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We consider scale invariant theories of continuous mass fields and show how interactions of these fields

with the standard model can reproduce unparticle interactions. There is no fixed point or dimensional

transmutation involved in this approach. We generalize interactions of the standard model to multiple

unparticles in this formalism and explicitly work out some examples, in particular, we show that the

product of two scalar unparticles behaves as a normalized scalar unparticle with a dimension equal to the

sum of the two composite unparticle dimensions. Extending the formalism to scale invariant interactions

of continuous mass fields, we calculate three point functions of unparticles.
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Unparticle is an interesting idea proposed by Georgi [1]
and is based on a scale invariant sector weakly coupled to
the standard model (SM). At lower energies the structure of
the scale invariant theory is assumed to have a fixed point
in the coupling at a comparatively low scale (� TeV),
below which by dimensional transmutation, operators
emerge with nonintegral dimensions. As pointed out in
Ref. [1], many interesting phenomena at TeV scale emerge
that can be understood purely from scaling properties of
the unparticle operators. Although this is completely sat-
isfactory for phenomenology, much of the dynamics of the
scale invariant sector are mysterious, and the existence of a
fixed point in the coupling parameter can only be
hypothesized.

In this paper we present a formulation that is based
explicitly on a well-defined Lagrangian which possesses
scale invariance. The Lagrangian involves continuous mass
fields. One can now define unparticle like local operators
that couple to the SM. The unparticle properties emerge
through the choice of interactions. There is no fixed point
or dimensional transmutation. The theory leads to a clear
understanding of how unparticle exchange and phase space
in the decay of SM particles arises.

One starting point is a free Lagrangian for a continuous
mass scalar field

L0 ¼ 1

2

Z 1

0
½@��ðx; sÞ@��ðx; sÞ � s�2ðx; sÞ�ds: (1)

The field equations are given by

@�
@L0

@@��ðx; sÞ ¼
@L0

@�ðx; sÞ : (2)

Using functional differentiation, we obtain

ð@�@� þ sÞ�ðx; sÞ ¼ 0: (3)

These are an infinite set of differential equations for all s
from 0 to 1.
On a historical note, we point out that such continuous

mass fields were studied long back by Thirring and others
[2] in the context of exactly soluble models. We also note
that continuous mass fields are also discussed by several
groups [3] in context of unparticles, but in a somewhat
different spirit. Krasnikov in Ref. [3] has also considered
continuous mass arising from a five-dimensional theory
with broken Poincaré invariance. We only consider ‘‘s’’ as
a dimension 2 mass parameter. The theory can also be
obtained as the continuum limit of infinite discrete mass
fields.
We now discuss the scaling property of the theory under

x! x0 ¼ ��1x. Since Lagrangian has dimension ðmassÞ4,
the field �ðx; sÞ must have dimension zero. To get its
transformation property �ðx; sÞ ! �0ðx0; sÞ under scaling,
we consider the scaling property of the field equation (3).
We have

ð@0�@0� þ sÞ�0 ¼ ð�2@�@
� þ sÞ�0 ¼ 0: (4)

�0 is obviously a field of ðmassÞ2 ¼ s=�2. Thus taking into
account that the field has dimension zero, we have under
scaling,

�ðx; sÞ ! �0ðx0; sÞ ¼ �ðx; s=�2Þ: (5)

Since the mass s=�2 is within the set of s from 0 to 1,
the transformed equations map on to the initial infinite set,
and the theory is scale invariant. This was noted in Delgado
et al. in Ref. [3]. To confirm scale invariance of the theory,
we can explicitly see how the Lagrangian transforms under
scaling. We have

*desh@uoregon.edu
+hexg@phys.ntu.edu.tw

PHYSICAL REVIEW D 78, 055006 (2008)

1550-7998=2008=78(5)=055006(7) 055006-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.055006


L0 ! 1

2

Z 1

0
ds½�2@��ðx; s=�2Þ@��ðx; s=�2Þ

� s�2ðx; s=�2Þ�

¼ 1

2
�4

Z 1

0

�
@��ðx; s=�2Þ@��ðx; s=�2Þ

� s

�2
�2ðx; s=�2Þ

�
d
s

�2
: (6)

Changing the integration variable to s0 ¼ s=�2, we have
L0 ! �4L0 and the action S ¼ R

d4xL0 is invariant.

Continuous mass thus restores the scale invariance that is
broken by a theory with a discrete nonzero mass.

The field �ðx; sÞ in many ways is similar to a usual
scalar field, except that it is also labeled by a continuous
mass parameter s. We write a real �ðx; sÞ in its Fourier
representation as

�ðx; sÞ ¼
Z d4p

ð2�Þ4 2��ðp
2 � sÞ�ðp0Þ½aðp; sÞe�ipx

þ ayðp; sÞeipx�: (7)

Because of the fact that the �ðx; sÞ has a continuous mass
parameter s, the quantization rules for the creation and
annihilation operators aðk; sÞ and ayðp; sÞ will be different
from that for a usual scalar filed. Appropriate generaliza-
tion is the following

½aðp; sÞ; ayðk; s0Þ� ¼ ð2�Þ32p0�
3ð ~p� ~kÞ�ðs� s0Þ: (8)

Note that the dimension for a and ay is �2.
With the above quantization rules, we have

h0j�ðx; sÞ�ð0; s0Þj0i ¼
Z d4p

ð2�Þ4 e
�ipx2��ðp2 � sÞ

� �ðs� s0Þ; (9)

and also the propagator is

Z
d4xeipxh0jT�ðx; sÞ�ð0; s0Þj0i ¼ i

p2 � sþ i�
�ðs� s0Þ:

(10)

A field with an arbitrary scaling dimension can now be
constructed by convoluting the field�ðx; sÞwith a function
fðsÞ with a fixed scaling dimension to have the following
form

�UðxÞ ¼
Z 1

0
�ðx; sÞfðsÞds: (11)

For fðsÞ ¼ adðsÞðd�2Þ=2, where ad is an appropriately
chosen normalization constant, �U has the scaling dimen-
sion d as can be seen by transforming �ðx; sÞ !
�ðx; s=�2Þ and changing the integration variable to s0 ¼
s=�2.

With the above definition, we have the following

h0j�UðxÞ�Uð0Þj0i ¼
Z d4p

ð2�Þ4 e
�ipx2�f2ðp2Þ;

� ¼
Z
d4xeipxh0jT�UðxÞ�Uð0Þj0i

¼
Z
ds

i

p2 � sþ i�
f2ðsÞ: (12)

One can immediately identify the phase space �ðp2Þ and
propagator � for �U to be

�ðp2Þ ¼ 2�f2ðp2Þ ¼ 2�a2dðp2Þd�2;

� ¼
Z
ds

i

p2 � sþ i�
f2ðsÞ

¼ ð2�a2dÞ
2 sinðd�Þ

i

ð�p2Þ2�d : (13)

Normalizing the constant ad as

a2d ¼
Ad
2�

; Ad ¼ 16�5=2

ð2�Þ2d
�ðdþ 1=2Þ

�ðd� 1Þ�ð2dÞ ; (14)

�U has the same phase space and propagator as that
defined in Ref. [1], the unparticle operator. We also note
that fields obeying Eq. (12) are called generalized free
fields [4]. The special choice of � makes them transform
with a unique scale dimension.
One can easily generalize the above formulation of

unparticle to unparticles with different spins. We display
our results for vector A

�
U and spinor  U unparticles in the

following.
For vector unparticle, we start with

L0 ¼
Z 1

0

�
� 1

4
F��F

�� þ 1

2
sA�A�

�
ds; (15)

where F�� ¼ @�A� � @�A�. We note that presence of

ðmassÞ2 ¼ s means that the vector field is not gauge
invariant.
L0 is invariant under the scaling transformation: x!

��1x, and A� ! A�. The vector unparticle with dimen-
sion d is defined by

A
�
U ¼

Z 1

0
gðsÞA�ðx; sÞds; gðsÞ ¼ adðsÞðd�2Þ=2; (16)

and the phase space and propagator are given, in the
transverse gauge, by

�ðp2Þ ¼ 2�g2ðp2Þ
�
�g�� þ p�p�

p2

�
;

� ¼
Z 1

0

�ðsÞ
2�

i

p2 � sþ i�
ds

¼ Ad
2 sinðd�Þ

i

ð�p2Þ2�d
�
�g�� þ p�p�

p2

�
: (17)

N. G. DESHPANDE AND XIAO-GANG HE PHYSICAL REVIEW D 78, 055006 (2008)

055006-2



For the spinor unparticle  U, we start with

L0 ¼
Z 1

0
½ � i	�@� � ffiffiffi

s
p

�  �ds; (18)

which is invariant under the transformation: x! ��1x,

and  ! �1=2 . The spinor unparticle with dimension
d ¼ dþ 1=2 is given by

 U ¼
Z
hðsÞ ðx; sÞds; hðsÞ ¼ adðsÞðd�2Þ=2; (19)

and the phase space and propagator are given by

�ðp2Þ ¼ 2�h2ðp2Þð	�p� þ
ffiffiffiffiffiffi
p2

q
Þ;

� ¼
Z 1

0
ds
�ðsÞ
2�

i

p2 � sþ i�

¼ Ad
2 sinðd�Þ

i

ð�p2Þ2�d ½	�p
� � i ctgðd�Þ

ffiffiffiffiffiffi
p2

q
�:

(20)

We note that if the vector field is a non-Abelian massive
field, it would violate scale invariance. This is because
Fa�� ¼ @�A

a
� � @�A

a
� þ gfabcAb�A

c
� has a mixed transfor-

mation property under scaling since derivatives transform
as � and fabc as dimension zero. We can still have vector
unparticles with nontrivial transformation under a group
that does not have a continuous mass description.

We can consider operators that carry nontrivial SM
quantum numbers by replacing derivatives with covariant
derivatives. This preserves the scale invariance of the
theory for scalar and spinor unparticles since covariant
derivatives have the same dimension as the usual deriva-
tives. For spin one unparticle this is not possible because of
additional self-couplings.

We now comment on interactions of unparticles. Since
one can now define unparticle like local operators, the
unparticle interaction with SM particles emerges through
a choice of interactions. The interaction of unparticles with
SM fields can be easily constructed from an effective
theory point of view, using operators made of SM fields
OSM and the unparticles OU which can be one of the
�UðxÞ, A�UðxÞ, or  UðxÞ unparticle operators.

For one unparticle interaction with SM fields, the ge-
neric form is give by

Leff ¼ 


�
dSMþd�4
U

OSMOU; (21)

where �U is a scale for the effective interaction and 

represents a dimensionless coupling. d and dSM are the
dimensions of OU and OSM, respectively.
There are many ways unparticles can interact with the

SM sector. A set of operators with SM operators that have
dimensions less or equal to 4 have been listed [5] and many
related phenomenology have been discussed [6]. We will
not go into details about related applications, except to
point out that since we have obtained the unparticle phase
space and propagator, it is trivial to carry out calculations
for various applications, such as unparticle production
from colliders and decays, which go completely parallel
with those that have been considered in the literature.
Instead we shall consider different processes.
Since now the unparticle operator OU is treated as a

local operator, one can talk about multiunparticles cou-
pling among themselves and also couplings to SM fields,
such as interaction of the form


n

�
d1þ���þdnþdSM�4
U

OSMðO1
U � � �On

UÞ; (22)

where Oi
U indicates an unparticle operator of dimension

di. When dSM ¼ 0, the above represents self-interactions
of unparticles.
Multiunparticle interactions have some interesting prop-

erties. We give a few examples in the following. Let us first
consider the propagator for the product of two scalar un-
particles �U3

ðxÞ ¼ �U1
ðxÞ�U2

ðxÞ where

�Ui
ðxÞ ¼

Z
dsfiðsÞ�iðx; sÞ; fiðsÞ ¼ adis

ðdi�2Þ=2:

(23)

Note that the same �iðx; sÞ ¼ �ðx; sÞ can be used to con-
struct unparticles of different dimensions by convoluting a
different fiðsÞ.
The propagator for �U3

ðxÞ is defined by � ¼R
d4xeipxh0jT�U3

ðxÞ�U3
ð0Þj0i. We have, using the Wick

contraction,

h0jT�U3
ðxÞ�U3

ð0Þj0i ¼ h0jT�U1
ðxÞ�U1

ð0Þj0ih0jT�U2
ðxÞ�U2

ð0Þj0i þ h0jT�U1
ðxÞ�U2

ð0Þj0ih0jT�U2
ðxÞ�U1

ð0Þj0i

¼
Z d4p1

ð2�Þ4 e
�ip1x

Z
ds1

if21ðs1Þ
p2
1 � s1 þ i�

Z d4p2

ð2�Þ4 e
�ip2x

Z
ds2

if22ðs2Þ
p2
2 � s2 þ i�

: (24)

Here we consider the case with�1 � �2 so that the cross term is zero. Wewill discuss the result for the same�i ¼ �ðx; sÞ
later.

Carrying out integrations for x and pi for �, � can be written as

� ¼
Z 1

0

�ðsÞ
2�

i

p2 � sþ i�
; (25)

with
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�ðsÞ ¼
Z s

0
ds1

Z ð ffiffi
s

p � ffiffiffiffi
s1

p Þ2

0
ds2

1

8�
f21ðs1Þf22ðs2Þ

1

s
ðs2 � 2sðs1 þ s2Þ þ ðs1 � s2Þ2Þ1=2

¼ a2d1a
2
d2

8�
sd1þd2�2

Z 1

0
dx

Z ð1� ffiffi
x

p Þ2

0
dyxd1�2yd2�2ð1� 2ðxþ yÞ þ ðx� yÞ2Þ1=2

¼ a2d1a
2
d2

8�
sd1þd2�2ðd1 � 1Þðd2 � 1Þðd1 þ d2 � 1Þ�

2ðd1 � 1Þ�2ðd2 � 1Þ
�2ðd1 þ d2Þ

: (26)

Inserting a2d ¼ Ad=2� and using �ð2dÞ ¼
��1=222d�1�ðdþ 1=2Þ�ðdÞ, the above expression can be
written as

�ðsÞ ¼ sd1þd2�2 16�5=2

ð2�Þ2ðd1þd2Þ

� �ðd1 þ d2 þ 1=2Þ
�ðd1 þ d2 � 1Þ�ð2ðd1 þ d2ÞÞ : (27)

This is the phase space for an unparticle of dimension d3 ¼
d1 þ d2.

We therefore have shown that �U3
is an unparticle with

dimension d3 ¼ d1 þ d2. The normalization Ad is some-
thing deeper than just convenience [1]. Had another nor-
malization been used, the product of two scalar unparticles
would not be a new unparticle with dimensions equal to the
sum of the two unparticles with the correct normalization.
The self-similarity of unparticle dictates the normalization.

For the case�1 ¼ �2, the cross term will also contribute
the same amount, but the total should be divided by 2! to
get the right normalization, in another words, �U3

should

be written as �U1
�U2

=
ffiffiffiffiffi
2!

p
. One gets �U3

to be an un-

particle of dimension d1 þ d2. The above discussions can
be easily generalized to any number of scalar unparticle
products. With proper permutation normalization, the
product is an unparticle with the dimension equal to the
sum of the composite unparticles. Products involving
spinor and vector unparticles will be more complicated,
and we shall discuss them in detail in a future publication.

As a further important application of Eq. (8), we calcu-
late the three unparticle vertex functions defined by

Vðp2
1; p

2
2; p

2
3Þ ¼

Z
d4xeip1xd4yeip2y

� h0jTð�UðxÞ�UðyÞ�ð0ÞÞj0i; (28)

where p3 ¼ p1 þ p2.
From the general scaling argument it follows that it has

dimension 3d� 8, and is an invariant function of three
variables p2

1, p
2
2, and p

2
3. Further, it is symmetric under

exchanges between p1, p2, and p3. However scaling alone
is not sufficient to determine this function, as we shall see.

We first evaluate the time ordered product T3 ¼
h0jTð�UðxÞ�UðyÞ�Uð0Þj0i. We have

T3 ¼
Z 1

0
ds1ds2ds3fðs1Þfðs2Þfðs3Þ

� h0jTð�ðx; s1Þ�ðy; s2Þ�ð0; s3ÞÞj0i: (29)

With the Lagrangian in Eq. (1), since there are no
interactions, the integral is obviously zero, and there is
no three point function. We introduce scale invariant inter-
actions of the continuous mass fields so as to have the
nonvanishing T product. It is sufficient to introduce terms
of the�3 type. The idea is to introduce some dynamics that
are also scale invariant, but at the same time, we only
consider tree level consequences of such a theory. Deeper
questions like renormalizability of such a theory are be-
yond the scope of this paper.
One possible �3 scale invariant interaction is

L
 ¼ 


3!

Z ds1ds2ds3

ðs1s2s3Þ1=3
�ðx; s1Þ�ðx; s2Þ�ðx; s3Þ: (30)

Another possibility is

Lg ¼ g

3!

Z 1

0
sds�3ðx; sÞ: (31)

We note that the modifications to equations of motion
from the above two interactions are, respectively,

@�@
��ðx; sÞ þ s�ðx; sÞ ¼ 


2s1=3

�
Z ds1ds2

ðs1s2Þ1=3
�ðx; s1Þ�ðx; s2Þ;

(32)

and

ð@�@� þ sÞ�ðx; sÞ ¼ g

2
s�2ðx; sÞ: (33)

Both equations under scale the transformation map
within the infinite set of equations, as can be verified.
The first is a integro-differential equation. Such equations
have been considered previously [2], where a model is
solved exactly in the case of bilinear interactions. The
difference between the above two forms can be understood
if one goes to the discrete limit of the theory.
We evaluate the time ordered product t3 ¼

h0jTð�ðx; s1Þ�ðy; s2Þ�ð0; s3Þj0i in the lowest order pertur-
bation theory and find using the L
 interaction,
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t3 ¼ 

Z
d4z

Z ds01ds02ds03
ðs01s02s03Þ1=3

h0jT�ðx; s1Þ�ðz; s01Þj0i

� h0jT�ðy; s2Þ�ðz; s02Þj0ih0jT�ð0; s3Þ�ðz; s03Þj0i:
(34)

Using

h0jTð�ðx; sÞ�ðz; s0Þj0i ¼
Z d4q

ð2�Þ4 e
�iqðx�zÞ

� i

q2 � sþ i�
�ðs� s0Þ; (35)

we get

t3 ¼ �i

Z d4q1

ð2�Þ4
d2q2
ð2�Þ4

e�iðq1xþq2yÞ

ðs1s2s3Þ1=3

� 1

ðq21 � s1 þ i�Þðq22 � s2 þ i�Þðq23 � s3 þ i�Þ ;
(36)

where q3 ¼ q1 þ q2.
We now get for the T product of unparticles

Vðp2
1; p

2
2; p

2
3Þ ¼ �i


Z fðs1Þfðs2Þfðs3Þds1ds2ds3
ðs1s2s3Þ1=3ðp2

1 � s1 þ i�Þðp2
2 � s2 þ i�Þðp2

3 � s3 þ i�Þ : (37)

Using the formula,

Z fðsÞds
s1=3ðp2 � sþ i�Þ ¼

Z ads
ðd�2Þ=2ds

s1=3ðp2 � sþ i�Þ ¼
ad�

sinððd=2� 4=3Þ�Þ
i

ð�p2Þ�d=2þ4=3
: (38)

Defining a new constant 
0 ¼ 
ðad�= sinððd=2� 4=3Þ�ÞÞ3, we have

Vðp2
1; p

2
2; p

2
3Þ ¼ �i
0 1

ð�p2
1Þ�d=2þ4=3ð�p2

2Þ�d=2þ4=3ð�p2
3Þ�d=2þ4=3

: (39)

This expression has the correct dimensions and fulfills all
the symmetry requirements.

A similar computation with Lg interaction gives

Vðp2
1; p

2
2; p

2
3Þ ¼ �ig0

�
1

ðp2
1 � p2

2Þðp2
1 � p2

3Þ
1

ð�p2
1Þ2�3d=2

þ 1

ðp2
2 � p2

1Þðp2
2 � p2

3Þ
1

ð�p2
2Þ2�3d=2

þ 1

ðp2
3 � p2

1Þðp2
3 � p2

2Þ
1

ð�p2
3Þ2�3d=2

�
;

(40)

where g0 ¼ ga3d�= sinð3d�=2Þ. This expression also ful-

fills all the requirements of dimensions and symmetry.
Note that in Ref. [7], Feng et al. calculate the three point

function assuming conformal invariance. Their starting
point is

h0jTð�UðxÞ�UðyÞ�Uð0ÞÞj0i ¼ C
1

jxjd
1

jyjd
1

jx� yjd :
(41)

However this form does not seem unique if only scale
invariance is imposed, for example, one can multiply this
by a dimensionless function of jxj=jyj and jx� yj=jyj.
Another example for the right-hand side is ½1=jxj3d þ
1=jyj3d þ 1=jx� yj3d�. Our expressions are simple in mo-
mentum space, but complicated in coordinate space, while
Ref. [7] has a complicated form in momentum space.

The simplest form for the three point function in mo-
mentum space is in Eq. (34). It is possible to probe the
three point function experimentally. Feng et al. have dis-
cussed various signals for the three point function. When
standard model particles couple to unparticles, it is pos-
sible to get signals that depend on the explicit form of the
vertex. For example if we have a coupling of the type
�ee�U, we can get events of the type eþe� ! eþe� þ
eþe� where the energy distribution of eþe� pairs will
depend on the explicit three point function. Study of such
signals will be very useful, and we shall pursue it in future
publications.
We can extend our analysis to three point functions

involving scalar, spinor, and vector unparticles. We have
to add interactions of continuous mass spinor and vector
fields that preserve scale invariance. As an example, we
can add Lfh¼

R
ds

ffiffiffi
s

p ½f � ðx;sÞ ðx;sÞ�ðx;sÞþh � ðx;sÞ�
	� ðx;sÞA�ðx;sÞ� or Lf0h0 ¼

Rðds1ds2ds3= ffiffiffiffiffiffiffiffiffiffiffiffiffi
s1s2s3

p Þ�
½f0 � ðx;s1Þ ðx;s2Þ�ðx;s3Þþh0 � ðx;s1Þ	� ðx;s2ÞA�ðx;s3Þ�.
Consequences of such interactions will be pursued in
future publications.
One can also easily generalize to unparticles with SM

gauge interactions by assuming that the �ðx; sÞ and  ðx; sÞ
have nontrivial SM quantum numbers. The end results are
that the unparticle operators�U and U have the same SM
quantum numbers as �ðx; sÞ and �ðx; sÞ, respectively.
When taking derivatives, one should take the covariant
derivative as would have to be done for usual particles.
As pointed out earlier that to preserve scale invariance, the
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vector operator cannot be non-Abelian. Vector unparticle
A
�
U can have a nontrivial Uð1ÞY quantum number, but

cannot have nontrivial SUð3ÞC and SUð2ÞL quantum
numbers.

Let us study a simple example, involving two unparticle
operators. Consider a charged scalar Sþ decaying into a
charged scalar unparticle �þ

U of dimension dþ and neutral

scalar unparticle�0
U of dimension d0. Under the SM gauge

group SUð3ÞC � SUð2ÞL �Uð1ÞY , Sþ, �þ
U, and�0

U trans-

form as (1,1,2), (1,1,2), and (1,1,0), respectively. The low-
est dimension interaction possible is given by

Leff ¼ ð
=�dþþd0�3
U ÞSþ��

U�
0
U. We have decay distribu-

tion d� for SþðpÞ ! �þ
UðpþÞ�0

Uðp0Þ given by

d�ðSþ !�þ
U�

0
UÞ ¼

�



�dþþd0�3
U

�
2 1

2mS

ð2�Þ4

��4ðp�ðpþþp0ÞÞAdþðp2þÞdþ�2�

�ðp2þÞ
d4pþ
ð2�Þ4Ad0ðp

2
0Þd0�2�ðp2

0Þ
d4p0

ð2�Þ4 ;
(42)

which leads to the energy distribution for the decay,

d�ðSþ !�þ
U�

0
UÞ

dEþ
¼ j
j2

�2dþþ2d0�6
U

1

16�3mS

AdþAd0

�E2dþ�1
þ

Z xmax

0
x1=2ð1� xÞdþ�2

�
�
m2
SþE2þ

�
1� 2

mS

Eþ
� x

��
d0�2

dx:

(43)

Here x ¼ j ~pþj2=E2þ. The limit for Eþ and x are deter-
mined by energy momentum conservation p¼pþþp0,
and also p2þ > 0 and p2

0>0. We have: xmax ¼ 1 for 0<
Eþ<mS=2, and xmax¼ð1�mS=EþÞ2 for mS=2<Eþ<
mS.

Experimental signature would be a charged particle
decay into a charge which can be detected by measuring
the energy deposited in the path plus missing energy. The
actual detectability depends on the scale �U and the
coupling 
. Here our emphasis is on the different features
compared with other processes. If one only looks at the
charged track without energy measurement, there are sev-
eral other possibilities. For example: (i) a usual charged
particle decays into a lighter charged particle plus a usual
neutral undetected particle; or (ii) a usual charged particle

decays into a neutral unparticle (particle) and a charged
usual particle (unparticle). If energy distributions of the
charged track are measured one can distinguish different
scenarios. Possibility (i) can be easily distinguished be-
cause the daughter charged particle has a fixed energy.
Possibility (ii) can also be distinguished because the
charged track energy distribution is different from that
for the two unparticle decays discussed above. For example
consider Sþ ! �þ�0

U, here �þ is a usual charged scalar

particle. The lowest dimension interaction is

ð
=�d0�2
U ÞSþ���0

U which leads to a differential energy

distribution of the charged scalar particle given by

d�ðSþ ! �þ�0
UÞ

dEþ

¼ j
j2
�2d0�4

U

1

8�2mS

Ad0ðm2
S þ E2þ � 2mSEþ þm2þÞd0�2

� ðE2þ �m2þÞ1=2; (44)

where mþ is the mass of the charged scalar particle. The
range of Eþ is from mþ to ðm2

S �m2þÞ=2mS. This differs

from the two unparticle cases in Eq. (38) and is amenable
to an experimental test.
In summary, we have proposed a different approach to

construct unparticle operators based on scale invariant
theories of continuous mass. One can define unparticles
like local operators that couple to the SM. The unparticle
properties emerge through choices of interactions. There is
no fixed point or dimensional transmutation. The theory
leads to a clear understanding of how unparticle exchange
and phase space in the decay of SM particles arises. We
have generalized interactions of the standard model to
multiple unparticles in this formalism and have worked
out some examples for illustration. We show that products
of unparticles are properly normalized unparticles of di-
mension equal to the sum of the dimension of the individ-
ual unparticles. We have extended our formalism to
calculate three point functions of unparticles. This required
considering interactions of continuous mass fields.
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