
Proton lifetime bounds from chirally symmetric lattice QCD

Y. Aoki,1 P. Boyle,2 P. Cooney,2 L. Del Debbio,2 R. Kenway,2 C.M. Maynard,3 A. Soni,4 and R. Tweedie2

(RBC-UKQCD Collaboration)

1RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
2SUPA, School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
3EPCC, School of Physics, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
4High Energy Theory Group, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 8 July 2008; published 15 September 2008)

We present results for the matrix elements relevant for proton decay in grand unified theories (GUTs).

The calculation is performed at a fixed lattice spacing a�1 ¼ 1:73ð3Þ GeV using 2þ 1 flavors of domain-

wall fermions on lattices of size 163 � 32 and 243 � 64 with a fifth dimension of length 16. We use the

indirect method which relies on an effective field theory description of proton decay, where we need to

estimate the low-energy constants, � ¼ �0:0112ð25Þ GeV3 and � ¼ 0:0120ð26Þ GeV3. We relate these

low-energy constants to the proton decay matrix elements using leading order chiral perturbation theory.

These can then be combined with experimental bounds on the proton lifetime to bound parameters of

individual GUTs.

DOI: 10.1103/PhysRevD.78.054505 PACS numbers: 11.15.Ha, 12.10.Dm, 12.38.�t, 12.38.Gc

I. INTRODUCTION

Proton decay is a distinctive experimental signature of
grand unified theories (GUTs). Decay experiments can test
the predictions of these theories, and, even though direct
nucleon decays have not been observed, the experimental
lower bound on the decay rate has already ruled out the
simplest minimal supersymmetric models [1]. One of the
expected decay channels is N ! Mþ l, where N and M
indicate, respectively, the nucleon and a pseudoscalar me-
son ðK;�Þ, while l is a lepton ðe;�; �e; ��Þ. This decay is

induced by supersymmetric particles or heavy gauge boson
exchange, which can be integrated out to obtain an effec-
tive Lagrangian describing the low-energy dynamics in
terms of the usual standard model fields. The lowest-
dimensional operators that appear in this approach are
ð �qcqÞð�lcqÞ operators of dimension six; the transition am-
plitude for the decay is proportional to their hadronic
matrix elements hMjð �qcqÞð�lcqÞjNi. A quantitative estimate
of such hadronic matrix elements, which requires taming
nonperturbative QCD effects, is a key ingredient in probing
the effects of higher-dimensional operators in GUT models
at current experiments.

Several determinations of the hadronic matrix elements
have been performed in the past [2–15], using either QCD
bound state phenomenological models, or lattice QCD.
Because of recent progress in simulating dynamical fermi-
ons, lattice QCD has become a quantitative method to
compute hadronic matrix elements from first principles
with controlled systematic uncertainties. The matrix ele-
ments relevant for nucleon decay can be extracted from
three-point correlators computed on the lattice. This is the
so-called directmethod, which requires an expensive com-

puter simulation. However, the same matrix elements can
also be computed, at the cost of introducing difficult to
estimate systematics, using the chiral Lagrangian describ-
ing proton decay [16]: in this case they are expressed as
functions of the low-energy constants (LECs) that appear
in the chiral Lagrangian. These LECs can be computed
from two-point lattice correlators at a lesser computational
cost. However, such an indirect determination of the matrix
elements depends on the accuracy of chiral perturbation
theory, and therefore is affected by an additional source of
systematic error.
In this work, we present a new determination of the

matrix elements that are relevant for nucleon decay based
on the indirect method, using dynamical domain wall
fermion (DWF) configurations with 2þ 1 flavors. Our
results extend the ones obtained for 2 flavors of dynamical
DWF in Ref. [15]. Systematic errors are greatly reduced by
simulating at light quark masses, and using nonperturba-
tive renormalization. Note that the exponentially sup-
pressed chiral symmetry breaking of DWF greatly
simplifies the mixing of operators under renormalization,
which improves the precision of the final result. The cor-
rect number of flavors gives confidence in setting the scale,
a large source of uncertainty in some early lattice
determinations.
The chiral perturbation theory results used for this work

are summarized in Sec. II, which also sets the notation used
throughout the paper. The chiral Lagrangian for nucleon
decay involves two LECs, which are obtained by extrap-
olating to the chiral limit the outcome of numerical simu-
lations performed at light quark masses. A direct
measurement of the hadronic matrix element using lattice
three-point functions, which relies much less on the valid-
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ity of chiral perturbation theory, is in progress, and is
deferred to a subsequent publication.

Details of our lattice simulations are reported in Sec. III.
Our results are obtained from gauge configurations with
volumes of 163 � 32 and 243 � 64. Both have a fifth
dimension of size Ls ¼ 16 and use the Iwasaki gauge
action. The lattice spacing is a � 0:114 fm corresponding
to physical volumes of ð1:8 fmÞ3, and ð2:7 fmÞ3, respec-
tively. Being able to compare two different physical vol-
umes enables us to estimate the finite volume effects.
Results for meson spectroscopy and topology have already
been presented in Ref. [17] for the smaller lattice and in
Ref. [18] for the larger lattice. We refer to these publication
for details of calculations involving the lattices which are
used in this paper. The range of fermion masses simulated
for this work yields a ratio of the pseudoscalar to vector
meson masses in the range 0:378 � mPS=mV � 0:615.
Working at fixed lattice spacing, we are not able to present
a continuum extrapolation for our final result. Nonetheless,
it should be noted that DWFs are automatically O(a)
improved [19], and are therefore expected to have a good
scaling behavior.

Section IV presents our results for the nonperturbative
renormalization (NPR) of the three-quark operators, using
the RI-MOM scheme. We compute the renormalization
mixing matrix and perform the matching required to obtain

the renormalized operators in the MS scheme.
In the last section of the paper, we combine the lattice

amplitudes with the renormalization factors to compute the

phenomenologically relevant matrix elements in the MS
scheme. We discuss the error budget in detail including
estimates of the systematic error due to the chiral extrapo-
lation, the renormalization, the finite volume, and the
choice of method to set the lattice spacing, and the foresee-
able improvements on the current estimate.

II. CHIRAL LAGRANGIAN FOR PROTON DECAY

Integrating out the heavy GUT particles yields the low-
energy effective Lagrangian describing nucleon decay
written in terms of the QCD fundamental fields:

L �B ¼ X
d¼1;2

X4
i¼1

CðiÞd QðiÞd þ
X

d¼1;2

X6
i¼1

~CðiÞd ~QðiÞd ; (1)

where d denotes the generation of the lepton produced in
the decay, and i is a label for the dimension-six operators
containing three quark and one lepton field that describe

nucleon decay. CðiÞd and ~CðiÞd are Wilson coefficients. The

full list of operators QðiÞ, ~QðiÞ was identified on symmetry
grounds in Refs. [20–22]; their matrix elements between
hadronic states determine the decay amplitude. For in-
stance, the matrix elements that are relevant for the process
where a proton decays into a pion are

h�ð ~pÞj�abcðuaTCPR;Ld
bÞPLu

cjpð ~k; sÞi
¼ PL½WR=LL

0 ðq2Þ � iq6 WR=LL
q ðq2Þ�uðk; sÞ; (2)

where a, b, c are color indices, C is the charge-conjugation

operator, and PR;L ¼ 1��5

2 are the right- and left-handed

projectors. The nonperturbative dynamical effects are cap-
tured by the two form factors that appear on the right-hand
side of Eq. (2), while q (the momentum carried by the
electron) is the momentum transfer. It is convenient to
introduce here a generic notation for three-quark operators
with an arbitrary spin structure:

O ��0 ð ~x; tÞ ¼ �abc½uað ~x; tÞðC�Þdbð ~x; tÞ��0ucð ~x; tÞ; (3)

where � and �0 are elements of the Clifford algebra in four-
dimensional Euclidean space-time, and we have omitted
spinor indices. We use the notation S ¼ 1, P ¼ �5, V ¼
��, A ¼ ���5, T ¼ ��� ¼ 1

2 f��; ��g, R ¼ PR, and L ¼
PL. Further operators with this structure appear when
computing the nucleon mass, and upon renormalization,
as discussed in Secs. III and IV.
Following the notation in Refs. [13,16], the chiral

Lagrangian describing baryon-meson dynamics is written
in terms of a pseudoscalar meson (octet) field:

	 ¼

ffiffi
1
2

q
�0 þ

ffiffi
1
6

q

 �þ Kþ

�� �
ffiffi
1
2

q
�0 þ

ffiffi
1
6

q

 K0

K� �K0 �
ffiffi
2
3

q



0
BBBB@

1
CCCCA; (4)

and a spinor baryon (octet) field:

B ¼

ffiffi
1
2

q
�0 þ

ffiffi
1
6

q
�0 �þ p

�� �
ffiffi
1
2

q
�0 þ

ffiffi
1
6

q
�0 n

�� �0 �
ffiffi
2
3

q
�0

0
BBBB@

1
CCCCA: (5)

At lowest order in powers of momentum, and in Euclidean
space-time, the chirally symmetric Lagrangian is written as

L0 ¼ f2

8
Trð@��Þð@��yÞ þ Tr �Bð��@� þMBÞB

þ 1

2
Tr �B��½�@��y þ �y@���B

þ 1

2
Tr �B��B½ð@��Þ�y þ ð@��yÞ��

� 1

2
ðD� FÞTr �B���5B½ð@��Þ�y � ð@��yÞ��

þ 1

2
ðDþ FÞTr �B���5½�@��y � �y@���B; (6)

where the unitary matrices � and � are defined as

� ¼ exp

�
2i	

f

�
; � ¼ exp

�
i	

f

�
: (7)
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Introducing a diagonal quark mass matrix,

M ¼
mu

md

ms

0
@

1
A; (8)

the symmetry-breaking part of the chiral Lagrangian be-
comes

L1 ¼ �v3 Trð�yMþM�Þ � a1 Tr �Bð�yM�y þ �M�ÞB
� a2 Tr �BBð�yM�y þ �M�Þ
� b1 Tr �B�5ð�yM�y � �M�ÞB
� b2 Tr �B�5Bð�yM�y � �M�Þ: (9)

The low-energy constants that appear in the chiral
Lagrangian are extracted from phenomenological analy-

ses. In particular, following the notation in Ref. [16], f is
the pion decay constant in the chiral limit, 130(5) MeV
[23]. The combination FþD yields the nucleon axial
charge, gA ¼ 1:2695ð29Þ [23], while the combination F�
D is related to the ratio of the zero-momentum form factors
for semileptonic hyperon decay, g1=f1 [24]. Together these
give F ¼ 0:47ð1Þ and D ¼ 0:80ð1Þ. a1 and a2 are
symmetry-breaking parameters, but their values are not
required in this work. The parameters b1, b2 are not
precisely determined and are an extra source of systematic
error.
The transformation properties under SUð3ÞL � SUð3ÞR

of the three-quark operators in Eq. (1) determine the ex-
pression of the baryon-number violating operators in the
chiral Lagrangian. The latter appear in the Lagrangian with
two new low-energy constants � and � [16]:

L�B ¼ �
X2
d¼1
fCð1Þd ½edL TrF�BL�� �dL TrF 0�BL�� þ Cð2Þd edR TrF�yBR�

y þ ~Cð1Þd ½edL Tr ~F�BL�� �dL Tr ~F
0�BL��

þ ~Cð2Þd edR Tr ~F�yBR�
y þ ~Cð5Þd �dL Tr ~F

00�BL�g þ �
X2
d¼1
fCð3Þd ½edL TrF�BL�

y � �dL TrF 0�BL�
y�

þ Cð4Þd edR TrF�yBR�þ ~Cð3Þd ½edL Tr ~F�BL�
y � �dL Tr ~F

0�BL�
y� þ ~Cð4Þd edR Tr ~F�yBR�

þ ~Cð6Þd �dL Tr ~F
00�BL�

yg þ H:c: (10)

The matrices F , F 0, ~F , ~F 0, and ~F 00 are projectors in
flavor space; their explicit expressions are

F ¼
0 0 0
0 0 0
1 0 0

0
@

1
A; F 0 ¼

0 0 0
0 0 0
0 1 0

0
@

1
A;

~F ¼ �
0 0 0
1 0 0
0 0 0

0
@

1
A; ~F 0 ¼ �

0 0 0
0 1 0
0 0 0

0
@

1
A;

~F 00 ¼
0 0 0
0 0 0
0 0 1

0
@

1
A:

(11)

Equations (10) and (11) show that the low-energy con-
stants � and � determine the matrix elements:

h0jORLjpðk; sÞi ¼ �PLuðk; sÞ; (12)

h0jOLLjpðk; sÞi ¼ �PLuðk; sÞ; (13)

where uðk; sÞ is the spinor associated with a proton of
momentum k and spin projection s. The phase definition
is fixed such that � and � are real and �< 0. As we will
later describe, we observe �þ � ’ 0, which is expected
because of the relation,

ð�þ �Þuðk; sÞ ¼ �h0j�abcðuTaCdbÞ�5u
cjpðk; sÞi; (14)

which vanishes in the nonrelativistic limit and is known to
be quite small even at small quark masses [25].
Using chiral perturbation theory to compute the matrix

element in Eq. (2) yields for the N ! � transition [13,16]:

h�0jORLjpðk; sÞi ¼ �PLuðk; sÞ
�

1ffiffiffi
2
p

f
�Dþ Fffiffiffi

2
p

f

��q
2 þm2

N

�q2 �m2
N

� 4b1ffiffiffi
2
p

f

mumN

�q2 �m2
N

�

� �PLiq6 uðk; sÞ
�
Dþ Fffiffiffi

2
p

f

2mN

�q2 �m2
N

þ 4b1ffiffiffi
2
p

f

mu

�q2 �m2
N

�
; (15)

h�0jOLLjpðk; sÞi ¼ �PLuðk; sÞ
�

1ffiffiffi
2
p

f
�Dþ Fffiffiffi

2
p

f

��q
2 þm2

N

�q2 �m2
N

� 4b1ffiffiffi
2
p

f

mumN

�q2 �m2
N

�

� �PLiq6 uðk; sÞ
�
Dþ Fffiffiffi

2
p

f

2mN

�q2 �m2
N

þ 4b1ffiffiffi
2
p

f

mu

�q2 �m2
N

�
; (16)

where q is the four-momentum of the outgoing lepton. In
the limit where q2 � m2

N and b1mu � mN , these expres-
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sions simplify to

h�0jORLjpðk; sÞi ’ �PLuðk; sÞ
�

1ffiffiffi
2
p

f
þDþ Fffiffiffi

2
p

f

�

þOðm2
l =m

2
NÞ; (17)

h�0jOLLjpðk; sÞi ’ �PLuðk; sÞ
�

1ffiffiffi
2
p

f
þDþ Fffiffiffi

2
p

f

�

þOðm2
l =m

2
NÞ; (18)

where�q2 ¼ m2
l is the on-shell condition for the outgoing

lepton. The equations above relate the proton decay matrix
elements to the low-energy constants � and �; note that, in
order to reconstruct the matrix elements on the left-hand
side of Eqs. (17) and (18) using the indirect method, the
combination FþD and the pion decay constant, f, are
also required.

III. LATTICE SIMULATIONS

A. Data set description

The analysis was performed on 2þ 1 flavor DWF en-
sembles with volumes of 163 � 32 and 243 � 64 generated
using the Iwasaki gauge action with � ¼ 2:13 and the
domain-wall fermion quark action with Ls ¼ 16. At each
volume we generated sets of configurations with a light
isodoublet with masses amud ¼ 0:005 (243 � 64 only),
0.01, 0.02, or 0.03 and a fixed approximate strange quark
mass, ams ¼ 0:04. The ensembles, described in [18,26],
have a fixed inverse lattice spacing of a�1 ¼ 1:73ð3Þ GeV
and were generated with the RHMC algorithm with a
trajectory length of � ¼ 1. These same data sets were
used to calculate gA, [27]. The configurations used for

both the nonperturbative renormalization and the matrix
element calculation are shown in Table I.
For each of the seven ensembles matrix elements were

calculated using correlation functions composed of va-
lence quarks with masses equal to the light quark mass in
the sea. To improve statistics, correlators were over-
sampled and averaged into bins whose size depended on
the Monte Carlo time separation between measurements.
The binning was consistent with the integrated autocorre-
lation length for the pseudoscalar meson correlators at the
time separation typically used, which was calculated to be
of order 50 trajectories. Multiple sources per configuration
and several different types of smearing have also been used
to improve the signal. As well as local sources (L), we
employ gauge-invariant Gaussian smearing with two dif-
ferent smearing radii (G and G � ) and gauge fixed hydro-
genlike wave function smearing (H). One or both of the
propagators used to construct the two-point correlators for
mesons may be smeared while for baryons, one, two, or all
three propagators may be smeared. We adopt the same
convention used in Ref. [28] for naming the smeared
two-point functions.
The chiral limit is defined as the value of amf such that

amf þ amres ¼ 0, where amres ¼ 0:00315ð2Þ is the resid-
ual quark mass, estimated in Refs. [26,28,29]. The lattice
scale is determined from a combination of the �� baryon
mass and the pseudoscalar kaon and pion masses, yielding
a value a�1 ¼ 1:729ð28Þ GeV (see Ref. [18] for details).
The parameters used in the simulations correspond to a

pseudoscalar meson mass ranging from 331 MeV to
671 MeV. The renormalization constant for the axial cur-
rent, ZA ¼ 0:7162ð2Þ, which we will use in the nonpertur-
bative renormalization of the nucleon decay operators, was

TABLE I. RHMC 2þ 1 flavor data sets used for the nonperturbative renormalization and matrix element calculation. V is the space-
time volume of the lattice, Ls is the extent of the fifth dimension, amud is the up sea quark mass (the strange sea quark mass is kept
fixed at 0.04), Ntraj is the lowest to highest trajectories analyzed with matrix elements calculated every � trajectories, Ncfg is the

number of configurations, Nsrc is the number of quark propagators solved with different source locations, and Nbin is the bin size.
243 � 64� 16 data were generated for the nonperturbative renormalization calculation, however, it was only used as a check for finite
volume errors and so does not appear here. For the 243 � 64� 16 matrix element data, there are two independent runs for each of the
sea quark masses. These independent runs used different smearings, �, source locations, and Nsrc.

Matrix elements NPR

V � Ls amud Ntraj � Ncfg Nsrc Nbin Ntraj � Ncfg Nsrc Nbin

0.01 500–4000 10 175 4 8 1000–4000 40 75 4 1

163 � 32� 16 0.02 500–4000 10 175 4 8 1000–4000 40 75 4 1

0.03 500–7580 10 177 2 8 1000–4000 40 75 4 1

0.005 900–4500 10 90 2 8

10 90 2� 2 8

243 � 64� 16 0.01 1500–3860 10 59 2 8

40 59 2 2

0.02 1800–3600 10 45 2 8

40 45 2 2

0.03 1020–3060 20 51 1 2

40 51 1 1
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obtained from a hadronic matrix element of the conserved
DWF axial current in Ref. [29].

B. Nucleon mass and amplitude

Starting from the correlator of two operators, O�1�2 and
O�3�4 , we can define the scalar two-point function:

f�1�2;�3�4
ðtÞ ¼X

~x

Tr

�
hO�1;�2ð ~x; tÞ �O�3;�4ð0Þi

�
1þ �4

2

��
:

(19)

Using the notation introduced so far, OPSð ~x; tÞ is the usual
local proton interpolating operator:

O PSð ~x; tÞ ¼ �abc½uaTð ~x; tÞC�5d
bð ~x; tÞ�ucð ~x; tÞ; (20)

and the large-time exponential falloff of the correlator
fPS;PS is dictated by the nucleon mass:

fPS;PSðtÞ ¼ 2e�amNtG2
N þ . . . ; (21)

where GN is the overlap of the proton interpolating field to
the normalized proton state:

h0jOPSð~0; 0Þjpðk; sÞi ¼ GNuðk; sÞ: (22)

The nucleon mass is obtained from the two-point functions
fPS;PSðtÞ and fA4S;A4SðtÞ, each of them being computed for

several smearing combinations. First, for each two-point
function and for each smearing combination, we calculate
the effective mass:

mN;effðtÞ ¼ log

�
fðtÞ

fðtþ 1Þ
�
; (23)

where fðtÞ indicates the two-point function in any one of
the channels used for the analysis. Results for the effective
mass computed from both two-point functions, and for two
different smearing combinations, are reported in Fig. 1.

The agreement between the different channels within the
error bars is clearly seen in the first plot on the left for the
243 � 64 data with amu ¼ 0:01. The effective mass can be
fitted to the same constantm for each channel; correlations
between different time-slices are taken into account by
minimizing a correlated 2:

ðnÞ2ðmðnÞÞ ¼X
t;t0
½mðnÞN;effðtÞ �mðnÞ�CðnÞ�1

tt0 ½mðnÞN;effðt0Þ �mðnÞ�;

(24)

where CðnÞ
tt0 is the covariance matrix:

CðnÞ
tt0 ¼

1

Nboot

XNboot

m¼1
½ �mðn;mÞN;eff ðtÞ � h �mðnÞN;effðtÞi�½ �mðn;mÞN;eff ðt0Þ

� h �mðnÞN;effðt0Þi�; (25)

the index n represents a bootstrap resampling of the origi-
nal data, and the indexm represents a bootstrap resampling
of the nth bootsample. Nboot is the number of bootstrap

samples, �mðn;mÞN;eff ðtÞ is the effective mass determined from

themth resampling of the nth bootsample, and h �mðnÞN;effðtÞi is
the average of the effective mass over the mth resampling
of the nth bootsample.
All channels display a plateau for the effective mass, and

the limiting values are compatible within the statistical
errors. The smeared propagators reach the limiting value
earlier, as expected, thus yielding a longer plateau for the
fit to be performed. In order to increase the precision of the
fit, all channels were fitted simultaneously to a single
constant m; correlations between different channels are
also taken into account in the construction of the covari-
ance matrix. Note that with this fitting procedure several
channels are fitted simultaneously without adding extra
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FIG. 1 (color online). (a) Effective mass plot; (b) effective amplitude [Eq. (26)] plot for the nucleon. Both are calculated on the
243 � 64 data set with amu ¼ 0:01. The different colors in the effective mass plot correspond to different smearings. Data sets are
labeled with the smearing (i.e. LL). Those data sets labeled with a 2 use the operator fA4S;A4SðtÞ, the rest use fPS;PSðtÞ. (c) Linear
extrapolation of the ground state mass to the chiral limit.
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parameters, and the minimization in the one-dimensional
parameter space can be performed analytically.

The fit to the amplitude, GN , is subsequently performed
by defining an effective amplitude:

G2
N;effðtÞ ¼ 1

2fPS;PSðtÞ expðmtÞ; (26)

where m is the nucleon mass obtained in the fit described
above, and we used the same notation as in Eq. (23) to

denote the two-point function. GN is then obtained from a
fit to a constant by minimizing a fully correlated 2, as
discussed above for the nucleon mass. Results for GN;effðtÞ
are displayed in Fig. 1(b), where a long plateau is clearly
visible.
For all the fits presented here, the results of the minimi-

zation procedure are stable with respect to sensible varia-
tions of the fit range. All the correlators, smearings, and fit

TABLE II. Smearings, operators, and fit ranges used for the calculation of nucleon masses, nucleon amplitudes, and matrix elements.

V ¼ 163 � 32 V ¼ 243 � 64
mu Fit range Fit range

Smearing O�� mN GN � � Smearing O�� mN GN � �

0.005 LL OPS . . . 9–12 5–8 5–9

HL OPS 6–12 . . . 4–10 4–9

HL OA4S 6–12 . . . . . . . . .
G*L OPS 6–12 . . . . . . . . .
G*G* OPS 6–12 . . . . . . . . .

0.01 LL OPS 9–12 9–12 5–8 5–8 LL OPS 9–12 9–12 7–11 5–10

LL OA4S 9–12 . . . . . . . . . LL OA4S 9–12 . . . . . . . . .
GL OPS 9–12 . . . 3–8 3–8 GL OPS 8–12 . . . 7–11 4–10

GL OA4S 9–12 . . . . . . . . . GL OA4S 8–12 . . . . . . . . .
G*L OPS 7–12 . . . . . . . . .

0.02 LL OPS 9–12 9–12 6–12 5–12 LL OPS 9–10 9–12 7–11 5–10

LL OA4S 9–12 . . . . . . . . . LL OA4S 9–10 . . . . . . . . .
GL OPS 8–12 . . . 6–10 4–14 HL OPS 9–11 . . . 7–11 7–10

GL OA4S 8–12 . . . . . . . . . HL OA4S 9–11 . . . . . . . . .
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FIG. 2 (color online). Effective mass plots for the nucleon on the amu ¼ 0:005, V ¼ 243 � 64 ensemble. The different colors in the
effective mass plot correspond to different smearings. Data sets are labeled with the smearing (i.e. LL). Those data sets labeled with a 2
use the operator fA4S;A4SðtÞ, the rest use fPS;PSðtÞ. (a) Fit before scaling the errors; (b) fit after rescaling the errors.
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ranges are summarized in Table II. Variations of the fitted
parameters remain within their statistical error as the
bounds of the fitting range are shifted by �1 timeslice.

For the case of the nucleon mass on the amu ¼ 0:005,
V ¼ 243 � 64 ensemble (the ensemble with the lightest
valence quark mass), there was some difficulty in judging
exactly where the plateau for the effective mass started.
Fitting to different time ranges gave incompatible results.
To account for this, we performed a fit over a large-time

range, spanning the multiple potential plateaus. The in-
compatibility of the data was reflected in a poor value of 2

per degree of freedom (d.o.f) of 4.3. In order to deal with
this we rescaled the errors on all the points in the effective

mass plot by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=d:o:f

p
and performed a second fit to this

rescaled data. This gave a 2=d:o:f of 1, as expected, and a
fitted mass compatible with the best fit value from before,
but with a larger error. The fits to the effective mass on this
ensemble before and after rescaling are shown in Fig. 2.

TABLE III. Results from fits described in this paper. The nucleon masses of the LECs � and � are reported as a function of the quark
masses, for both lattices used in this study. The results of linear chiral extrapolations are also reported in the last line of each column.
All the results are given in units of the lattice spacing a � 0:12 fm.

V � Ls amud=ams amN a3� a3�

0:03=0:04 0.908(6) �0:00695ð19Þ 0.00719(21)

163 � 32� 16 0:02=0:04 0.819(8) �0:00605ð31Þ 0.00606(30)

0:01=0:04 0.722(19) �0:00478ð43Þ 0.00511(47)

chiral �0:00349ð64Þ 0.00369(63)

0:03=0:04 0.892(10) �0:00689ð33Þ 0.00621(38)

243 � 64� 16 0:02=0:04 0.805(12) �0:00571ð32Þ 0.00598(38)

0:01=0:04 0.720(10) �0:00508ð29Þ 0.00486(28)

0:005=0:04 0.671(5) �0:00397ð18Þ 0.00400(22)

chiral �0:00326ð27Þ 0.00348(32)
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FIG. 3 (color online). The ratio R� in Eq. (30) for the 243 � 64 data set with amu ¼ 0:005, 0.01, 0.02, and 0.03, respectively. The
different colors correspond to different source smearing. Horizontal lines show the fit to the plateau.
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The nucleon mass and amplitude are extrapolated line-
arly to the chiral limit. The result of the extrapolation for
the nucleon mass on the 243 � 64 data set is displayed in
Fig. 1(c). The results for the nucleon masses obtained from
the fits are summarized in Table III.

C. Low-energy constants

As discussed in the previous section, the low-energy
parameters � and � appearing in the chiral Lagrangian
can be calculated at leading order through the proton to
vacuum matrix elements:

h0jORLjpðk; sÞi ¼ �PLuðk; sÞ;
h0jOLLjpðk; sÞi ¼ �PLuðk; sÞ;

(27)

� h0jOLRjpðk; sÞi ¼ �PRuðk; sÞ;
�h0jORRjpðk; sÞi ¼ �PRuðk; sÞ;

(28)

where Eq. (28) is obtained from Eq. (27) by parity trans-
formation. The low-energy constants are obtained from the
asymptotic behavior of ratios of two-point functions for
large Euclidean time t:

R�ðtÞ ¼ 2GN

fRL;PSðtÞ
fPS;PSðtÞ ! �; (29)

R�ðtÞ ¼ 2GN

fLL;PSðtÞ
fPS;PSðtÞ ! �: (30)

A typical plateau obtained for R� is shown in Fig. 3. Two
different smearing combinations were used in the analysis,
which correspond, respectively, to a local and a smeared
interpolating field OPSð ~x; tÞ for the nucleon. They both
yield consistent results, as shown in the plot. The values
of the low-energy constants were obtained by fitting the
data to a constant, for each value of the quark masses. As
for the spectrum, 2 is always defined taking into account

the correlation between different time slices. The results
obtained from the fits are given in Table III.
The data points are extrapolated linearly to the chiral

limit, as shown in Fig. 4. The data in the mass range studied
in this work appear to be consistent with a linear behavior,
leading to a good fit for the chiral extrapolation. An un-
correlated 2 is used in this case, since the points at differ-
ent values of the quark mass are produced by independent
runs.

IV. NONPERTURBATIVE RENORMALIZATION

A. RI-MOM mixing matrix

For the nonperturbative renormalization of the proton
decay matrix elements we employ the nonperturbative,
MOM scheme, renormalization technique of the Rome-
Southampton group [30] as used by [15,30,31]. The appli-
cation of this technique to proton decay matrix elements is
outlined in [15] which we briefly summarize.

The operators, O��0 , can be classified according to their
symmetry properties under parity (P ) and the so-called
switching transformation (S). The result of such classifi-
cation is summarized in Table IV. In the presence of chiral
symmetry breaking, operators that belong to the same
sector mix under renormalization. Concentrating on the
S� sectors, the renormalized operators in the parity basis
are defined as

O A
ren ¼ ~ZAB

NDO
B
latt; A; B ¼ fSS; PP; AAg; (31)

where A andB label the possible choices for ��0 and ~ZAB
ND is

a 3� 3 mixing matrix. The same mixing matrix renorm-
alizes the operators in the sector P� and Pþ. The chirality
basis, which contains the operators of interest for the
nucleon decay matrix elements, consists of

LL ¼ 1
4ðSSþ PPÞ � 1

4ðSPþ PSÞ; (32)

RL ¼ 1
4ðSS� PPÞ � 1

4ðSP� PSÞ; (33)
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FIG. 4 (color online). Linear chiral extrapolation for the ratios R� (a) R� (b) for the 243 � 64 data set.
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AðLVÞ ¼ 1
2AA� 1

2ð�AVÞ; (34)

hence, the mixing matrix in the chirality basis, ZND, and in
the parity basis are related via:

ZND ¼ T ~ZNDT �1; (35)

where

T ¼
1=4 1=4 0
1=4 �1=4 0
0 0 1=2

0
@

1
A: (36)

The mixing matrix in the parity basis is computed from the
nonperturbative amputated three-quark vertex function of
the operators in the S� sector as a function of external leg
momentum p after gauge fixing to Landau gauge. The
number of configurations used in the nonperturbative re-
normalization is given in Table I. The vertex function is
defined as the amputated Fourier transform of the correla-
tor of OA with three-quark spinors:

GAðp2Þabc���� ¼ �a
0b0c0 ðC�Þ�0�0�0��0 hQa0a

�0�ðpÞ
�Qb0b

�0�ðpÞQc0c
�0�ðpÞi; (37)

where

Qa0a
�0�ðpÞ ¼ hSa

0a00
�0�00 ðpÞi�1Sa

00a
�00�ðpÞ;

Sa
0a

�0�ðpÞ ¼
Z

dxe�ip:xSa0a�0�ðxÞ;
(38)

SðxÞ is the quark propagator, and �, �0 are the matrices that
appear in OA.
Introducing the mixing matrix:

MABðp2Þ ¼ GA
abc���� 	 PB

abc����; (39)

the renormalization condition in the RI-MOM scheme
reads:

Z�3=2q ~ZBC
NDM

CA ¼ �BA; (40)

where Zq is the quark wave function renormalization; a, b,

c are color indices and �, �, �, and � are spin indices
associated with �, �0, respectively. The projection opera-
tors,

PSS ¼ 1
96�

abcðC�1Þ�����; (41)

PPP ¼ 1
96�

abcð�5C
�1Þ�����

5 ; (42)

PAA ¼ 1
384�

abcð�5��C
�1Þ��ð�5��Þ��; (43)

are chosen such that the renormalization condition in
Eq. (40) is satisfied in the free field case: Zq ¼ 1, ZBC

ND ¼
�BC.
Figure 5 shows the mixing matrix, MAB, in the chirality

basis as a function of external leg momentum. The set of
momenta used to calculate the mixing matrix is defined by

p ¼
�
2�

Lx

nx;
2�

Ly

ny;
2�

Lz

nz;
2�

Lt

nt

�
; (44)

where Lx ¼ Ly ¼ Lz is the spatial size of the lattice and Lt

is the time extent. Combinations of ðnx; ny; nz; ntÞ such that
�2 � nx; ny; nz � 2 and �4 � nt � 4 are chosen and

then averaged into equal p2 values.
Operator mixing is induced by chiral symmetry break-

ing. The extent to which chiral symmetry is broken in the
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FIG. 5 (color online). The mixing matrix M in Eq. (39) in the chirality basis, ��0 ¼ fLL; RL; AðLVÞg, as a function of the lattice
momentum squared for the 163 � 32 lattices with amu ¼ 0:01, 0.02, and 0.03 (from left to right, respectively). The off-diagonal
mixing between operators is highly suppressed. It is worthwhile to note that the mass dependence of the mixing matrix is very mild.

TABLE IV. Classification of the O��0 operators according to
their transformation properties under parity and switching.

S� Sþ

P� SS, PP, AA VV, TT
Pþ SP, PS, �AV �VA, T ~T
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domain-wall action is parameterized by the residual mass,
amres, and the induced mixing is expected to be suppressed
by a factor ðamresÞ2 [32]. It may be seen from Fig. 5 that, in
the window of momenta for which contributions from both
hadronic effects (low momenta) and contributions from
discretization effects (high momenta) are small, the chiral
symmetry afforded by the domain-wall fermions sup-
presses the mixing between different chirality operators
and results in a mixing matrix which is essentially diago-
nal. This greatly simplifies the calculation of the proton
decay matrix elements compared to, for example, Wilson
fermions [13].

The matrix ~ZND can be obtained from the relation M ¼
Z3=2
q ~Z�1ND, as shown in Eq. (40), which requires Zq to be

computed. Instead, we remove the Zq dependence and

exploit the accurate determination of ZA ¼ 0:7162ð2Þ at
the chiral limit, which was computed from ratios of had-
ronic matrix elements in Ref. [17], together with the aver-
age of the amputated local axial vector and vector bilinear
currents, which allows the evaluation of the factor �A ¼
Zq=ZA. Figure 6 shows the average and difference of the

amputated local axial vector and vector bilinear currents.
The nonzero difference may be taken as a measure of the
systematic error of the renormalization constant arising
from the closing of the window where the RI-MOM NPR
can be safely applied. It may be observed that for ðapÞ2 

1:7 there is <1% effect, which is enhanced to 2% by
extrapolation of ðapÞ2 ! 0.

The product ð�AÞ�3=2M�1 yields ~ZND=Z
3=2
A for each

value of the sea quark mass, without having to deal directly
with Zq. At finite lattice spacing, ZA’s only scale depen-

dence is due to the discretization error, which starts at
Oða2p2Þ. Finally, the rotation to the chirality basis and a
linear chiral extrapolation are performed, the latter may be

done very precisely, as the mass dependence is extremely
mild, as shown in Fig. 5. As an example, the p2 dependence

of the LL element of the matrix ZND=Z
3=2
A is displayed in

Fig. 6.

B. Scheme matching and RG running

In order to relate the lattice, MOM scheme, matrix

elements at scale p to those in the MS, NPR scheme at
some scale � we compute the factor

UMS lattð�Þ ¼ UMSð�;pÞ ZMSðpÞ
ZMOMðpÞZNDðpÞ; (45)

where ZMSðpÞ=ZMOMðpÞ is the matching factor from MS
scheme to MOM scheme at a scale p calculated using

continuum perturbation theory, and UMSð�;pÞ is the re-
normalization group evolution factor from scale p to � in

theMS scheme. The matching factor has been computed in
Ref. [15]:

ZMS

ZMOM
¼ 1þ �s

4�

�
433

180
� 1123

90
ln2

þ �

�
587

180
� 317

90
ln2

��
; (46)

where � ¼ 0 as we work in Landau gauge. The MS evo-
lution factor reads

UMSð�;pÞ ¼
�
�sð�Þ
�sðpÞ

�
�0=2�0

�
1þ

�
�1

2�0

� �1�0

2�2
0

�

� �sð�Þ � �sðpÞ
4�

�
; (47)
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FIG. 6 (color online). The figure on the left shows the average and the difference of the amputated local axial vector and vector
bilinear currents as a function of ðapÞ2. In the figure on the right, the black points show the MOM scheme renormalization factor in the
chiral limit for the OLL operator normalizsed by the axial current renormalization factor ZA as a function of the renormalization scale
ðapÞ2. The red points show the renormalization factor in the MS scheme at a scale � ¼ 1=a as a function of the matching scale. The
red line shows the linear extrapolation in ðapÞ2, where the blue points are those included in the extrapolation.
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�0 ¼ 11� 2

3
Nf; �1 ¼ 102� 38

3
Nf; (48)

�0 ¼ �4; �1 ¼ �
�
14

3
þ 4

9
Nf � 4�

�
; (49)

where the anomalous dimension of the nucleon decay

operator has been calculated up to two loops in MS,
NDR scheme [33] and � ¼ 0, �10=3 for LL, RL opera-
tors, respectively. The value of �sðpÞ is obtained by inte-
grating numerically the four-loop � function of Ref. [34],
starting from �sðMZÞ ¼ 0:1176ð2Þ [23], and matching the
value of �s across the b and c thresholds.

TheMS renormalization factor, Eq. (45), at a fixed scale
� ¼ 1=a is plotted in Fig. 6 as a function of the square of
the scale at which the lattice, MOM scheme, renormaliza-
tion calculation was performed. The remaining momentum
dependence, due to Oða2p2Þ discretization errors, is re-
moved by performing a linear extrapolation in ðapÞ2 to
ðapÞ2 ¼ 0, which is also shown in Fig. 6. This extrapola-
tion is performed over the range 1:7< ðapÞ2 < 2:5 where
the nonperturbative effect, estimated at 2%, is expected to
be small.

Together with the value of ZA from the hadronic matrix
element ratio and using Eq. (47) to run from � ¼ 1=a to
� ¼ 2 GeV we obtain

UMS lattð� ¼ 2 GeVÞLL ¼ 0:662� 0:010

UMS lattð� ¼ 2 GeVÞRL ¼ 0:665� 0:008;

where the error is statistical.

V. DISCUSSION

The errors on all quantities so far have been purely
statistical. From the results in Table III we can see that
for this matrix element and for the statistics available, there
are no significant finite volume effects as the results on
both volumes agree within errors. Figure 7 shows the
agreement for � between the two volumes. As discussed
in Sec. III B, there is an additional systematic error in
calculating the nucleon mass on the ensemble with the
lightest valence quark mass (amu ¼ 0:005). For a conser-
vative analysis we performed an extrapolation for � and �
both with and without this lightest point. This gave a result
which differed by 18% for � and 17% for � as shown in
Fig. 8. We use this as an estimate of the error in extrapolat-
ing to the chiral limit.

It should be noted that in our simulation, the strange
quark mass is held fixed and hence in the extrapolation,
only the light quarks are taken to the chiral limit. However,
if we compare our result with the Nf ¼ 2 result from [15]

we see there is very good agreement (see Fig. 9). For Nf ¼
2, the strange quark mass is effectively infinite; the agree-
ment signifies that � and � have little dependence on the
strange sea quark mass.

For the NPR, we estimate a systematic error of 8%
which is dominated by the error from truncating the per-
turbative expansion for the matching factor at order �2

s in
Eq. (46).
Adding all of these uncertainties in quadrature, and

together with the values for the matrix elements in
Table III, we estimate the low-energy parameters renor-
malized at � ¼ 2 GeV to be

� ¼ �0:0112� 0:0012ðstatÞ � 0:0022ðsystÞ GeV3; (50)

� ¼ 0:0120� 0:0013ðstatÞ � 0:0023ðsystÞ GeV3: (51)

The results for various determinations of � are summa-
rized in Fig. 9. The agreement between recent lattice
computations suggests that lattice QCD is being successful
at determining the low-energy constants describing nu-
cleon decay with increasingly smaller systematic
uncertainty.
The indirect computation of the proton lifetime has a

further nonlinear systematic error, due to the use of chiral
perturbation theory in a kinematic regime where the pion
has a large momentum. The relevant matrix element has
been computed using both the indirect and direct methods
in Ref. [15] where sizeable differences were seen between
the two methods. For the case of the matrix elements in
Eq. (17) and (18), the indirect method was found to give an
estimate for the matrix element of about 2 times larger than
the direct method.
Finally, let us discuss one way to use our result to

discriminate between GUTs. The proton partial decay
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FIG. 7 (color online). The LEC � measured on the two differ-
ent volumes. There are no noticeable finite size effects. The
chiral extrapolations from the two volumes are shown as white
filled circles and also agree within errors.
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width in a generic channel can be split into

� ¼ LEC2 � AQCD � AGUT; (52)

where LEC is the low-energy constant, � or �, that we
calculated earlier in this paper, AQCD contains information

from QCD parameters, and AGUT contains all the informa-
tion about the underlying high-energy theory, including
constants from the GUT. For the minimal SUSY SU(5)
GUT, expressions for the lifetime have been calculated for
several decay modes in Ref. [35].

Dimensional analysis gives the value of the proton life-
time as �N � �2

GUTm
5
p=M

4
GUT. Taking MGUT � 1016 [23]

and obtaining �GUT by running the strong coupling up to

the GUT scale gives �N � 10�68 GeV. The natural scale
for AGUT is M�4GUT. The values of the low-energy constant

that we have computed, together with the values of the
quantities in AQCD [23] and the experimental bounds on the

proton life time [36,37], allow us to put bounds on AGUT for
different decay modes as summarized in Table VI. The
bounds quoted are at a 68% confidence level. The different
decay modes provide more or less stringent bounds on
AGUT. The viability of any GUT can be assessed by check-
ing wether the relevant bounds are satisfied.
As a simple example, for the decay mode p! eþ�0 via

X boson exchange in the minimal SU(5) SUSY GUT,
AGUTðp! eþ�0Þ is given by [38] to be

AGUTðp! eþ�0Þ ¼ g45A
2
R

M4
X

j1þ ð1þ jVudj2Þ2j; (53)

where g5 is the unified coupling at the GUT scale, MX is
the mass of the X boson � MGUT, AR is the renormaliza-
tion factor, and Vud a CKM matrix element. Using the
value of AR given in [37], we can put a bound on the X
boson mass of MX > 5� 1015 GeV.
The decay widths of the channels involving color triplet

Higgs exchange can be calculated and involve the LEC �
(see Ref. [35]). The analysis in Ref. [1] uses a conservative
choice of � ¼ 0:003 GeV3 at a scale of 1 GeV to constrain
the mass of the color triplet Higgs sufficiently to rule out
the minimal SUSY SU(5) GUT. The higher value calcu-
lated in this work [running our value of � to a scale of
1 GeV gives � ¼ 0:0109� 23 GeV3 if we use Eq. (47)]
gives an even stronger constraint on the mass of the color
triplet Higgs and so confirms the fact that the minimal
SUSY SU(5) GUT has been ruled out.
The uncertainty on �2 is 45% and on �2 is 43%. These

are higher than the uncertainties on the factors AQCD which

for all channels is � 8%. A factor of � 2 reduction in the
uncertainty of the LECs would make them comparable
with the uncertainties of AQCD, which is dominated by
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FIG. 9 (color online). Summary of computations of the had-
ronic matrix element �, as given in Table V. Square points
correspond to QCD model calculations, blue circles correspond
to Nf ¼ 0 lattice QCD calculations, the green circle is from

Nf ¼ 2, and the result from our Nf ¼ 2þ 1 calculation is

shown in red.
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FIG. 8 (color online). An extrapolation for � and � both with and without the value from the lightest valence quark mass point. This
gives results differing by 18% for � and 17% for �.
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the uncertainties ofD, F, and f�. AsMX �
ffiffiffiffi
�
p

, an error of
45% on�2 corresponds to an error of 11% on the bound for
MX. Reducing the uncertainty on � by a factor of 2 would
therefore reduce the uncertainty from � on the bound for
MX to 6%.
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TABLE VI. The experimental proton partial lifetime bounds at
90% C.L. from [36,37] and the bound on AGUT at a 68% C.L. that
this lifetime bound implies. This bound is given in units of
M�4GUT, the numbers quoted in the table are therefore dimension-

less. The first line is for a decay mediated by a heavy gauge
boson, the second and subsequent lines are for decays mediated
by a color triplet Higgs.

Decay mode Lifetime bound (yrs) AGUT bound ðM�4GUTÞ
p! eþ�0 >8:2� 1033 <44

p! eþ�0 >8:2� 1033 <37
p! Kþ �� >2:3� 1033 <76
n! K0 �� >1:3� 1032 <733

TABLE V. Comparison of the low-energy parameter of the nucleon decay chiral Lagrangian � and � among various QCD model
calculation, lattice results in the literatures, and the results from this work. In lattice QCD calculations, WF and DWF meanWilson and
domain-wall fermions. The results for Nf ¼ 2 and our results for Nf ¼ 2þ 1 are shown with the total error consisting of statistical and

systematic errors on the bare matrix element and renormalization constant. The errors on the results from Nf ¼ 0 are only statistical.

j�j [GeV3] j�j [GeV3]

Donoghue and Goldwich [4] 0.003 Bag model

Thomas and McKellar [7] 0.02 Bag model

Meljanac et al. [5] 0.004 Bag model

QCD model Ioffe [2] 0.009 Sum rule

calculation Krasnikov et al. [6] 0.003 Sum rule

Ioffe and Smilga [8] 0.006 Sum rule

Tomozawa [3] 0.006 Quark model

Brodsky et al. [9] 0.03

Hara et al. [10] 0.03 WF, a ¼ 0:11 fm

Bowler et al. [11] 0.013 0.010 WF, a ¼ 0:22 fm
Lattice QCD Gavela et al. [12] 0.0056(8) ’ j�j WF, a ¼ 0:09 fm
Nf ¼ 0 JLQCD [13] 0.015(1) 0.014(1) WF, a ¼ 0:09 fm

CP-PACS & JLQCD [14] 0:0090ð09Þð þ5�19Þ 0:0096ð09Þð þ6�20Þ WF, continuum limit

Aoki et al. [15] 0.0100(19) 0.0108(21) DWF, a ¼ 0:15 fm

Lattice QCD Nf ¼ 2 Aoki et al. [15] 0.0118(21) 0.0118(21) DWF, a ¼ 0:12 fm

Lattice QCD Nf ¼ 2þ 1 This work 0.0112(25) 0.0120(26) DWF, a ¼ 0:12 fm
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