1:612� 0:004. Considering

the first radial excitations, the predictions R0
f0ða0Þ ¼ 5

4

should be compared to the measurements R
0 exp
f0

¼ 1:06�
0:04 and R0 exp

a0 ¼ 1:01� 0:04, having identified a0ð1450Þ,
f0ð1505Þ, and �ð1450Þ as radial excitations; an assignment
which however could be questionable in case of f0ð1505Þ
(identifying f0ð1370Þ with the first radial excitation, one

finds R0 exp
f0

¼ 0:9� 0:2).

Finally, scalar mesons are lighter than scalar glueballs,
m2
G

m2
f0

¼ 4
3 for the lowest-lying states. Hierarchy among the

hadron species is reduced for higher radial states, which
become degenerate when the quantum number n increases.

IV. BULK-TO-BOUNDARY PROPAGATOR OF THE
SCALAR FIELD

According to the AdS/CFT correspondence, the value

of the 5d field ~Sðq2; zÞ at the UV boundary z ¼ 0, i.e.
~S0ðq2Þ, acts as the source of the corresponding dual 4d
operator in the QCD functional integral. They are related

through the bulk-to-boundary propagator, ~Sðq2; zÞ ¼
Sðq2=c2; ẑ2Þ~S0ðq2Þ. This propagator is obtained solving,
for all values of the four-momenta q2, Eq. (13) which
can be cast in the form

S00 � 1

ẑ
ð2ẑ2 þ 3ÞS0 �

�
q2

c2
� 3

ẑ2

�
S ¼ 0 (20)

with the derivatives acting on ẑ. The general solution of
this equation involves the Tricomi confluent hypergeomet-
ric function U and the Kummer confluent hypergeometric
function 1F1,

S

�
q2

c2
; ẑ2

�
¼ 1

Rc
�

�
q2

4c2
þ 3

2

�
ẑU

�
q2

4c2
þ 1

2
; 0; ẑ2

�

þ B

�
q2

c2

�
ẑ31F1

�
q2

4c2
þ 3

2
; 2; ẑ2

�
(21)

with Bðq2
c2
Þ an undetermined function of q2=c2. If we im-

pose the boundary condition that the action is finite in the
IR region z! þ1 (a standard assumption in the soft-wall
model approach) the solution with B ¼ 0 must be chosen;
we mention below the consequences of relaxing such a
condition, as studied in [26] for scalar glueballs. In the UV
z! 0 limit, the boundary condition

S

�
q2

c2
; ẑ2

�
!
z!0

z

R
(22)

fixes the coefficient of the Tricomi function U. With this
expression of the bulk-to-boundary propagator it is pos-
sible to compute several quantities, namely, two- and three-
point correlation functions involving scalar operators.
Before continuing with the analysis, it is worth remind-

ing the features of the background field X0ðzÞ ¼ vðzÞ
2 . It is

solution of the linearized equation of motion

@z

�
R3

z3
e��ðzÞ@zvðzÞ

�
þ 3

R3

z5
e��ðzÞvðzÞ ¼ 0; (23)

which explicitely reads

vðzÞ ¼ mq

Rc
�ð3=2ÞẑUð1=2; 0; ẑ2Þ þ Cẑ31F1ð3=2; 2; ẑ2Þ:

(24)
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Since both the Tricomi and the Kummer confluent hyper-
geometric functions go to unity for z! 0, the asymptotic
UV behavior of (24) is

vðzÞ!
z!0

mqz

R
þ �z3

R
; (25)

with � related to the constant C. Using the AdS/CFT
dictionary, the coefficient of z enters in the (UV) boundary
condition related to the quark mass, while the coefficient of
the z3 term is fixed by the (UV) boundary condition related
to the chiral condensate, the two quantities being respon-
sible of chiral symmetry breaking. However, if one im-
poses as an IR boundary condition that vðzÞ does not
diverge at z! þ1, in (24) the solution with C ¼ 0 must
be chosen, so that the low-z expansion of v reads

vðzÞ!
z!0

mqz

R
� c2mq

2R
ð1� 2�E � 2 lnðczÞ �  ð3=2ÞÞz3

þOðz5Þ; (26)

with  the Euler function. Identifying the coefficient of the
z3 term as the chiral condensate, from Eq. (26) a propor-
tionality relation can be established between the quark
mass and the quark condensate; this kind of relation is
absent in QCD. This shortcoming, already recognized in
the soft-wall model of AdS/QCD [10], does not appear in
the hard-wall model where the coefficients of z and z3

terms of v are independent. In principle, it could be
avoided by adding potential terms UðXÞ to the action (3),
as suggested in [10]; models for vðzÞ with the asymptotic
UV and IR behavior dictated by (23) have also been
investigated [18]. In the following, we ignore this difficulty
and use the expression of vðzÞ in (24) with C ¼ 0; the
consequences are important for the scalar meson couplings
to pairs of pseudoscalar states, and confirm the need of a
function which better describes the physics of the chiral
condensate, as we discuss below [27].

Before concluding this section, we report the equations
of motion for the axial and the pion fields. Writing the axial

field ~Aa� in terms of its transverse and longitudinal compo-

nents, ~Aa� ¼ ~Aa�? þ iq� ~	a, we have, from the action (3)–

(8)

�
@z

�
e��

z
@z ~A

a
�

�
� q2e��

z
~Aa� � g25R

2vðzÞ2e��

z3
~Aa�

�
?
¼ 0;

(27)

@z

�
e��

z
@z ~	

a

�
þ g25R

2vðzÞ2e��

z3
ð ~�a � ~	aÞ ¼ 0; (28)

q2@z ~	
a þ g25R

2vðzÞ2
z2

@z ~�
a ¼ 0: (29)

These equations will be considered below when we
compute the scalar meson couplings to pairs of light pseu-
doscalar states.

V. TWO-POINT CORRELATION FUNCTION OF
THE SCALAR OPERATOR

Let us consider in QCD the two-point correlation func-
tion

�AB
QCDðq2Þ ¼ i

Z
d4xeiq�xh0jT½OA

S ðxÞOB
S ð0Þ�j0i (30)

with OA
S ðxÞ ¼ �qðxÞTAqðxÞ. The AdS/CFT method relates

this correlation function to the two-point correlator ob-
tained from the action (3)–(8), which can be written in
terms of the bulk-to-boundary propagator (21)

�AB
AdSðq2Þ ¼ �AB

R3c4

k
S

�
q2

c2
; ẑ2

�
e��ðẑÞ

ẑ3
@ẑS

�
q2

c2
; ẑ2

���������ẑ!0
;

(31)

with the result

�AB
AdSðq2Þ ¼ �AB

4c2R

k

��
q2

4c2
þ 1

2

�
lnðc2z2Þ þ

�
�E � 1

2

�

þ q2

4c2

�
2�E � 1

2

�

þ
�
q2

4c2
þ 1

2

�
 

�
q2

4c2
þ 3

2

����������z¼zmin

(32)

(omitting aOð 1
z2
Þ contact term). The AdS expression of the

correlation function (plotted in Fig. 1) shows the presence
of a discrete set of poles, corresponding to the poles of the
Euler function  , with masses given by the spectral relation
(16) and residues

F2
n ¼ R

k
16c4ðnþ 1Þ: (33)

15 10 5 0 5 10 15
20

10

0

10

20

q 2

c 2

1 c
2

A
dS

q
2

c
2

FIG. 1. Two-point correlation function 1
c2
�AdSðq2=c2Þ in

Eq. (32). The renormalization scale is fixed to � ¼ z�1
min ¼

1 GeV.
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The factor Rk can be fixed by matching the AdS expression

(32) in the q2 ! þ1 (i.e. in the short-distance) limit,
expanded in powers of 1=q2, with the QCD result. For
�AdS, identifying zmin with the renormalization scale 1

� , we

get

�AB
AdSðq2Þ ¼ �AB

R

k

�
q2 ln

�
q2

�2

�
þ q2

�
2�E � ln4� 1

2

�

þ 2c2
�
ln

�
q2

�2

�
� ln4þ 2�E þ 1

�

þ 2

3

c4

q2
þ 4

3

c6

q4
þOð1=q6Þ

�
; (34)

where the lnðq2Þ terms come from the asymptotic expan-
sion of the Euler function. The QCD result, for Nc ¼ 3 and
in terms of quark and gluon condensates, is [28]

�AB
QCDðq2Þ ¼

�AB

2

�
3

8�2

�
1þ 11
s

3�

�
q2 ln

�
q2

�2

�
þ 3

q2
hmq �qqi

þ 1

8q2

	

s
�
G2



þmqgs

2q4
hð �q����aqÞGa

��i

þ �
s
q4

hð �q����aqÞ2i

þ 2�
s
3q4

	
ð �q���aqÞ

X
q¼u;d

�q���
aq




þOð1=q6Þ
�
; (35)

where possible terms related, e.g., to instanton contribu-
tions have not been considered. Matching the perturbative
term fixes the condition

R

k
¼ Nc

16�2
: (36)

In the same way, by the two-point correlation function of
the vector current [6], the matching condition fixes the

value of g25:
R
kg2

5

¼ Nc
12�2 , so that g25 ¼ 3

4 .

The residues of the two-point correlation function, re-
lated to the scalar meson decay constants, are now deter-
mined

F2
n ¼ Nc

�2
c4ðnþ 1Þ (37)

for all radial states labeled by n.
It is interesting to compare (37) to QCD calculations.

For a0ð980Þ, the following result has been obtained for the
current-vacuum matrix elements defining the decay con-
stant [29]

Fa0 ¼ h0jO3
Sja0ð980Þ0i ¼ ð0:21� 0:05Þ GeV2: (38)

The AdS prediction is Fa0 ¼
ffiffi
3

p
� c

2 ¼ 0:08 GeV2, having

fixed c from the �0 mass, c ¼ m�

2 . For the f0ð980Þ a similar

result has been obtained for the matrix element of the s�s

operator, h0j�ssjf0ð980Þi ¼ ð0:18� 0:015Þ GeV2 [30].
Considering the uncertainties in QCD determinations, the
AdS results differ by about a factor of 2. For the first radial
excitation we have Fa0

0
¼ 0:12 GeV2, while for large val-

ues of n the ratio F2
n

m2
n
becomes independent of the radial

quantum number.
AdS/QCD duality can be checked for the various terms

in the 1
q2

power expansion, comparing Eqs. (34) and (35).

For mq ¼ 0, the four dimensional gluon condensate can be

computed

	

s
�
G2



¼ 2

�2
c4 ’ 0:004 GeV4; (39)

which is smaller than the commonly used value h
s� G2i ’
0:012 GeV4, the estimated uncertainty of which is about
30% [31].
Considering Oð1=q4Þ terms, in QCD one can use the

factorization approximation

hð �q����aqÞ2i ’ � 16

3
h �qqi2;

hð �q���aqÞ2i ’ � 16

9
h �qqi2

(40)

for the dimension 6 operators. Within such an approxima-
tion, the AdS and QCD expressions do not match, since the
Oð1=q4Þ term in (34) is positive, while it is negative in (35).
The last remark is that in the AdS expression (34) there

is a contribution interpreted in terms of a dimension two
condensate, while an analogous term is absent in the QCD
expansion (35). In this respect, the two-point correlation
function of the scalar operators presents the same phe-
nomenon occurring in the two-point correlation function
of vector mesons [32,33] and of scalar glueballs [26,34].
Although in QCD there is no local gauge-invariant opera-
tor of dimension two, the possible relevance of a dimension
two condensate in the form of an effective gluon mass term
is the subject of discussions [35], so that the AdS result
could be interpreted as an argument supporting the exis-
tence of this condensate. However, the AdS/CFT method
dictates duality between bulk fields and gauge-invariant
operators in the boundary theory. Another possible way to
explain the presence of this contribution is that, although
the quadratic dependence of the dilaton field in the IR is
required to provide linear confinement, at smaller values of
z the functional dependence of �ðzÞ is less constrained, so
that in other versions of the background field such a term
could be removed; this deserves an explicit check. A differ-
ent possibility, put forward in [26], is that the subleading
(for z! 0) solution in the bulk-to-boundary scalar field
propagator plays a role, so that its coefficient can be tuned
to cancel the dimension two contribution. In such a sce-
nario, in which the AdS dual theory needs to be regularized
in the IR, the subleading solution modifies some terms in
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the power expansion of the two-point correlation function,
leaving the perturbative term unaffected.

VI. INTERACTION OF SCALAR MESONS WITH A
PAIR OF PSEUDOSCALAR MESONS

In the action (3) the interaction terms involving one
scalar S and two light pseudoscalar fields P only appear
in the covariant derivative TrfjDXj2g. Using the equations
of motion and writing the axial-vector bulk field in terms of
the transverse and longitudinal components, AM ¼ A?M þ
@M	, we have

SðSPPÞeff ¼ � 4

k

Z
d5x

ffiffiffiffiffiffiffi�gp
e��ðzÞgMNvðzÞ

� TrfSð@M�� @M	Þð@N�� @N	Þg (41)

i.e.,

SðSPPÞeff ¼ � 4

k

Z
d5x

ffiffiffiffiffiffiffi�gp
e��ðzÞgMNvðzÞS1ð@M aÞð@N bÞ

� 1ffiffiffiffiffiffiffiffi
2nF

p Tr½TaTb� � 4

k

Z
d5x

ffiffiffiffiffiffiffi�gp
e��ðzÞgMNvðzÞ

� Sa8ð@M bÞð@N cÞTr½TaTbTc�; (42)

where  a ¼ 	a � �a. For nF ¼ 2, Tr½TaTbTc� ¼ i
4"

abc,

and the adjoint part vanishes, while for nF ¼ 3 we have

SðSPPÞeff ¼�R
3

k

2ffiffiffi
6

p
Z
d5x

1

z3
e��ðzÞvðzÞS1�MNð@M aÞð@N aÞ

�R3

k
dabc

Z
d5x

1

z3
e��ðzÞvðzÞSa8�MNð@M bÞð@N cÞ:

(43)

In the Fourier space, this term involves the bulk-to-

boundary propagator Sðq2
c2
; c2z2Þ of the scalar field, together

with the sources ~S1ð8Þ0 . As discussed in [6] in the case of the
hard-wall model, the longitudinal part of the axial-vector
field can be related to its source through the equation

~	aðq; zÞ ¼ 1

q2
Ak

�
q2

c2
; c2z2

�
ð�iq� ~Aak0�ðqÞÞ; (44)

while for the combination ~ a ¼ ~	a � ~�a the equation
involves the propagator �,

~ aðq; zÞ ¼ 1

q2
�

�
q2

c2
; c2z2

�
ð�iq� ~Aak0�ðqÞÞ: (45)

The contribution of only the pseudo-Goldstone bosons is
selected by the condition

~ a
Pðq; zÞ ¼

1

q2
�ð0; c2z2Þð�iq� ~Aak0�ðqÞÞ: (46)

From Eq. (29) the condition @z ~�
a ¼ 0 holds at q2 ¼ 0 and

the equation for �ð0; c2z2Þ,

@z

�
e��

z
@z�ð0; c2z2Þ

�
� g25R

2vðzÞ2e��

z3
�ð0; c2z2Þ ¼ 0

(47)

coincides with the equation holding for Að0; c2z2Þ which
appears in the relation ~Aa?�ð0; zÞ ¼ Að0; c2z2Þ ~Aa?0�ð0Þ.
We can then identify�ð0; c2z2Þ ¼ Að0; c2z2Þ [36], so that

~ a
Pðq; zÞ ¼

1

q2
Að0; c2z2Þð�iq� ~Aak0�ðqÞÞ: (48)

In this way, the SðSPPÞeff term in (42), considering only the

octet contribution, reads

iSðSPPÞeff ¼ � i

k
dabc

Z d4q1d
4q2d

4q3
ð2�Þ12 ð2�Þ4�4ðq1 þ q2

þ q3Þ
Z 1

0
dz
R3

z3
e��ðzÞvðzÞS

�
q21
c2
; c2z2

�
� ~Sa80ðq1Þ½ð@zAð0; c2z2ÞÞ2

� q2 � q3Að0; c2z2Þ2�
�
� i

q22
q
�
2
~Abk0�ðq2Þ

�

�
�
� i

q23
q�3

~Ack0�ðq3Þ
�
: (49)

This interaction term allows to compute the scalar cou-
plings to pseudoscalar states. Indeed, on the basis of the
AdS/CFT correspondence, the QCD three-point correla-
tion function involving two pseudoscalar and one scalar
operator

�abc
QCD

ðp1; p2Þ ¼ i2

Z
d4x1d

4x2e
ip1�x1eip2�x2

� h0jT½Ob
5

ðx1ÞOa

Sð0ÞOc
5

ðx2Þ�j0i (50)

can be obtained by a functional derivation of (49) with

respect to the source fields ~Ak0ðp1Þ, ~Ak0ðp2Þ, and ~Sa80ðqÞ,
with the result

�abc
AdS

ðp1; p2Þ ¼

p1
p2


p2
1p

2
2

2R3

k
dabc

Z 1

0
dz

1

z3
e��vðzÞ

� S

�
q2

c2
; c2z2

��
ð@zAð0; c2z2ÞÞ2

� q2

2
Að0; c2z2Þ2

�
; (51)

with q ¼ �ðp1 þ p2Þ. The AdS expression of the strong
SPP couplings follows writing the bulk-to-boundary
propagator S in terms of the scalar mass poles, of the

residues and of the normalizable eigenfunction ~Snðẑ2Þ in
(17). Using the integral representation of the Tricomi
function [33,37]

Uða; b; xÞ ¼ 1

�ðaÞ
Z 1

0
dy

ya�1

ð1� yÞb exp

�
� y

1� y
x

�
; (52)
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one derives the generating function of the Laguerre poly-
nomials [14]

1

ð1� yÞ2 exp

�
� y

1� y
x

�
¼ X1

n¼0

L1
nðxÞyn; (53)

so that

S

�
q2

c2
; c2z2

�
¼ 1

Rc

ffiffiffiffiffiffi
8

Nc

s
�
X1
n¼0

Fn ~Snðc2z2Þ
q2 þm2

n þ i"
; (54)

with Fn given in (37) and the functions ~Sn in (17).
Moreover, defining the scalar form factor FP

hPdjOa
SjPei ¼ FdaeP ðq2Þ; (55)

we have

�abc
QCD

ðp1; p2Þ ¼ �p1
p2


p2
1p

2
2

f2�F
abc
P ðq2Þ; (56)

with f� the pion decay constant. The AdS expressions of
the scalar form factor and of the gSnPP couplings follow

FabcP ðq2Þ ¼ �dabc 1
k

2

f2�

Z 1

0
dz
R3

z3
e��vðzÞS

�
q2

c2
; c2z2

�

�
�
ð@zAð0; c2z2ÞÞ2 � q2

2
Að0; c2z2Þ2

�

¼ �dabc X1
n¼0

FngSnPP

q2 þm2
n

(57)

with

gSnPP ¼ 1

k

2

f2�

Z 1

0
dz
R3

z3
e��vðzÞ 1

Rc

ffiffiffiffiffiffi
8

Nc

s
�~Snðc2z2Þ

�
�
ð@zAð0; c2z2ÞÞ2 þ

m2
Sn

2
Að0; c2z2Þ2

�
: (58)

To compute gSnPP from (58), one needs Að0; c2z2Þ,
which can be obtained solving (27). However, since vðzÞ
is small (it depends on mq=R), one can neglect terms

proportional to v2 and identify Að0; ẑ2Þ with Að0Þð0; ẑ2Þ
solution of

@ẑ

�
e�ẑ2

ẑ
@ẑAð0Þð0; ẑ2Þ

�
¼ 0; (59)

with Að0Þð0; ẑ2Þ!z!01. The regular solution is

Að0Þð0; ẑ2Þ ¼ 1.
The expression of gS0PP for the lowest radial number

n ¼ 0, since ~S0ðẑ2Þ ¼
ffiffiffi
2

p
ẑ3, is

gS0PP ¼
ffiffiffiffiffiffi
Nc

p
4�

m2
S0

f2�
Rc

Z 1

0
dẑe�ẑ2vðẑÞ: (60)

The coupling depends linearly on the field v. The numeri-
cal result is small, of the order of 10 MeV depending on the
quark mass used as an input. On the other hand, phenome-
nological determinations of the SPP couplings indicate
sizeable values, showing that the scalar states are charac-
terized by their large couplings to light pseudoscalar me-

sons. For example, we identify again a0ð980Þ and f0ð980Þ
as the lightest scalar mesons in order to compare theoreti-
cal results with data; the experimental value of ga0�� is

ga0�� ¼ 12� 6 GeV, while for f0 the result of a QCD

estimate is: gf0KþK� ’ 6–8 GeV [38]. The origin of the

small value for the S0PP couplings in the AdS/QCD soft-
wall model is related to the difficulty of correctly describ-
ing chiral symmetry breaking in this model, as discussed in
Sec. IV. The expression of v is given by Eq. (24) with C ¼
0. It is determined by the light quark mass, which also fixes
the contribution of the coefficient of the z3 term in (26). A
larger result for the gS0PP coupling would be obtained if, as

it happens, e.g., in the hard-wall model, the coefficientsmq

and h �qqi, respectively, of the z and the z3 terms in v, were
not related; in turn, this would modify the numerical result
for the SPP coupling from Eq. (60).
In Ref. [10] it was proposed to include additional higher

order potential terms UðXÞ in the effective action (3), with
the aim of obtaining an expression for v with unrelated (or
non linearly related) mq and chiral condensate, the inde-

pendent parameters driving chiral symmetry breaking. One
should look for potential terms UðXÞ giving solutions XðzÞ
which are finite in the IR region z! 1. In correspondence
to such solutions, at z! 0 the relation between mq and

h �qqi would not be linear, thus providing a more accurate
description of the chiral symmetry breaking, and therefore
a better candidate as QCD gravity dual. However, a dedi-
cated study is needed in order to find the form of such new
terms in the action.

VII. CONCLUSIONS

We have studied the scalar sector in the 5dAdS soft-wall
model proposed as a QCD dual, finding that the masses of
scalar mesons are close to experiment, and the decay
constants differ from the available QCD determinations
by about a factor of 2. The two-point correlation function
of the scalar operator has a power expansion similar to
QCD, with violations in the dimension six condensates
computed assuming factorization. A dimension two con-
densate term, absent in QCD, appears in the power expan-
sion of the AdS expression, analogously to the two-point
correlators of vector meson and scalar glueball operators.
The strong couplings of scalar states to pairs of light
pseudoscalar mesons are smaller than in phenomenologi-
cal determinations, as a consequence of the difficulty of
correctly describing chiral symmetry breaking within this
model. This difficulty could be avoided by including addi-
tional potential terms in the effective Lagrangian defining
the model, a possibility which deserves a dedicated study.

ACKNOWLEDGMENTS

We are grateful to M. Pellicoro for discussions. This
work was supported in part by the EU Contract
No. MRTN-CT-2006-035482, FLAVIAnet.

LIGHT SCALAR MESONS IN THE SOFT-WALL MODEL OF . . . PHYSICAL REVIEW D 78, 055009 (2008)

055009-7



[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
Int. J. Theor. Phys. 38, 1113 (1999); E. Witten, Adv.
Theor. Math. Phys. 2, 253 (1998); S. S. Gubser, I. R.
Klebanov, and A.M. Polyakov, Phys. Lett. B 428, 105
(1998).

[2] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[3] For a recent review see: J. Erdmenger, N. Evans, I. Kirsch,

and E. Threlfall, Eur. Phys. J. A 35, 81 (2008) and
references therein.

[4] J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88,
031601 (2002).

[5] A discussion about the conformal window of QCD can be
found in S. J. Brodsky and G. F. de Teramond,
arXiv:0802.0514 and references therein.

[6] J. Erlich, E. Katz, D. T. Son, and M.A. Stephanov, Phys.
Rev. Lett. 95, 261602 (2005).

[7] L. Da Rold and A. Pomarol, Nucl. Phys. B721, 79 (2005).
[8] S. J. Brodsky and G. F. de Teramond, Phys. Lett. B 582,

211 (2004); Phys. Rev. Lett. 94, 201601 (2005); 96,
201601 (2006); U. Gursoy, E. Kiritsis, and F. Nitti, J.
High Energy Phys. 02 (2008) 019.

[9] H. Boschi-Filho, N. R. F. Braga, and C.N. Ferreira, Phys.
Rev. D 73, 106006 (2006); 74, 089903(E) (2006); 74,
086001 (2006).

[10] A. Karch, E. Katz, D. T. Son, and M.A. Stephanov, Phys.
Rev. D 74, 015005 (2006).

[11] O. Andreev, Phys. Rev. D 73, 107901 (2006).
[12] B. Batell and T. Gherghetta, Phys. Rev. D 78, 026002

(2008).
[13] O. Andreev and V. I. Zakharov, Phys. Rev. D 74, 025023

(2006).
[14] H. R. Grigoryan and A.V. Radyushkin, Phys. Rev. D 76,

095007 (2007).
[15] H. J. Kwee and R. F. Lebed, J. High Energy Phys. 01

(2008) 027.
[16] P. Colangelo, F. De Fazio, F. Jugeau, and S. Nicotri, Phys.

Lett. B 652, 73 (2007).
[17] C. A. Ballon Bayona, H. Boschi-Filho, and N. R. F. Braga,

J. High Energy Phys. 03 (2008) 064.
[18] H. J. Kwee and R. F. Lebed, Phys. Rev. D 77, 115007

(2008).
[19] K. Ghoroku, N. Maru, M. Tachibana, and M. Yahiro, Phys.

Lett. B 633, 602 (2006); L. Da Rold and A. Pomarol, J.
High Energy Phys. 01 (2006) 157; H. Forkel, M. Beyer,
and T. Frederico, J. High Energy Phys. 07 (2007) 077; T.
Huang and F. Zuo, Eur. Phys. J. C 56, 75 (2008).

[20] A. Vega and I. Schmidt, arXiv:0806.2267.
[21] J. A. Oller, E. Oset, and J. R. Pelaez, Phys. Rev. Lett. 80,

3452 (1998); Phys. Rev. D 59, 074001 (1999); 60, 099906
(E) (1999); 75, 099903(E) (2007); M. Uehara, arXiv:hep-
ph/0308241; For a review see R. L. Jaffe, Proceedings of
QCD@Work 2007, International Workshop on Quantum

Chromodynamics Theory and Experiment, edited by
P. Colangelo et al., AIP Conf. Proc. No. 964 (AIP, New
York 2007).

[22] J. R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004).
[23] The linear Regge behavior for light mesons can be ob-

tained in the quark model; for example, in models with
linear confinement and relativistic kinematics, the mass of
�qq states with orbital angular momentum ‘ and radial
quantum number n is given by the expression: M2 / nþ
‘
2 þ 3

4 ; see P. Cea, P. Colangelo, G. Nardulli, G. Paiano,
and G. Preparata, Phys. Rev. D 26, 1157 (1982); A
derivation of the �qq potential in the Wilson loop approach
produces an analogous result, see: F. Jugeau and H.
Sazdjian, Nucl. Phys. B670, 221 (2003).

[24] I. R. Klebanov and E. Witten, Nucl. Phys. B556, 89
(1999).

[25] Since SUð3Þ flavor symmetry is broken, its application in
the holographic approach is more uncertain than using the
isospin symmetry. The AdS/QCD results in the case of
two flavors can be simply obtained in our analysis.
Considering three flavors is important in order to compare
the results for strong couplings to the available experi-
mental data, as discussed in Sec. VI.

[26] P. Colangelo, F. De Fazio, F. Jugeau, and S. Nicotri,
arXiv:0711.4747.

[27] Drawbacks concerning the scale dependence of the chiral
condensate are discussed in A. Cherman, T.D. Cohen, and
E. S. Werbos, arXiv:0804.1096.

[28] L. J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep.
127, 1 (1985).

[29] A. Gokalp, Y. Sarac, and O. Yilmaz, Eur. Phys. J. C 22,
327 (2001).

[30] F. De Fazio and M. R. Pennington, Phys. Lett. B 521, 15
(2001).

[31] P. Colangelo and A. Khodjamirian, in At the Frontier of
Particle Physics, Handbook of QCD Vol. 3, edited by M.
Shifman (World Scientific, Singapore, 2001), p. 1495.

[32] O. Andreev, Phys. Rev. D 73, 107901 (2006).
[33] F. Zuo and T. Huang, arXiv:0801.1172.
[34] H. Forkel, Phys. Rev. D 78, 025001 (2008).
[35] A recent discussion and references can be found in: V. I.

Zakharov, Proceedings of QCD@Work 2007,
International Workshop on Quantum Chromodynamics
Theory and Experiment, edited by P. Colangelo et al.,
AIP Conf. Proc. 964 (AIP, New York, 2007).

[36] H. R. Grigoryan and A.V. Radyushkin, Phys. Rev. D 76,
115007 (2007).
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