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We calculate numerically the density of states nðSÞ for SUð2Þ lattice gauge theory on L4 lattices [S is the

Wilson’s action and nðSÞ measures the relative number of ways S can be obtained]. Small volume

dependences are resolved for small values of S. We compare lnðnðSÞÞ with weak and strong coupling

expansions. Intermediate order expansions show a good overlap for values of S corresponding to the

crossover. We relate the convergence of these expansions to those of the average plaquette. We show that,

when known logarithmic singularities are subtracted from lnðnðSÞÞ, expansions in Legendre polynomials

appear to converge and could be suitable to determine the Fisher’s zeros of the partition function.
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I. INTRODUCTION

Quantum chromodynamics is a widely accepted theory
of strong interactions. From a theoretical point of view,
understanding the large distance behavior in terms of the
weakly coupled short distance theory has been an impor-
tant challenge. The connection between the two regimes
can be addressed meaningfully using the lattice formula-
tion. In the pure gauge theory (no quarks) described with
the standard Wilson’s action, no phase transition between
the weak and strong coupling regimes has been found
numerically for SUð2Þ or SUð3Þ, and the theory should
be in the confining phase for all values of the coupling.
Recently, convincing arguments have been given [1,2] in
favor of the smoothness of the renormalization group flows
between the two fixed points of interest, putting the con-
fining picture on more solid mathematical ground.

The absence of phase transition discussed above sug-
gests that it is possible to match the weak coupling and the
strong coupling expansions of the lattice formulation.
However, if we consider these two expansions, for in-
stance, for the average SUð2Þ plaquette as a function of
� ¼ 4=g2, we see in Fig. 1 that there is a crossover region
(approximately 1:5<�< 2:5) where neither of the two
expansions seem to work. This behavior is probably related
to singularities in the complex � plane [3,4] that are not
completely understood. In the case of the one plaquette
model [5], taking the inverse Laplace transform with re-
spect to� (Borel transform) of the partition function yields
a function that has better convergence properties. It would

be interesting to know if this feature persists on V ¼ L4

lattices.
In this article, we study expansions of the inverse

Laplace transform of the partition function (the density
of states) of SUð2Þ lattice gauge theory on symmetric four-
dimensional lattices. The density of states is denoted nðSÞ
and defined precisely in Sec. II. It gives a relative measure
of the number of ways to get a value S of the action.
Knowing nðSÞ, we can calculate the partition function
and its derivatives for any real or complex value of �. In
particular, it could be used to determine the Fisher’s zeros

FIG. 1 (color online). Weak and strong coupling expansions of
the average plaquette P for SUð2Þ at various orders in the weak
and strong coupling expansions compared to the numerical
values.
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of the partition function [6–8]. The choice of SUð2Þ is
motivated by the existence of a particular symmetry [9]
which allows one to determine the behavior of nðSÞ near its
maximal argument without extra calculation. In Sec. III,
we explain why lnðnðSÞÞ is expected to scale like the
volume and can be interpreted as a ‘‘color entropy.’’
Numerical calculations of nðSÞ obtained by patching pla-
quette distributions multiplied by the inverse Boltzmann
weight at values of � increasing by a small increment are
presented in Sec. IV. The article is focused on comparisons
with numerical data on a 64 lattice where finite volume
effects are not too large and plaquette distributions broad
enough to allow a smooth patching. The values of nðSÞ on
such a lattice are compared with those on a 44 and 84

lattice. It is interesting to note that the volume dependence
is resolvable only for small values of S where a behavior
lnðSÞ=V is observed for lnðnðSÞÞ.

The numerical results are compared with expansions
that can be obtained from the strong (Sec. V) and weak
(Sec. VI) coupling expansions of the average plaquette.
Intermediate orders in these expansions show a good over-
lap for values of S that correspond to the crossover. We
then show that the convergence of the new series can be
related empirically to those of the series for the average
plaquette. The weak coupling expansion determines the
logarithmic singularities of lnðnðSÞÞ at both boundaries.
When these singularities are subtracted we obtain a bell-
shaped function that can be approximated very well by
Legendre polynomials (Sec. VII). We conclude with pos-
sible applications for the calculations of the Fisher’s zeros
and open problems.

II. THE DENSITY OF STATES

We consider the standard pure gauge partition function

Z ¼ Y

l

Z
dUle

��S ; (1)

with the Wilson action

S ¼ X

p

ð1� ð1=NÞReTrðUpÞÞ (2)

and � � 2N=g2. We use a D-dimensional cubic lattice
with periodic boundary conditions. For a symmetric lattice
with LD sites, the number of plaquettes is

N p � LDDðD� 1Þ=2: (3)

In the following, we restrict the discussion to the group
SUð2Þ and D ¼ 4. For SUð2Þ, one can show [9] that the
maximal value of S is 2N p. We define the average pla-

quette:

P � hS=N pi ¼ �dðlnZ=N pÞ=d�: (4)

Inserting 1 as the integral of delta function over the
numerical values S of S in Z, we can write

Z ¼
Z 2N p

0
dSnðSÞe��S; (5)

with

nðSÞ ¼ Y

l

Z
dUl�

�
S�X

p

ð1� ð1=NÞReTrðUpÞÞ
�
: (6)

We call nðSÞ the density of states. A more general discus-
sion for spin models [10] or gauge theories [11] can be
found in the literature where the density of states is some-
times called the spectral density. From its definition, it is
clear that nðSÞ is positive. Assuming that the Haar measure
for the links is normalized to 1, the partition function at
� ¼ 0 is 1, and consequently we can normalize nðSÞ as a
probability density.
A first idea regarding the convergence properties of

various expansions can be obtained from the single pla-
quette model [5]. In that case, we have

n1plðSÞ ¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð2� SÞ

p
: (7)

The large � behavior of the partition function is deter-
mined by the behavior of nðSÞ near S ¼ 0. In this example,

nðSÞ / ffiffiffi
S

p
for small S implies that Z / ��3=2 at leading

order. Successive subleading corrections can be calculated

by expanding the remaining factor
ffiffiffiffiffiffiffiffiffiffiffiffi
2� S

p
in powers of S

and integrating over S from 0 to 1. If we factor out the
leading behavior, we obtain a power series in 1=�. The
large order behavior of this power series is determined by

the large order behavior of the expansion of
ffiffiffiffiffiffiffiffiffiffiffiffi
2� S

p
, itself

dictated by the branch cut at S ¼ 2. One can see [5] that the
S integration over the whole positive real axis converts an
expansion with a finite radius of convergence into one with
a zero radius of convergence. On the other hand, if the S
integration is carried over the interval ½0; 2�, the resulting
series converges but the coefficients need to be expressed
in terms of the incomplete gamma function. From this
example, one may believe that it is easier to approximate
nðSÞ than the corresponding partition function. However, it
is not clear that these considerations will survive the infi-
nite volume limit. Note also that the behavior of nðSÞ near
S ¼ 2 can be probed by taking � ! �1 in agreement
with the common wisdom that the large order behavior of
weak coupling series can be understood in terms of the
behavior at small negative coupling.
It was shown [9] that, if the lattice has an even number of

sites in each direction and if the gauge group contains�1,
it is possible to change �ReTrUp into ��ReTrUp by a

change of variables Ul ! �Ul on a set of links such that
for any plaquette exactly one link of the set belongs to that
plaquette. This implies that

Zð��Þ ¼ e2�N pZð�Þ: (8)

This symmetry implies that
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nð2N p � SÞ ¼ nðSÞ: (9)

In the following, we will be working exclusively with
SUð2Þ which contains �1 and lattices with even numbers
of sites in every direction. We will thus assume that Eq. (9)
is satisfied and we need only to know nðSÞ for 0 � S �
N p.

III. VOLUME DEPENDENCE

In this section, we discuss the volume dependence of the
density of state. We make this dependence explicit by
writing nðS;N pÞ. Given the density of states, we can

always write

fðx;N pÞ � lnðnðxN p;N pÞÞ=N p: (10)

The function is nonzero only if 0 � x � 2. The symmetry
(9) implies that

fðx;N pÞ ¼ fð2� x;N pÞ: (11)

In the statistical mechanics interpretation of the partition
function (where � is an inverse temperature), fðx;N pÞ
can be interpreted as a density of entropy. The existence of
the infinite volume limit requires that

lim
N p!1

fðx;N pÞ ¼ fðxÞ; (12)

with fðxÞ volume independent. In the same limit, the
integral (5) can be evaluated by the saddle point method.
The maximization of the integrand requires

f0ðxÞ ¼ �: (13)

We believe that fðxÞ is strictly increasing for 0< x < 1
with an absolute maximum at x ¼ 1. By symmetry, this
would imply that fðxÞ is strictly decreasing for 1< x < 2.
We also believe that f0ðxÞ is strictly decreasing and that
Eq. (13) has a unique solution (with positive� if 0< x < 1
and negative � if 1< x < 2). The numerical study of
Sec. IV is in agreement with these statements, but we are
not aware of mathematical proofs. Assuming that Eq. (13)
has a unique solution, the infinite volume solution should
be x ¼ P, the average plaquette defined above. We can
then convert an expansion for P into an expansion of f. If
wewant to include the volume dependence, the distribution
has a finite width, and we should expand about the saddle
point and perform the integration. In the following, we will
work at large but finite volume, and residual volume de-
pendence in f will be kept implicit in equations.

The behavior of fðxÞ for small x can be probed by
studying the model at large positive � (weak coupling
expansion discussed in Sec. VI). On the other hand, at
small values of � (strong coupling expansion discussed
in Sec. V), the partition function is dominated by the
behavior of fðxÞ near its peak value x ¼ 1. For conve-
nience, we introduce notations suitable for the study of
the density of state near x ¼ 1:

gðyÞ � fð1þ yÞ: (14)

gðyÞ is then an even function defined for �1< y < 1.

IV. NUMERICAL CALCULATION OF nðSÞ
To find nðSÞ numerically we will use a Monte Carlo

simulation to create configurations of SUð2Þ for different
values of �. In the following example we will follow the
steps we will use to find nðSÞ for a volume of 64. We will
start with 550 different sets of data ranging from � ¼ 0:02
to � ¼ 11:00 in steps of 0.02 and with sizes of 105 con-

-1x10 

-2x10 

-5

-5

FIG. 2 (color online). Close-up of the patching process for 64.

FIG. 3 (color online). Results of patching for 44 and 64.
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figurations. To join the data from different values of � we
will first create histograms of each set of data; each of these
histograms is roughly Gaussian in shape. We then filter out
the data that have statistics that are lower than half of the
maximum bin. We can then remove the beta dependence by
multiplying the height of each bin by e�S. We will be left
with a series of arches which when overlaid on each other
form the curve nðsÞ. To create this overlay we will start
with the lowest �, which will correspond to the peak of
nðsÞ, and then take the logarithm of this. We will then look
at the neighboring � and do the same thing but then shift it

up or down so that the average distance in the bins over-
lapping with the first is zero. We will then continue in this
manner until the supply of data sets has been exhausted. A
portion of this process can be seen in Fig. 2. We then
average the points for each bin together and divide both
the bin width and height by N p and shift the top of the

curve to zero to make the final output, which can be seen in
Fig. 3 for both 44 and 64. We see that they overlap well.
We now consider the difference between two different

volumes, as shown in Fig. 4. We can see in Fig. 5 that as we
get closer to S=N p ¼ 1 this difference turns into noise,

and as we get closer to S=N p ¼ 0 we see a volume

dependence growing. The logarithmic nature of this
growth is illustrated in Figs. 6 and 7. The results reported
here correspond to the difference between 64 and 44. We
have also studied the difference between 84 and 64 and
found consistent results. Calculation at larger volumes is
much more computationally expensive and requires many
more sets of data because of the narrow width of the
distributions.

V. STRONG COUPLING EXPANSION

In this section, we discuss the strong coupling expansion
of the logarithm of the density of state. We will work with
the shifted function gðyÞ defined in Eq. (14). The strong
coupling expansion of P can be extracted from the expan-
sion of lnZ given in Refs. [12,13] using appropriate rescal-
ings (for instance, the� used there is one-half of the� used
here). The expansion is of the form

Pð�Þ ’ 1þ X

m¼1

a2m�1�
2m�1: (15)

The values of the coefficients are given in Table I.

FIG. 4 (color online). The difference between lnðnðSÞÞ=N p

for 44 and 64.
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FIG. 5 (color online). The difference between lnðnðSÞÞ=N p

for 44 and 64 with �> 0:5 (close-up).

FIG. 6 (color online). The difference between lnðnðSÞÞ=N p

for 44 and 64 with �< 0:5 (close-up).
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With periodic boundary conditions, the low order coef-
ficients are volume independent. This can be understood
from the exact translation invariance for the low order
strong coupling graphs that provides a multiplicity that
cancels exactly the 1=N p in Eq. (4). Volume dependence

may appear for graphs wrapping around the torus. The
simplest such graph is a straight line that closes into itself
due to the periodic boundary condition. It appears at order
�2L and has a reduced translation multiplicity since trans-
lation along the graph does not generate a new graph. This
type of graph produces 1=L corrections that we have not
attempted to resolve here. It would be interesting to under-
stand the connection between such effects and the finite
size effects due to wraparound graphs encountered in the
transfer matrix formalism (‘‘torelons’’) [14].

We will plug the expansion of P in the expansion

gðyÞ ’ X

m¼0

g2my
2m: (16)

At lowest order we have y ’ a1�, and the saddle point
Eq. (13) yields 2g2y ’ 2g2a1� ’ �, which implies that
g2 ¼ 1=ð2a1Þ. This procedure can be followed order by
order in �. The results are shown in Table I.

Since nðSÞ is zero for S ¼ 0 and 2N p, we expect

logarithmic singularities at x ¼ 0 and 2 for fðxÞ and y ¼
�1 for gðyÞ. These singularities will cause the strong
coupling series to diverge when jyj � 1. Consequently,
we define the subtracted function

hðyÞ � gðyÞ � Aðlnð1� y2ÞÞ: (17)

The coefficient A will be calculated using the weak cou-
pling expansion in Sec. VI. In the infinite volume limit, we
have A ¼ 3=4. Expanding

hðyÞ ’ X

m¼0

h2my
2m; (18)

we obtained coefficients that are shown in Table I for A ¼
3=4. The coefficients g2m and h2m are also shown on a
logarithmic scale in Fig. 8. This graph shows that the two
types of coefficients become rapidly of the same order,

which indicates singularities in the complex y plane for
smaller values of jyj than the ones at �1.
In Fig. 9, we show the error made at successive order of

the strong coupling expansion of the plaquette. We then
show successive approximation of fðxÞ (Fig. 10) and the
corresponding errors (Fig. 11).
We can now compare the apparent convergence of P and

f. From Fig. 9 we see that the larger order errors cross

FIG. 8 (color online). Logarithm of the absolute value of g2m
and h2m.

TABLE I. Strong coupling expansion coefficients defined in
the text.

m a2m�1 g2m h2m

1 � 1
4 �2 � 5

4

2 1
96 � 2

3 � 7
24

3 � 7
1536

20
9

89
36

4 31
23 040 � 16

45 � 121
720

5 � 4451
8 847 360 � 16 816

2025 � 66 049
8100

6 264 883
1 486 356 480

319 736
8505

2 566 393
68 040

7 � 403 651
5 945 425 920 � 3 724 816

297 675 � 14 771 689
1 190 700

8 1 826 017 873
68 491 306 598 400 � 163 150 033

255 150 � 2 610 017 803
4 082 400

FIG. 7 (color online). The difference between lnðnðSÞÞ=N p

for 44 and 64 divided by lnðS=N pÞ.
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between � ¼ 1:5 and 2. For values of � larger, increasing
the order increases the error. This is the sign of a finite
radius of convergence [15]. Similarly, the larger order
errors for f cross for x between 0.5 and 0.6, which are
approximately the values of P in the � interval of crossing.
Consequently, it seems like the convergence properties of

the two expansions are the same (finite radius of
convergence).

VI. WEAK COUPLING EXPANSION

In this section, we discuss the weak coupling expansion
of fðxÞ. The starting point is the expansion of P in inverse
powers of �

Pð�Þ ’ X

m¼1

bm�
�m: (19)

We then assume the behavior

fðxÞ ’ A lnðxÞ þ X

m¼0

fmx
m: (20)

Using the saddle point Eq. (13), and using the leading large
� and small x terms, we find

� ’ A=x ’ A=ðb1=�Þ; (21)

which implies that A ¼ b1 at infinite volume. The proce-
dure can be pursued order by order without difficulty. The
result for the two lowest orders is

f1 ¼ b2=b1; f2 ¼ ðb3b1 � b22Þ=ð2b21Þ:
Numerical experiments indicate that the two series have
the same type of growth (power or factorial). Note that f0
cannot be fixed by the saddle point equation. The overall
height of f depends on the behavior near x ¼ 1 [if we insist
on normalizing nðSÞ as the probability density], and it

FIG. 11 (color online). Logarithm of the absolute value of the
difference between the numerical data and the strong coupling
expansion of f at successive orders. For reference, we give the
estimated numerical error on f.

FIG. 10 (color online). Numerical value of fðxÞ compared to
the strong coupling expansion at successive orders.

FIG. 9 (color online). Logarithm of the absolute value of the
difference between the numerical data and the strong coupling
expansion of P at successive orders. For reference, we give the
estimated numerical error on P.
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seems unlikely that it can be found by a weak coupling
expansion.

At finite volume, the saddle point calculation of P
should be corrected in order to include 1=V effects (V
the number of sites, LD for a symmetric lattice). If we
perform the Gaussian integration of the quadratic fluctua-
tions, and use the V dependent value of b1 given in Eq. (23)
below, we find after a short calculation that the coefficient
A of lnðxÞ is

A ¼ ð3=4Þ � ð5=12Þð1=VÞ: (22)

This leading coefficient correction predicts a difference of
�0:0013 lnðxÞ for the difference between fðxÞ for a 44 and
64 and is roughly consistent with Fig. 7.

Our next task is to find the values of bm. A closed form
expression can be found [16,17] for b1. For the case Nc ¼
2 and D ¼ 4, we obtain

b1 ¼ ð3=4Þð1� 1=ð3VÞÞ: (23)

The ð�1=ð3VÞÞ comes from the absence of zero mode
ð�1=VÞ in a sum calculated in Ref. [16] plus the contribu-
tion of the zero mode with periodic boundary conditions
ðþ2=ð3VÞÞ calculated in Ref. [17]. Numerical values for b2
can be found in Ref. [16] and for b3 in Ref. [18]. In these
references, several sums are calculated numerically at
particular volumes that do not include 64. Rough extrap-
olations from the existing data indicate that for V ¼ 64

uncertainties are less than 0.0002 for b2 and 0.0008 for b3.
For � � 3, these effects are close to the numerical errors
for P. In the following, we use the approximate values
b2 ¼ 0:1511 and b3 ¼ 0:1427 for V ¼ 64.

We are not aware of any calculation of bm for m � 4 for
SUð2Þ. In the case of SUð3Þ, calculations up to order 10
[19] and 16 [20] are available and show remarkable regu-
larities. Using the assumption [3] that @P=@� has a loga-

rithmic singularity in the complex � plane and integrating,
we obtained [21] the approximate form

X

m¼1

bm�
�k � CðLi2ð��1=ð��1

m þ i�ÞÞ þ H:c:Þ; (24)

with

TABLE II. Weak coupling coefficients defined in Sec. VI. The
choice of b1 corresponds to V ¼ 64.

m bm fm

1 0.7498 0.2015

2 0.1511 0.0999

3 0.1427 0.0796

4 0.1747 0.0791

5 0.2435 0.0908

6 0.368 0.1156

7 0.5884 0.1597

8 0.98 0.2351

9 1.6839 0.3643

10 2.9652 0.5883

11 5.326 0.9828

12 9.7234 1.6883

13 17.995 2.9683

14 33.690 5.3207

15 63.702 9.6945

FIG. 12 (color online). Logarithm of the absolute value of the
difference between the numerical data and the weak coupling
expansion of P at successive orders (above). For reference, we
give the estimated numerical error on P. The graph below is the
same except that we have not included the zero mode in b1.
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Li 2ðxÞ ¼
X

k¼1

xk=k2: (25)

We believe that at zero temperature, the new parameter �
which measures the (small) distance from the singularity to
the real axis in the 1=� plane stabilizes at a nonzero value
in the infinite volume limit. For reasons not fully under-
stood, this parametrization of the series turns out to work
very well for SUð3Þ. For instance, by fixing the value of �
in the middle of the allowed range and using the values of
b9 and b10, we obtain values of the lower order coefficients
with a relative error of 0.2% for b8 and that increases up to
5% for b3. In the limit � ¼ 0, the parametrization provides
simple predictions for instance b3=b2 ’ ð4=9Þ�m. The lo-
cation of the Fisher’s zeros for SUð2Þ [6] suggests �m ¼
2:18. This implies that b3=b2 ’ 0:969 in good agreement
with our numerical estimate b3=b2 ’ 0:944. In the follow-
ing we use the values �m ¼ 2:18 and � ¼ 0:18=�2

m ’
0:038 (see [6]), and we fixed C ¼ 0:0062 in order to
reproduce b3. The numerical values of bm and the corre-
sponding values of fm are displayed in Table II.

We have compared the weak coupling expansion of P
with numerical values in the case V ¼ 64. The results are
shown in Fig. 12. In the region where the curves are
smooth, the error decreases with the order and appears to
accumulate. This is very similar to the case of SUð3Þ [21].
However, it is clear that more reliable estimates for m � 4
would be desirable for SUð2Þ. It should be noted that for
large � the noise in the error is at the same level as the
numerical error on P. This would not be the case if we had
not included the contribution of the zero mode to b1 as
shown in the second part of Fig. 12.

We have compared the weak coupling expansion of fðxÞ
with numerical values in the case V ¼ 64. The results are
shown in Fig. 13. The differences are resolved in Fig. 14. In
these graphs we have taken f0 ¼ �0:146 63, which max-
imizes the length of the accumulation line on the left of
Fig. 14.

VII. EXPANSION IN LEGENDRE POLYNOMIALS

We now consider the function hðyÞ, which is gðyÞ with
the logarithmic singularity subtracted as defined in
Eq. (17). This is a bell-shaped even function defined on
the interval ½�1; 1�. We can expand this function in terms
of the even Legendre polynomials:

hðyÞ ¼ X

m¼0

q2mP2mðyÞ: (26)

The q2m can be determined from the orthogonality rela-
tions with interpolated values of hðyÞ to perform the inte-
gral. A minor technical difficulty is that we do not have
numerical data all the way down to y ¼ �1. This is be-
cause as y ! �1þ, or in other words x ! 0þ, � ! þ1
where the plaquette distribution becomes infinitely narrow.
Consequently there is a small gap in the numerical data that
needs to be filled. Fortunately, this is precisely where the
weak coupling expansion works well. Using the weak
coupling expansion (including the overall constant), sub-
tracting A lnðxð2� xÞÞ and shifting to the y coordinate, we
obtained the approximate behavior near y ¼ �1 for the 64

data:
FIG. 13 (color online). Numerical value of fðxÞ compared to
the weak coupling expansion at successive orders.

FIG. 14 (color online). Logarithm of the absolute value of the
difference between the numerical data and the weak coupling
expansion of f at successive orders. For reference, we give the
estimated numerical error on f.
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hðyÞ ’ 0:2145þ 1:2961yþ 0:5261y2 þ 0:1109y3: (27)

In order to estimate the error associated with this approxi-
mation we have compared with an extrapolation of a
quadratic fit of the leftmost part of the data. In order to
give an idea of the volume effects, we have also used the
second method on a 44 lattice. The results are shown in
Table III. This indicates that the variations are small and
increase with the order in relative magnitude and that the
volume effects are stronger than the dependence on the
extrapolation procedure. The logarithm of the coefficients
is shown in Fig. 15, which illustrates the exponential decay
of the coefficients.

The expansion provides excellent approximation of hðyÞ
shown in Fig. 16. The errors are resolved in Fig. 17. It is

also possible to calculate Pð�Þ by solving the saddle point
equation (13) using successive approximations for h. This
is shown in Figs. 18 and 19. The spikes in the error graphs
correspond to changes of the sign of the errors. It is
important to notice that the quality of the approximations
improves with the order in all regions of the interval.

FIG. 15 (color online). Legendre polynomial coefficients q2m
with the three methods described in the text.

FIG. 17 (color online). Logarithm of the absolute value of the
difference between the numerical data for hðyÞ and expansions in
Legendre polynomials at successive orders.

TABLE III. Legendre polynomial coefficients q2m with the
three methods described in the text.

Method 44 þ fit 64 þ fit 64þ (27)

m q2m q2m q2m

0 �0:300 34 �0:300 95 �0:300 96
1 �0:479 63 �0:481 59 �0:481 64
2 0.1488 0.148 53 0.148 45

3 �0:032 15 �0:0309 �0:030 99
4 �0:008 22 �0:008 43 �0:008 52
5 0.011 56 0.011 14 0.011 07

6 �0:003 63 �0:003 05 �0:003 08
7 �0:001 86 �0:001 79 �0:0018
8 0.001 94 0.001 46 0.001 47

9 0.000 08 0.000 26 0.000 28

10 �0:000 94 �0:000 69 �0:000 67

FIG. 16 (color online). hðyÞ together with the expansion in
Legendre polynomials up to order 20.
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VII. CONCLUSIONS

We have calculated the density of states for SUð2Þ lattice
gauge theory. The intermediate orders in weak and strong
coupling agree well in an overlapping region of action
values as shown in Fig. 20. However, the large order
behaviors of these expansions appear to be similar to the

corresponding ones for the plaquette. Volume effects can
be resolved well for small action values. Corrections to the
saddle point estimate need to be developed systematically.
Approximation of a subtracted quantity by Legendre poly-
nomials looks very promising and works well uniformly.
We plan to use this approximate form to look for Fisher’s
zeros. These zeros of the partition function in the complex
� plane are important to understand the large order behav-
ior of perturbative series at zero temperature [3] and to
check the nature of the finite temperature phase transition.
The density of states can be calculated in more general

situations. For instance,

Zð�; f�igÞ ¼
Z 2N p

0
dSnðS; f�igÞe��S; (28)

with

nðS; f�igÞ ¼ (29)

Y

l

Z
dUl�

�
S�X

p

ð1� ð1=NÞReTrðUpÞÞ
�

(30)

� e
�P

i

�ið1��iðUpÞ=diÞ
; (31)

and �i a complete set of SUð2Þ characters. This is a type of
action which naturally arises in the renormalization group
studies of SUðNÞ lattice gauge theories. It is possible to
apply exact renormalization group transformation [1,2] or
the Monte Carlo renormalization group procedure [22] to
the partition function in order to define the couplings.
Following the analogy between f0 ¼ � and V 0 ¼ J for
the effective potential V in the presence of a source J in

FIG. 18 (color online). P together with the expansion in
Legendre polynomials up to order 20.

FIG. 19 (color online). Logarithm of the absolute value of the
difference between the numerical data for P and expansions in
Legendre polynomials at successive orders.

FIG. 20 (color online). Weak and strong coupling expansion of
f at a few intermediate orders.
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scalar models, it would be interesting to study finite size
effects from this point of view.
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