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We study correlations between center vortices and the low-lying eigenmodes of the Dirac operator, in

both the overlap and asqtad formulations. In particular we address a puzzle raised some years ago by

Gattnar et al. [Nucl. Phys. B716, 105 (2005)], who noted that the low-lying Dirac eigenmodes required for

chiral symmetry breaking do not appear to be present in center-projected configurations. We show that the

low-lying modes are in fact present in the staggered (asqtad) formulation, but not in the overlap and

‘‘chirally improved’’ formulations, and suggest a reason for this difference. We also confirm and extend

the results of Kovalenko et al. [Phys. Lett. B 648, 383 (2007)], showing that there is a correlation between

center vortex locations, and the scalar density of low-lying Dirac eigenmodes derived from unprojected

configurations. This correlation is strongest at points which are associated, in the vortex picture, with

nonvanishing topological charge density, such as vortex intersection and writhing points. We present

supporting evidence that the lowest Dirac eigenmodes, in both asqtad and overlap formulations, have their

largest concentrations in pointlike regions, rather than on submanifolds of higher dimensionality.
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I. INTRODUCTION

There are two reasons� ‘‘theoretical’’ and ‘‘experimen-
tal’’ � to believe that center vortices are the dominant
feature of the vacuum state of pure SUðNÞ gauge theories at
large scales. The theoretical reason is the simple fact that
the asymptotic string tension of static color charge sources
depends only on the N-ality of the color charges. This fact
can be understood as arising from color charge screening
by gluons, which is an explanation in terms of particle
excitations. But there should also be a corresponding
‘‘field’’ explanation of N-ality dependence, in terms of
gauge-field configurations which dominate the path inte-
gral at large scales, and the center vortex scenario is the
only explanation of this type which is known. The experi-
mental reason for believing in vortex dominance is the
wealth of numerical evidence in its favor, which was
summarized a few years ago in Ref. [1]. A key feature of
this evidence is the strong correlation between vortex
location, determined by center gauge-fixing and projection
methods, and gauge-invariant observables, such as action
density and the phase of Wilson loops.

Center vortices were originally introduced to explain
confinement, but a force strong enough to confine quarks
is also generally expected to break chiral symmetry [2].1

According to the Banks-Casher analysis [3], chiral sym-
metry breaking (�SB) is necessarily associated with a
finite density of near-zero eigenmodes of the chiral-
invariant Dirac operator, so we would of course expect

this to be true for the Dirac spectrum evaluated in an
ensemble of center-projected lattice configurations, which
are known to be confining.
Several years ago, however, Gattnar et al. [4] reported a

puzzling result. These authors computed the low-lying
eigenvalue spectrum of a chirally-improved version of
the Dirac operator due to Gattringer [5], which approxi-
mates Ginsparg-Wilson fermions. A dense set of near-zero
eigenvalues was found for unmodified lattice configura-
tions, as expected, and a large gap in the eigenvalue
spectrum, centered at eigenvalue � ¼ 0, opened up in the
spectrum when center vortices were removed. This gap
was also expected, since the vortex-removed configura-
tions are not confining, and it has been known for a long
time that h �  i ! 0 in vortex-removed configurations [6].
The puzzle was that an even larger gap in the spectrum was
found for center-projected configurations, which contain
only thin vortex excitations, and which are confining. Now
if �SB was present in center-projected (or ‘‘vortex-only’’)
configurations, and not in vortex-removed configurations,
we would conclude that vortices explain �SB as well as
confinement. If, on the other hand, �SB occured in vortex-
removed configurations, but was absent in vortex-only
configurations, we would then have to conclude that vor-
tices are not especially relevant to �SB (although we
would then like to understand how confinement can coexist
with unbroken chiral symmetry). But the finding that �SB,
or, to be more precise, near-zero modes, are absent both in
vortex-removed and in vortex-only lattices was unex-
pected, and it poses a challenge to interpretation.
The question which comes to mind is whether the large

gap found by Gattnar et al. is related to the way in which

1The converse, of course, is not true. It is possible to have
chiral symmetry breaking, as in the Nambu–Jona-Lasinio model,
without having confinement.
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chiral symmetry is realized on the lattice. The Casher
argument [2] that confinement implies �SB is based on
the usual SUðNfÞL � SUðNfÞR symmetry of the continuum

theory with massless fermions. However, the chirally-
improved Dirac operator only approximates this symmetry
for gauge-field configurations which vary smoothly at the
lattice scale. Center-projected configurations are not even
close to smooth; plaquette variables make a sudden tran-
sition from the trivial center element outside the thin
vortex, to a nontrivial center element inside. The
chirally-improved Dirac operator is not necessarily chir-
ally symmetric, even approximately, in such backgrounds.
In the absence of a symmetry, there is no reason to expect
spontaneous symmetry breaking. If this fact explains why
there is a gap in the eigenvalue spectrum of the chirally-
improved operator, then it is reasonable to also expect a
gap in the spectrum of the overlap operator [7], when
evaluated on center-projected configurations. Of course
the overlap operator, in contrast to the chirally-improved
operator, does have an exact global symmetry, but the
symmetry transformations are gauge-field dependent [8],
and only approximate the SUðNfÞL � SUðNfÞR chiral

symmetry transformations of the continuum theory for
configurations which vary slowly at the scale of the lattice
spacing. While this smoothness condition is expected in
the continuum limit, it is never the case for center-
projected configurations, and the Casher argument relating
confinement to �SB need not apply.

On the other hand, the Lagrangian for staggered fermi-
ons (and their asqtad cousins [9]) is known to be invariant
under a subgroup of the usual chiral symmetry, irrespective
of the smoothness of the gauge-field background. If the
puzzling gap in the Dirac eigenvalue spectrum found by
Gattnar et al. is a consequence of the roughness of center-
projected lattices, then we might expect this gap to dis-
appear in the spectrum of the staggered or asqtad Dirac
operators. Indeed, there is already a relevant result in
Ref. [10], which reported that h �  i � 0 for staggered
fermions on a center-projected lattice. Likewise, suppose
we somehow ‘‘soften’’ the center-projection procedure to
make the center-projected configurations smoother, and
evaluate the spectrum of the overlap operator on these
smoothed vortex configurations. Then, if the roughness
of thin vortices is the problem for the overlap formulation,
the eigenvalue gap should go away for suitably smoothed,
but still confining, vortex configurations.

In Sec. II we will report our results for the spectrum of
the overlap and asqtad Dirac operators, when evaluated on
normal, vortex-only (i.e. center-projected), and vortex-
removed lattices.2 Those results support the view that
center vortices alone can induce both confinement and

chiral symmetry breaking. We go on in Sec. III, following
the earlier work by Kovalenko et al. [13], to report on other
correlations between center-vortex location, and the den-
sity distribution of low-lying Dirac eigenmodes in overlap
and asqtad formulations. These correlations are an impor-
tant test of the picture advocated by Engelhardt and
Reinhardt [14], in which topological charge is concen-
trated at points where vortices either intersect, or twist
about themselves (‘‘writhe’’) in a certain way, and Dirac
zero modes are concentrated where the topological charge
density is large. If topological charge is concentrated in
pointlike regions, as is the case in the vortex picture, and if
zero (and near-zero) modes are concentrated in regions of
high topological charge density, then one would expect that
the eigenmode densities of low-lying eigenmodes would
be peaked in pointlike regions. In Sec. IV we provide some
supporting evidence for this type of concentration. Our
conclusions are found in Sec. V. In an appendix we review
details of the tadpole-improved Lüscher-Weisz gauge ac-
tion, and report on some necessary checks of vortex loca-
tion via center projection, in numerical simulations of this
lattice action.

II. THIN VORTICES AND NEAR-ZERO MODES

We begin with some preliminary information.
Throughout this article we work with lattices generated
by lattice Monte Carlo simulation of the tadpole-improved
Lüscher-Weisz pure-gauge action, mainly at coupling
�LW ¼ 3:3 (lattice spacing a ¼ 0:15 fm) for the SUð2Þ
gauge group. The locations of center vortices are identified
as usual by mapping the SUð2Þ lattice to a Z2 lattice which
contains, by definition, only thin vortex excitations. The
mapping is carried out by fixing the lattice to the direct
maximal center gauge, which is equivalent to Landau
gauge in the adjoint representation, and which maximizes
the squared trace of link variables. The gauge-fixing pro-
cedure is the over-relaxation method.3 The mapping to link
variables on the center-projected (or ‘‘vortex-only’’) lat-
tice, for the SUð2Þ gauge group, is given by

U�ðxÞ ! Z�ðxÞ ¼ sign Tr½U�ðxÞ� (2.1)

and the link variables U0 on the vortex-removed lattice are
defined as

U0
�ðxÞ ¼ Z�ðxÞU�ðxÞ: (2.2)

The claim is that the thin vortices of the center-projected
lattice lie somewhere in the middle of thick center vortices
(thickness � 1 fm) on the unprojected lattice, and that

2Similar results for the overlap spectrum on vortex-removed
lattices have been obtained previously by Gubarev et al. [11] and
by Bornyakov et al. [12].

3In this study we perform 150 gauge-fixing iterations for five
gauge copies, and for the best copy continue with the gauge
fixing for a further 400 iterations. It is likely, however, that the
selection of the best copy out of five copies is inessential, as the
results are hardly distinguishable from a random choice of copy,
as noted in the appendix.

R. HÖLLWIESER et al. PHYSICAL REVIEW D 78, 054508 (2008)

054508-2



thick center vortices are responsible for the area-law falloff
of large fundamental Wilson loops, as well as for the
N-ality dependence of higher-representation string ten-
sions in SUðNÞ. The justifications for these claims, ob-
tained from Monte Carlo simulation of the Wilson action,
were reviewed some years ago in Ref. [1]. Similar tests in
the case of the Lüscher-Weisz action are reported in the
appendix. Given that thin vortices locate thick vortices,
then in the ‘‘vortex-removed’’ lattice we are really insert-
ing a thin vortex somewhere in the middle of a thick vortex;
the effect is to cancel out the field of the thick vortex at
large distances.

In Fig. 1 we display the 20 lowest-lying complex con-
jugate eigenvalue pairs of the overlap Dirac operator, on a
164 lattice at �LW ¼ 3:3. Results are displayed for eigen-
modes obtained on the original, center-projected and
vortex-removed lattices. We observe the same phenome-
non already reported by Gattnar et al. for the spectrum of
the chirally-improved Dirac operator: a large gap has
opened in both the vortex-removed and the vortex-only
spectra. We note here that the gap in vortex-removed over-
lap spectrum was found previously, and discussed in some
detail, by Bornyakov et al. [12], who simulated a tadpole-
improved Symanzik lattice action. Looking more closely at
the spectra, we see that there only appear to be five
eigenvalue pairs (out of 20) in the center-projected case,
indicating a four-fold degeneracy when the overlap opera-
tor is applied to Z2 lattice configurations. This factor of 4
has the following origin: In the first place, when link
variables are simply plus or minus the 2� 2 identity
matrix, the two colors decouple, and we have a factor of
2 degeneracy. Second, whenever the link variables are real
and the Dirac operator has the Wilson or overlap (but not
staggered) form, the eigenvalue equation D n ¼ �n n is
invariant under charge conjugation. Thus, if  n is an
eigenstate with eigenvalue �n, then C�1 �

n is also an
eigenstate, with the same eigenvalue [15]. This gives an-
other factor of 2, resulting in an overall four-fold degen-

eracy. In the vortex-removed case, one does observe four
near-zero modes of each chirality, but these can be inter-
preted as a remnant of the exact zero modes of the free
theory that are associated with a periodic lattice. These
near-zero modes of the vortex-removed lattice are irrele-
vant to �SB, and disappear when we impose antiperiodic
boundary conditions, as shown in Fig. 2.
In the Introduction we speculated that the reason for the

large gap in the vortex-only case was connected with the
lack of smoothness of center-projected lattices. In that case
the exact symmetry of the overlap operator is strongly
field-dependent, and does not really approximate the chiral
symmetry of the continuum theory. Staggered and asqtad
fermions, on the other hand, preserve a subgroup of the
usual continuum SUðNfÞL � SUðNfÞR symmetry, irre-

spective of the smoothness of the configuration, and by
the Casher argument [2] one would expect this remaining
symmetry to be spontaneously broken, on the lattice, by
any ensemble of gauge configurations with the confine-
ment property. Then, according to the Banks-Casher rela-
tion, there should not be any gap in the vortex-only
eigenvalue spectrum.
In Fig. 3 we show our results for the 20 lowest-lying

eigenvalue pairs of the asqtad Dirac operator for periodic
boundary conditions. We see that the eigenvalue gap in the
overlap spectrum, found on vortex-only lattices, is erased
when eigenvalues are computed for the asqtad Dirac op-
erator. In fact, the near-zero eigenvalue density in the
vortex-only case appears to be substantially enhanced, as
compared to the density for unmodified lattices. In the
vortex-removed case there also appear to be some near-
zero modes centered at � ¼ 0, which are separated by a
gap from the higher modes. However, a count of the
number of these modes reveals that there are eight doubly
degenerate eigenvalues in the central band with Imð�Þ> 0,
and an equal number of complex conjugates with Imð�Þ<
0, for a total of 32 eigenmodes. Now, the free-field Dirac
operator for massless staggered fermions has exactly four
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FIG. 1 (color online). The first 20 overlap Dirac eigenvalue
pairs on the Ginsparg-Wilson circle for a 164 lattice, periodic
boundary conditions at �LW ¼ 3:3. The center-projected con-
figurations show a four-fold degeneracy.
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FIG. 2 (color online). The first 20 overlap Dirac eigenvalue
pairs on the Ginsparg-Wilson circle for a 164 lattice, antiperiodic
boundary conditions at �LW ¼ 3:3. The zero modes in vortex-
removed configurations disappear.
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zero modes for each of four ‘‘tastes’’, and this number must
be multiplied by the number of colors (i.e. two for SUð2Þ),
for a total of 32 free-field zero modes. So it is reasonable to
guess that the 32 eigenmodes in the central band of the
vortex-removed spectrum are simply the would-be zero
modes of the free staggered theory. To check this, we carry
out the same eigenmode calculation using antiperiodic
boundary conditions in one direction, which is sufficient
to remove the zero modes of the free theory. The result is
shown in Fig. 4, where it is seen that the boundary con-
ditions have no noticeable effect on the eigenvalue distri-
bution for the original and center-projected lattices, while
the 32 eigenvalues of the central band completely disap-
pear in the vortex-removed case. This result confirms the
conjecture that the central eigenvalues for vortex-removed
configurations are simply a remnant of the free-field zero
modes, and play no role in �SB. Thus, for the asqtad
operator, we have found exactly what was expected prior
to the results of Gattnar et al.: the vortex excitations of the
vortex-only lattice carry not only the information about
confinement, but are also responsible for �SB via the

Banks-Casher relation. This result was anticipated in
Ref. [10], which found a nonzero h �  i condensate on
center-projected lattices. �SB disappears for vortex-
removed lattices, as discovered long ago by de Forcrand
and D’Elia, in a direct calculation of h �  i [6].
If the overlap operator yields misleading results on

center-projected lattices, because of the lack of smoothness
of center-projected configurations, then perhaps the over-
lap operator would produce a more reasonable answer
when applied to a smoother version of the center-projected
lattice. We therefore consider the following procedure:
Given that SUð2Þ group elements can be represented by
unit 4-vectors a�, where U ¼ a0I2 þ iak�

k, let ��ðxÞ
denote the angle between the vector representing group
element U�ðxÞ in maximal center gauge, and the vector

representing the SUð2Þ center element Z�ðxÞI2, where

Z�ðxÞ was defined in Eq. (2.1). Center projection simply

takes this angle to zero, at every link, but we may also
consider partial projections in which ��ðxÞ is everywhere
reduced by some fixed percentage. These partial projec-
tions interpolate between the unprojected lattice, in maxi-
mal center gauge, and the fully center-projected lattice. In
Fig. 5 we show the low-lying eigenvalues for partial pro-
jections, with ��ðxÞ reduced by 25%, 50%, 70%, 75%, . . .,

together with the unprojected (0%) and fully (100%)
center-projected lattices. We see that there is no really
obvious gap in the partially-projected lattices, even at
80% projection. This agrees with our conjecture that ap-
plying the overlap operator to a smoother version of the
vortex-only vacuum would give a result consistent with
�SB and the Banks-Casher relation.
We conclude this section with a high-temperature result.

Chiral symmetry is restored at high temperatures, and this
fact should also hold for center-projected lattices.
Therefore, at sufficiently high-T, a gap should open in
the eigenvalue spectrum. This can be seen in Fig. 6, where
we display the low-lying eigenvalues at �LW ¼ 3:5 for
time-extensions NT ¼ 2, 4, 6, 12 computed on center-
projected lattices.4 We note that the theory is certainly in
the deconfined phase at NT ¼ 6, where there is, however,
no obvious gap in the eigenvalue spectrum, so it may be
that on the projected lattice the chiral transition occurs at a
higher temperature than the deconfinement transition. This
is also consistent with Ref. [10], which found a nonvanish-
ing �  condensate at a temperature somewhat above the
Wilson action deconfinement temperature. We should
stress, however, that there is no reason that the chiral and
deconfinement temperatures need coincide on the center-
projected lattice. Confinement is a sufficient but not a
necessary condition for �SB, and, while the center-
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FIG. 4 (color online). The first 20 asqtad Dirac eigenvalue
pairs from a 164 lattice, antiperiodic boundary conditions at
�LW ¼ 3:3.
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FIG. 3 (color online). The first 20 asqtad Dirac eigenvalue
pairs from a 164 lattice, periodic boundary conditions at �LW ¼
3:3.

4There is a caveat at NT ¼ 2, where the nearest-neighbor
terms of the staggered Dirac operator in the time direction
cannot really be identified as a symmetric discretization of the
covariant time derivative.

R. HÖLLWIESER et al. PHYSICAL REVIEW D 78, 054508 (2008)

054508-4



projected lattice is expected to get the static quark potential
about right asymptotically, this fact certainly does not hold
true at intermediate scales, where the finite thickness of
real vortices is crucial. If the static potential on the center-
projected lattice is strong enough, �SB will be realized,

and this symmetry breaking may persist somewhat above
the actual deconfinement temperature. The point is that if
we view Yang-Mills configurations as being in some sense
factorizable into vortices� perturbative fluctuations at
short distances, then the thickness and internal structure
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of vortices is important for certain nonperturbative phe-
nomena (such as Casimir scaling, and perhaps the precise
chiral transition point) which are sensitive to the static
quark potential at intermediate scales.5

III. VORTEX SURFACES ANDDIRACEIGENMODE
DENSITIES

The breaking of axial Uð1Þ symmetry is associated with
topological charge density in the vacuum state, and it is
clearly of interest to understand the sources of this topo-
logical charge. There is a vast literature on this subject, and
candidate sources include instantons, calorons, and inter-
twined 3-manifolds, with lattice-scale separation, of oppo-
site topological charge density [17]. It has also been
suggested, by Engelhardt and Reinhardt [14], that topo-
logical charge density is concentrated in certain regions of
center vortices, where the vortices intersect or writhe (twist
about) in some way. Since it is generally expected that zero
modes of the Dirac operator tend to concentrate in regions
of large topological charge density, a correlation between
the locations of vortex intersection/writhing points, and the
density ��ðxÞ ¼ j �ðxÞj2 of eigenmodes of the Dirac op-
erator D, where D � ¼ � � with � ¼ 0 (overlap formu-
lation) or � � 0 (asqtad), would tend to support the
Engelhardt-Reinhardt picture. A lack of correlation (or
perhaps even an anticorrelation) would of course disfavor
that picture.

In our investigation we follow the approach of
Kovalenko et al. in Ref. [13], who worked with eigen-
modes of the overlap operator, derived from lattices gen-
erated with the Wilson action. Kovalenko et al. proposed,
as a measure of vortex-eigenmode correlation, the observ-
able

C�ðNvÞ ¼
P
pi

P
x2H

ðV��ðxÞ � 1Þ
P
pi

P
x2H

1
: (3.1)

This choice of correlator requires some explanation.
Center vortices on the full lattice are located, as explained
previously, by center projection in maximal center gauge.
Plaquettes on the projected lattice are either þ1 or �1;
plaquettes with the latter value are known as ‘‘P-
plaquettes’’. However, the thin vortices of the center-
projected configurations actually live on the dual lattice.
In D ¼ 4 dimensions each P-plaquette corresponds to a
certain plaquette on the dual lattice, and these sets of
plaquettes on the dual lattice form closed surfaces, namely,
the thin center vortices. Each point on the vortex surface
may belong to a certain number, Nv � 3, of plaquettes on
the vortex surface. If the surface is flat at the given point,
then Nv ¼ 4. If the point is a corner of the surface, then
Nv ¼ 3. When two flat vortex surfaces intersect at a point

(or the same surface intersects itself), then Nv ¼ 8. It is
also possible for the surface to twist (or writhe) around a
given point, in such a way that Nv ¼ 6. These writhing
points are best visualized by consulting the illustrations in
Refs. [14,18] (the latter reference also discusses writhe for
the case of finite vortex thickness). Nv can take on other
values as well, but Nv ¼ 1 or 2 is impossible for a closed
vortex manifold. Nv ¼ 0 holds for all points which do not
belong to a vortex surface. For thin vortices, intersection
and writhing points are clearly points where the topologi-
cal charge density is nonzero, and the Engelhardt-
Reinhardt proposal is that topological charge is also con-
centrated on the unprojected lattice in the neighborhood of
these locations. In the definition (3.1) of the vortex-
eigenmode correlator, the first sum is over all points pi
on the dual lattice which belong to Nv plaquettes on the
thin vortex surface. The second sum over x 2 H is a sum
over the 16 points in a hypercube H on the original lattice,
surrounding the given point pi on the dual lattice. V is the
lattice volume.
C�ðNvÞ is a measure of the average fractional excess of

the eigenmode density, ��, over its average value h��i ¼
1=V, in the neighborhood of a point on the thin vortex
connected to Nv vortex plaquettes. If this value is nonzero,
then the question is whether that value is large enough to be
significant. That is not a simple question to answer, in view
of the fact that the location of thin vortices varies consid-
erably, from one Gribov copy to another, so we certainly
cannot determine the vortex intersections of thick vortices
with any great accuracy. This imprecision necessarily low-
ers the measured valued of the correlator C�ðNvÞ. The best
we can do, at this point, is to compare the values ofC�ðNvÞ,
with Dirac eigenmodes computed on the full lattice, to
corresponding values of C�ðNvÞ, with Dirac eigenmodes
computed on center-projected lattices. In the latter case,
the only possible source of topological charge is the thin
vortices, the topological charge density is highly localized,
and the vortex location is certain.
In Fig. 7 we display the data for C�ðNvÞ vs Nv computed

for eigenmodes of the asqtad Dirac operator in the full and
(for comparison) center-projected configurations. The lat-
tices are the same as in the previous section, generated by
Monte Carlo simulation of the Lüscher-Weisz action at
�LW ¼ 3:3. Each plot displays the results for the first
eigenmode (lowest �) and the twentieth Dirac eigenmode;
we see that for the asqtad eigenmodes there is not much
difference. We find that the values ofC�ðNvÞ obtained from
eigenmodes in the full configurations are only about a
factor of 4 smaller than the corresponding values in the
center-projected configurations, which in our opinion is not
such a great suppression considering (i) the uncertainties in
vortex location in unprojected configurations, i.e. intersec-
tion points of thin vortices may not precisely correspond to
the actual intersections of thick center vortices; and (ii) the
fact that center vortices are thin, i.e. extremely localized, in

5Cf. Ref. [16] for a discussion of vortex thickness and Casimir
scaling.
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the center-projected configurations, and therefore one ex-
pects a far greater degree of localization in the correspond-
ing Dirac eigenmodes, computed on center-projected
lattices. But surprisingly, apart from the overall factor of
4 or so, the Figs. 7(a) and 7(b) look much the same. The
most important feature, in our opinion, is the fact that the
correlator increases steadily with increasing Nv, and there-
fore the Dirac eigenmode density is significantly enhanced
in regions of large Nv. This fact seems at least compatible
with the general picture advanced by Engelhardt and
Reinhardt. We note, however, that the enhancement seems
to be equal for all the low-lying eigenmodes, and not just
the ‘‘would-be’’ zero-modes of the asqtad operator.

Figure 8 shows our corresponding results for C�ðNvÞ vs
Nv, this time computed for eigenmodes of the overlap
operator. Our results in Fig. 8(a) are consistent with the
previous results reported by Kovalenko et al. for overlap
eigenmodes in Ref. [13]. In the case of the overlap Dirac
operator there are true zero modes, and the correlation of
the densities of these eigenmodes with vortices is signifi-
cantly larger than the correlations of the 20th mode. In the
case of the overlap operator it is pointless to compute
eigenmodes on the center-projected lattice, for reasons
we have discussed in previous sections. If we do this any-
way, then we actually find an anti correlation between the
low-lying modes and the vortex surfaces, as shown in
Fig. 8(b).
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FIG. 8 (color online). Vortex correlation C�ðNvÞ for overlap eigenmodes on a 164 lattice at �LW ¼ 3:3, (a) full and (b) center-
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IV. DIMENSIONALITY OF DIRAC EIGENMODE
CONCENTRATIONS

The data of the previous section provides some degree of
evidence that low-lying Dirac eigenmodes concentrate
preferentially at regions on the center-vortex surface where
there are, e.g., vortex self-intersections, and/or some sort of
vortex twisting, such that ‘‘connectivity’’ Nv of the vortex
at a site is larger than Nv ¼ 4. Since surfaces intersect at
points in four dimensions, and writhing points are also
points, it is natural to ask whether there is any supporting
evidence that the eigenmode density is especially concen-
trated in pointlike regions, rather than along lines, or
surfaces, or 3-manifolds.

A useful measure to quantify the localization of eigen-
modes is the inverse participation ratio (IPR). The IPR of a
normalized field �iðxÞ is defined as

I ¼ N
X
x

�2
i ðxÞ; (4.1)

where N is the number of lattice sites x. Here, �iðxÞ ¼
 y
i  iðxÞ and  iðxÞ is the ith, normalized (

P
x�iðxÞ ¼ 1),

lowest eigenvector of the Dirac operator. The scaling of
the IPR with lattice spacing is sometimes used to determine
the dimensionality of eigenmode concentration.
Dimensionality is deduced from the IPR by reasoning
that if the eigenmode has support mainly on a submanifold
of dimension d, with a thickness in the 4� d orthogonal
directions which is a fixed number of lattice units, then the
IPR should scale with lattice spacing as 1=a4�d. This
reasoning can lead to incorrect conclusions, because it is
not necessarily true that the thickness of the localization
region is a constant number of lattice spacings, regardless
of coupling.

An instructive example is provided by the lowest eigen-
mode of the covariant Laplacian in the adjoint representa-
tion, which was studied in Ref. [19]. In that case it was
found that the IPR scaled like 1=a2, suggesting an eigen-
mode concentration on surfaces. Instead, it turns out that
the lowest eigenmode is sharply concentrated in a pointlike
region. The peculiar scaling of the IPR arises because the
volume b of the region of concentration, in lattice units,
scales in a peculiar way. If this volume were a constant in
physical units, then ba4 would be constant. If instead the
volumewere constant in lattice units, then b itself would be
constant. In fact, it is ba2 which is constant; the volume of
the eigenmode concentration region goes to zero in physi-
cal units, but infinity in lattice units, in the continuum limit.
The naive deduction of the dimensionality of the concen-
tration region, purely from the scaling of the IPR, leads in
this case to an incorrect conclusion. For Dirac eigenmodes,
conclusions based on the scaling of the IPR have not been
entirely consistent with one another (cf. the overview in
Ref. [20]). Results of the MILC collaboration, with asqtad
fermions, indicate a dimensionality d ¼ 3 [21], while the
ITEP group has reported results, for overlap fermions and

the Wilson action, consistent with d ¼ 0 [11]. A third
study, using overlap fermions and the Lüscher-Weisz ac-
tion, again indicates d ¼ 3 [22] while the latest study of
this group, using generalized IPR’s defined using higher
powers of �iðxÞ, suggest eigenmode concentrations on
manifolds of dimension between d ¼ 0 and d ¼ 1 [23].
A possibly more reliable (if less quantitative) approach

is to simply look at sample plots of ��ðxÞ throughout the
lattice volume. What we find, for the eigenmode density of
the lowest eigenmodes of the asqtad and overlap operators,
is that the eigenmode density is concentrated in very sharp
peaks, in pointlike regions of the lattice volume.6 In Fig. 9
we display our data for ��ðxÞ, for the lowest eigenmode of
the asqtad Dirac operator, in some two-dimensional slices
of the four-dimensional lattice volume taken in the neigh-
borhood of the point where ��ðxÞ is largest. In Fig. 9(a) we
show the density of the lowest eigenmode computed from a
typical configuration on the unprojected lattice, and in
Fig. 9(b) we show the corresponding data for an eigenmode
computed from a typical center-projected lattice. Each
lattice contains several sharp peaks of this kind; it is
obvious that the concentration of eigenmode density is in
a pointlike region, rather than being spread over a subma-
nifold of higher dimensionality. In the figures we display a
set of xy-plots of �ðx; y; z; tÞ at various values of z and fixed
t, but there is an equally strong falloff of the peak as we
move away from the maximum in the time direction.
Figure 10(a) shows the same type of data for a zero mode

of the overlap Dirac operator on 164 lattices, again eval-
uated on unprojected lattices generated from the Lüscher-
Weisz action at �LW ¼ 3:3. Here again we find a handful
of sharp peaks in the eigenmode density for any thermal-
ized lattice configuration; one such peak is displayed in the
plot, and it is concentrated in a pointlike region. The
situation is very different for eigenmodes of the overlap
operator evaluated in center-projected configurations.
Instead of having a sharp peak, the eigenmode concentra-
tion in this case is very broad, extending over most of the
lattice volume, as seen in Fig. 10(b).7 However, we have
already seen that the overlap operator, evaluated on center-
projected configurations, does not have any low-lying
eigenmodes, let alone a zero mode. It is therefore not
surprising that the eigenmode density is qualitatively dif-
ferent from what is found in both the true zero modes of the
overlap operator, and the ‘‘would-be’’ zero modes of the
asqtad operator.
Inspection of Figs. 9 and 10 indicate that eigenmode

peaks are by far the sharpest for eigenmodes of the asqtad
operator on the center-projected lattice. Taking account of
the vertical scales in these figures, the peak in the asqtad-

6The IPR itself is volume independent at fixed lattice spacing,
indicating that the number of such peaks is proportional to the
lattice volume, as expected.

7Note also the considerable difference in vertical scales,
between Figs. 10(a) and 10(b).

R. HÖLLWIESER et al. PHYSICAL REVIEW D 78, 054508 (2008)

054508-8



 4
 8

 12
 16

 4
 8

 12
 16

 0

 0.0008

 0.0016

 0.0024

 0.0032

z=3, t=2

y

x
 4

 8
 12

 16

 4
 8

 12
 16

 0

 0.0008

 0.0016

 0.0024

 0.0032

z=4, t=2

y
x

 0

 4

 8

 12

 16

 0

 4

 8

 12

 16
 0

 0.0008

 0.0016

 0.0024

 0.0032

density of eigenvalue #1, maximum 0.0032086919732 at x=11, y=12, z=5, t=2

y

x

 4
 8

 12
 16

 4
 8

 12
 16

 0

 0.0008

 0.0016

 0.0024

 0.0032

z=6, t=2

y

x
 4

 8
 12

 16

 4
 8

 12
 16
 0

 0.0008

 0.0016

 0.0024

 0.0032

z=7, t=2

y

x

(a) overlap full lattice

 4
 8

 12
 16

 4
 8

 12
 16

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001

z=13, t=3

y

x
 4

 8
 12

 16

 4
 8

 12
 16

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001

z=14, t=3

y

x

 0

 4

 8

 12

 16

 0

 4

 8

 12

 16
 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

density of eigenvalue #1, maximum 8.84376963119e-05 at x=9, y=10, z=15, t=3

y

x

 4
 8

 12
 16

 4
 8

 12
 16

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001

z=0, t=3

y
x

 4
 8

 12
 16

 4
 8

 12
 16

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001

z=1, t=3

y

x

(b) overlap center-projected lattice

FIG. 10 (color online). Maximum density peak (center) of the
first overlap eigenmode on a 164-lattice at �LW ¼ 3:3 with upper
(above) and lower (below) z-slices of the same t-slice.
Eigenmodes are computed on (a) full lattices, and (b) center-
projected lattices (notice different scales!).
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FIG. 9 (color online). Maximum density peak (center) of the
first asqtad eigenmode on a 204-lattice at �LW ¼ 3:3 with upper
(above) and lower (below) z-slices of the same t-slice.
Eigenmodes are computed on (a) full lattices, and (b) center-
projected lattices.
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center-projected case [Fig. 9(b)], is about an order of
magnitude higher than the peak in the asqtad-unprojected
case [Fig. 9(a)]. This difference is of course reflected in a
comparison of the IPRs of asqtad eigenmodes on the full
and center-projected lattices, shown in Fig. 11, which
indicate a far higher degree of eigenmode concentration
in the center-projected case.

It is worth noting that on both the unprojected and
center-projected lattices, the IPR rises as the lattice spacing
becomes smaller, although the rate of increase is seen to be
quite different. According to Ref. [21] the IPR should go
like 1=a, in which case it should roughly double in going
from �LW ¼ 2:9 to 3.3, �LW ¼ 3:1 to 3.5, or �LW ¼ 3:3 to
3.7. That behavior is at least crudely compatible with our
data [Fig. 11(a)] for the unprojected lattices. As we have
already stressed, this scaling of the IPR does not neces-
sarily mean that eigenmode densities concentrate on three-
volumes, and inspection of the density has revealed peaks

in the eigenmode density in pointlike regions. For center-
projected configurations [Fig. 11(b)] the IPR of the lowest
modes is roughly 11 at �LW ¼ 2:9, 33 at �LW ¼ 3:1, 140
at �LW ¼ 3:3, and 400 at �LW ¼ 3:5. Now, if the eigen-
mode density has support on pointlike regions whose vol-
ume is a fixed number of lattice spacings, regardless of
�LW, then the IPR should go like 1=a4. That means the IPR
should increase by about a factor of 4 from �LW ¼ 2:9 to
3.1, from �LW ¼ 3:1 to 3.3 and from �LW ¼ 3:3 to 3.5.
This is not so far off the actual results.
It is not too surprising that would-be zero modes of the

asqtad operator would be very highly concentrated when
evaluated on center-projected lattices. On thin vortices,
topological charge is concentrated not just in pointlike
regions, but in fact at individual lattice sites on the dual
lattice, where thin vortex sheets writhe and/or intersect.
Since zero modes concentrate on regions of nonzero topo-
logical charge density, and topological charge is concen-
trated at individual sites on the center-projected lattice, the
high degree of localization of the lowest-lying modes, in
volumes of lattice-scale extension, is to be expected. On
unprojected lattices the sources of topological charge,
whether vortices, instantons, calorons, or something else,
are more spread out, and there is no particular reason to
expect that the eigenmode density would concentrate in
tiny regions of lattice scale extension. What we would like
to know, of course, is which of the candidate sources of
topological charge density is giving the main effect. Our
density plots give a strong indication that the charge den-
sity concentrates in pointlike regions, rather than surfaces
or three-volumes, but this fact would be compatible with
instanton, caloron, and vortex (intersection/writhing)
sources. The eigenmode density-vortex surface correla-
tions, seen in Figs. 7 and 8 provide a modest degree of
evidence in support of a vortex origin of topological charge
density. There is also the possibility, of course, that topo-
logical charge density may come from more than one type
of source.

V. CONCLUSIONS

We have shown that center-projected SUð2Þ lattice con-
figurations give rise to a dense low-lying Dirac eigenvalue
spectrum, as required for chiral symmetry breaking, for a
massless lattice Dirac operator in the asqtad formulation.
In contrast, this low-lying spectrum is not found for
chirally-improved and overlap Dirac operators on center-
projected lattices, for reasons which are almost certainly
connected to the lack of smoothness of center-projected
configurations. Chiral symmetry is absent in the chirally-
improved Dirac operator on such configurations, while for
the overlap operator an exact symmetry is present, but is
strongly field-dependent for rough configurations (and thus
quite different from the continuum symmetry). In the case
of the overlap operator we have found that a moderate
degree of ‘‘smoothing’’ of the center-projected lattice
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R. HÖLLWIESER et al. PHYSICAL REVIEW D 78, 054508 (2008)

054508-10



brings back the low-lying spectrum. In a staggered formu-
lation such as asqtad, the smoothness of the lattice con-
figuration has nothing to dowith the exact chiral symmetry,
and the low-lying modes are present for thin vortex
configurations.

There is a general expectation, based on the old Casher
argument [2], that gauge field configurations with the
confinement property ought to also break chiral symmetry.
Our results indicate that this expectation holds for confin-
ing ensembles of thin center vortices, at least when the
relevant lattice Dirac operator (asqtad) has some subset of
the exact chiral symmetry required by the Casher argu-
ment. Although nonconfining lattice configurations may
also break chiral symmetry, we find that vortex-removed
configurations (which are nonconfining) have a large gap
in the asqtad Dirac spectrum around � ¼ 0, indicating an
unbroken chiral symmetry.

We have also looked at the correlation of vortex location
with the densities of low-lying Dirac eigenmodes, follow-
ing the earlier work of Kovalenko et al. [13]. We find that
for both asqtad and overlap eigenmodes computed on an
unmodified lattice, there is a significant positive correlation
between low-lying eigenmode densities and the location of
thin vortices on the corresponding center-projected lattice.
It is found that this correlation is greatest in the neighbor-
hood of points where a large number of vortex plaquettes
meet, such as would be the case for vortex intersections,
‘‘writhings’’, or any combination of these effects. Since
thin vortices in D ¼ 4 dimensions intersect and writhe
only at points, we would therefore expect that low-lying
Dirac eigenmodes are especially concentrated in pointlike
regions. A simple inspection of eigenmode density distri-
butions reveals that these densities do indeed possess sharp
peaks in pointlike regions. The vortex-eigenmode correla-
tions, and the peaks in the eigenmode densities at pointlike
regions, together provide a degree of support for the picture
advanced by Engelhardt and Reinhardt [14], in which
topological charge would tend to concentrate in the neigh-
borhood of center vortex intersection and writhing points.

It is of interest to compare our results to some related
work by Ilgenfritz et al. [23]. These authors report that the
high density regions of overlap zero modes are concen-
trated in regions of dimensionality in the range of zero to
one; the lower bound is consistent with our finding (for
both overlap and asqtad modes) of sharp peaks in the
eigenmode density, located in pointlike regions. We also
take note of the earlier work of Gubarev et al. in ref. [11],
which found IPR’s for overlap eigenmodes consistent with
concentration in pointlike regions (for an overview of this
and other IPR results, cf. [20]). Ilgenfritz et al. [23] also
find a significant positive correlation between the topologi-
cal charge density at a lattice site, and the probability that a
given site is adjacent to a P-vortex sheet or monopole line
on the dual lattice. That result is consistent, assuming a
correlation of zero-mode density and topological charge

density, with the correlations that we (and Kovalenko et al.
[13]) have found between vortices and the densities of low-
lying Dirac eigenmodes.
To summarize: there are significant correlations between

center vortices and the low-lying modes of both the asqtad
and overlap Dirac operators, and this correlation steadily
increases with vortex connectivity (Nv). We also find that
the thin vortices found in center projection give rise to a
low-lying spectrum of Dirac eigenmodes, as required for
�SB by the Banks-Casher formula, providing that the
chiral symmetry of the Dirac operator does not depend
on the smoothness of the lattice configuration. Vortex-
removed configurations do not have these low-lying eigen-
modes, and therefore do not break chiral symmetry. Taken
together, these results indicate that center vortices have a
strong effect on the existence and properties of low-lying
eigenmodes of the Dirac operator.
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‘‘Fonds zur Förderung der Wissenschaften’’ (FWF) under
Contract No. P20016-N16 (R. H.).

APPENDIX

The gauge action used in this work is a tadpole-
improved version of the one-loop continuum limit im-
proved SUð2Þ action of Lüscher and Weisz [24,25].
The standard Lüscher-Weisz action removes leading

ultraviolet cutoff effects by adding a few next-to-nearest
neighbor terms to Wilson’s action. In addition to the stan-
dard plaquette (labeled ‘‘pl’’) term, it includes a sum over
all 2� 1 (planar) rectangle (labeled ‘‘rt’’) and over all 1�
1� 1 parallelogram (labeled ‘‘pg’’) Wilson loop terms
(see Fig. 12). For SUðNÞ lattice gauge fields U�ðxÞ living
on a four-dimensional (� ¼ 0, 1, 2, 3) hypercubic lattice
with sites x and lattice spacing a, the improved action reads

S½U� ¼ �
X
x

�
cpl

X
pl

Spl þ crt
X
rt

Srt þ cpg
X
pg

Spg

�
; (A1)

where � denotes the (inverse) coupling constant and Si ¼
1
N ReTrð1�UiÞ with Ui the corresponding Wilson loops.

(a)
λ

(c)(b)

FIG. 12. Lüscher-Weisz action Wilson loops: (a) standard pla-
quette, (b) 2� 1 rectangle, and (c) 1� 1� 1 parallelogram.
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The coefficients ci ¼ c0i þ 4�	0�i for one-loop correc-
tions �i have been computed by Lüscher and Weisz for
both SUð2Þ and SUð3Þ (Table 1 in Ref. [24]). The contin-
uum limit behavior of the Lüscher-Weisz action can be
further improved by making the lattice links more ‘‘con-
tinuum like.’’ At the mean field level this entails setting
U� ! u�1

0 U�, where one possible choice for the mean

field (or ‘‘tadpole’’) factor u0 is using the expectation value
of the average plaquette

u0 ¼
�
1

N
ReTrUpl

�
1=4
: (A2)

The Lüscher-Weisz action can now be tadpole improved by
explicitly pulling a u�1

0 factor out of each link and replac-

ing 	0 in the one-loop perturbatively renormalized coef-
ficients ci with a nonperturbatively renormalized coupling
	s defined through [25]

	s ¼ �4
lnu0

N

with


N ¼ 0:366 262�
N2 � 1

N
¼

�
1:725 97; for N ¼ 2
3:068 39; for N ¼ 3:

(A3)

Defining �LW � u�4
0 �cpl (since Upl involves 4 links) the

improved action reads for SUð2Þ [25]

S ¼ �LW

X
pl

Spl � �LW

20u20
½1þ 0:2227	s�

X
rt

Srt

� 0:022 24
�LW

u20
	s

X
pg

Spg: (A4)

The tadpole factor u0 is determined during thermalization
and then kept fixed. In view of extracting physical quanti-
ties, we fit the time-dependent potential VðR; TÞ ¼
logðW½R; T � 1�=W½R; T�Þ with W½R; T� the Wilson loop
of size R� T in space-/time-direction, respectively, at
some fixed T, to an ansatz VðRÞ ¼ �TR� c=Rþ v0
(linear-plus-Coulomb fit). In order to obtain an asymptotic
lattice string tension�lat we fit the extracted string tensions
�T for several T values to some stabilizing function
fðTÞ ¼ expð�kT þ dÞ þ � with � giving the asymptotic
(T ! 1) value. All fits were done by least-square routines.
To set the scale we use the physical string tension,ffiffiffiffiffiffiffiffi
�lat

p
=a ¼ ffiffiffiffiffiffiffiffiffiffiffi

�phys
p � 0:44 GeV [26], to determine the lat-

tice spacing a. Table I lists the data for runs of string
tension determination on 204-lattices with a 1000 thermal-
ization steps, 1000 measurements separated by 200 itera-
tions each.

All previous numerical checks of the vortex mechanism,
via maximal center gauge fixing and center projection,
have been carried out on thermalized lattices generated
from Monte Carlo simulations of the Wilson action (a
discussion of these tests and their significance can be found
in Ref. [1].) It is important to repeat these checks for the

new action. It turns out that there are no surprises, and
vortex results derived using the Lüscher-Weisz action are

TABLE I. Lattice string tension �lat and lattice spacing a, as
extracted from linear-plus-Coulomb fits to VðR; T ¼ fixedÞ.
�LW �lat a [fm]

2.9 0:3756� 0:0053 0:2749� 0:0019
3.1 0:2254� 0:0033 0:2129� 0:0016
3.3 0:1112� 0:0017 0:1495� 0:0012
3.5 0:0635� 0:0007 0:1138� 0:0006
3.7 0:0401� 0:0003 0:0898� 0:0003
4.0 0:0225� 0:0002 0:0673� 0:0002
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vortex densities; and (b) center dominance for the string tension.
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consistent with the previous work in the Wilson action.
Here the gauge-fixing procedure is the over-relaxation
method applied to one configuration, resulting in a single
(random) gauge copy. No attempt is made to find the true
global maximum of squared link variables, or the best out
of a set, so technically the procedure corresponds to aver-
aging over all gauge copies of direct maximal center gauge
in the Gribov region. We have compared this procedure to
the ‘‘best copy of five’’ prescription, and have found no
significant difference in the results.

Figure 13(a) shows the P-vortex density (in lattice units)
vs �LW. The solid line is the two-loop asymptotic freedom
behavior for this quantity, for a choice of vortex density �
(area per unit volume) in physical units satisfyingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=6�2

p ¼ 50. Figure 13(b) is a test of vortex dominance;
the figure shows the values for Creutz ratios �ðR; RÞ on the
center-projected lattice at various R and various couplings.
The horizontal bands indicate the asymptotic string tension
on unprojected lattices (middle lines), together with their
corresponding error bars (upper and lower lines). The
center-projected Creutz ratios approach the asymptotic
string tension, but at largest available R values are still
lower by about 10%.

In Fig. 14(a) we show our data for the ratios of vortex-
limited Wilson loopsW1=W0 andW2=W0. Avortex-limited
Wilson loop is a loop built of unprojected links, which is
pierced by n P-vortices on the corresponding center-
projected lattices. It is expected that for sufficiently large
loops in SUð2Þ gauge theory, W1=W0 ! �1 and
W2=W0 ! 1, at least if the vortex piercings are near the
middle of the loop, rather than lying near the perimeter.
The data shown in Fig. 14(a) was collected with this
restriction on P-vortex piercings. Finally, the effect of
vortex removal on Creutz ratios is shown in Fig. 14(b),
together with full and center-projected results, at �LW ¼
3:3. All of this data is similar to corresponding results
previously obtained from simulations of the SUð2Þ
Wilson action.
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