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We use lattice QCD simulations, with MILC gluon configurations and HISQ c-quark propagators, to

make very precise determinations of moments of charm-quark pseudoscalar, vector and axial-vector

correlators. These moments are combined with new four-loop results from continuum perturbation theory

to obtain several new determinations of theMS mass of the charm quark and of theMS coupling. We find

mcð3 GeVÞ ¼ 0:986ð10Þ GeV, or, equivalently, mcðmcÞ ¼ 1:268ð9Þ GeV, both for nf ¼ 4 flavors; and

�MSð3 GeV; nf ¼ 4Þ ¼ 0:251ð6Þ, or, equivalently, �MSðMZ; nf ¼ 5Þ ¼ 0:1174ð12Þ. The new mass agrees

well with results from continuum analyses of the vector correlator using experimental data for eþe�

annihilation (instead of using lattice QCD simulations). These lattice and continuum results are the most

accurate determinations to date of this mass. Ours is also one of the most accurate determinations of the

QCD coupling by any method.

DOI: 10.1103/PhysRevD.78.054513 PACS numbers: 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

Precise values for the QCD coupling�MS and the charm-

quark’s mass mc are important for high-precision tests of
the standard model. Some of the most accurate mass
determinations currently come from zero-momentum mo-
ments of current-current correlators built from the c
quark’s electromagnetic current (see, for example, [1,2]).
Low moments are perturbative and have long been known
through three-loop order [3–5]. New techniques have re-
cently extended these results to much higher moments
[6,7] and, in some cases, to four-loop order [8–10].
These moments can be estimated nonperturbatively, using
dispersion relations, from experimental data for the
electron-positron annihilation cross section, �ðeþe� !
�� ! XÞ. The c quark’s mass is extracted by comparing
the perturbative and experimental determinations.

In this paper we show how to compute such moments
directly using accurately tuned, highly realistic numerical
simulations of QCD in the lattice approximation [11]. As
we will show, the correlator moments obtained nonpertur-

batively from such simulations can be used in place of data
from eþe� annihilation to obtain new, percent-accurate
determinations of the c quark’s mass. With lattice QCD,
it is also possible to replace the electromagnetic current in
the correlator by the pseudoscalar operator mc

� c�5 c,
thereby providing a completely new set of mass determi-
nations and an important cross-check on the entire
methodology.
In fact the pseudoscalar correlators are particularly easy

to simulate, and there are no renormalization factors re-
quired since the corresponding axial-vector current is par-
tially conserved in our lattice formalism. Consequently
these correlators give our most accurate masses. They
also give very accurate values for the QCD coupling,
when combined with our new four-loop results from per-
turbation theory.
In Sec. II we describe how to compute pseudoscalar

correlators and their moments using lattice QCD. We dis-
cuss techniques for reducing lattice artifacts in Sec. III, and
present new determinations of the c-quark mass and QCD
coupling from our lattice ‘‘data’’ in Sec. IV. In Sec. V we
extend our analysis to include vector and axial-vector
correlators. We summarize our main results in Sec. VI.*g.p.lepage@cornell.edu
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In the Appendix we review the continuum perturbation
theory needed for this analysis, including new four-loop
results for the pseudoscalar and vector cases.

II. LATTICE QCD AND PSEUDOSCALAR
CORRELATORS

Few-percent accurate QCD simulations have only be-
come possible in the last few years (see, for example,
[12,13]), and accurate simulations of relativistic c quarks
only in the past year—with the new highly improved
staggered quark (HISQ) discretization of the quark action
[14,15] that we use here. A lattice QCD simulation pro-
ceeds in two steps. First the QCD parameters—the bare
coupling constant and bare quark masses in the
Lagrangian—must be tuned. Then the tuned simulation is
used to compute vacuum matrix elements of various quan-
tum operators from which physics is extracted. An obvious
approach to the tuning is to choose a lattice spacing a, and
then tune each of the QCD parameters so that the simula-
tion reproduces the experimental value for a corresponding
physical quantity that is well measured. It is more efficient,
however, to first choose a value for the bare coupling and
then adjust the lattice spacing and bare masses to give
physical results.

In the simulations used here, we set the lattice spacing to
reproduce the correct�0 ��meson mass difference in the
simulations [16], while we tune the u=d, s, c,and b masses
to give correct values for m2

�, 2m
2
K �m2

�, m�c , and m�,

respectively. (For efficiency we set mu ¼ md; this leads to
negligible errors in the analysis presented here.) The im-
portant parameters for the particular simulations used in
this paper are listed in Table I; further details can be found
in [12,15]. Once these parameters are set, there are no
further physics parameters, and the simulation will accu-

rately reproduce QCD physics for momenta much smaller
than the ultraviolet (UV) cutoff (�� �=a).
We have tested these simulations extensively (see, for

example, [12–16]) and, in particular, we have done very
precise tests for the charm-quark physics most relevant to
this work. These demonstrate, for example, that our simu-
lations reproduce the low-lying spectrum, including spin
structure, of both charmonium and heavy-light mesons (D
and Ds) to within our simulation uncertainties (a few
percent or less) [14,15].
Given a tuned simulation, it is straightforward to calcu-

late correlators of the sort used to determine mc. The
simplest of these is for the c quark’s pseudoscalar density,
j5 � � c�5 c:

GðtÞ � a6
X
x

ðam0cÞ2h0jj5ðx; tÞj5ð0; 0Þj0i (1)

where m0c is the c quark’s bare mass (in the lattice
Lagrangian). Here time t is Euclidean, and the sum over
spatial position x sets the total three momentum to zero.
Note that GðtÞ ¼ GðT � tÞ ¼ GðT þ tÞ where T is the
temporal length of the lattice.
We include two factors of am0c in the definition of GðtÞ

so that GðtÞ becomes independent of the UV cutoff as a!
0 [18]. Consequently the lattice and continuum GðtÞ’s
become equal in this limit. Moments Gn are trivially
computed:

Gn �
X
t

ðt=aÞnGðtÞ; (2)

where, on our periodic lattice [19],

t=a 2 f0; 1; 2 . . .T=2a� 1; 0;�T=2aþ 1 . . .� 2;�1g:
(3)

The cutoff independence of GðtÞ implies that

Gn ¼
gnð�MSð�Þ; �=mcÞ

ðamcð�ÞÞn�4
þOððamcÞmÞ (4)

for n � 4, wheremcð�Þ is theMSmass at scale� and gn is
dimensionless. The c mass can be determined from mo-
ments with n � 6 givenGn from lattice simulations and gn
from perturbation theory (see the Appendix), while the
QCD coupling can be determined from the dimensionless
moment G4. This assumes that perturbation theory is ap-
plicable, which should be the case for small enough n.
Note that here and elsewhere in this paper we omit

annihilation contributions from c �c! gluons ! c �c. This
is allowed provided we omit the same contributions from
perturbation theory. Annihilation contributions to the non-
perturbative part of our analysis would be negligible (for
example, they shift the�c mass by approximately 2.4 MeV,
which is less than 0.1% [14,20]).

TABLE I. Parameters for the QCD simulations used in this
paper. The inverse lattice spacing a�1 is in units of r1 ¼
0:321ð5Þ fm [16], defined in terms of the static-quark potential
[17]. L and T are the spatial and temporal size of the lattices used
for each set of gluon configurations. The configurations used
here were generated by the MILC collaboration [17] with u, d,
and s sea quarks. The u and d masses are set equal to mu=d. The

sea-quark masses are given in the standard MILC notation which
includes a factor of the (plaquette) tadpole factor u0.

Set r1=a au0m0u=d au0m0s am0c u0 L=a T=a

1 2.133(14) 0.0097 0.048 0.850 0.860 16 48

2 2.129(12) 0.0194 0.048 0.850 0.861 16 48

3 2.632(13) 0.0050 0.050 0.650 0.868 24 64

4 2.610(12) 0.0100 0.050 0.660 0.868 20 64

5 2.650(8) 0.0200 0.050 0.648 0.869 20 64

6 3.684(12) 0.0062 0.031 0.430 0.878 28 96

7 3.711(13) 0.0124 0.031 0.427 0.879 28 96

8 5.277(16) 0.0036 0.018 0.280 0.888 48 144
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III. QCD SIMULATIONS

A. Reduced moments

The biggest challenge when using lattice QCD to pro-
duce c-quark correlator moments is controlling:
(1) OððamcÞnÞ errors caused by the lattice approximation;
and (2) tuning errors in the QCD parameters, and espe-
cially in the lattice spacing and the c-quark’s bare mass.
We reduce each of these sources of error by making two
modifications to the moments.

First we replace Gn by

Gn

Gð0Þ
n

¼ gn

gð0Þn

�mð0Þ
pole;c

mcð�Þ
�
n�4 þOððamcÞm�sÞ (5)

where Gð0Þ
n is the nth moment of the correlator to lowest

order in lattice QCD perturbation theory [21], gð0Þn is the
lowest-order part of gn in continuum perturbation theory,
and exponent m ¼ 2; 4 . . . . The lowest-order on shell or
‘‘pole’’ mass of the c-quark sets the mass scale in the
lowest-order lattice moments

Gð0Þ
n ¼ gð0Þn

ðamð0Þ
pole;cÞðn�4Þ þOððamcÞmÞ: (6)

In the HISQ formalism, this mass is related to the massm0c

that appears in the action by [14]

mð0Þ
pole;c ¼ m0c

�
1� 3ðam0cÞ4

80
þ 23ðam0cÞ6

2240
þ 1783ðam0cÞ8

537 600

� 76 943ðam0cÞ10
23 654 400

þ � � �
�
: (7)

Introducing Gð0Þ
n removes the explicit factors of the lattice

spacing in the denominator of Eq. (4), and also cancels
finite-a errors to all orders in a and zeroth order in �s.
Thus we expect finite-a errors that are reduced by a factor
of order �sð1=aÞ � 1=3 when we divide Gn by the corre-
sponding lowest-order lattice moment; and we find in
practice that they are 3–4 times smaller.

A second modification is to replace the pole mass in

Gn=G
ð0Þ
n by the value of the �c mass obtained from the

simulation, am�c (in lattice units) [22]:

Gn

Gð0Þ
n

�
am�c

2amð0Þ
pole;c

�
n�4 ¼ gn

gð0Þn

�
m�c

2mcð�Þ
�
n�4

(8)

up toOððamcÞm�sÞ corrections. With this additional factor,
the leading dependence on mcð�Þ enters through the ratio
mcð�Þ=m�c . Consequently small errors in the simulation

parameter am0c are mostly cancelled in this expression by
corresponding shifts in the simulation value for am�c . This

cancellation is accurate up to binding corrections of order
ðvc=cÞ2 � 1=3 in m�c , and therefore the impact of any

tuning error inm0c is 3 times smaller with this modification
[23].

Combining these two modifications, we replace Gn by a
reduced moment

Rn �
8<
:
G4=G

ð0Þ
4 for n ¼ 4;

am�c

2amð0Þ
pole;c

ðGn=G
ð0Þ
n Þ1=ðn�4Þ for n � 6: (9)

The reduced moments can again be written in terms of
continuum quantities:

Rn �
8<
:
r4ð�MS; �=mcÞ for n ¼ 4;
rnð�MS

;�=mcÞ
2mcð�Þ=m�c

for n � 6;
(10)

up to OððamcÞm�sÞ corrections, where rn is obtained from

gn and its value, gð0Þn , in lowest-order continuum perturba-
tion theory:

rn ¼
�
g4=g

ð0Þ
4 for n ¼ 4;

ðgn=gð0Þn Þ1=ðn�4Þ for n � 6:
(11)

The c mass is obtained from Eq. (10) with n � 6 using
the nonperturbative lattice QCD (LQCD) value for Rn, the
perturbative QCD (PQCD) estimate for rn, and the experi-
mental value for m�c , 2.980 GeV:

mcð�Þ ¼ mexp
�c

2

rPQCDn

RLQCD
n

: (12)

Reduced moment R4 is dimensionless and so depends only
weakly on mc. Simulation values for this moment can be
compared with perturbation theory to obtain estimates for
the QCD coupling: given the c-quark mass and a non-
perturbative lattice QCD value for R4, we solve the equa-
tion

RLQCD
4 ¼ r4ð�MS; �=mcÞ (13)

for �MSð�Þ. Ratios of reduced moments, like Rn=Rnþ2 for

n � 6, can also be used in this way to estimate the
coupling.

B. Simulation results

Our simulation results for Rnða;mu=d; msÞ are listed for

different moments n, lattice spacings a, and sea-quark
masses in Table II; we also list ratios of reduced moments,
Rn=Rnþ2 for n � 6. Some of these results are plotted
versus the lattice spacing in Fig. 1. Our simulations did
not include c-quark vacuum polarization, but the correc-
tion to the moments can be computed using perturbation
theory (since c quarks are relatively heavy) [24]. We find
that these corrections add 0.7% to R4, and are of order 0.1%
or less for the higher moments considered here. The Rn’s in
the table are corrected to include this effect.
The uncertainty quoted for each Rnða;mu=d;msÞ with

n � 6 is dominated by the uncertainty in our tuning of m0c

(other sources, such as statistical or finite-volume errors
[25], are negligible). We tune the bare c-quark mass so that
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our simulations give correct masses for the �c [26]. Our
tuning is limited by the precision with which we know the
lattice spacing a for any given parameter set in Table I,
since simulations give masses in lattice units (that is,
am�c). We determine lattice spacings by combining

MILC’s values for r1=a (see Table I), which are accurate
to around 0.6%, with a value for r1 determined from the

upsilon spectrum: r1 ¼ 0:321ð5Þ fm [16], which is accu-
rate to 1.5%. The corresponding uncertainties in the Rn’s
are 3 times smaller, because of the reduced sensitivity of
mc=m�c (see above). We include the uncertainty due to

r1=a (0:6%=3 ¼ 0:2%) in the uncertainties reported for
each separate RnðaÞ in Table II. The uncertainty due to r1
(1:5%=3 ¼ 0:5%) is included only in our final results, after
extrapolation (since changes in r1 affect all RnðaÞ’s by the
same amount).
Reduced moment R4 and our ratios of reduced moments

are much less sensitive to errors in m0c because the c mass
enters only through radiative corrections, in perturbation
theory. Consequently uncertainties due to mistunings of
m0c are smaller by an order of magnitude or more for these
quantities. We account for potential tuning errors by as-
signing an uncertainty of 0.05% to each of the R4’s and
ratios.
We also include in Table II our results extrapolated to

zero lattice spacing and zero sea-quark mass [27]. Our
extrapolation procedure is described in the next section.

C. amc, mq=mc Extrapolations

Table II and Fig. 1 show that our reduced moments
depend only weakly on the lattice spacing, with most mo-
ments changing by 0.5% or less between our two smallest
lattice spacings and only a few percent over our entire
range. The dependence on the sea-quark masses is even
weaker. We nevertheless correct our results by fitting the
variation over our different sets of lattice parameters
(Table I) and extrapolating to zero lattice spacing and
zero sea-quark mass. We do this with a constrained fit

TABLE II. Simulation results for Rnða;mu=d;msÞ for different lattice parameter sets (see Table I). The inverse lattice spacing a�1 is
in GeV. Extrapolations to zero lattice spacing and zero sea-quark masses are given for each quantity, together with the corresponding
value for mcð�Þ (in GeV) or �MSð�Þ for nf ¼ 4 flavors and � ¼ 3 GeV.

Set: 1 2 3 4 5 6 7 8

a�1: 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 a, mu=d=s ! 0 mcð�Þ
R6 1.448(3) 1.447(3) 1.494(3) 1.492(3) 1.491(3) 1.514(3) 1.511(3) 1.519(3) 1.528(11) 0.986(10)

R8 1.372(3) 1.371(3) 1.387(3) 1.386(3) 1.384(3) 1.374(3) 1.373(3) 1.370(3) 1.370(10) 0.986(11)

R10 1.329(3) 1.328(3) 1.326(3) 1.326(3) 1.324(3) 1.306(3) 1.305(3) 1.304(3) 1.304(9) 0.973(19)

R12 1.294(3) 1.293(3) 1.284(3) 1.284(3) 1.281(3) 1.263(3) 1.262(3) 1.262(3) 1.265(9) 0.969(23)

R14 1.264(3) 1.264(3) 1.252(2) 1.251(2) 1.248(2) 1.232(2) 1.231(2) 1.232(2) 1.237(9) 0.967(28)

R16 1.239(2) 1.239(2) 1.228(2) 1.226(2) 1.223(2) 1.207(2) 1.206(2) 1.210(2) 1.215(9) 0.965(33)

R18 1.218(2) 1.218(2) 1.208(2) 1.205(2) 1.202(2) 1.187(2) 1.187(2) 1.191(2) 1.198(9) 0.963(38)

Set: 1 2 3 4 5 6 7 8

a�1: 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 a, mu=d=s ! 0 �MSð�Þ
R4 1.162(1) 1.161(1) 1.189(1) 1.187(1) 1.187(1) 1.223(1) 1.221(1) 1.249(1) 1.281(5) 0.252(6)

R6=R8 1.055(1) 1.055(1) 1.078(1) 1.076(1) 1.077(1) 1.101(1) 1.101(1) 1.109(1) 1.113(2) 0.249(6)

R8=R10 1.033(1) 1.033(1) 1.046(1) 1.045(1) 1.046(1) 1.052(1) 1.052(1) 1.051(1) 1.049(2) 0.224(31)

R10=R12 1.027(1) 1.027(1) 1.033(1) 1.033(1) 1.034(1) 1.034(1) 1.034(1) 1.033(1) 1.031(2) 0.241(30)

R12=R14 1.023(1) 1.023(1) 1.025(1) 1.026(1) 1.026(1) 1.025(1) 1.025(1) 1.024(1) 1.022(2) 0.243(47)

R14=R16 1.020(1) 1.020(1) 1.020(1) 1.021(1) 1.021(1) 1.020(1) 1.020(1) 1.019(1) 1.017(2) 0.242(70)

R16=R18 1.017(1) 1.017(1) 1.016(1) 1.017(1) 1.017(1) 1.017(1) 1.017(1) 1.016(1) 1.014(2) 0.241(96)

FIG. 1 (color online). Reduced moments Rn and a ratio of
these moments from lattice simulations with different lattice
spacings a. The tight clusters of points at each of the three
largest lattice spacings correspond to results for different sea-
quark masses. The dashed lines show the functions used to fit the
lattice results, with the sea-quark masses set equal to the masses
used at the smallest lattice spacing. These extrapolation func-
tions were used to obtain the a ¼ 0, mu=d=s ¼ 0 results shown in

the plot.
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[28,29] of our simulation data to a function of the form

RnðaÞ ¼ Rnð0Þð1þ cn;2ðamcÞ2�s þ cn;4ðamcÞ4�s
þ cn;6ðamcÞ6�s þ cn;8ðamcÞ8�s þ � � �Þ
� ð1þ fn;1ð2mu=d þmsÞ=mc þ � � �Þ (14)

where we take mc ¼ 1 GeV and �s ¼ �sð1=aÞ. This form
is motivated by the pattern of an errors in our lattice
actions, and by chiral perturbation theory, which implies
nonperturbative corrections that depend linearly on the
sea-quark masses. (There is sea-quark mass dependence
in perturbation theory, as well, but it enters at
Oð�2

sðmq=mcÞ2Þ and is negligible here.)

The extrapolated results are largely independent of the
exact functional form used for the extrapolation provided
reasonable Bayesian priors are included (in the �2 function
that is minimized in the fit) for each of the coefficients cn;i
and fn;i [28,29]. We use the same Gaussian prior, centered

at zero with width �c ¼ 1, for every cn;i, for all moments

and moment ratios except R4. Moment R4 has larger a2

errors and needs a wider prior; we take �c ¼ 5. We use a
prior with width �f ¼ 0:1 for the fn;i, which is twice as

large as the largest coefficient obtained from the fits.
The error estimates from our fits initially increase, and

�2 decreases, as we add successively higher-order terms in
the ðamcÞ2 and mq=mc expansions. Eventually the errors

stop increasing and �2 stops changing, again assuming
proper priors for all fit parameters. It is important to add
terms through this point in order to avoid underestimating
uncertainties in the final fit results. Adding further terms
has no effect on fit results (values or errors).

Only a single term is needed in each series to get good
fits for Rn with n � 6 if we discard data from the largest
lattice spacing; and our final results (values and errors) are
little changed. We, however, retain results from the coars-
est lattices, despite the large value of amc for those lattices,
in order to test our priors. Fitting all of our simulation data,
we get good fits with two terms in the ðamcÞ2 and a single
term in the mq=mc expansion. To be certain of conver-

gence, we used eight terms in the first expansion and two in
the second to obtain the extrapolated results in Table II.
The fact that we get good fits (�2 per data point less than
one) even when we include data from the coarsest lattices
helps validate the design of our fit function and priors, and
it reassures us that our fits are not underestimating errors.

Moment R4 and the ratios of moments are more accu-
rately determined in our simulation than the other Rn’s, and
so typically require an additional term in the ðamcÞ2 ex-
pansion. Again, however, the eight terms we use are many
more than the minimum needed.

Our final error estimates depend upon the widths of our
priors [29]. We tested these widths in a couple of ways,
beyond including simulation data from the coarsest latti-
ces. First we compared our widths with the values sug-
gested by the empirical Bayes procedure described in [28].

This procedure uses the variation in the data itself to
determine, for example, an optimal value for �c. The
widths we use are 2 to 4 times larger than what is indicated
by the empirical Bayes criterion, suggesting that our error
estimates are conservative. The dominant fit coefficients in
the ðamcÞ2 expansion for R6, for example, range between
�0:05 and �0:20, which is much smaller than the �c ¼ 1
we use.
As a second test, we verified that our extrapolation

procedure gives consistent results when data from either
the smallest or the largest lattice spacing is discarded. That
is, we demonstrated that results obtained from the trun-
cated data sets agree within errors with results from the full
set of simulation data. This shows that our error estimates
are robust even when working with limited simulation data
sets. As mentioned above, our final results are not much
affected by data from the coarsest lattice spacing.
Simulation data from the finest lattice spacing, on the other
hand, has a very significant impact.

IV. EXTRACTING mcð�Þ AND �MSð�Þ
To convert the extrapolated reduced moments into c

masses and coupling constants, we require perturbative
expansions for the rn in Eq. (12). These are easily com-
puted from the expansions for gn [3–9] using Eq. (11);
details can be found in the Appendix. The perturbative
expansions have the form

rn ¼ 1þ rn;1�MSð�Þ þ rn;2�
2
MS

ð�Þ þ rn;3�
3
MS

ð�Þ þ . . .

(15)

where we set the renormalization scale � to 3 GeV [30].
The full third-order coefficients for the n ¼ 4, 6, 8 mo-
ments were computed for this analysis and are presented in
the Appendix. The third-order coefficients for moments
with n � 10 are only partially complete: our analysis in-
cludes all �-dependent terms (that is, lognð�=mcÞ terms),
but the constant parts have not yet been computed.
Consequently we take the truncation uncertainty in rn to
be of order [31]

�rn ¼
(
rmax
n �4

MS
ð�Þ for n ¼ 4; 6; 8;

rmax
n �3

MS
ð�Þ for n � 10;

(16)

where

rmax
n ¼ maxðjrn;1j; jrn;2j; jrn;3jÞ: (17)

Another source of uncertainty in all of our moments
comes from nonperturbative effects. In the previous sec-
tion, we discuss how we remove nonperturbative contribu-
tions involving the sea-quark masses. To assess the
importance of gluonic contributions, we also include the
leading gluon-condensate contribution in our moments
[2,32,33]. We do this by multiplying rn by a factor of the

HIGH-PRECISION CHARM-QUARK MASS AND QCD . . . PHYSICAL REVIEW D 78, 054513 (2008)

054513-5



form ð1þ dnh�sG2=�i=ð2mcÞ4ÞÞ where, here, mc ¼
mcðmcÞ and dn is computed through leading order in
�MSðmcÞ. The value of the condensate is not well-known;

we set h�sG2=�i ¼ 0	 0:012 GeV4, which covers the
range of most current estimates [34].

Note that coefficients in the rn expansion, Eq. (15),
depend upon mcð�Þ through scale-dependent logarithms,
lognð�=mcð�ÞÞ. Consequently, the mass appears on both
sides of Eq. (12), and the equation is an implicit equation
for mcð�Þ. The mcð�Þ dependence on the right-hand side,
however, is suppressed by �MSð�Þ, and therefore the equa-
tion is easily solved numerically.

Our final results for the c-quark’s mass, mcð�Þ at � ¼
3 GeV for nf ¼ 4 flavors in the MS scheme, are listed in

Table II, and plotted in the upper-left panel of Fig. 2. As is
clear from the figure, all moments agree on the mass
although the higher moments may be less trustworthy
(see [2]). The first two moments (n ¼ 6, 8) give results
that are twice as accurate as the others because we have full
Oð�3

MS
Þ perturbation theory in these cases. We average the

two results, which agree, to obtain our final result for the
mass

mcð3 GeV; nf ¼ 4Þ ¼ 0:986ð10Þ GeV: (18)

Evolving down to scale � ¼ mcð�Þ using fourth-order
evolution [35–38], this is equivalent to [39]

mcðmc; nf ¼ 4Þ ¼ 1:268ð9Þ GeV: (19)

We used �MSð3 GeV; nf ¼ 4Þ ¼ 0:252ð10Þ in the per-

turbation theory needed to extract mcð�Þ. We derived this
from the current Particle Data Group average for the nf ¼
5 coupling at � ¼ MZ, which is 0.1176(20) [40]. The

coupling can also be extracted directly from R4 and from
the ratios Rn=Rnþ2, as discussed above. Taking mcð�Þ ¼
0:986ð10Þ GeV, we obtain the couplings, for scale � ¼
3 GeV and nf ¼ 4, shown in Table II. The first two deter-

minations listed in the table are far more accurate than the
others because we know perturbation theory through third
order. We can average these to obtain a composite value for
the coupling of

�MSð3 GeV; nf ¼ 4Þ ¼ 0:251ð6Þ: (20)

To allow comparison with other work we converted our
couplings to nf ¼ 5 by adding a b quark with mass

mbðmbÞ ¼ 4:20ð7Þ GeV [40], and evolving them to scale
MZ. The results are shown in Fig. 3. Averaging the first two
numbers, which agree with each other, we get

�MSðMZ; nf ¼ 5Þ ¼ 0:1174ð12Þ: (21)

The leading sources of uncertainty in mcð�Þ and
�MSðMZÞ are listed in Table III for those calculations

where we have full perturbation theory through Oð�3
MS

Þ
[29]. The dominant uncertainty in the masses comes from
potential tuning errors in the c-quark masses used in the
simulation. Truncation errors from perturbation theory
dominate for the coupling, with nonperturbative contribu-
tions from the gluon condensate also become important. In
addition to the various sources discussed above, there are
also uncertainties due to the finite spatial volume of our
lattices; our lattices were approximately 2.5 fm across.
While our simulations showed no measurable volume de-
pendence [25], lattice perturbation theory shows finite-
volume sensitivity for the higher (more infrared) moments.
This is negligible for lower moments but grows with n. The

FIG. 2 (color online). mcð�Þ, for � ¼ 3 GeV and nf ¼ 4 flavors, from different moments of correlators built from four different
lattice operators. The gray band is our final result for the mass, 0.986(10) GeV, which comes from the first two moments of the
pseudoscalar correlator (upper-left panel).
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finite-volume sensitivity is mostly an artifact of perturba-
tion theory; confinement significantly reduces finite-
volume effects. Consequently we assign a finite-volume
error to our perturbative factors that is equal to the entire
finite-volume correction in perturbation theory.

V. mcð�Þ FROM OTHER CORRELATORS

The close agreement on mc between different moments
is important evidence that we understand our systematic
errors since these enter quite differently in different mo-
ments. To further check this we repeated our analysis for
three different correlators, which we formed by replacing
the pseudoscalar operatorm0cj5 with each of the following
c-quark currents on the lattice:

jð1Þ� � � cðxþ a�̂Þ�� cðxÞ; (22)

jð�Þ� � � cðxÞ�� cðxÞ; (23)

jð5�Þ5� � � cðxÞ�5�� cðxÞ: (24)

The first two currents are different lattice discretizations of
the vector current and were evaluated for spacelike �’s;
and the first of these was evaluated in Coulomb gauge. The
third current is a lattice discretization of the axial vector
current and was evaluated for timelike �. The superscript
on each j labels the ‘‘taste’’ carried by that operator, using
the notation presented in the Appendices of [14]. Taste is a
spurious quantum number, analogous to flavor, that is an
artifact of staggered-quark lattice discretizations like the
HISQ formalism. Taste should not affect physical results
and therefore operators carrying different taste here should
give identical results in the a! 0 limit. By studying these
different currents, we not only test for conventional sys-
tematic errors, but also verify that HISQ-specific taste
effects are negligible [41].
A complication in our lattice analysis of these vector (or

axial-vector) correlators is that none of the currents is
conserved (or partially conserved) on the lattice.
Consequently, each lattice current is related to its corre-
sponding continuum operator by a renormalization con-
stant:

jcont ¼ ZðjÞjþOða2Þ ZðjÞ � ZðjÞð�MSð�=aÞ; am0cÞ
(25)

where j is one of the lattice currents jð1Þ� , jð�Þ� , or jð5�Þ5� , and

jcont is the continuum current j� ¼ � �� for the first two

j’s and j5� ¼ � �5�� for the last. Consequently mo-

ments of the correlators of these lattice currents have the
form

GðjÞ
n ¼ 1

ZðjÞ2
gðjcontÞn ð�MSð�Þ; �=mcÞ

ðamcð�ÞÞn�2
; (26)

where ZðjÞ2GðjÞ
n is the continuum result for n � 4. To cancel

the renormalization factor we redefine the reduced mo-
ments for these correlators to be

RðjÞ
n � amðjÞ

2am0c

�
GðjÞ
n

GðjÞ
n�2

Gðj0Þ
n�2

Gðj0Þ
n

�
1=2

(27)

� rðjcontÞn ð�MS; �=mcÞ
2mcð�Þ=mðjÞ (28)

where n � 6, and mðjÞ is the  mass for the vector currents
(which couple to the  ) and the �c mass for the axial-

vector current. Again we divide each moment GðjÞ
n by its

value Gðj0Þ
n in leading-order lattice perturbation theory in

order to minimize finite-lattice-spacing errors. And again

the perturbative expansion for rðjcontÞn can be obtained from

FIG. 3 (color online). �MSðMZ; nf ¼ 5Þ from R4 and ratios
Rn=Rnþ2. The gray band is our final result for the coupling,
0.1174(12), which comes from R4 and R6=R8.

TABLE III. Sources of uncertainty in the determinations of
mcð� ¼ 3 GeV; nf ¼ 4Þ and �MSðMZ; nf ¼ 5Þ from different

reduced moments Rn of the pseudoscalar correlator. The uncer-
tainties listed are percentages of the final results.

mcð�Þ �MSðMZÞ
R6 R8 R4 R6=R8

a2 extrapolation 0.2% 0.3% 0.4% 0.2%

Perturbation theory 0.4% 0.3% 0.6% 0.6%

�MS uncertainty 0.3% 0.4% � � � � � �
mcð�Þ uncertainty � � � � � � 0.1% 0.1%

Gluon condensate 0.3% 0.0% 0.4% 0.7%

Statistical errors 0.1% 0.0% 0.2% 0.1%

m0c errors from r1=a 0.5% 0.6% 0.3% 0.4%

m0c errors from r1 0.6% 0.6% 0.1% 0.1%

mu=d=s extrapolation 0.2% 0.2% 0.2% 0.4%

Finite volume 0.1% 0.1% 0.0% 0.3%

�! MZ evolution 0.0% 0.0% 0.1% 0.1%

Total 1.0% 1.1% 1.0% 1.1%
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continuum perturbation theory expansions for the gðjcontÞn

(see the Appendix).

Our simulation results for RðjÞ
n , extrapolated to lattice

spacing a ¼ 0, are given in Table IV for different moments
n and each of the three currents [42]. Perturbative coeffi-

cients for the vector-current rðjcontÞn ’s are discussed in the
Appendix; the coefficients for the temporal axial-vector
current can be derived from the pseudoscalar coefficients
(also in the Appendix) using Ward identities [43].

By combining perturbative with nonperturbative results,
we obtain the values formcð�Þ, with� ¼ 3 GeV and nf ¼
4, that are listed in Table IVand plotted in the top-right and
bottom panels of Fig. 2. Results from all moments agree
with each other and with the pseudoscalar result (the gray
band in the plots), although here the errors are about twice
as large for the smaller moments.

Values for the lowest four moments of the vector corre-
lator are derived from experimental data for eþe� annihi-
lation in [2]. Converting these into reduced moments, we

compare them with our extrapolated RðjÞ
n ’s for j ¼ jð�Þ�

(from Table IV) in Fig. 4. We find that experiment and
our simulation results agree to within combined errors of
better than 2%. This comparison is more accurate than
comparing masses, because we are comparing the (re-
duced) moments directly, without recourse to further per-
turbation theory.

VI. CONCLUSIONS

Our results are by far the most accurate determination of
the c-quark mass from lattice QCD [44]. Such precision is
possible because the matching between lattice parameters
and continuum parameters here relies upon continuum
perturbation theory, which is much simpler than lattice
QCD perturbation theory. Consequently perturbation the-
ory can be pushed to much higher orders. The precision of
this continuum calculation is matched by that of our non-
perturbative lattice analysis because of the quality of the
MILC configurations and of our highly corrected HISQ
action for c quarks.
The agreement between masses from different moments,

and from different correlators—27 determinations in all—
is an important check on systematic errors of all sorts since
these enter in very different ways in each calculation. Note
that the different reduced moments in our analysis vary in
value by as much as 43% (from 1.06 to 1.52), and yet they
all agree on the value ofmc to within a few percent once we
account for differences in the perturbative parts.
One surprising feature of our results is that even the

higher moments give correct values for the quark mass,
albeit with larger errors. Nonperturbative effects grow with
n but our results show no systematic deviation until very
large n, as is evident in Fig. 5 which shows results for 20 

n 
 62. We have not included potential errors due to the
gluon condensate in this figure. The error bars would have
been much larger had we done so. For example, they would
have been about 5 times larger at n ¼ 40 in the pseudo-
scalar plot (16% rather than 3%). This might suggest that
the condensate is smaller than we allowed for—say

TABLE IV. Simulation results for the reduced moments RðjÞ
n , extrapolated to a ¼ 0, from

correlators of local axial-vector and vector lattice currents, and a point-split lattice vector
current. Corresponding values for mcð�Þ (in GeV), for � ¼ 3 GeV and nf ¼ 4, are also given.

Only results for parameter sets 1, 4, and 6 from Table I were used for the first and last currents;
results from these sets were combined with results from set 8 (the smallest lattice spacing) for

j
ð�Þ
� .

j
ð5�Þ
5� j

ð�Þ
� jð1Þ�

n RðjÞ
n mcð�Þ RðjÞ

n mcð�Þ RðjÞ
n mcð�Þ

6 1.240(27) 0.97(3) 1.233(16) 1.00(3) 1.261(30) 0.97(4)

8 1.159(25) 0.97(5) 1.183(15) 1.00(4) 1.163(27) 1.02(5)

10 1.126(24) 0.99(5) 1.162(15) 0.98(5) 1.132(27) 1.02(6)

12 1.103(24) 0.99(6) 1.139(15) 0.97(6) 1.113(26) 1.01(7)

14 1.082(23) 0.99(8) 1.120(15) 0.97(8) 1.094(26) 1.01(9)

16 1.064(23) 1.00(9) 1.106(14) 0.97(10) 1.076(25) 1.01(11)

18 1.093(14) 0.97(13) 1.059(25) 1.02(14)

FIG. 4 (color online). Ratio of the extrapolated simulation

results from Table IV for RðjÞ
n , with j ¼ j

ð�Þ
� , to results derived

from experiment in [2] for different moments n.
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h�sG2=�i 
 0:003 GeV4—but we have not analyzed this
carefully enough to make a strong statement. The error
bars shown in the plots start to grow rapidly just where it
becomes clear that perturbation theory is failing (because
of large coefficients).

Our lattice result for the mass, mcð3 GeV; nf ¼ 4Þ ¼
0:986ð10Þ GeV, agrees well with the continuum determi-
nation from eþe� annihilation data, which gives 0.986
(13) GeV [2]. This provides further strong evidence that
the different systematic errors in each calculation are
understood. Similarly our new value for the coupling,
�MSðMZ; nf ¼ 5Þ ¼ 0:1174ð12Þ, agrees very well with

nonlattice determinations [40,45] and our other determi-
nations from lattice QCD [13,29]. It is also more accurate
than most determinations.

The close agreement of our results with nonlattice de-
terminations of the mass and coupling, and the taste inde-
pendence of our masses, is also further evidence that the
simulation methods we use are valid. While early concerns
about the light-quark discretization used here have been
largely addressed [46,47], it remains important to test the
simulation technology of lattice QCD at increasing levels
of precision, given the critical importance of lattice results
for phenomenology.

Our results are particularly relevant to the recent, very
accurate analysis of �, K, D, and Ds meson decay con-
stants using the same HISQ formalism for valence quarks
and many of the same MILC configuration sets that we use
here [15]. The correlators in our pseudoscalar analysis are
identical to those used to extract the decay constants in the
earlier study, except that here the light valence quarks have
been replaced by c quarks, which should make finite-a
errors worse. The agreement of our pseudoscalar analysis
of R6 with the continuum analysis for mcð�Þ indicates that

our extrapolated lattice c �c correlators are reliable to within
2% or better. The accuracy of our c �c results, together with
the demonstrated accuracy of the � and K results in [15]
from light-quark correlators, strongly suggest that the cor-
responding D and Ds predictions, from correlators with a
light quark and a c quark, are reliable. This conclusion is
made more important by the 3:6� discrepancy between the
Ds prediction and recent experimental results [48–50].
The lattice analysis will be improved as data becomes

available for smaller lattice spacings. Also a very accurate
c-quark mass will allow us to make similarly accurate
determinations of the s-quark mass [51]. This is because
the ratio ms=mc can be determined very accurately in
lattice simulations where the s and c quarks are analyzed
using the same formalism, as here. Finally four-loop per-
turbation theory for additional moments would improve
both lattice and continuum determinations.
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P. Marquard for providing �Cð30Þ
3 for the pseudoscalar cor-

relator prior to publication. We are grateful to the MILC
Collaboration for the use of their gluon configurations. We
thank Rainer Sommer for useful discussions. The lattice
QCD computing was done on UKQCD’s QCDOCX clus-
ter, USQCD’s Fermilab cluster, and at the Ohio
Supercomputer Center. The work was supported by grants
from: the Deutsche Forschungsgemeinschaft, SFB-
Transregio 9; the Department of Energy [DE-FG02-91-
ER40690, DE-AC02-98CH10886(BNL)]; the
Leverhulme Trust; the Natural Sciences and Engineering
Research Council; the National Science Foundation; and
the Science and Technology Facilities Council.

APPENDIX A: CONTINUUM PERTURBATION
THEORY

The correlators of two pseudoscalar (� � c�5 c), vector
( � c�� c), and axial-vector ( � c���5 c) currents are de-

fined by

q2�pðq2Þ ¼ i
Z
dxeiqxh0jTj5ðxÞj5ð0Þj0i; (A1)

ðq�q	 � q2g�	Þ�
ðq2Þ þ q�q	�


Lðq2Þ ¼ �


�	ðqÞ
¼ i

Z
dxeiqxh0jTj
�ðxÞj
	ð0Þj0i; (A2)

where 
 ¼ v and a for the vector and axial-vector cases,
respectively. The polarization functions can be expanded in
the variable z ¼ q2=ð2mcð�ÞÞ2:

�� 
ðq2Þ ¼ 3

16�2

X1
k¼�1

�C
kz
k: (A3)

FIG. 5 (color online). mcð� ¼ 3 GeVÞ from large-n moments
of the pseudoscalar and the (local) vector correlators. The gray
band is our final result for the mass (from n ¼ 6, 8), 0.986
(10) GeV. The perturbative part of the analysis was evaluated at
� ¼ mcð�Þ using formulas from [7], and the results evolved to
� ¼ 3 GeV using fourth-order evolution. Uncertainties due to
the gluon condensate are not included (see text).
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The polarization function and the c-quark mass mcð�Þ are
renormalized in the MS scheme.

The longitudinal part of the axial-vector current (which
is of interest in the present context) and the pseudoscalar
correlator are related by the axial Ward identity [52]

q�q	�a
�	ðqÞ ¼ ð2mÞ2q2�pðq2Þ þ contact term: (A4)

Comparing different orders in z,

�Cp
kþ1 ¼ �CaL;k; for k � �1; (A5)

allows us to extract moments of the pseudoscalar correlator
from those of the longitudinal part of the axial-vector
correlator, and vice versa. The contact term contributes
only to k ¼ �2. The coefficients of the perturbative ex-
pansion depend logarithmically on mc and can be written
in the form

�Ck ¼ �Cð0Þ
k þ �sð�Þ

�
ð �Cð10Þ

k þ �Cð11Þ
k lmc

Þ

þ
�
�sð�Þ
�

�
2ð �Cð20Þ

k þ �Cð21Þ
k lmc

þ �Cð22Þ
k l2mc

Þ

þ
�
�sð�Þ
�

�
3ð �Cð30Þ

k þ �Cð31Þ
k lmc

þ �Cð32Þ
k l2mc

þ �Cð33Þ
k l3mc

Þ
þ . . . ; (A6)

where lmc
� logðm2

cð�Þ=�2Þ. The coefficients �CðijÞ
k up

through k ¼ 8 are listed in Table V for both pseudoscalar
and vector correlators.

The four-loop coefficients �Cð30Þ
1 and �Cð30Þ

2 for the pseu-

doscalar correlator are new [53]; and �Cð30Þ
1 for the vector

correlator comes from [8,9]. The four-loop coefficients
�Cð30Þ
3 for the pseudoscalar case is also new [10], as is
�Cð30Þ
2 for the vector case [54]. The order �2

s terms up

through k ¼ 8 are given in [3–5], while results for higher
k values are given in [6,7]. See also [55] for nf-dependent

four-loop terms, and [7] for the pseudoscalar case.
Throughout this paper we take the number of light (mass-
less) active quark flavors to be nl ¼ 3, and the number of
heavy (massive) quarks is set to nh ¼ 1. For numerical
work, we use � ¼ 3 GeV.
The expansion coefficients �Ck are related to the coeffi-

cients gn of Eq. (4) by

g2kþ2

gð0Þ2kþ2

¼
�Ck
�Cð0Þ
k

; (A7)

and the coefficients rn;i in Eq. (15) are obtained through the
series expansion of Eq. (11). For the vector correlator the

coefficients r
ðj�Þ
n;i are defined through the series expansions

of

r
ðj�Þ
2kþ2 ¼

� �Cvk
�Cv;ð0Þk

�Cv;ð0Þk�1

�Cvk�1

�
1=2
: (A8)

TABLE V. Moments of the pseudoscalar (upper eight lines) and the vector (lower eight lines) correlators, where currently unknown
coefficients are denoted by center dots and set to zero in our analysis. The numbers correspond to QCD with one massive c quark and
three massless ðu; d; sÞ quarks.
k �Cð0Þ

k
�Cð10Þ
k

�Cð11Þ
k

�Cð20Þ
k

�Cð21Þ
k

�Cð22Þ
k

�Cð30Þ
k

�Cð31Þ
k

�Cð32Þ
k

�Cð33Þ
k

1 1.3333 3.1111 0.0000 0.1154 �6:4815 0.0000 �1:2224 2.5008 13.5031 0.0000

2 0.5333 2.0642 1.0667 7.2362 1.5909 �0:0444 7.0659 �7:5852 0.5505 0.0321

3 0.3048 1.2117 1.2190 5.9992 4.3373 1.1683 14.5789 7.3626 4.2523 �0:0649
4 0.2032 0.7128 1.2190 4.2670 4.8064 2.3873 � � � 14.7645 11.0345 1.4589

5 0.1478 0.4013 1.1821 2.9149 4.3282 3.4971 � � � 16.0798 16.6772 4.4685

6 0.1137 0.1944 1.1366 1.9656 3.4173 4.4992 � � � 14.1098 19.9049 8.7485

7 0.0909 0.0500 1.0912 1.3353 2.2995 5.4104 � � � 10.7755 20.3500 14.1272

8 0.0749 �0:0545 1.0484 0.9453 1.0837 6.2466 � � � 7.2863 17.9597 20.4750

1 1.0667 2.5547 2.1333 2.4967 3.3130 �0:0889 �5:6404 4.0669 0.9590 0.0642

2 0.4571 1.1096 1.8286 2.7770 5.1489 1.7524 �3:4937 6.7216 6.4916 �0:0974
3 0.2709 0.5194 1.6254 1.6388 4.7207 3.1831 � � � 7.5736 13.1654 1.9452

4 0.1847 0.2031 1.4776 0.7956 3.6440 4.3713 � � � 4.9487 17.4612 5.5856

5 0.1364 0.0106 1.3640 0.2781 2.3385 5.3990 � � � 0.9026 18.7458 10.4981

6 0.1061 �0:1158 1.2730 0.0070 0.9553 6.3121 � � � �3:1990 16.9759 16.4817

7 0.0856 �0:2033 1.1982 �0:0860 �0:4423 7.1390 � � � �6:5399 12.2613 23.4000

8 0.0709 �0:2660 1.1351 �0:0496 �1:8261 7.8984 � � � �8:6310 4.7480 31.1546
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