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We present a calculation of the renormalization coefficients of the quark bilinear operators and the

K � �K mixing parameter BK. The coefficients relating the bare lattice operators to those in the RI/MOM

scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The

coefficients are calculated on the RBC/UKQCD 2þ 1 flavor dynamical lattice configurations.

Specifically we use a 163 � 32 lattice volume, the Iwasaki gauge action at � ¼ 2:13 and domain wall

fermions with Ls ¼ 16.
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I. INTRODUCTION

The RBC and UKQCD collaborations have recently
performed the first simulations with 2þ 1 flavor domain
wall fermions [1–3]. Much interesting phenomenology
requires the conversion of bare lattice quantities to a less
arbitrary and more perturbatively amenable continuum
scheme. In particular, this is true for the determination of
weak matrix elements such as BK and for the standard
model parameters such as quark masses. Of course, physi-
cal quantities are independent of the choice of renormal-
ization procedure, nevertheless theoretical predictions are
often given in terms of the parameters of the theory (�s and
quark masses) which require renormalization. In addition,
for many processes (e.g.K � �K mixing) the amplitudes are
factorized into products of perturbative Wilson coefficient
functions and operator matrix elements which contain the
long-distance effects. The Wilson coefficients and operator
matrix elements need to be combined with both evaluated
in the same renormalization scheme. The purpose of this
paper is to determine the factors by which matrix elements
computed in our numerical simulations should be multi-

plied in order to obtain those in the MS scheme which is
conventionally used for the evaluation of the coefficient
functions.

In principle, for a sufficiently small lattice spacing a and
a sufficiently large renormalization scale�, it is possible to
perform the renormalization of the bare lattice operators

using perturbation theory. However, in practice the coef-
ficients of lattice perturbation theory are frequently large
leading to a poor convergence of the series and even with
attempts such as tadpole improvement to resum some of the
large contributions, it appears that the typical n-loop cor-
rection is numerically of Oð�ns Þ, in contrast to continuum
perturbation theory where the corresponding contributions
are ofOðð�s=4�ÞnÞ. A related difficulty is the choice of the
best expansion parameter (�s), for example, between some

tadpole improved lattice coupling or the MS coupling. In
practice, at one-loop order, different reasonable choices
can lead to significantly different results. For the quark
bilinear operators and BK considered in this paper, we
present the perturbative results and illustrate these points
in Sec. II.
The main purpose of this paper is to avoid the uncer-

tainties present when using lattice perturbation theory by
implementing the Rome-Southampton RI/MOM nonper-
turbative renormalization technique [4]. The key idea of
this technique is to define a sufficiently simple renormal-
ization condition such that it can be easily imposed on
correlation functions in any lattice formulation of QCD, or
indeed in any regularization—that is, the condition is
regularization invariant (RI). We therefore introduce
counter-terms for any regularization such that a Landau
gauge renormalized n-point correlation function with stan-
dard MOM kinematics at some scale �2 has its tree level
value. This condition is simple to impose whenever the
renormalized correlation function is known in any regu-
larization. It applies equally well to both perturbative ex-
pansions to any order and to nonperturbative schemes such
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as the lattice, and thus RI/MOM is a very useful interface
for changing schemes. In particular, only continuum per-
turbation theory and the lattice regularization are required
to obtain physical results from a lattice calculation.

Our choice of lattice action is important for the efficacy
of the RI/MOM technique. With domain wall fermions,
OðaÞ errors and chiral symmetry violation can be made
arbitrarily small at fixed lattice spacing by increasing the
size of the fifth dimension. This allows us to avoid the
mixing between operators which transform under different
representations of the chiral symmetry group; this is a very
significant simplification compared to some other formu-
lations of lattice QCD. The action and operators are also
automatically OðaÞ improved.

Another important property of DWF is the existence of
(nonlocal) conserved vector and axial currents. This will be
discussed in detail below.

In this paper we study the renormalization of the quark
bilinear operators � � , where � is one of the 16 Dirac
matrices, and of the �S ¼ 2 four-quark operator OLL.
Table I contains a summary of our results, relating bare
operators in the lattice theory with domain wall fermions
and the Iwasaki gauge action at � ¼ 2:13 (a�1 ¼
1:729ð28Þ GeV, see Sec. III for further details) to those
in two continuum renormalization schemes. Columns three
through five give the three independent Z-factors which,
when multiplying the appropriate bilinear lattice operator,
convert that operator into one normalized according to

either the RI/MOM or MS (NDR) schemes. The final
column contains the combination of factors needed to
convert a lattice result for the parameter BK into the

corresponding RI/MOM or MS (NDR) value.
The plan of the remainder of the paper is as follows. In

the following section (Sec. II) we start by reviewing the
perturbative evaluation of the renormalization constants;
the results can later be compared with those obtained using
the nonperturbative procedures. In Sec. III, we begin the
description of the nonperturbative computations with a
brief introduction to the details of our simulation and to
the computation of the quark propagators which are the
basic building blocks for all our subsequent calculations. In
Sec. IV we give a short introduction to the regularization
independent (RI/MOM) scheme. In this section we also
discuss the renormalization of flavor nonsinglet bilinear
operators, including the check of theWard-Takahashi iden-

tities. The discussion of the renormalization of the four-
quark operators and the results for the renormalization
constant for BK are presented in Sec. V. Section VI con-
tains a brief summary and our conclusions.

II. PERTURBATION THEORY

Before proceeding to describe our nonperturbative
evaluation of the renormalization constants we briefly
review the corresponding (mean field improved) perturba-
tive calculations. Specifically, we present perturbative es-
timates for the renormalization constants of the quark
bilinears and BK. These can then be compared to those
obtained nonperturbatively below. The ingredients for the
perturbative calculations and a detailed description of the
procedure can be found in Refs. [6,7].
Writing the domain wall height asM ¼ 1�!0, the bare

value of !0 in our simulation is !0 ¼ �0:8. The mean
field improved value of !0 is then given by

!MF
0 ¼ !0 þ 4ð1� uÞ ’ �0:303; (1)

where the link variable is defined by u ¼ P 1=4 and P ¼
0:588 130 692 is the value of the plaquette in the chiral
limit.
We define the renormalization constant, ZOi

, which

relates the bare lattice operator, OLatt
i ða�1Þ, to the corre-

sponding renormalized one in the MS scheme at a renor-
malization scale of � ¼ a�1 by:

OMS
i ða�1Þ ¼ ZiO

Latt
i ða�1Þ: (2)

Here i ¼ S, P, V, A, T for the scalar and pseudoscalar
densities, vector and axial-vector currents, and tensor bi-
linear and i ¼ BK for the �S ¼ 2 operator which enters
into theK0- �K0 mixing amplitude (or more precisely for the
ratio of the �S ¼ 2 operator and the square of the local
axial current, which is the relevant combination for the
determination of BK). The one-loop, mean field improved
estimates for the Zi are:

ZS;P ¼ u

1� ð!MF
0 Þ2

1

ZMF
!

�
1� �sCF

4�
5:455

�
(3)

ZV;A ¼ u

1� ð!MF
0 Þ2

1

ZMF
!

�
1� �sCF

4�
4:660

�
(4)

TABLE I. The four factors ZS;P, ZV;A, ZT and ZBK by which the matrix elements of the bare lattice bilinear operators and the ratio of
matrix elements BK should be multiplied in order to obtain the corresponding quantities renormalized in the RI/MOM or MS(NDR)
schemes. The RI/MOM quantities are defined at a scale� ¼ 2:037 GeV, an available lattice momentum. TheMS(NDR) quantities are
provided at the scale � ¼ 2 GeV. The first error given is statistical and the second systematic. This table summarizes the main results
of this paper. Note, the values shown for ZV;A are taken from Ref. [5].

Scheme Scale Zq ZS;P ZV;A ZT ZBK

RI/MOM 2.037 GeV 0.8086(28)(74) 0.466(14)(31) 0.7161(1) 0.8037(22)(55) 0.9121(38)(129)

MS(NDR) 2.00 GeV 0.7726(30)(83) 0.604(18)(55) 0.7161(1) 0.7950(34)(150) 0.9276(52)(220)
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ZT ¼ u

1� ð!MF
0 Þ2

1

ZMF
!

�
1� �sCF

4�
3:062

�
(5)

ZBK ¼ 1� �s
4�

1:470; (6)

where CF is the second Casimir invariant CF ¼
ðN2 � 1Þ=2N for the gauge group SUðNÞ. Here ffiffiffiffiffiffi

Zw
p

is
the quantum correction to the normalization factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

0

q
of the physical quark fields (the factors depend-

ing on this normalization cancel in the evaluation of ZBK ).

At one-loop order in perturbation theory

Zw ¼ 1þ �sCF
4�

5:251: (7)

In obtaining the coefficients in Eqs. (3)–(7) we have inter-
polated linearly between the entries for M ¼ 1:30 and
M ¼ 1:40 in tables III and IVof Ref. [6] to the mean-field
value ofM ¼ 1:303. Since the mean-field value ofM is so
close to the quoted values at M ¼ 1:30, we prefer this
procedure to using the general interpolation formula
quoted in [6]. The difference between the two procedures
is negligible compared to the remaining systematic
uncertainties.

In order to estimate the numerical values of the renor-
malization constants we have to make a choice for the
expansion parameter, i.e. the coupling constant �s. Here
we consider two of the possible choices, the mean-field

value as defined in Eq. (62) of Ref. [7] and the MS
coupling, both defined at � ¼ a�1. The mean field im-
proved coupling constant is given by

1

g2MFða�1Þ ¼ P
g20

þ dg þ cp þ Nfdf; (8)

where g0 is the bare lattice coupling constant (g20 ¼ 6=�),
and the remaining parameters are defined in Ref. [7] and

take the numerical values dg ¼ 0:1053, cp ¼ 0:1401 and

for !MF
0 ¼ �0:303, df ¼ �0:001 48. We therefore obtain

�MFð1:729 GeVÞ ¼ 0:1769: (9)

Such a value of the coupling is significantly lower than that

in the MS scheme at the same scale, for which we take,

�MSð1:729 GeVÞ ¼ 0:3138.
The difference in the two values of the coupling constant

leads to a significant uncertainty in the estimates of the
renormalization constants at this order, as can be seen in
Table II. The need to eliminate this large uncertainty is the
principle motivation for the use of nonperturbative renor-
malization. The entries in Table II are the factors by which
the matrix elements of the bare lattice operators should be

multiplied in order to obtain those in theMS(NDR) scheme
at the renormalization scale � ¼ 1:729 GeV.
Finally, we perform the renormalization group running

from � ¼ 1:729 GeV to obtain the normalization con-
stants at other scales, and, in particular, at the conventional
reference scale of � ¼ 2 GeV (see Table III). In each case
we use the highest order available for the anomalous
dimension: two loops for BK, three loops for the tensor
operator, and four loops for the scalar/pseudoscalar den-
sities. Whenever required, the strong coupling �sð�Þ is
evaluated using the four-loop beta function. However,
when the beta function is needed to solve the renormaliza-
tion group equations, we use only those terms up to the
same order as is available for the corresponding anomalous
dimension. This is the same procedure which we use for
the nonperturbatively determined renormalization con-
stants below and the details and references to the anoma-
lous dimensions are presented in Secs. IV F, IVG, IVH,
and VD below. The numbers in Table III are the factors by
which the matrix elements of the bare lattice operators
should be multiplied in order to obtain those in the

MS(NDR) scheme at � ¼ 2 GeV. The entries in the first

TABLE II. The factors, computed in perturbation theory, by which the matrix elements of the
bare lattice operators should be multiplied in order to obtain those in the MS(NDR) scheme at
the renormalization scale � ¼ 1:729 GeV. This table shows that the difference in the choice of
the strong coupling constant leads to large uncertainty in the renormalization constants.

Coupling ZS;Pð1:729 GeVÞ ZV;Að1:729 GeVÞ ZTð1:729 GeVÞ ZBK ð1:729 GeVÞ
�MFð1:729 GeVÞ 0.788 0.801 0.827 0.979

�MSð1:729 GeVÞ 0.672 0.693 0.737 0.963

TABLE III. The perturbative renormalization constants at the conventional scale of � ¼
2 GeV by renormalization group running from � ¼ 1:729 GeV. The entries in the first column
indicate which coupling was used in matching between the bare lattice operators and the MS
(NDR) scheme at � ¼ 1:729 GeV.

Coupling ZS;Pð2 GeVÞ ZV;Að2 GeVÞ ZTð2 GeVÞ ZBK ð2 GeVÞ
�MFð1:729 GeVÞ 0.822 0.801 0.813 0.993

�MSð1:729 GeVÞ 0.701 0.693 0.725 0.977
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column indicate which coupling was used in matching

between the bare lattice operators and the MS(NDR)
scheme at � ¼ 1:729 GeV, i.e. before the running to other
scales.

III. SIMULATION DETAILS

The calculations described below were performed on the
2þ 1 flavor dynamical lattice configurations generated by
the RBC and UKQCD collaborations [2]. The lattices were
generated with the Iwasaki gauge action at � ¼ 2:13 and
the domain-wall fermion action with Ls ¼ 16. The size of
the lattices used in this work is 163 � 32. The lattice
spacing is a�1 ¼ 1:729ð28Þ GeV and the residual mass
mres ¼ 0:003 15ð2Þ in lattice units [5]. We have 3 indepen-
dent ensembles with light sea quark mass 0.01, 0.02, and
0.03, respectively. The strange sea quark mass is fixed at
0.04. For each ensemble, we have used 75 configurations,
starting from trajectory number 1000 and with trajectory
separation 40.

Following the Rome-Southampton RI/MOM nonpertur-
bative renormalization procedure [4,8], the lattices are first
fixed in Landau gauge. Then, on each gauge-fixed configu-
ration, we measure the point-point quark propagators
Sðx; x0Þ with periodic boundary conditions in space and
time, where x0 is the source position and x is the sink. We
have chosen four different sources to generate the propa-
gators,

x0 2 fð0; 0; 0; 0Þ; ð4; 4; 4; 8Þ; ð7; 7; 7; 15Þ; ð12; 12; 12; 24Þg:
(10)

Next, a discrete Fourier transform is performed on the
propagators,

Sðp; x0Þ ¼
X
x

Sðx; x0Þ exp½�ip � ðx� x0Þ�; (11)

where

p� ¼ 2�

L�
n�; (12)

n� is a four-vector of integers and

Lx ¼ Ly ¼ Lz ¼ 16 Lt ¼ 32: (13)

For the n� we take values in the ranges

nx; ny; nz 2 f�2;�1; 0; 1; 2g and

nt 2 f�4;�3;�2;�1; 0; 1; 2; 3; 4g
(14)

and require that the squared amplitude of the lattice mo-
menta is in the range 0 � p2 & 2:5. In this paper, for
simplicity of notation we frequently use lattice units for
dimensionful quantities such as p and m. When we par-
ticularly wish to emphasize the nature of the discretization
errors we explicitly reinstate the lattice spacing, writing,
for example, ðapÞ2 or ðamÞ2.

Our treatment of statistical errors follows the standard,
single-elimination jackknife method. According to that
method, we remove one of our 75 configurations and
perform a complete calculation of the quantity of interest
on the remaining 74 configurations. The average fluctua-
tion among the results obtained by omitting, in turn, each

of the 75 configurations is then multiplied by
ffiffiffiffiffiffi
75

p
to obtain

the quoted statistical error. In order to check that possible
correlations between our configurations have not led to an
underestimate of the statistical error, we have repeated this
procedure but removed first three and then five sequential
configurations instead of one. The errors deduced from the
resulting 25 and then 15 jackknife samples were equivalent
to those obtained from the 75. In each case, we include the
results from all four sources in a single bin so that possible
correlations between the different sources will not lead to
an underestimate of statistical errors. However, the results
from the different sources appear to be very independent so
that a reduction in statistical error of roughly a factor of 2
was achieved by this quadrupling of the computational
effort.

IV. RENORMALIZATION OF QUARK BILINEARS

We now discuss how Green functions computed on the
lattice can be used to obtain the nonperturbative renormal-
ization constants relating bilinear operators defined on the
lattice to those normalized first according to the RI/MOM

and then the MS scheme. In the first two subsections
below, Secs. IVA and IVB we briefly introduce the defi-
nitions and notation that we use in the rest of this paper.
Some of these are extracted from the earlier RBC paper on
quenched lattices [8] and are included here for
completeness.
The definition of renormalization factors Zq and Zm for

the quark wave function and mass in the RI/MOM scheme
are given in Sec. IVA. The basic amputated quark-bilinear
vertex functions are defined in Sec. IVB and the conditions
defining the RI/MOM scheme are written down. Since our
calculations are necessarily performed at finite momenta,
the effects of chiral-symmetry breaking coming from both
the nonzero quark masses and spontaneous chiral-
symmetry breaking are visible. We discuss these effects
in detail in Sec. IVC for the important case of the vector
and axial-vector vertex functions.
Next, as a consistency check for our methods, we discuss

the accuracy with which our off-shell vertex amplitudes
satisfy the axial and vector Ward-Takahashi identities in
Secs. IVD and IVE respectively. In the latter section, the
determination of ZS=Zq is also discussed. In Sec. IVG we

compare the observed scale dependence of Zm with that
predicted by perturbation theory and interpret the differ-
ences as coming from ða�Þ2 errors. These are removed to

determine first ZRI=MOM
m and then ZMS

m . A similar determi-

nation of ZRI=MOM
q and then ZMS

q is presented in Sec. IVG.
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Finally, in Sec. IVH, results for the tensor vertex renor-
malization factor ZT are obtained.

A. Quark mass and wave function renormalization

First, we define the renormalization coefficients for the
quark field and the quark mass as the ratio between the
renormalized quantities and their bare counterparts,

qrenðxÞ ¼ Z1=2
q q0ðxÞ (15)

mren ¼ Zmm0: (16)

where qren and q0 are the renormalized and the bare quark
wave function, and mren and m0 are the renormalized and
the bare quark mass. With domain wall fermions,

m0 ¼ mf þmres (17)

where mf is the input quark mass and mres is the residual

mass. The renormalized propagator (in momentum space)
is

Srenðp;mrenÞ ¼ ZqSðp;m0Þjm0¼mren=Zm (18)

where p is the momentum of the quark propagator.
Since domain wall quarks enter the calculations de-

scribed here in three different ways we must be careful to
clearly distinguish their three distinct masses. As described
above, our calculations are performed with 2þ 1 flavors of
dynamical quarks. We will use the variable ml to label the
input mass mf for the light dynamical quarks and ms for

that of the dynamical strange quark. Since we often evalu-
ate products of propagators which depend on a third quark
mass, that mass is labeled mval. In some cases the limit
mval ! 0 may be an adequate definition of the chiral limit.
However, in order to deal with simple results from which a
weak quark mass dependence has been removed we will
often consider the ‘‘unitary’’ case mval ¼ ml and take the
limit mval ¼ ml ! 0. Of course, in this case ms remains
nonzero but since its value is never changed this causes no
immediate confusion. Underlying the validity of the Rome-
Southampton renormalization scheme is the use of
infrared-regular renormalization kinematics. Therefore,
as our renormalization scale � becomes larger and future
calculations more accurate, even this weak quark mass
dependence will completely disappear.

As discussed in detail in [8], the renormalization tech-
nique requires the existence of a window of momenta such
that

�QCD � jpj � a�1: (19)

In practice, however, violation of these restrictions, espe-
cially at the higher boundary, has to be considered.
Because of the spontaneous breaking of the chiral symme-
try as illustrated by the nontrivial difference between
Zq=ZA and Zq=ZV at low momenta (see Sec. IVC) we

have to rely on the calculation in the relatively high mo-

mentum region, where ðapÞ2 * 1. Fortunately, the effects
from breaking the restriction imposed by the finite lattice
spacing a are small and predictable. They introduce an
error ofOððapÞ2Þ to the renormalization coefficients which
can be removed by quadratic fitting to the momentum
dependence. A more detailed investigation of this issue is
presented in [8].
It is possible in principle to relax the constraint jpj �

�QCD in Eq. (19) by performing step scaling, i.e. by

matching the renormalization conditions successively to
finer (and also smaller in physical units) lattices. This is
beyond the scope of this paper.
The regularization independent (RI/MOM) scheme is

defined such that by adjusting the renormalization coeffi-
cients Zq and Zm at the renormalization scale �, and

restricting p in a suitable window, we have:

lim
mren!0

� i

12
Tr

�
@S�1

ren

@p6 ðpÞ
�
p2¼�2

¼ 1 (20)

lim
mren!0

1

12mren

TrðS�1
renðpÞÞp2¼�2 ¼ 1: (21)

Imposing these conditions on the lattice and taking into
account the dynamical breaking of chiral symmetry at low
energies, the additive mass renormalizationmres andOða2Þ
lattice artifacts, we have the following asymptotic behavior
[8] for relatively large p2:

1

12
TrðS�1ðpÞÞ ¼ a3h �qqi

ðapÞ2 C1Zq þ ZmZqfamval þ amresg

þOððapÞ2Þ: (22)

The left-hand-side of Eq. (22) at each of the unitary
points (ml ¼ mval) is calculated as the inverse of the aver-
age over all propagators, where the average is performed
over all sources and configurations:

SðpÞ�1 ¼
�
1

N

XN
i¼1

�
1

nsource

X
x0

Siðp; x0Þ
���1

(23)

where nsource ¼ 4 and i 2 f1; 2; � � � ; Ng labels each con-
figuration. Because of possible correlations between
propagators with different sources calculated on the same
configuration, each group of 4 propagators from the same
configuration is considered as one jackknife bin in the
single-elimination procedure.
In Fig. 1 we plot the results for 1

12 Tr½S�1ðpÞ� as a

function of the momentum and tabulate the corresponding
numerical values in Table IV. In addition to our results for
nonzero quark mass, we also plot and tabulate the results
extrapolated to the chiral limit where ml ¼ mval ¼ �mres

for each momentum. Two quantities of interest can be
deduced from the mass dependence shown in Fig. 1.
First, the chiral limit gives a measure of the spontaneous
and explicit chiral symmetry breaking and is given in the
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right-most column of Table IV. Second, determining the
slope with respect tomval provides one method to calculate
ZmZq. This is used later in Sec. IVE to test the vector Ward

Identity which relates this to a second method of comput-
ing ZmZq.

B. Renormalization of flavor nonsinglet fermion
bilinears

We now consider the renormalization of quark bilinear
operators of the form �u�d, where � is one of the 16 Dirac
matrices. The corresponding renormalization constant Z�

is the factor relating the renormalized and bare bilinear
operators:

½ �u�d�renð�Þ ¼ Z�ð�aÞ½ �u�d�0; (24)

where� is the renormalization scale and we will treat only
local operators where the lattice fields �u and d in the

bilinear operator ½ �u�d�0 are evaluated at the same space-
time point.
Following the Rome-Southampton prescription [4] for

renormalization in the RI/MOM scheme, we define the
bare Green functions between off-shell quark lines, and
evaluate their momentum-space counterparts G�;0ðpÞ on

the lattice, averaged over all sources and gauge configura-
tions,

G�;0ðpÞ ¼ 1

N

XN
i¼1

�
1

nsource

X
x0

½Siðp; x0Þ�ð�5Siðp; x0Þy�5Þ�
�
:

(25)

We then amputate this Green function using the averaged
propagators,

��;0ðpÞ ¼ S�1ðpÞG�;0ðpÞð�5½S�1ðpÞ�y�5Þ; (26)

where S�1ðpÞ is calculated according to Eq. (23). The bare
vertex amplitudes are obtained from the amputated Green
functions as follows [4,8]:

�SðpÞ ¼ 1
12 Tr½�1ðpÞ1� (27)

�PðpÞ ¼ 1
12 Tr½��5

ðpÞ�5� (28)

�VðpÞ ¼ 1

48
Tr

�X
�

���ðpÞ��
�

(29)

�AðpÞ ¼ 1

48
Tr

�X
�

����5
ðpÞ�5��

�
(30)

�TðpÞ ¼ 1

72
Tr

�X
�;�

����ðpÞ���
�
: (31)

The values of all the five bare vertex amplitudes at the
unitary mass points ml ¼ mval are presented in Tables V,
VI, and VII. Finally, by requiring that the renormalized
vertex amplitudes satisfy

0 0.5 1 1.5 2 2.5

(ap)
2

0

0.05

0.1

0.15

0.2

0.25

0.3
T

r(
S-1

) 
/ 1

2

m
l
 = 0.01

m
l
 = 0.02

m
l
 = 0.03

chiral limit

FIG. 1 (color online). The quantity 1
12 TrðS�1Þ plotted versus

ðapÞ2 for the unitary mass points ml ¼ 0:01, 0.02, and 0.03 and
at the linearly extrapolated, chiral limit ml ¼ �mres.

TABLE IV. The quantity 1
12 TrðS�1Þ evaluated at the unitary mass points, mval ¼ ml and

linearly extrapolated to the chiral limit ml ¼ �mres.

ðapÞ2 ml ¼ 0:01 ml ¼ 0:02 ml ¼ 0:03 chiral limit

0.347 0.0839(16) 0.1141(16) 0.1327(23) 0.0524(34)

0.617 0.0558(13) 0.0810(15) 0.0980(20) 0.0283(28)

0.810 0.0450(12) 0.0692(14) 0.0849(18) 0.0187(28)

1.079 0.03744(82) 0.0583(11) 0.0741(16) 0.0130(20)

1.234 0.0342(12) 0.0543(13) 0.0704(16) 0.0105(26)

1.388 0.03203(84) 0.0512(11) 0.0665(15) 0.0092(20)

1.542 0.03051(75) 0.04873(97) 0.0634(14) 0.0087(18)

1.851 0.02640(92) 0.04472(99) 0.0597(13) 0.0047(20)

2.005 0.02615(73) 0.04354(92) 0.0575(13) 0.0054(18)

2.467 0.0236(10) 0.0404(10) 0.0540(13) 0.0040(20)
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�i;ren ¼ Zi
Zq

�i ¼ 1; i 2 fS; P; V; A; Tg; (32)

we can calculate the relevant renormalization constants.
Equations (24) through Eq. (32) describe the schematic

procedure used to calculate the renormalization coeffi-
cients of quark bilinears. In practice however, with finite
quark masses and a limited range of momenta, we have to

consider lattice artefacts and other systematic uncertain-
ties. We explain the details in the following sections.

C. Chiral symmetry breaking and ZA � ZV

In this section we examine the effects of both the low-
energy spontaneous chiral symmetry breaking present in
QCD and our nonzero quark masses on the large-
momentum, off-shell propagators which we are using to

TABLE VII. The five bare vertex amplitudes �i, i 2 fS; P; V; A; Tg averaged over four
sources, with ml ¼ mval ¼ 0:03.

ðapÞ2 �S �P �V �A �T

0.347 1.723(56) 4.10(14) 1.1809(56) 1.0357(23) 0.9020(24)

0.617 1.702(37) 3.049(87) 1.1457(37) 1.0769(19) 0.9451(17)

0.810 1.663(28) 2.658(66) 1.1356(31) 1.0886(17) 0.9642(14)

1.079 1.610(21) 2.307(49) 1.1325(27) 1.1015(18) 0.9883(12)

1.234 1.591(18) 2.182(42) 1.1294(25) 1.1050(20) 0.9951(12)

1.388 1.569(15) 2.076(37) 1.1312(25) 1.1105(20) 1.0061(11)

1.542 1.548(13) 1.991(33) 1.1337(26) 1.1157(21) 1.0161(12)

1.851 1.520(10) 1.869(27) 1.1366(26) 1.1228(22) 1.0300(13)

2.005 1.5065(96) 1.820(25) 1.1395(27) 1.1271(24) 1.0382(15)

2.467 1.4764(78) 1.717(20) 1.1464(27) 1.1371(26) 1.0561(17)

TABLE V. The five bare vertex amplitudes �i, i 2 fS; P; V; A; Tg averaged over four sources,
with ml ¼ mval ¼ 0:01.

ðapÞ2 �S �P �V �A �T

0.347 2.125(86) 6.72(19) 1.1702(58) 1.0675(43) 0.8904(43)

0.617 1.945(51) 4.45(11) 1.1419(37) 1.0938(30) 0.9404(26)

0.810 1.856(37) 3.677(81) 1.1348(31) 1.1025(27) 0.9618(19)

1.079 1.758(27) 3.022(57) 1.1335(29) 1.1135(27) 0.9882(16)

1.234 1.715(24) 2.792(50) 1.1291(29) 1.1137(27) 0.9935(17)

1.388 1.677(21) 2.600(43) 1.1328(26) 1.1191(24) 1.0065(13)

1.542 1.642(19) 2.448(38) 1.1355(27) 1.1240(25) 1.0167(14)

1.851 1.599(16) 2.239(32) 1.1387(29) 1.1301(27) 1.0310(16)

2.005 1.578(15) 2.154(28) 1.1420(27) 1.1342(26) 1.0392(16)

2.467 1.532(13) 1.979(23) 1.1495(29) 1.1434(29) 1.0577(19)

TABLE VI. The five bare vertex amplitudes �i, i 2 fS; P; V; A; Tg averaged over four sources,
with ml ¼ mval ¼ 0:02.

ðapÞ2 �S �P �V �A �T

0.347 1.828(45) 5.09(14) 1.1745(46) 1.0412(28) 0.8930(31)

0.617 1.774(30) 3.600(82) 1.1465(30) 1.0838(21) 0.9414(18)

0.810 1.721(24) 3.052(61) 1.1360(24) 1.0943(19) 0.9614(15)

1.079 1.655(19) 2.590(45) 1.1331(22) 1.1069(20) 0.9870(12)

1.234 1.637(16) 2.428(40) 1.1307(21) 1.1083(20) 0.9930(12)

1.388 1.608(15) 2.283(33) 1.1323(21) 1.1141(19) 1.0049(11)

1.542 1.581(14) 2.175(30) 1.1351(21) 1.1199(20) 1.0159(12)

1.851 1.552(11) 2.019(24) 1.1389(22) 1.1275(21) 1.0309(12)

2.005 1.532(11) 1.955(23) 1.1416(23) 1.1315(22) 1.0390(14)

2.467 1.4984(91) 1.819(18) 1.1498(26) 1.1422(25) 1.0580(17)
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impose nonperturbative renormalization conditions. A
good quantity to study in order to understand these effects
is the difference of the off-shell vector and axial-vector
vertex functions.

1. Numerical results for ZA � ZV

In the limit of a small mass and a large momentum, we
expect

ZA ¼ ZV; (33)

or equivalently,

�Aðp2Þ ¼ �Vðp2Þ (34)

for p2 � �2
QCD; m

2.

However, with finite quark masses and at relatively low
momenta �V and �A may receive different contributions
of the form

m2
val

p2
(35)

and

mvalh �qqi
p4

: (36)

Here we are exploiting the SULð3Þ � SURð3Þ chiral sym-
metry of large Ls domain wall fermions which implies that
a difference between �V and �A requires the mixing of (8,
1) and (1, 8) representations and hence involves a product
of two quantities which transform as ð3; �3Þ and ð�3; 3Þ. This

requires the two powers ofmval in Eq. (35) and the product
mvalh �qqi in Eq. (36). The extra factors of 1=p2 and 1=p4

come from naive dimensional analysis.
To determine how much chiral symmetry breaking is

present in our calculation, we examine the relative differ-
ence between �A and �V . In Fig. 2 we plot the quantity
�A��V

ð�Aþ�V Þ=2 as a function of momentum. At relative low

momenta, 0:5 � ðpaÞ2 � 1, we observe that this quantity
is quite large ð�5%Þ. Furthermore, even when we extrapo-

late �A��V

ð�Aþ�V Þ=2 to the chiral limit, where the terms in

Eqs. (35) and (36) both vanish, the difference between
�A and �V does not vanish. Here to obtain the chiral limit
shown in Fig. 2 we perform a linear extrapolation mval þ
mres ! 0. While a quadratic extrapolation gives a similar
result, this linear choice is motivated by the analysis pre-
sented in Sec. IVC 3.
Since the explicit chiral symmetry breaking effects

needed to split �A and �V can be argued [9] to be
Oðm2

resÞ, we would not expect this difference to reflect
explicit, finite-Ls, domain wall chiral symmetry breaking.
In fact, similar deviations between �V and �A are seen on
lattice ensembles without fermion loops where explicit
domain wall chiral symmetry breaking is expected to be
smaller. This is shown in Fig. 3 where we plot the same
quantities from a quenched simulation using the DBW2
gauge action. Thus, it appears that this difference repre-
sents the high energy tail of QCD dynamical chiral sym-
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FIG. 2 (color online). The ratio �A��V

ð�Aþ�V Þ=2 plotted as a function
of momentum at the unitary mass points mval ¼ ml and in the
chiral limit evaluated by linear extrapolation inml. The 5%–10%
difference at low momentum decreases rapidly as the momentum
increases. At the scale� ’ 2 GeV, or ðapÞ2 ’ 1:4, the difference
is about 1%, which contributes to the systematic error in ZBK .
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p
2
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]
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β=0.87, Ls=12, mres=125(3)x10
-5

β=0.87, Ls=16, mres= 57(3)x10
-5

β=1.04, Ls=16, mres=   2(0)x10
-5

β=1.22, Ls=10, mres= 10(0)x10
-5

FIG. 3 (color online). The difference �A ��V computed us-
ing four different quenched DBW2 lattice ensembles. These
ensembles have quite different lattice scales. In addition the
values of Ls, the extent in the 5th dimension used in computing
the DWF propagators, also varies significantly. This provides
compelling evidence that the observed chiral symmetry breaking
is not an explicit breaking from finite Ls, but rather represents
the high energy tail of QCD dynamical chiral symmetry breaking
which would vanish if we were able to perform the NPR
calculation at high enough energy. The data shown come from
Refs. [16,28,29].
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metry breaking rather than the explicit chiral symmetry
breaking coming from the finite value of Ls.

While the effects of spontaneous chiral symmetry break-
ing will not vanish in the limit mval þmres ! 0, it is
unlikely that the substantial difference found for �A �
�V in the chiral limit can be explained by a dimension-6
condensate such as

h �qqi2
p6

(37)

since it is suppressed by six powers of momentum and
appears to be too small for the size of the breaking we have

observed. We have also fit the quantity �A��V

ð�Aþ�V Þ=2 to differ-

ent powers of p, as is shown in Fig. 4, and it is clear that the
momentum dependence of the chiral symmetry breaking
term is dominated by p�2 or p�3, very different from p�6

that naive dimensional analysis suggests should appear in
the h �qqi2 term above.

2. Effects of exceptional momenta

In fact, we believe that the origin of the difference
between �A and �V is different. Our choice of kinematics
corresponds to so called ‘‘exceptional momenta,’’ i.e. a
momentum transfer is zero. This invalidates the naive
power counting estimates used above and permits the
low-energy, spontaneous chiral symmetry breaking to split
�V and�A with only a 1=p

2 suppression for large p, as we
now explain. Begin by considering a general, amputated
Feynman graph � with F external fermion lines and B

external boson lines. Recall that for connected graphs the
degree of divergence d of � is defined as d ¼ 4� 3F=2�
B. If the graph � is disconnected then its degree of diver-
gence is the sum of those of its connected components.
Now imagine that each external line of � carries an incom-
ing momentum �pi for 1 � i � Fþ B, where � is an
overall scale factor. The asymptotic behavior for large �

of the amplitude corresponding to such a graph will be �d
0

where d0 is the degree of divergence of a subgraph �0 	 �.
This subgraph �0 must be chosen so that (i) there exists a
routing of the internal momenta within � such that all lines
carrying momenta proportional to � lie within �0 and (ii) �0
possesses the least negative degree of divergence d0 of all
those subgraphs satisfying (i) [10,11]. Note, that �0 may
equal the original graph � and may itself be disconnected.
The most familiar situation is the case of nonexceptional

momenta, defined as a momentum configuration in which
no proper partial sum of the external momenta pi vanishes.
Under these circumstances all subgraphs �0 obeying (i)
must be connected. (Otherwise there would be zero mo-
mentum transfer between the groups of momenta entering
each of the disconnected components.) This implies that
the subgraph �0 with the least negative degree of diver-
gence is one with no additional external lines beyond those
already appearing in � which in turn implies that this
subgraph �0 is the entire graph �. For the case of the vertex
graph of interest, we deduce a constant behavior (up to
logarithms) since d ¼ 4� 1� 2 � 3=2 ¼ 0. (Here it is
convenient to view this vertex graph as resulting from a
normal Feynman graph in which an external vector boson
is coupled to the vertex so the rules discussed above
directly apply.)
This analysis not only gives the leading asymptotic

behavior but also insures that extracting a few extra factors
of the mass m or the chiral condensate h �qqi will make the
degree of divergence of that graph more negative and
hence make its asymptotic falloff more rapid, in the fash-
ion suggested by naive power counting. For the case of
interest, we would like to restrict a subset of the internal
fermion lines of our graph � to carry only low momenta so
that they will reflect the low-energy, spontaneous chiral
symmetry breaking of QCD. By definition, these low mo-
mentum lines cannot enter the subgraph �0 discussed above
whose degree of divergence determines the asymptotic
behavior of amplitude being studied and whose internal
momenta must be unconstrained. In order to split �V and
�A, chiral symmetry breaking transforming as an (8, 8)
under SUð3Þ � SUð3Þ is required. This in turn requires that
the excluded subgraph, containing these low-momentum
lines, must be joined to the remainder of the graph by at
least four fermion lines. Under these circumstances the
subgraph �0 can no longer be the entire graph. It must be
a proper subgraph and will therefore have additional ex-
ternal lines, in addition to those of �. Consequently �0 must
have a more negative degree of divergence than that of �.
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FIG. 4 (color online). The 	2=d:o:f which results from fitting

the momentum dependence of the quantity �A��V

ð�Aþ�V Þ=2 (extrapo-

lated to the chiral limit) to the form p�n. We conclude that the
best choice for n lies between 2 and 3 and that it is unlikely that
the term h �qqi2=p6 gives the dominant contribution to this chiral
symmetry breaking.
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Such a circumstance is illustrated by the general vertex
graph � in Fig. 5, contained in the outer dashed box. Here
we have identified a subgraph �2 which carries only low
momenta and can therefore transform as (8, 8) even in the
limit of vanishing quark mass, mval þmres ¼ 0. For the
case of nonexceptional momenta, we must apply
Weinberg’s theorem to the subgraph �0, enclosed in the
inner dashed box, through which, by assumption, all of the
large momenta entering the vertex and the two external
fermion lines must be routed. Because of its connections to
the subgraph �2, the subgraph �0 has six external fermion
lines and one external boson line (connected to the vertex).
The resulting degree of divergence is d0 ¼ 4� 1� 6 �
3=2 ¼ �6, justifying the naive 1=p6 behavior in Eq. (37).

However, in our case �V and �A are being evaluated
with zero momentum entering the current vertex and with a
vanishing sum of the two incoming fermion momenta—a
configuration of exceptional momentum. For such a choice
of external momenta we can divide the subgraph �0 iden-
tified above into two pieces �1 and �3. Because the mo-
menta are exceptional with no large momenta entering the
vertex, we can route all of the large momenta through �3.
Since �3 has only four external fermion lines, its degree of
divergence is d3 ¼ 4� 4 � 3=2 ¼ �2 and the 1=p6 behav-
ior above has been replaced by the much less suppressed
1=p2. If we think of the subgraph �2 as a generalized chiral

condensate h0j �qq �qqj0i we are seeing the asymptotic be-
havior

h0j �qq �qqj0i
p2

; (38)

very consistent with our numerical results. Note the dis-
crepancy in dimensions between Eqs. (37) and (38) will be
made up by four powers of �QCD, the momentum scale to

which the subgraph �2 is restricted.
A simple class of graph allowing this behavior can be

seen in Fig. 6. Here the large momentum carried by the two
external fermion lines can be routed through the gluon
propagator that is shown explicitly so that the upper part
of the diagram carries only low momenta. The large mo-
mentum behavior of the gluon propagator gives the ex-
pected 1=p2 behavior. The two general fermion
propagators shown with the shaded ‘‘blobs’’ carry small
momenta and, as suggested by Eq. (22), can show ð3; �3Þ
or ð�3; 3Þ chiral symmetry violation even when mval þ
mres ¼ 0.
To confirm this analysis, we have also calculated the

difference between �A and �V with nonexceptional mo-
menta. We have chosen 5 different momentum scales, each
corresponding to a set of momenta which satisfy the con-
dition p2

1 ¼ p2
2 ¼ ðp1 � p2Þ2 ¼ p2 for five values of p2, as

listed in Tables VIII and IX. We then calculated�A and�V

with the two external fermions carrying respectively p1

and p2. The result is plotted in Fig. 7, which shows that the
chiral symmetry breaking vanishes almost completely with
nonexceptional kinematics at medium to large momenta.
While it would be more satisfactory to perform the

calculations presented in this paper using nonexceptional
momenta, the resulting RI/MOM normalization conditions
would not correspond to those for which perturbative
matching calculations have been carried out. Thus, we
would not be able to relate the quantities which we calcu-

FIG. 5. The division of a general vertex graph into subgraphs.
If the four-legged, internal subgraph �2 carries momenta p�
�QCD it can introduce low energy, (8, 8) chiral symmetry break-

ing into such an amplitude even in the limit that the momenta
external to the entire diagram �, included in the outer dashed
box, grow large. As discussed in the text, such a limit will be
suppressed by 1=p6 if the external momenta are nonexceptional
but by only 1=p2 for the exceptional case.

FIG. 6. Sample diagram in which two low-momentum (k ’
�QCD) fermion propagators appear in a graph which is sup-

pressed at high momentum only by a single factor of 1=p2.
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lated to those defined in the MS scheme. (Of course, this
difficulty will be removed when the necessary perturbative
calculations have been extended to nonexceptional kine-
matics.) A second, less significant advantage of the excep-
tional momenta which we use is that the exceptional
momentum conditions are satisfied by a much larger set
of discrete lattice momenta permitting the RI/MOM con-
dition to be satisfied for more fine-grained sequence of
energy scales.
We now return to the calculation with exceptional mo-

menta (p1 ¼ p2), at the scale which we are most interested
in, that is � ’ 2 GeV or ðapÞ2 ’ 1:3, where �A and �V

have a difference of about 1%. Since we have no means to
determine which of these two quantities has less contami-
nation from low-energy chiral symmetry breaking we have
decided to take the average 1

2 ð�A þ�VÞ as the central

value for both Zq=ZA and Zq=ZV . The difference between

�A or �V and 1
2 ð�A þ�VÞ then provides an estimate

for one systematic error in our final results. The value of
1
2 ð�A þ�VÞ is plotted in Fig. 8.

3. Chiral extrapolation to vanishing quark mass

As discussed above, our use of exceptional momenta
implies a 1=p2 suppression for both terms behaving asmval

and m2
val. The added dimension of a m2

val term can be

provided by a factor of 1=�QCD without the need to in-

troduce additional inverse powers of p. For our largest
value of mvala ¼ 0:03, we might estimate mval=�QCD 

0:2. This suggests that we should expect a linear rather than

TABLE VIII. Groups of nonexceptional momenta satisfying
p2
1 ¼ p2

2 ¼ ðp1 � p2Þ2. The individual integers ðnx; ny; nz; ntÞ
should be multiplied by 2�=Ld, with Lx ¼ Ly ¼ Lz ¼ 16 and

Lt ¼ 32.

ðapÞ2 p1 p2

0.617 (1, 1, 1, 2) (1, �1, 1, 2)
(1, 1, 1, 2) (1, 1, �1, 2)
(1, 1, 1, 2) (� 1, 1, 1, 2)
(1, 1, 1, 2) (1, 1, 1, �2)
(1, 1, 1, 2) (0, 0, 0, 4)

(1, 1, 1, 2) (0, 0, 2, 0)

(1, 1, 1, 2) (0, 2, 0, 0)

(1, 1, 1, 2) (2, 0, 0, 0)

0.925 (� 1, �1, �2, 0) (� 2, �1, 0, �2)
(� 1, �1, �2, 0) (� 2, �1, 0, 2)
(� 1, �1, �2, 0) (� 2, 1, �1, 0)
(� 1, �1, �2, 0) (� 1, �2, 0, �2)
(� 1, �1, �2, 0) (� 1, �2, 0, 2)
(� 1, �1, �2, 0) (� 1, 0, �1, �4)
(� 1, �1, �2, 0) (� 1, 0, �1, 4)
(� 1, �1, �2, 0) (0, �1, �1, �4)
(� 1, �1, �2, 0) (0, �1, �1, 4)
(� 1, �1, �2, 0) (0, 1, �2, �2)
(� 1, �1, �2, 0) (0, 1, �2, 2)
(� 1, �1, �2, 0) (1, �2, �1, 0)
(� 1, �1, �2, 0) (1, 0, �2, �2)
(� 1, �1, �2, 0) (1, 0, �2, 2)

TABLE IX. Groups of nonexceptional momenta satisfying
p2
1 ¼ p2

2 ¼ ðp1 � p2Þ2, continuing Table VIII.

ðapÞ2 p1 p2

1.234 (0, 2, 2, 0) (2, 2, 0, 0)

(0, 2, 2, 0) (0, 2, 0, 4)

(0, 2, 2, 0) (0, 0, 2, 4)

(0, 2, 2, 0) (� 2, 2, 0, 0)
(0, 2, 2, 0) (0, 2, 0, �4)
(0, 2, 2, 0) (2, 0, 2, 0)

(0, 2, 2, 0) (0, 0, 2, �4)
(0, 2, 2, 0) (� 2, 0, 2, 0)

1.542 (1, 1, 2, 4) (2, 1, 2, �2)
(1, 1, 2, 4) (1, �2, 2, 2)
(1, 1, 2, 4) (� 2, 1, 2, 2)
(1, 1, 2, 4) (� 2, 1, 1, 4)
(1, 1, 2, 4) (1, 2, 2, �2)
(1, 1, 2, 4) (1, �2, 1, 4)
(1, 1, 2, 4) (2, 1, �1, 4)
(1, 1, 2, 4) (1, 2, �1, 4)

2.467 (2, 2, 2, 4) (2, 2, �2, 4)
(2, 2, 2, 4) (2, �2, 2, 4)
(2, 2, 2, 4) (� 2, 2, 2, 4)
(2, 2, 2, 4) (2, 2, 2, �4)
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FIG. 7 (color online). The value of �A��V

ð�Aþ�V Þ=2 calculated with
nonexceptional kinematics, which requires the sum of any subset
of external momenta be nonzero. With this condition the chiral
symmetry breaking is highly suppressed (as compared to Fig. 2)
and vanishes almost completely over the available momentum
region.
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quadratic behavior in mval to dominate the small quark
mass limit.

The difference �A ��V discussed above provides a
good place to study this effect. This difference reflects
the chiral symmetry breaking of interest and may make
these effects stand out with possibly reduced errors be-
cause of the statistical correlations between the two quan-
tities being subtracted. Figure 9 compares linear and
quadratic fits to the dependence on the quark mass eval-
uated at unitary points with mval ¼ ml þmres for p ¼
2:04 GeV. In Table X we present the results of these two
fits:

�A ��V

ð�A þ�VÞ=2 ¼ c0 þ c1
mval�QCD

p2
(39)

�A ��V

ð�A þ�VÞ=2 ¼ c0 þ c2
m2

val

p2
; (40)

for �QCD ¼ 319:5 MeV. As can be seen in the table the

linear fits are favored. The linear fits have the smaller 	2

and the coefficient c1 is significantly closer to an expected
value of order 1 than is the coefficient c2. Thus, based on
both the theoretical expectation and this rough empirical
evidence, we will adopt this linear description in the re-
mainder of this paper and extrapolate our exceptional
momentum amplitudes to the chiral limit using a linear
ansatz. For the case at hand, Fig. 10 shows this linear
extrapolation for the average 1

2 ð�A þ�VÞ to the chiral

limit for the momentum p ¼ 2 GeV. Figure 8 shows the
results in the chiral limit as a function of momentum. The
results in the chiral limit are also presented in Table XI.

D. Axial Ward-Takahashi identity

Performing an axial rotation on the propagator leads to a
relation between �P and TrðS�1Þ, the axial Ward-
Takahashi identity [8]:

�PðpÞ ¼ 1

12

Tr½S�1ðpÞ�
ðmval þmresÞ : (41)

In a truly chiral theory or the present DWF calculation in
the limit Ls ! 1 (when chiral symmetry becomes exact
andmres ¼ 0), this identity will be obeyed configuration by
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FIG. 8 (color online). The average 1
2 ð�A þ�VÞ plotted as a

function of momentum and evaluated for a unitary choice of
masses and in the chiral limit. The chiral limit is taken using a
linear fit.
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FIG. 9 (color online). Comparison of linear [Eq. (39)—top
panel] and quadratic [Eq. (40)—bottom panel] fits to the depen-

dence of the chiral symmetry breaking difference ð�A��V Þ
ð�Aþ�V Þ=2 on

the quark mass mval ¼ ml at the scale � ¼ 2:04 GeV. These
plots suggest that a linear description is more accurate. This
conclusion is borne out by the properties of the actual fits shown
in Table X.
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configuration. However, for finite Ls and mres � 0, this
relation will hold only after a gauge field average, (e.g.
mres is only defined after such an average). Thus, we should
check Eq. (41) on gauge-averaged amplitudes.

Figure 11 shows the difference between the l.h.s and
r.h.s of Eq. (41), divided by their average. The case ofml ¼
0:01 shows a relatively larger breaking of� 8%, while the
other two masses result in a smaller breaking. For this
smallest, 0.01 mass value, the mres term (with a value of
0.003 08) is 30% of themval ¼ 0:01 term. This treatment of
mres as a simple constant will be accurate up to the correc-
tions of higher order in the lattice spacing which appear in
the equation defining mres. The largest such corrections

should arise from the dimension-5, chromo-magnetic term,
�q����5F��q, which also enters the divergence of the
Furman-Shamir axial current [12]. The contributions of
such a term are expected to be suppressed relative to those
from mres by only a factor ðpaÞ2 which is actually of order
1 for the kinematics shown in Fig. 11. Thus, we might
expect to see violations in the region ðpaÞ2 
 1 of order
mres=0:01 
 30%. Fortunately the violations are consider-
ably smaller but the expected rise with ðpaÞ2 may be
visible. Of course, given the size of the errors shown in
Fig. 11, the evidence for any violation of Eq. (41) is itself
only 2 standard deviations.

E. Vector Ward-Takahashi identity and the chiral limit
of �S

Similar to the case with �P, from the continuum vector
Ward-Takahashi identity, we have the relation between �S

and TrðS�1Þ [8]:

�S ¼ 1

12

@Tr½S�1ðpÞ�
@mval

: (42)

TABLE X. Results from fitting the coefficient for mass term in ð�A ��V Þ=½ð�A þ�V Þ=2�.
The linear dependence is assumed to be c1

m�QCD

p2 and the quadratic dependence is assumed to be

c2
m2

p2 . The respective 	
2=d:o:f is also listed. Both the coefficient c1 more nearly agreeing with its

expected value of 1 and the smaller 	2 suggest that the linear description is to be preferred. We
use the value �QCD ¼ 319:5 MeV.

ðapÞ2 c1 ð	2=dofÞ1 c2 ð	2=dofÞ2
0.347 �3:84ð75Þ 3.0(3.4) �14:7ð3:1Þ 6.6(5.1)

0.617 �3:33ð67Þ 2.2(2.8) �12:9ð2:8Þ 5.4(4.4)

0.810 �3:06ð56Þ 1.2(2.1) �12:1ð2:5Þ 4.1(3.7)

1.079 �3:01ð42Þ 0.4(1.3) �12:4ð2:0Þ 3.3(3.6)

1.234 �2:96ð47Þ 6.2(5.0) �11:4ð2:1Þ 12.8(7.2)

1.388 �2:58ð36Þ 1.7(2.7) �10:5ð1:7Þ 6.2(4.8)

1.542 �2:49ð34Þ 0.4(1.4) �10:2ð1:6Þ 3.3(3.6)

1.851 �2:33ð35Þ 0.06(41) �9:5ð1:6Þ 1.8(2.4)

2.005 �2:21ð28Þ 0.02(23) �9:2ð1:3Þ 1.3(2.2)

2.467 �1:89ð32Þ 0.01(22) �7:4ð1:4Þ 0.7(1.5)
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FIG. 10 (color online). A plot showing the linear extrapolation
of 1

2 ð�A þ�VÞ (evaluated at the scale � ¼ 2:04 GeV) to the

chiral limit. The three data points are evaluated at the unitary
points mval ¼ ml.

TABLE XI. Values for 1
2 ð�A þ�VÞ, �S, and �T extrapolated

to the chiral limit using a linear mass fit.

ðapÞ2 1
2 ð�A þ�V Þ �S �T

0.347 1.1211(56) 2.28(14) 0.8800(66)

0.617 1.1226(49) 2.060(88) 0.9363(36)

0.810 1.1228(41) 1.952(66) 0.9593(25)

1.079 1.1275(43) 1.836(47) 0.9873(22)

1.234 1.1242(44) 1.784(43) 0.9915(22)

1.388 1.1292(40) 1.736(37) 1.0061(18)

1.542 1.1333(43) 1.694(32) 1.0169(20)

1.851 1.1381(47) 1.644(27) 1.0319(24)

2.005 1.1417(46) 1.617(25) 1.0400(27)

2.467 1.1504(51) 1.564(22) 1.0593(33)
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We are able to check our data against this identity using the
three sources, (0, 0, 0, 0), (4, 4, 4, 8) and (12, 12, 12, 24)
since it is only for these three sources that multiple valence
mass data are available for each sea quark mass. We
determine the derivative with respect to the valence quark
mass on the right-hand-side of Eq. (42) from the slope of a
linear fit of Tr½S�1ðpÞ� as a function of mval.

Figure 12 shows the difference between the two sides of
Eq. (42) divided by their average. For all three sea quark
masses the data agrees well with the vector Ward-
Takahashi identity [Eq. (42)] for medium to large mo-
menta. Equation (42) implies the relation

Zm ¼ 1

ZS
: (43)

We will use this equation and a calculation of �S to
determine the mass renormalization factor in the following
sections.
To extrapolate �S to the chiral limit, we will improve

upon the discussion in [8] in two regards. First, as ex-
plained above, we will exploit the asymptotic properties
of Feynman amplitudes evaluated at exceptional momenta
and assume that the leading mass dependence in the chiral
limit will be linear in m. This is different from the m2

dependence assumed in Ref. [8] where dimensional argu-
ments, appropriate to the nonexceptional case and leading
to the m2 behavior in Eq. (35) were adopted.
Second, in contrast to that earlier quenched calculation

we can examine the behavior of ZS as a function of both the
valence and light dynamical quark masses, mval and ml

respectively. In Fig. 13 we plot �S as a function of both
mval and ml. The three curves are each a linear plus double
pole fit to the valence quark mass dependence of the form:

�Sðmval; mlÞ ¼ c0ðmlÞ þ c1ðmlÞmval þ cdp
m2
l

m2
val

; (44)

where we have allowed the coefficients c0 and c1 of the
constant and linear terms to vary with the dynamical light
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, divided by their average is plotted versus

momentum for unitary quark masses. This provides a test of the
axial Ward-Takahashi identity.
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quark mass. However, we have used a common double-
pole term with the m2

l behavior expected for a theory with

two light flavors. Recall that this double pole term arises
from topological near-zero modes [8] which for two light
flavors will be suppressed by two powers of the light quark
mass. The data in Fig. 13 shows just this behavior with the
sharp turnover at the smallest value of mval increasing as
the light dynamical mass ml increases.

This double-pole can be deduced from Eq. (42). As
discussed in Ref. [8], the NLO, 1=p2 term derived from
an operator product expansion of the quark propagator on
the right-hand side of this equation is proportional to the
chiral condensate h �qqi [13,14]. Isolated, topological, near-
zero modes of the sort that arise from a gauge field back-
ground with nonzero Pontryagin index will contribute a
term to the chiral condensate which behaves as 1=mval.
This implies that the derivative in Eq. (42) will yield the
double pole, 1=m2

val hypothesized in Eq. (44). Such a near-

zero mode will also introduce a factor of ml into the
fermion determinant of the QCD measure for each light
flavor in the theory, hence the expected factor of m2

l in the

numerator of Eq. (44). In Fig. 14 we show the variation of
the double pole coefficient with the momentum at which
the coefficient of the double pole was extracted. Also
shown in this figure is a fit to the expected 1=p2 behavior
which describes the results very well.

This understanding of the double pole terms suggests
that a good strategy for extracting the chiral limit of �S

first takes the limit of vanishing ml to remove this NLO
double pole term and then extrapolates to mval ¼ 0. In the
present case, we perform the simpler linear fit using the
unitary points to obtain �S ¼ Zq=ZS since we do not have

the complete partially quenched results for each of our four
sources.

F. Mass renormalization and renormalization group
running

To calculate the mass renormalization constant Zm, as
defined in Eq. (16), we can either directly take the deriva-
tive of Tr½S�1ðpÞ�, by following Eq. (22),

ZmZq ¼ 1

12

@Tr½S�1�
@mval

(45)

or we can use the Ward-Takahashi identity,

Zm ¼ 1

ZS
: (46)

With the analysis described in the above sections, we find
that the method with the smallest statistical uncertainty is
to use 1=ZS as the value of Zm. To remove the factor Zq
from Zq=ZS (which is equal to �S and can be calculated as

described in Section IVB), we use the ratio Zq=ZA calcu-

lated in Sec. IVC, as well as the value ZA. This quantity has
been determined in earlier work by using a ratio of matrix
elements between hadronic states involving the partially
conserved, 5-dimensional, DWF axial current which has a
known normalization. (Note, using the more direct ap-
proach of determining Zq from the large momentum be-

havior of the quark propagator leads to a result for Zq with

considerably larger errors [8].) Results for ZA from 163 �
32 [ZA ¼ 0:7162ð2Þ] and 243 � 64 (ZA ¼ 0:7161ð1Þ) vol-
umes can be found in Refs. [2,5] respectively. Here we use
the latter, more accurate value. We therefore determine Zm
in the RI/MOM scheme by computing separately the three
factors on the right-hand side of

ZRI=MOM
m ðpÞ ¼

�
Zq
ZS

ðpÞ
��
ZA
Zq

ðpÞ
��

1

ZA

�
: (47)

Table XII contains the values of ZRI=MOM
m ðpÞ for a variety of

momentum scales.

After obtaining the lattice value of ZRI=MOM
m at different

momenta, we divide it by the predicted renormalization
group running factor to calculate the scale-invariant quan-
tity ZSI

m . The four-loop running formula we use is [15]:

ZSI
m ¼ cð�sð�0Þ=�Þ

cð�sð�Þ=�Þ Z
RI=MOM
m ð�Þ (48)

where �0 is chosen such that ða�0Þ2 ¼ 2, a value that lies
within the fitting range used below. For completeness we
present in the appendices the detailed procedure for run-
ning �s at four-loops (Appendix A) and the form of run-
ning factors (Appendix B).
As Fig. 15 shows, the quantity ZSI

m is remarkably inde-
pendent of the scale �. However, in spite of the name, for
other cases, the scale-invariant Z factors do show notice-
able scale dependence and an additional correction is

0 1 2 3 4 5 6

1 / (ap)
2

-0.25

-0.2

-0.15

-0.1

-0.05

c dp

FIG. 14 (color online). Momentum dependence of the double
pole coefficient, cdp, fit to the expected p�2 behavior. Good

agreement is seen.
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warranted. (See, for example, Fig. 17.) We believe that the
primary reason for this lack of scale invariance is the
presence of lattice artifacts, namely, the finite lattice spac-
ing which introduces a small error of Oðða�Þ2Þ. Such an
error can be reduced by removing the �2 dependence in
ZSI
m . To do this we fit this momentum-dependent ZSI

m to the
form Aþ Bða�Þ2 over the momentum range 1:3<
ða�Þ2 < 2:5 and then take the ða�Þ2 ! 0 limit of that fit
to remove the�2 momentum dependence. We interpret the

outcome as the true ZSI
m . Note, we are ignoring possible �

dependence arising from the absence of higher order terms
in the matching factor. Such scale dependence can only be
removed by even higher order computation of the pertur-
bative matching factor and such a correction is expected to
be very small. While this procedure represents a negligible
correction for this case of ZSI

m , it will have a more signifi-
cant effect in the cases considered below.

Our ultimate goal is to determine ZMS
m which connects

the bare lattice quark mass to its continuum counterpart

defined according to the MS scheme, at the renormaliza-
tion scale � ¼ 2 GeV, because the corresponding contin-
uum renormalization is conventionally done in this

scheme. So we again use Eq. (48) to calculate ZRI=MOM
m

(2 GeV) from the scale-independent value of ZSI
m . Then we

multiply it with the three-loop matching factor, which will

also be explained in Appendix B, to match the ZRI=MOM
m

(2 GeV) to the MS scheme. The final step is shown in
Fig. 16 and the results are given in Table XII. The renor-
malization constant at the desired scale is

ZMS
m ð2 GeVÞ ¼ 1:656� 0:048ðstatÞ � 0:150ðsysÞ: (49)

As for other such combined quantities, the statistical error
is obtained by applying the jackknife procedure to the
product of the two ratios in Eq. (47). (The statistical errors
on ZA are negligible). The systematic error is determined
by adding in quadrature our estimates of three different
types of systematic error which we will now discuss.
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FIG. 15 (color online). The quantities ZRI=MOM
m ð�Þ and ZSI

m ð�Þ
plotted versus the square of the scale a�. Here ZSI

m ð�Þ is

obtained by dividing ZRI=MOM
m ð�Þ by the predicted perturbative

running factor. Shown also is the linear extrapolation of
ZSI
m ð�Þ ¼ ZSI

m þ cða�Þ2 using the momentum region 1:3<
ða�Þ2 < 2:5 to remove lattice artifacts.
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FIG. 16 (color online). The mass renormalization factor Zm
expressed in the MS scheme. These results are obtained by
applying the perturbative running factor to ZSI
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are interested in is ZMS
m ð� ¼ 2 GeVÞ. The upper and lower

curves show the statistical errors.

TABLE XII. The nonperturbative factor ZRI=MOM
m as a function

of the scale � calculated from �S and the corresponding values

for ZMS
m . Note that the values for ZMS

m given in column three are
obtained from those in column two by applying the RI=MOM�
MS perturbative matching factors after the Oða�Þ2 lattice arti-
facts have been removed using an intermediate conversion to a
scale-invariant scheme as described in the text.

�ðGeVÞ ZRI=MOM
m ZMS

m

1.018 2.85(18) 1.625(47)

1.358 2.56(11) 1.758(51)

1.556 2.428(80) 1.731(51)

1.796 2.273(56) 1.690(49)

1.920 2.216(49) 1.669(49)

2.037 2.146(42) 1.651(48)

2.147 2.087(37) 1.634(48)

2.352 2.018(29) 1.605(47)

2.448 1.978(27) 1.593(46)

2.716 1.899(22) 1.562(46)
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The first is the effect on Zm of the difference between
determining Zq=ZA from 1

2 ð�A þ�VÞ or from �A. This

contributes an error of �0:011 to ZMS
m ð2 GeVÞ. Next we

must assign an error to our use of three-loop matching
factor, given in Eq. (B6). Here we assign an error equal to
the magnitude of the final, order �3

s error in this perturba-
tive expression, which is �0:103. While this may be a
conservative estimate of the omitted terms of order �4

s and
higher, it also is intended to include the errors introduced
by the order �3

s estimate of the perturbative running de-
termine the intermediate SI step used to remove the ða�Þ2
errors.

Finally we address the errors arising from our failure to
extrapolate to the limit of vanishing strange quark mass.
Recall, we have evaluated the chiral limit in which both the
valence quark mass which enters our off-shell propagators
and the dynamical light quark mass are extrapolated to
zero. However, all of the gauge ensembles used in this
calculation were computed with a nonzero strange quark
mass ms ¼ 0:04. Since we are matching our Green func-
tions to those computed in perturbation theory in the mass-
independent, m! 0, limit our nonzero value for ms im-
plies an additional systematic error. Because the dynamical
quarks enter only through loops, their effect is different
from that of the valence quarks discussed above. They do
not contribute chiral symmetry breaking effects in our
matrix elements. However, because of low-energy chiral
symmetry breaking, we do expect the dynamical quark
masses to appear linearly in a quantity such as Zm in the

limit m! 0. To estimate the size of this OðmsÞ effect, we
begin with the size of the observed linear dependence,
@Zm=@m 
 5:4 which comes from both the calculated
valence and light dynamical mass dependence of �S.
This is then multiplied by 1=2 because there is only one
flavor of strange quark and byms ¼ 0:04 giving an error in
Zm of�0:108. The total systematic error given in Eq. (49),
�0:150, is then the sum of these three errors in quadrature.

G. Quark wave function renormalization and
renormalization group running

In Sec. IVC, we calculated the ratio of renormalization
constants

Zq
ZA

¼ 1

2
ð�A þ�VÞ: (50)

To calculate Zq, we multiply this quantity with ZA ¼
0:7161ð1Þ obtained in Ref. [5]. Thus, we have evaluated
the quantity Zq in the RI/MOM scheme, which is shown in

Table XIII. To calculate Zq in theMS scheme, we follow a

similar procedure as in the previous section, and start by

dividing ZRI=MOM
q by the perturbative running factor. As

shown in Appendix C, the functional form of the running
factor is quite similar to that of Zm. The energy scale �0

where ZSI
q is fixed to the ZRI=MOM

q value is again chosen

such that ða�0Þ2 ¼ 2.
The calculated values of ZSI

q vary slightly with momen-

tum due to the presence of lattice artifacts. To remove
these, we again fit the dependence to the form Aþ
Bða�Þ2 and extrapolate to a ¼ 0. The procedure is shown
in Fig. 17. Finally, we take the scale-invariant ZSI

q , run up to

different scales in the RI/MOM scheme, and then apply the
perturbative matching factor (Appendix C) to translate it to
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FIG. 17 (color online). The quantities ZRI=MOM
q ð�Þ and ZSI

q ð�Þ
plotted versus the square of the scale a�. Here ZSI

q ð�Þ is

obtained by dividing ZRI=MOM
q ð�Þ by the predicted perturbative

running factor. Shown also is the linear extrapolation of
ZSI
q ð�Þ ¼ ZSI

q þ cða�Þ2 using the momentum region 1:3<

ða�Þ2 < 2:5 to remove lattice artifacts.

TABLE XIII. The nonperturbative factor ZRI=MOM
q as a func-

tion of the scale � calculated from 1
2 ð�A þ�VÞ and the corre-

sponding values for ZMS
q . Note that the values for ZMS

q given in

column three are obtained from those in column two by applying
the RI=MOM�MS perturbative matching factors after the
Oða�Þ2 lattice artifacts have been removed using an intermedi-
ate conversion to a scale-invariant scheme as described in the
text.

�ðGeVÞ ZRI=MOM
q ZMS

q

1.018 0.8028(40) 0.8010(31)

1.358 0.8039(35) 0.7849(30)

1.556 0.8041(30) 0.7798(30)

1.796 0.8074(31) 0.7754(30)

1.920 0.8050(32) 0.7736(30)

2.037 0.8086(28) 0.7722(30)

2.147 0.8115(31) 0.7710(30)

2.352 0.8150(34) 0.7691(29)

2.448 0.8176(33) 0.7684(29)

2.716 0.8238(37) 0.7665(29)
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the MS scheme. The MS values are shown in Fig. 18 and
Table XIII. Of particular interest, the value at � ¼ 2 GeV
is

ZMS
q ð2 GeVÞ ¼ 0:7726� 0:0030ðstatÞ � 0:0083ðsysÞ

(51)

The systematic errors are estimated using the same proce-
dure explained in Sec. IV F. They are the sum in quadrature
of the estimated errors arising from the difference �A �
�V (0.0061), the use of a perturbative matching factor
accurate to order �3 (0.0045) and our use of a nonzero
sea quark mass (0.0035).

H. Tensor current renormalization and
renormalization group running

To calculate the tensor current renormalization constant
ZT , we follow a procedure similar to those of the previous
two sections. For each dynamical quark mass, we combine
the ratios Zq=ZT and Zq=ZA in order to obtain the ratio of

ZT to ZA in the RI/MOM scheme:

ZRI=MOM
T

ZA
ðpÞ ¼

�
ZT
Zq

ðpÞ
��
Zq
ZA

ðpÞ
�
:

Ultimately, we use the independent hadronic matrix ele-
ment calculation of ZA, which gives ZA ¼ 0:7161ð1Þ, to
obtain ZT . Table XIV shows the values obtained for the

ZRI=MOM
T in the chiral limit for a range of lattice momenta.

As discussed above we have performed the chiral extrapo-
lation using a linear functional form, and Fig. 19 shows this

linear extrapolation at the lattice momentum ðapÞ2 ¼
1:388.
We obtain SI values for ZT in the chiral limit by dividing

out the tensor current perturbative running factor, the
evaluation of which is described in Appendix E. Again,
the SI values obtained in this way exhibit a dependence on
the lattice momenta, and again we fit the momentum-
dependent ZSI

T to the form Aþ Bða�Þ2 and extrapolate to
ða�Þ2 ! 0 to remove the lattice artifacts, as shown in
Fig. 20. Finally, we run the scale-invariant ZT=ZA back to
different scales in the RI/MOM scheme and use the per-

turbative matching factor (Appendix E) to match to theMS

scheme. The MS values are shown in Fig. 21 and
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FIG. 18 (color online). The wave function renormalization
factor Zq expressed in the MS scheme. These results are ob-

tained by applying the perturbative running factor to ZSI
q . The

value we are interested in is ZMS
q ð� ¼ 2 GeVÞ. The upper and

lower curves show the statistical errors.

TABLE XIV. The nonperturbative factor ZRI=MOM
T as a func-

tion of the scale � calculated from �T and the corresponding

values for ZMS
T . Note that the values for ZMS

T given in column

three are obtained from those in column two by applying the
RI=MOM�MS perturbative matching factors after the Oða�Þ2
lattice artifacts have been removed using an intermediate con-
version to a scale-invariant scheme as described in the text.

�ðGeVÞ ZRI=MOM
T ZMS

T

1.018 0.9121(74) 0.8812(38)

1.358 0.8583(46) 0.8355(36)

1.556 0.8380(32) 0.8194(35)

1.796 0.8177(27) 0.8048(34)

1.920 0.8118(27) 0.7986(34)

2.037 0.8037(22) 0.7935(34)

2.147 0.7981(21) 0.7892(34)

2.352 0.7899(18) 0.7821(33)

2.448 0.7862(17) 0.7791(33)

2.716 0.7779(16) 0.7719(33)

-0.01 0 0.01 0.02 0.03 0.04 0.05
m

l
+m

res

1.11

1.115

1.12

1.125

(1
/2

) 
(Λ

A
 +

 Λ
V
) 

/ Λ
T

FIG. 19 (color online). A plot of 1
2 ð�A þ�VÞ=�T as a func-

tion of quark mass as well as the linear extrapolation to the chiral
limit, at ðapÞ2 ¼ 1:388, or � ¼ 2:04 GeV.
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Table XIV. At � ¼ 2 GeV, we obtain:

ZMS
T ð2 GeVÞ ¼ 0:7950� 0:0034ðstatÞ � 0:0150ðsysÞ:

The systematic errors are determined in the same fashion

as in the previous two sections. Specifically the errors
arising from the difference �A ��V (0.0054), the use of
a perturbative matching factor accurate to order � (0.014)
and our use of a nonzero sea quark mass (0.0003) are added
in quadrature.

V. RENORMALIZATION COEFFICIENTS FOR BK

A. General procedure for computing the mixing
coefficients

By the renormalization of BK wemean the calculation of
the renormalization coefficient for the operator

O VVþAA ¼ ð �s��ð1� �5ÞdÞð�s��ð1� �5ÞdÞ (52)

which is the operator responsible for the mixing between
K0 and �K0. Since for finite Ls our theory does not posses
exact chiral symmetry we must consider the possibility that
this operator can mix with the four other �S ¼ 2 operators
with a different chiral structure:

O VV�AA ¼ ð �s��ð1� �5ÞdÞð�s��ð1þ �5ÞdÞ (53)

O SSþPP ¼ ð �sð1� �5ÞdÞð�sð1� �5ÞdÞ (54)

O SS�PP ¼ ð �sð1� �5ÞdÞð�sð1þ �5ÞdÞ (55)

O TT ¼ ð�s���dÞð�s���dÞ (56)

where they are labeled by the chirality structure of the
even-parity components. The odd-parity components of
these operators are not important here since they do not
contribute to K0 $ �K0 mixing.
For domain-wall fermions, the mixing of OVVþAA with

these four operators with wrong chirality should be
strongly suppressed by Oðm2

resÞ. However, chiral perturba-
tion theory predicts that the B parameters of the operators
with the wrong chirality diverge in the chiral limit [16,17].
To address this issue, we will describe a theoretical argu-
ment to estimate the size of the mixing terms and an actual
calculation of these chirality-violating mixing coefficients
on the 2þ 1 flavor dynamical lattices.
Following the Rome-Southampton prescription [4,16],

we first calculate the 5� 5 matrix,

Mij ¼ P̂j½�latt
i � ¼ ð�latt

i ÞABCD���
 ðP̂jÞBADC��
� (57)

where �latt
i is the amputated, four-point Green function.

The Green functions are first averaged over all sources and
configurations, and then amputated using the averaged
propagator, in a procedure similar to the calculation of
two-point amputated Green functions ��;0ðpÞ in

Sec. IVB. P̂j is a suitable projector, which projects out

the component with the expected chirality (for example,
the projector corresponding to OVVþAA is �� � �� þ
���5 � ���5). The subscripts i; j 2 fVV þ AA; VV �
AA; SS� PP; SSþ PP; TTg.
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FIG. 20 (color online). The quantities ZRI=MOM
T ð�Þ and ZSI

T ð�Þ
plotted versus the square of the scale a�. Here ZSI

T ð�Þ is

obtained by dividing ZRI=MOM
T ð�Þ by the predicted perturbative

running factor. Shown also is the linear extrapolation of
ZSI
T ð�Þ ¼ ZSI

T þ cða�Þ2 using the momentum region 1:3<
ða�Þ2 < 2:5 to remove lattice artifacts.
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FIG. 21 (color online). The wave function renormalization
factor ZT expressed in the MS scheme. These results are ob-
tained by applying the perturbative running factor to ZSI

T . The

value we are interested in is ZMS
T ð� ¼ 2 GeVÞ. The upper and

lower curves show the statistical errors.
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It is straightforward to calculate the mixing matrix at
tree level which we denote as

Fij ¼ P̂j½�tree
i �: (58)

The RI/MOM renormalization condition which we adopt is
then

1

Z2
q
ZijMjk ¼ Fik (59)

or

1

Z2
q
Z ¼ FM�1: (60)

B. Theoretical argument for the suppression of mixing
coefficients

As can be seen from the structure of the four operators in
Eqs. (53)–(56), if they are to mix with OVVþAA defined in
Eq. (52) then two quark fields much change chirality from
left- to right-handed. For domain wall fermions such a
mixing can arise from the explicit breaking of chiral sym-
metry coming from the finite separation between the left
and right walls. The asymptotic behavior for large Ls of the
resulting mixing coefficients can be estimated using the
transfer matrix T for propagation in the s-direction intro-
duced by Furman and Shamir [12]. The large-Ls limit is
then controlled by matrix elements of the operator TLs and
is dominated by those four-dimensional fermion modes
corresponding to eigenvalues of the transfer matrix which
lie near unity.

As described in detail in Ref. [18] and in the original
references cited therein, these fermion modes are believed
to fall into two classes: modes localized in space-time with
corresponding T eigenvalues falling arbitrarily close to
unity and delocalized modes characterized by a mobility
edge �c > 0 and with eigenvalues of T lying below e��c
[19–22]. Since two quarks must change chirality to pro-
duce the required operator mixing, for the case of delocal-
ized modes such mixing will be suppressed by the two
factors of e��cLs needed for the propagation between the
left and right walls of these two fermions, consistent with
our estimate above that such effects should be of order
m2

res.
However, the effects of the localized modes are more

subtle. We must address the possibility raised by
Golterman and Shamir [23] that the contribution of such
a mode to mres is suppressed because such modes are
relatively rare and the necessary coincidence with the
location of the operators being mixed is unlikely.
However, if present, such a mode can mix right- and left-
handed fermions with little further suppression since the
corresponding T eigenvalue may be very close to unity.
This raises the possibility that a single such mode, sup-
pressed by a single factor of mres might be occupied by the

two different quark flavors to provide the double chirality
flip needed to mix the operators. Fortunately, as argued in
Refs. [9,16], this is not possible because the mixing in
question requires both a quark and an antiquark or two
quarks of the same flavor to propagate across the fifth
dimension. This requires two distinct modes and hence
incurs the double suppression which is well represented
by the m2

res estimate above. Note, m2
res 
 10�5 which will

introduceOð0:1%Þ errors in current calculations of BK [24]
and will be too small to be seen in nonperturbative studies
presented here.

C. Lattice calculation of mixing coefficients

With the procedure described in Sec. VA, we can di-
rectly calculate the mixing coefficients. In particular, we
have calculated the off-diagonal terms in the matrix FM�1.
Figure 22 shows the mixing coefficient FM�1

VVþAA;VV�AA at
different unitary masses. As in the earlier discussion of the
�A ��V difference, our use of exceptional external mo-
menta permits both a linear and quadratic mass depen-
dence. As was found in Ref. [16] and suggested by the
mass dependence seen in Fig. 23 a linear dependence
appears reasonable and it is a linear form that we have
used in determining the chiral limit shown in Fig. 22.
As can be seen in Fig. 22, at the chosen reference scale,

� ’ 2 GeV or ðapÞ2 ’ 1:4, the mixing coefficient is about
0.7% and decreases when the scale is made larger. Similar
to the discussion in Sec. IVC, we again propose that this
nonzero mixing coefficient in the chiral limit has its source
in our use of exceptional momenta. Again we can deter-
mine the asymptotic behavior of the amplitude in question
by determining the least negative degree of divergence of a
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FIG. 22 (color online). The mixing coefficient
FM�1

VVþAA;VV�AA for our three unitary mass values and linearly

extrapolated to the chiral limit.

Y. AOKI et al. PHYSICAL REVIEW D 78, 054510 (2008)

054510-20



subgraph �0 through which all of the large external mo-
menta can be arranged to flow. Here it is convenient to treat
the operatorOLL, which is evaluated at zero momentum, as
an internal vertex of dimension 6 rather than an unusual
sort of external line. This alters the rules for computing the
degree of divergence of a subgraph: now any connected
subgraph with F external fermion lines and B external
boson lines in which this new OLL vertex appears, must
have degree of divergence d ¼ 6� 3F=2� B since OLL

has a dimension two higher than the usual renormalizable
coupling. (As before, the degree of divergence of a dis-
connected graph is the sum of the degrees of divergence of
its connected components.)

As in the case of the vertex amplitude discussed in
Sec. IVC, the appearance of exceptional momenta does
not change the asymptotic behavior in the large � limit
with external momenta �pi for 1 � i � 4. Even for our
exceptional case p1 ¼ p3 ¼ �p2 ¼ �p4, �

d scaling with
d ¼ 6� 4 � 3=2 ¼ 0 is expected. However, derivatives
with respect to the quark mass or the occurrence of factors
of h �qqi will be strongly affected by this choice of external
momenta. As is shown in Fig. 24, we can identify a dis-
connected subgraph �0 through which all the large external
momenta can be routed which has d ¼ ð6� 4 � 3=2Þ þ
ð4� 4 � 3=2Þ ¼ �2. (Note, momentum conservation im-
plies that if all of the large momenta can be routed within a
disconnected diagram then the choice of external momenta
must be exceptional.) This d ¼ �2 value implies a 1=p2

behavior with only low momenta flowing through the
omitted subgraph �1. Since �1 has four external lines it
can translate standard QCD vacuum symmetry breaking
into the chiral symmetry breaking that is required to pro-
duce the operator mixing shown in Fig. 22.
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FIG. 23 (color online). Linear extrapolation of the mixing
coefficient FM�1

VVþAA;VV�AA to the chiral limit using the three

unitary mass values, at the momentum scale � ¼ 2:04 GeV.

FIG. 24. A possible identification of subgraphs appearing in
the chirality violating mixing between OLL and other four-quark
operators. The disconnected subdiagram �0 has degree of diver-
gence d ¼ �2 for the case of exceptional momenta shown here.
This permits a complex pattern of low-energy, vacuum chiral
symmetry breaking coming from the low-energy, four-quark
subgraph �1 to enter such an amplitude with only a mild 1=p2

suppression.
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FIG. 25 (color online). The mixing coefficient
FM�1

VVþAA;VV�AA calculated at nonexceptional momenta. When

extrapolated to the chiral limit the mixing coefficient vanishes,
which shows that chiral symmetry breaking as shown in Fig. 22
comes from the existence of a low-energy subdiagram that enters
because of the special choice of external momenta.
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Again, we confirm this conclusion, by recomputing the
coefficient FM�1

VVþAA;VV�AA at nonexceptional momenta,

as shown in Fig. 25. With that choice of momenta the
mixing coefficient vanishes completely within our statisti-
cal accuracy.

The other chiral symmetry breaking mixing coefficients,
FM�1

VVþAA;SS�PP and FM�1
VVþAA;TT are very similar to the

case of FM�1
VVþAA;VV�AA just discussed. These coefficients

are plotted in Figs. 26–29. Since our theoretical argument
implies that the mixing coefficients are very small, i.e.
Oðm2

resÞ and our numerical results are consistent with this
implication, it is safe to neglect them and calculate the
renormalization coefficient for BK:

ZRI=MOM
BK

¼ ZVVþAA;VVþAA
Z2
A

: (61)
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FIG. 26 (color online). The mixing coefficient
FM�1

VVþAA;SS�PP for unitary choices of the mass.
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FIG. 27 (color online). The mixing coefficient
FM�1

VVþAA;SS�PP calculated at nonexceptional momenta. When

extrapolated to the chiral limit the mixing coefficient vanishes,
which shows that chiral symmetry breaking as shown in Fig. 26
comes from the existence of a low-energy subdiagram that enters
because of the special choice of external momenta.

0 0.5 1 1.5 2 2.5

(ap)
2

-0.01

0

0.01

0.02

0.03

0.04

0.05

FM
-1 V

V
+

A
A

,S
S+

PP

m
l
 = 0.01

m
l
 = 0.02

m
l
 = 0.03

FIG. 28 (color online). The mixing coefficient
FM�1

VVþAA;SSþPP for unitary choices of the mass. The coefficients

are very tiny over the region of medium to large momenta.
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FIG. 29 (color online). The mixing coefficient FM�1
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for unitary choices of the mass. These coefficients agree well
with zero.
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D. Calculation of ZBK
and renormalization group

running

Using Eq. (61), the value of Zq=ZA from Sec. IVC and

the value of Z�2
q ZVVþAA;VVþAA ¼ FM�1

VVþAA;VVþAA, we can
calculate the lattice values of ZBK at different masses and

momenta, as shown in Table XV. To extrapolate to the
chiral limit, we again use a linear function, for the same
reasons as described in Section IVC. The linear mass fit at
the scale� ¼ 2 GeV is illustrated in Fig. 30, and the value

of ZRI=MOM
BK

in the chiral limit is shown in Fig. 31 and

Table XVI.
Similar to the procedure described in Sec. IV F, in order

to determine ZMS
BK

from ZRI=MOM
BK

, we first divide the

ZRI=MOM
BK

ð�Þ by the predicted running factor at one-loop

order and obtain the quantity ZSI
BK
ð�Þ. Then we fit a qua-

dratic function Aþ Bða�Þ2 over the region 1:3< ða�Þ2 <

2:5 to remove theOðða�Þ2Þ dependence from ZSI
BK

induced

by the lattice artifacts. Finally, we restore its perturbative

running in the MS scheme to the scale � ¼ 2 GeV. The
perturbative running and matching factors are presented in
Appendix D.
The procedure of dividing by the running and removing

the ða�Þ2 dependence is shown in Fig. 32, and the result of
restoring the running in theMS scheme is shown in Fig. 33.
As can be seen from Fig. 32, in the case of ZBK the

correction for this discretization effect is on the 0.5% level
and the fitted SI values are accurately linear over a larger

TABLE XV. The quantity ZRI=MOM
BK

evaluated at the unitary
points where mval ¼ ml ¼ m.

�ðGeVÞ m ¼ 0:01 m ¼ 0:02 m ¼ 0:03

0.954 0.9663(69) 0.9737(52) 0.9538(44)

1.272 0.9347(39) 0.9387(35) 0.9315(30)

1.458 0.9266(31) 0.9289(30) 0.9245(26)

1.683 0.9189(25) 0.9189(25) 0.9167(24)

1.799 0.9151(22) 0.9137(23) 0.9126(23)

1.909 0.9114(23) 0.9106(22) 0.9102(22)

2.012 0.9085(22) 0.9077(20) 0.9078(21)

2.204 0.9045(23) 0.9026(20) 0.9035(21)

2.294 0.9018(20) 0.9004(19) 0.9020(20)

2.545 0.8974(21) 0.8953(19) 0.8978(19)
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FIG. 30 (color online). Linear extrapolation of ZBK to the
chiral limit using unitary mass values and the scale � ¼
2:04 GeV.
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FIG. 31 (color online). The renormalization factor ZRI=MOM
BK

evaluated for unitary mass values and extrapolated to the chiral
limit.

TABLE XVI. The nonperturbative factor ZRI=MOM
BK

as a func-

tion of the scale � and the corresponding values for ZMS
BK

. Note

that the values for ZMS
BK

given in column three are obtained from

those in column two by applying the RI=MOM�MS perturba-
tive matching factors after the Oða�Þ2 lattice artifacts have been
removed using an intermediate conversion to a scale-invariant
scheme as described in the text.

�ðGeVÞ ZRI=MOM
BK

ZMS
BK

1.018 0.985(11) 1.0016(56)

1.358 0.9397(61) 0.9651(54)

1.556 0.9295(48) 0.9507(54)

1.796 0.9208(42) 0.9370(53)

1.920 0.9168(38) 0.9311(52)

2.037 0.9121(38) 0.9261(52)

2.147 0.9088(37) 0.9217(52)

2.352 0.9045(39) 0.9145(52)

2.448 0.9011(35) 0.9114(51)

2.716 0.8961(38) 0.9038(51)
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range of ða�Þ2 than that used in the fit. Table XVI lists ZMS
BK

at different momentum scales. The final ZBK we obtain in

the MS scheme and � ¼ 2 GeV is

ZMS
BK

ð2 GeVÞ ¼ 0:9276� 0:0052ðstatÞ � 0:0220ðsysÞ:
(62)

The systematic error is calculated, following the same
procedure as has been used for the previous quantities, as
a sum in quadrature of the amount the result changes when
1
2 ð�A þ�VÞ is replaced by �A (0.0131), the size of the

highest order perturbative correction being made [here of
Oð�sÞ] (0.0177) and the effect of our nonzero value for ms

in the calculation of ZBK (0.0007).

VI. CONCLUSIONS

We have presented a study of the renormalization coef-
ficients Zq, Zm ZT and BK on the 163 � 32, 2þ 1 flavor

dynamical domain-wall fermion lattices with Iwasaki
gauge action of � ¼ 2:13 and a�1 ¼ 1:729ð28Þ GeV gen-
erated by the RBC and UKQCD collaborations. These
coefficients are important components in calculations of
a number of important physical quantities reported else-
where [3,24] The procedure closely follows that used in an
earlier study with quenched lattice configurations [8,16]. In
addition to providing the Z-factors necessary to support a
variety of calculations on these lattice configurations, this
paper also presents a number of new results which go
beyond earlier work.
First, the troublesome double pole which appears in a

quenched calculation of the quantity �S because of topo-
logical near-zero modes is now highly suppressed by the
2þ 1 flavor determinant. This allows us to use �S for an
accurate calculation of Zm. Second we have identified the
Oð5%Þ large chiral symmetry breaking effects seen in the
off-shell Green functions �V and �A as caused by our use
of exceptional momenta. We have advanced both a theo-
retical discussion explaining the pattern of symmetry
breaking which we have observed and a calculation with
nonexceptional momenta in which these effects are dra-
matically reduced.
Third, for ZBK we have presented both a theoretical

argument and numerical calculations showing the mixing
coefficients with the operators with the wrong chirality are
very small so that the calculation of ZBK can be simplified

by neglecting these mixing coefficients. Finally, we have
exploited the earlier perturbative work of others and eval-
uated the factors relating the normalization of operators

defined in theMS and RI/MOM schemes determining ZMS
m ,

ZMS
q , ZMS

BK
and ZMS

T from their nonperturbative RI/MOM

counterparts to three, three, one and two loops,
respectively.
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APPENDIX A: THE QCD � FUNCTIONS AND THE
RUNNING OF �s

The four-loop QCD beta functions is calculated in [25]
and the conventions we use are the same as in [15]:

�0 ¼ 1
4ð11� 2

3nfÞ;
�1 ¼ 1

16ð102� 38
3 nfÞ;

�2 ¼ 1
64ð28572 � 5033

18 nf þ 325
54 n

2
fÞ;

�3 ¼ 1
256½149 7536 þ 3564�3 � ð1 078 361162 þ 6508

27 �3Þnf
þ ð50 065162 þ 6472

81 �3Þn2f þ 1093
729 n

3
f�:

(A1)

To calculate the coupling constant �sð�Þ at any scale, we
have used the four-loop (NNNLO) running formula for �s
[25]:

@as
@ ln�2 ¼ �ðasÞ

¼ ��0a
2
s � �1a

3
s � �2a

4
s � �3a

5
s þOða6sÞ

(A2)

where as ¼ �s=�. (We have changed the normalization of
as to match the definition of the �-functions coefficients.)
For a numerical implementation, we start from the world-
average value at � ¼ MZ [26],

�ð5Þ
s ðMZÞ ¼ 0:1176� 0:002; (A3)

where the superscript indicates that it is in the 5-flavor

region, and run �s across themb andmc threshold with the
matching conditions:

�ð5Þ
s ðmbÞ ¼ �ð4Þ

s ðmbÞ and �ð4Þ
s ðmcÞ ¼ �ð3Þ

s ðmcÞ: (A4)

Having computed �ð3Þ
s ðmcÞ, we can calculate the coupling

constant at any scale in the 3-flavor theory. For example,

�ð3Þ
s ð� ¼ 2 GeVÞ ¼ 0:2904: (A5)

APPENDIX B: PERTURBATIVE RUNNING AND
MATCHING FOR Zm

In [15], the renormalization group equation for mrenð�Þ
is solved to four-loop order (NNNLO). Using the solution
with our definition of the renormalization coefficients Zm,
we obtain

ZSI
m ¼ cð�sð�0Þ=�Þ

cð�sð�Þ=�Þ Z
RI=MOM
m ð�Þ (B1)

where the function cðxÞ is given by

cðxÞ ¼ ðxÞ ��0f1þ ð ��1 � ��1 ��0Þxþ 1
2½ð ��1 � ��1 ��0Þ2 þ ��2

þ ��2
1 ��0 � ��1 ��1 � ��2 ��0�x2 þ ½16ð ��1 � ��1 ��0Þ3

þ 1
2ð ��1 � ��1 ��0Þð ��2 þ ��2

1 ��0 � ��1 ��1 � ��2 ��0Þ
þ 1

3ð ��3 � ��3
1 ��0 þ 2 ��1

��2 ��0 � ��3 ��0 þ ��2
1 ��1

� ��2 ��1 � ��1 ��2Þ�x3 þOðx4Þg; (B2)

with ��i ¼ �i
�0

and

�� i ¼ �RI=MOMðiÞ
m

�0

(B3)

The evaluation of the coefficients of the QCD � function
and the running of �s are explained in Appendix A and the
anomalous dimensions are

�RI=MOMð0Þ
m ¼ 1

�RI=MOMð1Þ
m ¼ 1

16ð126� 52
9 nfÞ

�RI=MOMð2Þ
m ¼ 1

64½ð20 9113 � 3344
3 �3Þ þ ð�18 386

27 þ 128
9 �3Þnf þ 928

81 n
2
f�

�RI=MOMð3Þ
m ¼ 1

256½ð300 665 987648 � 15 000 871
108 �3 þ 6160

3 �5Þ þ ð�7 535 473
108 þ 627 127

54 �3 þ 4160
3 �5Þnf þ ð670 948243 � 6416

27 �3Þn2f � 18 832
729 n

3
f�;

(B4)

where nf ¼ 3.
When applying Eq. (B1), we need to choose a value of �0, where the SI value is calculated. The exact value of �0 is

immaterial and for convenience we choose its value such that

ða�0Þ2 ¼ 2: (B5)

To match the renormalization coefficients Zm from RI/MOM scheme to MS scheme, we have applied the three-loop
matching factor [15] obtaining:
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ZMS
m

ZRI=MOM
m

¼ 1þ �s
4�

�
� 16

3

�
þ

�
�s
4�

�
2
�
� 1990

9
þ 152

3
�3 þ 89

9
nf

�
þ

�
�s
4�

�
3
�
� 6 663 911

648
þ 408 007

108
�3 � 2960

9
�5

þ 236 650

243
nf � 4936

27
�3nf þ 80

3
�4nf � 8918

729
n2f �

32

27
�3n

2
f

�
: (B6)

APPENDIX C: PERTURBATIVE RUNNING AND
SCHEME MATCHING FOR Zq

The renormalization group equation for Zq is very simi-

lar to that for Zm [15] and we can reuse the solution of the
equation from Appendix B to write:

ZSI
q ¼ c½�2�ð�sð�0Þ=�Þ

c½�2�ð�sð�Þ=�Þ
ZRI=MOM
q ð�Þ (C1)

where the function c½�2�ðxÞ has exactly the same functional
form as cðxÞ defined in Eq. (B2), but with the coefficients
��i of the anomalous dimension �m replaced by those of �2:

�� i ¼ �RI=MOMðiÞ
2

�0

(C2)

The coefficients of the anomalous dimension �2 are [15]

�RI=MOMð0Þ
2 ¼ 0

�RI=MOMð1Þ
2 ¼ N2 � 1

16N2

��
3

8
þ 11

4
N2

�
þ nf

�
� 1

2
N

��

�RI=MOMð2Þ
2 ¼ N2 � 1

64N3

��
3

16
þ 25

3
N2 þ 14 225

288
N4 � 3N2�3 � 197

16
N4�3

�
þ nf

�
� 1

3
N � 611

36
N3 þ 2N3�3

�
þ n2f

�
10

9
N2

��

�RI=MOMð3Þ
2 ¼ N2 � 1

256N4

��
1027

128
þ 7673

384
N2 þ 174 565

1152
N4 þ 3 993 865

3456
N6 þ 25�3 þ 31N2�3 � 10 975

64
N4�3 � 111 719

192
N6�3

� 40�5 � 60N2�5 þ 5465

64
N4�5 þ 20 625

128
N6�5

�
þ nf

�
1307

48
N þ 557

144
N3 � 172 793

288
N5 � 4N�3 þ 2N3�3

þ 7861

48
N5�3 � 30N3�5 � 125

4
N5�5

�
þ n2f

�
� 521

72
N2 þ 259

3
N4 þ 6N2�3 � 26

3
N4�3

�
þ n3f

�
� 86

27
N3

��

(C3)

where N ¼ 3, which represents the number of colors, and nf ¼ 3.

When we match Zq from RI/MOM scheme to MS scheme, the three-loop matching factor is [15]

ZMS
q

ZRI=MOM
q

¼ 1þ
�
�s
4�

�
2
�
� 517

18
þ 12�3 þ 5

3
nf

�
þ

�
�s
4�

�
3
�
� 1 287 283

648
þ 14 197

12
�3 þ 79

4
�4 � 1165

3
�5 þ 18 014

81
nf

� 368

9
�3nf � 1102

243
n2f

�
: (C4)

APPENDIX D: PERTURBATIVE RUNNING AND
SCHEME MATCHING FOR ZBK

To remove (restore) the perturbative renormalization
group running of ZBK , we use the one-loop renormalization

group running formula [16]:

ZSI
BK
ðnfÞ ¼ w�1

schemeð�; nfÞZscheme
BK

ð�; nfÞ (D1)

where

w�1
schemeð�; nfÞ ¼ �sð�Þ��0=2�0

�
1þ �sð�Þ

4�
J
ðnfÞ
scheme

�

(D2)

and

J
ðnfÞ
RI=MOM ¼ � 17397� 2070nf þ 104n2f

6ð33� 2nfÞ2
þ 8 ln2 (D3)

J
ðnfÞ
MS

¼ 13 095� 1626nf þ 8n2f

6ð33� 2nfÞ2
(D4)

with nf ¼ 3 in our analysis.
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APPENDIX E: PERTURBATIVE RUNNING AND
SCHEME MATCHING FOR ZT

The anomalous dimension of the tensor current in the

MS scheme is given at three-loops in [27],

�MSð0Þ
T ¼ 1

3;

�MSð1Þ
T ¼ 1

16
2
27ð543� 26nfÞ;

�MSð2Þ
T ¼ 1

64
2
243ð12157 665� 4176�3

� ð2160�3 þ 7860Þnf � 54n2fÞ:

(E1)

For consistency we have adjusted the normalization from

that used in [27] such that �MS
T satisfies the generic RG-

equation for the renormalization constant Z� of the quark
bilinear � � ,

@ lnZ�

@ ln�2 ¼ ��ðasÞ ¼ ��ð0Þ
� as � �ð1Þ

� a
2
s � �ð2Þ

� a
3
s þOða4sÞ;

(E2)

with as ¼ �s=�.
The perturbative running for the tensor current has also

been computed at three loops in the RI=MOM0 scheme
[27], and we use it to obtain the RI/MOM scheme anoma-
lous dimension as follows. We consider the conversion

function CRI=MOMð0Þ
� used to match the RI/MOM or

RI=MOM0 scheme to the MS scheme:

ZMS
� ¼ CRI=MOMð0Þ

� ZRI=MOMð0Þ
� : (E3)

Applying the above renormalization group Eq. (E2) we
obtain

�RI=MOMð0Þ
� ¼ �MS

� � @ lnCRI=MOMð0Þ
�

@ ln�2
: (E4)

Since the only difference between the RI/MOM and
RI=MOM0 schemes lies in the definition of the quark field

renormalization constants ZRI=MOM0
2 and ZRI=MOM

2 , we write

CRI=MOMð0Þ
� ¼ C�C

RI=MOMð0Þ
2 . The vertex part C� of the con-

version function is common to both the RI/MOM and
RI=MOM0 schemes. It follows that

�RI=MOM0
� � �RI=MOM

� ¼ @ lnCRI=MOM
2

@ ln�2
� @ lnCRI=MOM0

2

@ ln�2

¼ �RI=MOM
2 � �RI=MOM0

2 : (E5)

Since both functions �RI=MOM
2 and �RI=MOM0

2 are known

[15], we can now compute the anomalous dimension of
the tensor current in the RI/MOM scheme from the known
one in the RI=MOM0 scheme. We note that since the r.h.s.
of (E5) is valid for any choice of � on the l.h.s., one may
use the identity

�RI=MOM
� ¼ �RI=MOM0

� � ð�RI=MOM0
�0 � �RI=MOM

�0 Þ: (E6)

In order to compute �RI=MOM
T here we have used

�RI=MOM
2 as in (C2) and �RI=MOM0

2 from [15]:

�RI=MOM0ð0Þ
2 ¼ 0;

�RI=MOM0ð1Þ
2 ¼ N2 � 1

16N2

��
3

8
þ 11

4
N2

�
þ nf

�
� 1

2
N

��
;

�RI=MOM0ð2Þ
2 ¼ N2 � 1

64N3

��
3

16
þ 233

24
N2 þ 17 129

288
N4 � 3N2�3 � 197

16
N4�3

�
þ nf

�
� 7

12
N � 743

36
N3 þ 2N3�3

�

þ n2f

�
13

9
N2

��
;

�RI=MOM0ð3Þ
2 ¼ N2 � 1

256N4

��
1027

128
þ 8069

384
N2 þ 240 973

1152
N4 þ 5 232 091

3456
N6 þ 25�3 þ 31N2�3 � 12 031

64
N4�3 � 124 721

192
N6�3

� 40�5 � 60N2�5 þ 5465

64
N4�5 þ 20 625

128
N6�5

�
þ nf

�
329

12
N � 1141

144
N3 � 113 839

144
N5 � 4N�3 þ 5N3�3

þ 2245

12
N5�3 � 30N3�5 � 125

4
N5�5

�
þ n2f

�
� 515

72
N2 þ 1405

12
N4 þ 6N2�3 � 32

3
N4�3

�
þ n3f

�
� 125

27
N3

��
:

(E7)

In this way we obtain the anomalous dimension:

�RI=MOMð0Þ
T ¼ 1

3; �RI=MOMð1Þ
T ¼ 1

16
2
27ð543� 26nfÞ;

�RI=MOMð2Þ
T ¼ 1

64
1

243ð478 821� 117 648�ð3Þ þ 6ð384�ð3Þ � 8713Þnf þ 928n2fÞ;
(E8)

from which we compute the running of ZT using (B2).
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Combining (A2) and (E2) we compute the expression for the matching factorCRI=MOM
T . After expanding in as we obtain:

ZMS
T

ZRI=MOM
T

¼ 1þ 1

81
ð�4866þ 1656�ð3Þ þ 259nfÞ

�
�s
4�

�
2
: (E9)
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