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Suggested holographic duals of QCD, based on AdS/CFT duality, predict that one should be able to

vary the scales of color confinement and chiral-symmetry breaking independently. Furthermore they

suggest that such independent variation of scales can be achieved by the inclusion of extra 4-fermion

interactions in QCD. We simulate lattice QCD with such extra 4-fermion terms at finite temperatures and

show that for strong enough 4-fermion couplings the deconfinement transition occurs at a lower

temperature than the chiral-symmetry restoration transition. Moreover the separation of these transitions

depends on the size of the 4-fermion coupling, confirming the predictions from the proposed holographic

dual of QCD. We use simpler 4-fermion interactions than those suggested by these dual theories to

facilitate our simulations. This is because we believe that the physics we wish to study should be

insensitive to the precise form of these interactions.
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I. INTRODUCTION

The AdS/CFT duality of Maldacena [1,2], which indi-
cates thatN ¼ 4 supersymmetric Yang-Mills field theory
in 3þ 1 dimensions is dual toN ¼ 8 supergravity in 4þ
1 dimensions, inspired people to search for a gravity/string
theory which is dual to QCD. Since such duality would
map the strong-coupling regime of QCD to the weak-
coupling regime of a classical gravity theory, this promises
to greatly simplify certain QCD calculations. For a review
of the early work in trying to construct such holographic
duals for QCD without quarks, we refer the reader to the
review article by Aharony [3]. The inclusion of quarks was
addressed by Karch and Katz [4]. Another such model
for including quark flavors was suggested by Sakai and
Sugimoto [5,6] and studied further by Antonyan, Harvey,
Jensen, and Kutasov [7] and Aharony, Sonnenschein, and
Yankielowicz [8]. These papers ([7,8]) observe that the
scales of confinement and chiral-symmetry breaking can
be varied independently in these proposed QCD duals, and
that the chiral-symmetry breaking scale must always be
shorter than or equal to the confinement scale. Note that all
these attempts at constructing holographic duals of QCD
only claim validity for large Nc.

Measurement of the scales of confinement and chiral-
symmetry breaking can be addressed in lattice QCD by
measuring the deconfinement and chiral-symmetry resto-
ration temperatures for hot QCD. For quarks in the funda-
mental representation of SUð3Þ color, these two transitions
have been observed to be coincident, within the limitations
of lattice measurements [9]. For this reason there have been
a number of attempts to explain why this should be so [10–
13]. Others have argued that the scales of confinement and
chiral-symmetry breaking could easily be different [14].
However, it has been observed that for quarks in the adjoint
representation [15], and probably for quarks in the sextet

representation of color [16], the deconfinement tempera-
ture is significantly lower than the chiral-symmetry resto-
ration temperature. This suggests that the real reason why
these transitions appear coincident for fundamental quarks,
is that the interaction between fundamental quarks and
antiquarks is too weak to produce a chiral condensate at
distances shorter than the confinement scale. The conden-
sate is then produced at the confinement scale since con-
finement requires chiral-symmetry breaking [17,18]. This
would then make the two scales and hence the two tran-
sition temperatures identical.
The work of Antonyan, Harvey, Jensen and Kutasov [7]

suggests that the introduction of extra 4-fermion interac-
tions in QCD would allow the separation of the confine-
ment and chiral-symmetry breaking scales. This makes
sense, since it is known that models of the Gross-Neveu
[19]/Nambu-Jona-Lasinio [20,21] type exhibit chiral-
symmetry breaking without confinement for strong enough
coupling. Hence one might expect that the addition of a
large enough 4-fermion coupling to QCD could produce
chiral-symmetry breaking without confinement. We there-
fore choose to study lattice QCD with extra 4-fermion
interactions of the Gross-Neveu/Nambu-Jona-Lasinio
type at finite temperatures, looking for evidence for sepa-
rate deconfinement and chiral-symmetry restoration tran-
sitions. Here we have been careful to make sure that the
4-fermion coupling is not so strong as to produce spon-
taneous chiral-symmetry breaking without gauge fields,
since this phase is separated from the chiral-symmetry
restored phase by a bulk transition. These arguments sug-
gest that any such chiral 4-fermion interactions with the
above properties would produce the same behavior. We use
this freedom to replace the nonlocal 4-fermion interac-
tions, indicated by the proposed QCD duals, with local
4-fermion interactions, which simplify simulations while
still preserving the symmetries of the lattice QCD action.
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Early studies of such a model showed some evidence for
separate transitions for strong enough 4-fermion interac-
tions [22], but the lattice size (83 � 4) was so small that the
effect could have been a finite lattice size artifact. We study
this model for large 4-fermion couplings on 163 � 4 and
243 � 4 lattices, and for intermediate 4-fermion couplings,
on 122 � 24� 4, 243 � 4 and 323 � 4 lattices (the 122 �
24� 4 ‘‘data’’ is from a previous study [23]). For strong
4-fermion couplings, we find that the deconfinement tran-
sition takes place at a much lower temperature than the
chiral-symmetry restoration phase transition. At intermedi-
ate 4-fermion couplings, the 2 transitions are much closer,
but still clearly separate. At weak 4-fermion couplings,
previous work has indicated that the two transitions are
coincident within the limits of our simulations [22,23].

In Sec. II we introduce the action for lattice QCD with
additional 4-fermion interactions and discuss some of its
properties, and how it is simulated. Section III presents our
simulations at zero gauge coupling which are necessary to
identify the limits on the 4-fermion couplings we can use.
In Sec. IV we describe our simulations and present results.
Section V discusses our results, draws conclusions and
indicates directions for future research.

II. �QCD

The lattice QCD action with additional 4-fermion inter-
actions which we choose is one we have previously called
�QCD [22]. This is based on the continuum Euclidean
space-time Lagrangian density

L ¼ 1

4
F��F�� þ � ð 6DþmÞ 

� �2

6Nf
½ð �  Þ2 � ð � �5�3 Þ2�: (1)

Introducing auxiliary fields � and � yields a new equiva-
lent Lagrangian density which is quadratic in the fer-
mion fields.

L ¼ 1

4
F��F�� þ � ð 6Dþ �þ i��5�3 þmÞ 

þ 3Nf

2�2
ð�2 þ �2Þ: (2)

The chosen 4-fermion term is of the Gross-Neveu/
Nambu-Jona-Lasinio type. It breaks flavor symmetry, but
preserves the reduced chiral symmetry of the staggered-
fermion implementation of quarks on the lattice. Unlike
the action which includes ‘‘�1’’ and ‘‘�2’’ terms and pre-
serves the full chiral flavor symmetry, it has a real positive
fermion determinant which is essential for lattice simula-
tions. The terms involving the chiral auxiliary fields (�, �)
remain local in the staggered-fermion lattice transcription.

The lattice version of the action is

S ¼ 	
X

h

�
1� 1

3
ReðTrhUUUUÞ

�
þX

~s

1

8
Nf�ð�2 þ �2Þ

þ XNf=4

f¼1

X

s

��f

�
6Dþmþ 1

16

X

i

ð�i þ i
�iÞ
�
�f (3)

where 6D is the standard staggered gauge-covariant 6D, 
 ¼
ð�1Þxþyþzþt, s runs over the sites of the lattice, ~s runs over
the sites of the dual lattice on which the auxiliary fields
reside and i runs over those sites of the dual lattice adjacent
to the site of the lattice on which the fermion field resides.
This transcription preserves the Uð1Þ chiral symmetry of
the staggered-fermion formulation. � ¼ 12=�2 [24].
We simulate this action using the RHMC algorithm [25],

where the fractional powers of the fermion determinant,
required when the number of flavors Nf is not a multiple of

8, are obtained using a rational approximation to the frac-
tional powers of the quadratic Dirac operator, and global
Metropolis accept/reject steps make the algorithm exact.
For subtleties associated with applying the RHMC algo-
rithm to this action, see Ref. [26]. As noted in our earlier
work, the presence of the 4-fermion interaction makes the
Dirac operator nonsingular in the chiral m ¼ 0 limit. We
make use of this fact to simulate at m ¼ 0, where there is
an exactUð1Þ chiral symmetry, so that the chiral-symmetry
restoration occurs at a true phase transition at and beyond
which the chiral condensate vanishes. There is, however,
no true order parameter known for the deconfinement tran-
sition in QCD with dynamical fundamental quarks, which
is seen as an abrupt jump in the Wilson Line (Polyakov
Loop). Hence this transition need not necessarily be a true
phase transition.
When we simulate at m ¼ 0, the direction in which

the Uð1Þ chiral symmetry is broken is arbitrary. The chi-
ral condensate is some linear combination of h �  i and
ih � �5�5 i or of � and � (�5, the flavor version of �5 is the
equivalent of �3 for the 4 flavors described by a single
staggered quark field). On a finite lattice, the direction
defined by this chiral condensate rotates during the simu-
lation, and the condensates average to zero since there is
no spontaneous symmetry breaking in a finite volume. We
therefore define an approximate order parameter, which
approaches the true order parameter when the volume
of the lattice becomes infinite. Experience is thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�  2 � � �5�5 

2
q

or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
are good choices. Here

the quantities �  , etc. are lattice averages for a given
gauge and auxiliary field configuration. These choices
lead to some finite size rounding of the phase transition
on finite lattices. From now on we shall denote these two
versions of the chiral condensate as ‘‘h �  i’’ and ‘‘h�i’’.
All our simulations have been performed with two fla-

vors of massless quarks (Nf ¼ 2).
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III. GROSS-NEVEU/NAMBU-JONA-LASINIO
MODEL SIMULATIONS

To determine the relevant values of �, we perform sim-
ulations with the pure Gross-Neveu/Nambu-Jona-Lasinio
model, i.e. the theory described in the previous section,
only without gauge fields. For these simulations, we run
at zero temperature. Note that Nf ¼ 2 QCD with extra

4-fermion interactions reduces to a 6-flavor Gross-Neveu/
Nambu-Jona-Lasinio model (2 flavors� 3 colors) when
the gauge coupling is set to zero. We are interested in
determining the � value for the bulk transition at which
the chiral condensate vanishes. Since, for our simulations
with gauge fields, we want to determine the two finite tem-
perature transitions, we need to simulate with 4-fermion
couplings weaker than that at the bulk transition, i.e. for
� > �c where �c is � at the bulk chiral-symmetry resto-
ration phase transition. In our earlier work, we simulated
this theory with only 4-fermion couplings, on an 84 lattice.
For this project we use a 124 lattice.

We performed runs for 1:0 � � � 2:5. For each � we
generated 500 000 length 2.5 trajectories. Figure 1 shows
the chiral condensates h �  i and h�i as functions of � over
this range. From this we estimate �c � 1:7. Comparing
this graph with that for an 84 lattice from our previous
work, we observe that, as we approach �c from below, the

finite size effects only become appreciable when we get
very close to the transition, as expected. The behavior of
h�i can be understood from that of h �  i, since in the limit
of infinite volume, these are related by

h �  i ¼ �h�i: (4)

This equation remains true when we reintroduce the
gauge fields.

IV. FINITE TEMPERATURE SIMULATIONS
AND RESULTS

We now turn to simulations with finite gauge couplings.
The quark massm ¼ 0 for all these simulations, so that the
chiral transition is a true phase transition. Since the sepa-
ration of scales of confinement and chiral-symmetry break-
ing is expected to occur for strong 4-fermion interactions,
we start with a large 4-fermion coupling. We choose � ¼
2:5> �c � 1:7. While this represents a large 4-fermion
interaction it is not too close to the bulk transition when the
gauge coupling is taken to zero. Ideally one would like to
keep the gauge coupling fixed so that � is fixed in physical
as well as lattice units, changing the temperature by chang-
ing the temporal extent (in lattice units), Nt, of the lattice.
As is always the case (unless one uses anisotropic lattices)
this is impractical, and we fix Nt and vary the temperature
by varying the lattice spacing in physical units by varying
	 ¼ 6=g2 where g is the gauge coupling constant. Since
we keep � fixed in lattice units, � changes in physical units
as we vary 	. For these simulations we use Nt ¼ 4.
Earlier simulations on 83 � 4 lattices at � ¼ 2:5 sug-

gested that there could be two separate transitions. How-
ever, on such small lattices, finite size effects are large
enough that definite conclusions are suspect. We have now
simulated at � ¼ 2:5 on 163 � 4 and 243 � 4 lattices. At
each 	 we ran for 50 000 length 1 trajectories, except for
	 ¼ 5:545, close to the deconfinement transition, where
we ran for 100 000 length 1 trajectories. In Fig. 2 we plot
the Wilson Line (Polyakov Loop), which signals the de-
confinement transition and the chiral condensate, which is
the order parameter for chiral-symmetry breaking, against
	. The deconfinement transition, marked by a very rapid
increase of the Wilson line from near-zero, occurs at a
much smaller 	 than the chiral phase transition, where the
chiral condensate vanishes and chiral symmetry is restored.
In the region of the deconfinement transition, we use
Ferrenberg-Swendsen reweighting [27] to determine the
position of this transition from the Wilson line susceptibil-
ity peaks. Examining the distribution of plaquette values
for each 	 in the range 5:50 � 	 � 5:57 suggests that the
deconfinement 	, 	d � 5:545. Ferrenberg-Swendsen re-
weighting from 	 ¼ 5:545 yields 	d ¼ 5:547ð3Þ. The chi-
ral transition is considerably less well measured, since
there are much larger gaps between consecutive 	s in
its neighborhood, and the finite size effects are large.

FIG. 1 (color online). The chiral condensates h �  i, h�i for
the 6-flavor Gross-Neveu/Nambu-Jona-Lasinio (zero gauge cou-
pling) limit of QCD with extra 4-fermion couplings, as functions
of �.
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Examining the ‘‘data’’ from the two lattice sizes and
trying to take into account the finite size effects leads us
to 	� ¼ 7:0ð2Þ as our estimate for the 	 at the chiral phase

transition. Thus, for � ¼ 2:5 the deconfinement and chiral-
symmetry restoration temperatures are far apart.

We also performed simulations at an intermediate
4-fermion coupling � ¼ 5. Here, earlier simulations on
83 � 4 and 122 � 24� 4 lattices had failed to indicate
whether there was one transition or two. We have per-
formed simulations on 243 � 4 lattices. To clarify chiral-
symmetry restoration, we also performed simulations on
323 � 4 lattices close to the chiral-symmetry restoration
transition. For the 243 � 4 lattice we have run for 100 000
length 1 trajectories for each 	 in the range 5:415 � 	 �
5:460 and for 50 000 for those	s outside this range. On the
323 � 4 lattice we ran for 100 000 length 1 trajectories for
each of three 	 values. Figure 3 shows the chiral conden-
sate andWilson line from these new simulations along with
the old results on 122 � 24� 4 lattices. Again we find
evidence for two separate transitions. Close to the decon-
finement transition, we find that the finite size effects are
very small, as was observed at � ¼ 2:5. This is reassuring,
especially in light of the fact that our old 122 � 24� 4
simulations used the inexact R algorithm, while the new
simulations used the exact RHMC algorithm. We estimate
that the deconfinement 	, 	d ¼ 5:420ð4Þ. Our estimated 	
for the chiral transition is 	� ¼ 5:450ð5Þ.

We know from our earlier work that if � is increased to
� ¼ 10, the deconfinement and chiral transitions appear to
be coincident. The closeness of 	d and 	� at � ¼ 5

compared with � ¼ 2:5 suggests that the two transitions
come together at a �, a little above 5.

V. DISCUSSION AND CONCLUSIONS

We have simulated lattice QCD with extra 4-fermion
interactions of the Gross-Neveu/Nambu-Jona-Lasinio
type at finite temperatures, and have observed that, for
strong enough 4-fermion couplings, the deconfinement and
chiral-symmetry restoration temperatures are different. In-
creasing the 4-fermion coupling increases the separation of
these two transitions, and the deconfinement temperature is
always less than or equal to the chiral-symmetry restora-
tion temperature. This agrees with the predictions from
proposed holographic duals of QCD [7,8].
These results can be easily understood, since Gross-

Neveu/Nambu-Jona-Lasinio models without gauge fields
can exhibit spontaneous chiral-symmetry breaking, but do
not confine the fermions. It also indicates that the reason
why for QCD without such terms, the two transitions ap-
pear coincident is merely that the eigenvalue of the qua-
dratic Casimir operator for the fundamental representation
of SUð3Þcolor is too small for the QCD interactions to
produce chiral-symmetry breaking at distances less than
the confinement scale. Confinement then forces chiral-
symmetry breaking and the two scales are identical.
When the two scales are different, chiral symmetry is

broken on both sides of the deconfinement transition.
Hence, at this transition, the gauge fields see ‘‘constituent
quarks,’’ i.e. quarks with dynamical masses produced
by spontaneous chiral-symmetry breaking, rather than
the massless ‘‘current quarks.’’ These are less effective at
screening color than the ‘‘current quarks’’ and the decon-
finement temperature increases. We expect that in the limit
of large 4-fermion couplings the dynamical quark masses
will increase without bound and the deconfinement tem-

FIG. 2 (color online). Wilson line and chiral condensate as
functions of 	 for � ¼ 2:5 in lattice units.

FIG. 3 (color online). Wilson line and chiral condensate as
functions of 	 for � ¼ 5 in lattice units.
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perature will approach its quenched value. This explains
why the transition coupling 	d and hence temperature Td
vary over a limited range as the 4-fermion coupling is
varied. These arguments suggest 5:25 & 	d & 5:6925,
where the lower limit is from simulations without the
4-fermion interaction [28,29] and the upper limit is the
quenched value [30,31], over the whole range of �
(the inverse 4-fermion coupling), �c < � <1, where
�c � 1:7 is the bulk transition � when the gauge couplings
are switched off. On the other hand, the chiral-symmetry
restoration temperature T� and coupling 	� will vary from

T� ¼ Td and 	� ¼ 	d for � > �0 (weak 4-fermion cou-

pling) to1 as gamma is decreased to � ¼ �c, when chiral
symmetry is always broken [32]. Our simulations indicate
that �0, the � value for which the two transitions coalesce,
lies between 5 and 10, and is probably closer to 5.

We have simulated at � ¼ 2:5 (strong 4-fermion cou-
pling) and � ¼ 5 (intermediate 4-fermion coupling) and
previously at � ¼ 10 and � ¼ 20 (both weak 4-fermion
couplings)[23]. The deconfinement 	s are 	dð2:5Þ ¼
5:547ð3Þ, 	dð5Þ ¼ 5:420ð4Þ, 	dð10Þ ¼ 5:327ð2Þ, and
	dð20Þ ¼ 5:289ð1Þ, consistent with the above bounds,
and increasing as expected with increasing 4-fermion cou-
pling. The	s for the chiral transition are	�ð2:5Þ ¼ 7:0ð2Þ,
	�ð5Þ ¼ 5:450ð5Þ, 	�ð10Þ ¼ 	dð10Þ, and 	�ð20Þ ¼
	dð20Þ. For � ¼ 2:5 (strong 4-fermion coupling) crude
estimates based on quenched running of the coupling
constant, from earlier lattice simulations, indicate that T�
is an order of magnitude larger than Td, while for inter-
mediate 4-fermion coupling, � ¼ 5, 2-flavor 2-loop run-
ning of the coupling constant yields T� � 1:04Td.

In our model, the 4-fermion interaction is completely
local and thus irrelevant in the renormalization group
sense. Thus it will vanish in the continuum limit when
the lattice spacing goes to zero, and we will no longer have
two separate transitions. On the other hand, the 4-fermion
interaction implied by the proposed holographic dual to
QCD is nonlocal, which softens ultraviolet divergences
introducing the possibility that it might have a nontrivial
continuum limit. This point needs further investiga-
tion. Even if this does not happen, and QCD with extra
4-fermion interactions is only defined with an ultraviolet
regulator such as the one provided by the lattice, it is a
useful model since it allows one to study confinement and

chiral-symmetry breaking independently in this ultraviolet
regulated (effective) theory.
We have restricted ourselves to Nt ¼ 4 for this prelimi-

nary study. A more complete study would require extend-
ing this to larger Nt. At Nt ¼ 4, we would need more 	
values to accurately pinpoint the chiral phase transition and
to determine its nature. Additional work would be needed
to understand the deconfinement transition. The fact that
the vicinity of the deconfinement transition shows little
finite-size dependence, makes it likely that, if it is indeed a
phase transition, then it is first-order.
A lattice analysis of the nonlocal Nambu-Jona-Lasinio

model suggested by the proposed string/gravity dual to
QCD should be considered. It is a 4-dimensional nongauge
theory which exhibits chiral-symmetry breaking but not
confinement. If it has a nontrivial continuum limit, it
represents a new class of 4-dimensional field theories.
The next step would be to include it in the lattice QCD
action, just as we have done with the local Gross-Neveu/
Nambu-Jona-Lasinio model, or alternatively to study the
5-dimensional gauge theory with right- and left-handed
quarks pinned to separate 4-dimensional branes, which
produced it.
The methods of lattice gauge theory and extensions

of AdS/CFT duality to QCD and similar quantum field
theories can be used to complement one another in the
understanding of such theories. The particular example
described in this paper shows how these ideas can be
applied to further the understanding of confinement and
chiral-symmetry breaking in QCD.
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