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In this work we perform the parameter tuning of three flavors of dynamical clover quarks on anisotropic

lattices. The fermion action uses three-dimensional spatial stout-link smearing. The gauge anisotropy is

determined in a small box with Schrödinger background using Wilson-loop ratios. The fermion anisotropy

is obtained from studying the meson dispersion relation with antiperiodic boundary conditions in the time

direction. The spatial and temporal clover coefficients are fixed to the tree-level tadpole-improved values,

and we demonstrate that they satisfy the nonperturbative conditions as determined by the Schrödinger-

functional method. For the desired lattice spacing as � 0:12 fm and renormalized anisotropy � ¼ 3:5, we

find the gauge and fermionic anisotropies can be fixed to quark mass independent values up through the

strange quark mass. This work lays the foundation needed for further studies of the excited-state hadron

spectrum.
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I. INTRODUCTION

Lattice quantum chromodynamics (QCD) has success-
fully calculated many properties of the hadronic spectrum.
However, there remain many challenges for the lattice
community to resolve in determining the myriad states
present in QCD. The case of the nucleon spectrum is one
such example. Consider the lowest three states in the N
spectrum [N, N0 (P11) and N

� (S11)], for example. Many
earlier quenched lattice QCD calculations [1–6] find a
spectrum inverted with respect to experiment, with the N0
heavier than the opposite-parity state N�. Although the
Kentucky group [7] managed to find the correct mass
ordering around a pion mass of 300–400 MeV (after taking
care of the effects of the quenched ‘‘ghosts’’), no other
lattice group has been able to reproduce the experimental
ordering using different approaches. Furthermore, these
are just the lowest few states in the N spectrum. There
are many more states seen in experiment for which lattice
calculations could help in the identification of particle
properties.

This situation suggests an urgent need for full-QCD
simulations that can resolve some of these issues. In order
to improve the signal of the excited states (especially for
the higher-excited nucleon spectrum), one needs a lattice
with a fine temporal inverse lattice spacing on the order of
6 GeV. At the same time, we also want to avoid finite-
volume effects. Current dynamical lattice gauge ensembles
manage to have a reasonable lattice volume with spatial
dimensions of about 3 fm; however, typically the inverse
lattice spacing is about 2 GeV, which is not fine enough to
allow an accurate determination of more than one excited

state. One solution to this problem is to generate aniso-
tropic dynamical lattices.
Anisotropic techniques have been widely adopted in

lattice calculations. Anisotropic relativistic heavy quark
actions have been used for charmonium studies [8,9].
Another main application is for calculations, such as glue-
balls [10] and multiple excited-state extraction [11–17],
where the anisotropic lattice technique has advantages over
isotropic lattices due to the finer temporal lattice spacing.
The construction of a large basis of interpolating fields
[11,12] is crucial for the determination of the excited-state
spectrum via a variational method. However, there is a
worry that uncontrollable quark mass effects, mas, might
enter into systematic errors [18–20] when m (the quark
mass) is large and the spatial lattice spacing as is about
0.1 fm. Since we are working in the light-quark limit, this is
not a major concern here. In order to remove possibleOðaÞ
systematic errors from the action, we tune our anisotropic
action to be as close to the (on-shell) nonperturbatively
correct action as possible.
Previous results on anisotropic lattices include two-

flavor anisotropic dynamical simulations done by CP-
PACS [21] and the TrinLat collaboration [22]. CP-PACS
performed the first dynamicalNf ¼ 2 anisotropic tuning of

dynamical clover fermions [21] (without gauge-link
smearing), using the Iwasaki gauge and Sheikholeslami-
Wohlert (also called clover [23]) fermion actions. In that
study, they set the coefficient of the clover term within the
clover action to tadpole-improved tree-level values. The
TrinLat collaboration [22] used a two-plaquette Symanzik-
improved gauge action with tree-level tadpole improve-
ment and aWilson fermion action with a Hamber-Wu term.
One should also note that they adopted stout-link smearing
[24] of the spatial gauge fields in the clover action. That is,
the gauge fields entering the fermion action were not
smeared in the time direction, preserving the positivity of
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the fermion transfer matrix. Only two iterations of stout
smearing were used with a staple weight � ¼ 0:22.

In this work, wewill use a three-flavor clover action with
stout-link smearing (in the spatial directions only), and an
Oða2Þ-improved Symanzik gauge action. Working in the
Schrödinger-functional scheme [25–28], we determine the
gauge anisotropy by computing Wilson-loop ratios with
the background field applied in the z direction. The fer-
mion anisotropy is determined from the conventional me-
son dispersion relation with periodic boundaries in the
spatial directions and antiperiodic boundaries in the time
direction. The coefficients of the gauge action are set to the
tree-level tadpole-improved values, and the clover coeffi-
cients are fixed at the tree-level stout-link smeared tadpole-
improved values, with the tadpole factors set from numeri-
cal simulation. We demonstrate that the clover coefficients
are consistent with nonperturbative values determined in
the Schrödinger-functional scheme. Our configurations
have been generated using the Chroma [29] Hybrid
Monte Carlo (HMC) code with Rational Hybrid
Monte Carlo (RHMC) for all three flavors and multi-
time-scale integration. A preliminary study can be found
in Ref. [30].

The structure of this paper is as follows: In Sec. II, we
will discuss the details of the actions used in this work, the
stout-link smearing and Schrödinger-functional scheme
calculations, and how we determine the coefficients.
Then we will cover the Rational Hybrid Monte Carlo
(RHMC) used in this work, how we apply it on anisotropic
lattices with even-odd preconditioning, and how to use
these techniques with stout-link smearing in Sec. III. We
present numerical results in Sec. IV, where the gauge and
fermion anisotropy, and partially conserved axial current
(PCAC) mass are measured, and their corresponding
(tuned) bare values are determined. Some conclusions
and future outlook are presented in Sec. V.

II. METHODOLOGYAND SETUP

A. Action

In this section, we describe the gauge and fermion
actions used in this calculation. For the gauge sector, we
use a Symanzik-improved action which was used in the
glueball study of Ref. [10]. With tree-level tadpole-
improved coefficients, the action is

S�G½U� ¼
�

Nc�0

� X
x;s�s0

�
5

6u4s
�P ss0 ðxÞ �

1

12u6s
�Rss0 ðxÞ

�

þX
x;s

�20

�
4

3u2su
2
t

�P st
ðxÞ � 1

12u4su
2
t

�Rst
ðxÞ

��
;

(1)

where �W ¼ ReTrð1�WÞ and W is either the plaquette

P ��ðxÞ ¼ U�ðxÞU�ðxþ�ÞUy
�ðxþ �ÞUy

� ðxÞ; (2)

or the 2� 1 rectangular Wilson loop,

R ��ðxÞ ¼ U�ðxÞU�ðxþ �̂ÞU�ðxþ 2�̂ÞUy
�ðxþ �̂

þ �̂ÞUy
�ðxþ �̂ÞUy

� ðxÞ: (3)

The coupling g2 appears in� ¼ 2Nc=g
2. The parameter �0

is the bare gauge anisotropy, and us and ut are the spatial
and temporal tadpole factors, dividing the spatial and
temporal gauge links, respectively. This action has leading
discretizations error of Oða4s ; a2t ; g2a2sÞ and possesses a
positive definite transfer matrix since there is no length-
two rectangle in time.
In the fermion sector, we adopt the anisotropic clover

fermion action [8]

S�F½U; � ;  � ¼ a3sat
X
x

� ðxÞQ ðxÞ

Q ¼
�
m0 þ �t�tWt þ �s

X
s

�sWs

� as
2

�
ctSW�stF

st þ X
s<s0

csSW�ss0F
ss0
��
; (4)

where ��� ¼ 1
2 ½��; ���, F��ðxÞ ¼ 1

4a�a�
ImðP��ðxÞÞ, and

W� ¼ r� � a�
2
����

r�fðxÞ ¼ 1

2a�
½U�ðxÞfðxþ�Þ �Uy

�ðx��Þfðx��Þ�

��fðxÞ ¼ 1

a2�
½U�ðxÞfðxþ�Þ þUy

�ðx��Þfðx��Þ

� 2fðxÞ�: (5)

Note that in the case of the isotropic clover fermion action,
one takes �0 ¼ �s ¼ 1 and csSW ¼ ctSW ¼ cSW. In terms of

dimensionless variables  ̂ ¼ a3=2s  , m̂0 ¼ m0at, r̂� ¼
a2�r�, �̂� ¼ a���, F̂�� ¼ a�a�F��, and the dimension-

less ‘‘Wilson operator’’ Ŵ� � r̂� � 1
2���̂�, we find the

fermion matrix Q becomes

Q ¼ 1

at

�
atm̂0 þ �t�tŴt þ �s

�0

X
s

�sŴs

� 1

2

�
ctSW

X
s

�tsF̂ts þ csSW
�0

X
s<s0

�ss0F̂ss0

��
: (6)

Here � is the ratio of the bare fermion to the bare gauge
anisotropy. From the field redefinition [31,32], there is one
redundant coefficient: either �t or �s. There are two com-
mon choices to eliminate this redundancy: setting �s ¼ 1
(�t tuning) or �t ¼ 1 (�s tuning) [8]. We will use �s tuning
in this work, so we set �t ¼ 1, with the tree-level condi-
tions on csSW and ctSW as described in Ref. [8]. In particular,

we choose the tree-level tadpole-improved values

EDWARDS, JOÓ, AND LIN PHYSICAL REVIEW D 78, 054501 (2008)

054501-2



csSW ¼ �s
u3s
; ctSW ¼ 1

2

�
�s þ 1

�

�
1

utu
2
s

; (7)

where us and ut are the tadpole factors and the fraction
at=as ¼ 1=� is set to the desired renormalized gauge
anisotropy.

In this work, the gauge links in the fermion action are 3-
dimensionally stout-link smeared gauge fields with smear-
ing weight � and n� iterations. To distinguish tadpole

factors associated with the smeared fields appearing in
the fermion action from those appearing in the gauge
action, we use notations ~us and ~ut for spatial and temporal
tadpole factors, respectively. For convenience of parame-
trization, we use the bare gauge and fermion anisotropies,
�g;f, defined as

�g ¼ �0; �f ¼ �0
�s
: (8)

To summarize, the final gauge and fermion actions are

S�G½U� ¼
�

Nc�g

� X
x;s�s0

�
5

6u4s
�P ss0 ðxÞ �

1
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�

þX
x;s
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4

3u2su
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t
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2
t

�Rst
ðxÞ

��
;

(9)

S�F½U; � ; � ¼
X
x � ðxÞ 1

~ut

�
~utm̂0 þ �tŴt þ 1

�f

X
s

�sŴs

� 1

2

�
1

2

�
�g
�f

þ 1

�

�
1

~ut~u
2
s

X
s

�tsF̂ts

þ 1

�f

1

~u3s

X
s<s0

�ss0F̂ss0

��
 ðxÞ: (10)

In QCDNc ¼ 3;� andm0 determine the cutoff scale of the
theory. us;t and ~us;t are the tadpole factors used in the gauge
and fermion action coefficients and will be determined
from numerical simulation. The remaining parameters
(�g and �f) are tuned to give the desired gauge and

fermion anisotropies.

B. Stout-smeared links

The smeared fermion action provides significant im-
provements on actions that explicitly break chirality such
as the clover fermion action. It has been demonstrated that
chiral symmetry is improved [33] after treatment of the
gauge links in the fermion action. In this work, we use
three-dimensionally stout-smeared links [24] in the fer-
mion action. We use smearing parameters � ¼ 0:22 and
n� ¼ 2 (as in Ref. [22]) through the end of Sec. II. In the

numerical section, we will examine our choice of stout-
smearing parameters with greater caution. Since the smear-
ing does not involve the time direction, the transfer matrix
remains physical. As with other smearing techniques, we
need to check the smearing parameters carefully to avoid
potentially incorrect short-distance physics.
We consider the effects of our choice of action on

scaling [34] in a quenched theory. On the left-hand side
of Fig. 1, we show the scaling behavior of the vector-meson

mass in units of the string tension, amV=
ffiffiffiffiffiffiffiffiffi
a2�

p
. In this plot,

all the points on the graph have fixed quark mass deter-
mined from the ratio of the pseudoscalar to vector-meson
mass ratio mPS=mV ¼ 0:7. The left-hand panel shows re-
sults for the quenched Wilson gauge and fermion action,
and the right panel shows results for the quenched aniso-
tropic Wilson gauge and clover fermion actions. The
curves are scaling fits to the Wilson and clover fermion
data constrained to have the same continuum limit [34],
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FIG. 1 (color online). The scaling behavior of the quenched Wilson gauge action with Wilson (left) and clover (right) fermion
actions showing the effects of anisotropy and stout-link smearing. Shown are scaling fits of the Wilson and clover results constrained to
have the same continuum limit [34]. In the left plot, the anisotropic stout-link smeared result is the square. In the right plot, ‘‘NP’’
labels nonperturbatively tuned clover coefficients, and ‘‘Tad’’ indicates tadpole-improved coefficients.
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with the Wilson action scaling like OðaÞ and the nonper-
turbative clover results scaling like Oða2Þ. The horizontal
line is the (fitted) continuum limit value. The small residual
scaling violations in the nonperturbatively improved clover
action (1% at a2�� 0:05 or a� 0:1 fm) indicate that the
dominant source of scaling violations in the Wilson action
comes from chiral symmetry breaking at OðaÞ. Our simu-
lations on anisotropic lattices show similar scaling for the
Wilson fermion action (the diamonds), and when we add
stout-link smearing in the fermions (the squares), we see a
large reduction in the scaling violations. In the clover case
(on the right-hand side of Fig. 1), similar tests were
performed, with both tadpole-improved perturbatively de-
termined and nonperturbatively determined clover coeffi-
cients. When stout-link smearing is added to the
anisotropic clover action, the scaling remains consistent
with the unsmeared results. Thus, the three-dimensional
stout-link smearing does not adversely effect the scaling
properties of the fermion action, and the resulting scaling
violations after smearing are suitably small.

C. Schrödinger functional

The Schrödinger-functional scheme [25–27] allows for
simulations at small pion mass, since the background field
lifts zero modes. We use the Schrödinger functional and the
PCAC relation to check how close our cSW in the fermion
action is to the nonperturbative value. In previous work
with dynamical fermions, the ALPHA collaboration used
two flavors [35] with the Wilson gauge action, and CP-
PACS used two-flavor and three-flavor calculations with
the Wilson and Iwasaki gauge actions [21,36,37]. In this
work, for our calculations with the background field in the
spatial direction where we have length-two rectangles in
the gauge action, we used the Schrödinger-functional setup
from Ref. [28].

To impose the continuum gauge boundary fields Cs at
t ¼ 0 and C0s at t ¼ T, we set up the lattice gauge boundary
fields as

UsðxÞjx0¼0 ¼ easCs ;

UsðxÞjx0¼T ¼ easC
0
s for Wilson gauge action:

(11)

The uniqueness of the setup of the gauge boundary fields
for Wilson gauge action has been checked by the ALPHA
collaboration [25], and Klassen also demonstrated this
numerically for Oða2Þ-improved gauge actions [28]. We
use the Cs and C0s chosen by the ALPHA collaboration [27]:

Cs ¼ i��

6Lx

�1 0 0

0 0 0

0 0 1

0
BB@

1
CCA; C0s ¼ i��

6Lx

�5 0 0

0 2 0

0 0 3

0
BB@

1
CCA;

(12)

where we have added an overall scale factor � which is 1
in our final results. Later in this discussion we experiment

with different values. Since Cs commutes with C0s, one can
impose the background field by setting the boundary fields
to be

UB
0 ðxÞ ¼ 1; UB

s ðxÞ ¼ e�iðas=TÞ½x0C0sþðT�x0ÞCs�: (13)

In the case of the improved gauge field, the boundary fields
are located at x0 ¼ �at, 0 and x0 ¼ T � at, T and the
value can be obtained from Eq. (13).
The bare PCAC quark mass is calculated through the

PCAC relation using zero momentum projected correlators
as

mðx0Þ ¼ rðx0Þ þ acAsðx0Þ; (14)

where x0 is some time slice (or possibly space slice) of the
correlator, cA is theOðaÞ-improved coefficient for the axial
current and

rðx0Þ ¼ 1

4

ð@0 þ @�0ÞfAðx0Þ
fPðx0Þ sðx0Þ ¼ 1

2
a
@0@

�
0fPðx0Þ
fPðx0Þ :

(15)

The axial current fA with � ¼ �5�� (or pseudoscalar

density fP with � ¼ �5) is a correlation function of bulk
fields ( � ,  ) and boundary fields at t ¼ 0 ( �	, 	) defined as

fO�
ðtÞ ¼ 1

V

X
x

�
� � ðxÞX

y;z

�	ðyÞ�	ðzÞ
	


ðN2
f � 1Þ: (16)

Similarly, correlators propagating from the other wall lead
to definitions of r0 and s0, where the f0AðPÞ now involves the

other boundary fields at t ¼ T ( �	0, 	0) and a sign change.
On an isotropic lattice, one can also determine the clover

coefficient cSW in the Schrödinger-functional scheme from
the PCAC relation. For an arbitrary set of action parame-
ters, the relation mðy0Þ ¼ m0ðy0Þ is not satisfied in general
for a generic y0. We can construct an estimator for cA by
imposing that mðy0Þ be the same as m0ðy0Þ; thus, solving
Eq. (14) gives us

ĉ Aðy0Þ ¼ 1

a

r0ðy0Þ � rðy0Þ
s0ðy0Þ � sðy0Þ : (17)

From such an estimator, ĉA, we find modified masses using
r, r0, s, s0:

Mðx0; y0Þ ¼ rðx0Þ � ĉAðy0Þsðx0Þ
M0ðx0; y0Þ ¼ r0ðx0Þ � ĉAðy0Þs0ðx0Þ:

(18)

Then usingM andM0, we get a new estimate. By iterating
such a process, the nonperturbative cA is obtained. We can
further nonperturbatively determine cSW by imposing the
condition

�M ¼ Mðx0; y0Þ �M0ðx0; y0Þ ¼ �Mð0Þ; (19)

where �Mð0Þ is either set to be zero or the tree-level mass
splitting which can be obtained from a free-field simulation
with the same setup of the gauge and fermion actions. Note
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that the choice of ðx0; y0Þ is ðT=2; T=4Þ for both�M andM.

cSW is obtained by tuning the condition�Mð0Þ � �M ¼ 0,
and cA is obtained in a straightforward fashion from
Eq. (17) with the correct cSW. Note that all applications
of the Schrödinger functional so far have been limited to
isotropic lattices.

In this work, we implement the Schrödinger-functional
setup on anisotropic lattices for the first time in dynamical
simulations. In one of our earlier three-flavor (anisotropic)
clover action simulations (with parameters � ¼ 2:2, � ¼
0:22, n� ¼ 2, m0 ¼ �0:054 673, �f ¼ � ¼ 3:5), we

found that the autocorrelation time of the lowest eigen-
value of QyQ [as defined in Eq. (6)] is significantly re-
duced by introduction of the background field, as shown in
Fig. 2. Thus, for these background-field calculations, we
can use correspondingly fewer trajectories compared to the
calculations with antiperiodic boundary conditions.

We also implement the background field not only in the t
direction (as conventionally used in Schrödinger func-
tional) but also the z direction. (We label the modified
masses Ms and Mt with respect to the direction of the
boundary field direction and similarly for the mass differ-
ence �Ms and �Mt.) We measure Mðx0Þ with various

spatial x and y sizes, Lx;y, and sizes Lz, showing results

in Fig. 3, all with time extent Lt ¼ 32 and equal amount of
statistics. When we increase the length in the z direction, a
good signal appears from t ¼ 12 to 16 but not beyond 24.
This is because the background field becomes too weak at
large Lz. When we increase the background field signal,
which is proportional to� at Lz ¼ 24, the signal is still not
as good as for Lz ¼ 16. Similar checks can be done re-
garding the size of Lx;y. As we increase the value from 8 to

12, the signal shows improvement. The right panel of Fig. 3
zooms in the scale as seen from the left panel, and dem-
onstrates that the Lx;y ¼ Lz ¼ 12 spatial volume has the

lowest statistical error while also providing enough spatial
size to adequately resolve the potential which will be
discussed in Sec. IVB; this is the spatial volume we use
in the remainder of this work.
We note that the fermion algorithm we will use corre-

sponds to simulating the Nf ¼ 3 fermion determinant as

detðQyQÞ3=2. In particular, when the renormalized quark
mass is negative (below the chiral limit), there is no phase
that should arise as in a Nf ¼ 3 version of QCD. Thus, the

algorithm is implementing the absolute value of the fer-
mion determinant. While, strictly speaking, this is not a

FIG. 2 (color online). 
minðQ2Þ measured in three-flavor anisotropic clover simulations (using parameters � ¼ 2:2, � ¼ 0:22, n� ¼
2, m0 ¼ �0:054 673, �f ¼ � ¼ 3:5) with (left) and without (right) a background field. The x axis is in units of 5 trajectories. The

right-hand panel (no background field) has a longer autocorrelation time compared to the case with a background field (left side). The
vertical scale, however, is different because of the background field.

FIG. 3 (color online). asMs comparison among different spatial volumes. The parameters in the action are the same as Fig. 2. The
right panel is an enlarged scale of the left panel with the addition of the 123 spatial-volume result, which is the size used in the
remainder of this work.
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Nf ¼ 3-flavor version of QCD when the (renormalized)

quark mass is negative, it does allow us to implement a
SUð3Þ flavor symmetric version of PCAC.

D. Renormalization conditions

In principle, we can determine the critical values for the
bare parameters ��

g and all the unknown coefficients in the

fermion action nonperturbatively by imposing the follow-
ing conditions:

�gð��
g; �

�
f; m

�
0; c

s�
SW; c

t�
SWÞ ¼ �

�fð��
g; �

�
f; m

�
0; c

s�
SW; c

t�
SWÞ ¼ �

Mtð��
g; �

�
f; m

�
0; c

s�
SW; c

t�
SWÞ ¼ mq

�Msð��
g; �

�
f; m

�
0; c

s�
SW; c

t�
SWÞ ¼ �Mð0Þ

s

�Mtð��
g; �

�
f; m

�
0; c

s�
SW; c

t�
SWÞ ¼ �Mð0Þ

t ;

(20)

where �g is the renormalized gauge anisotropy, �f is the

renormalized fermion anisotropy (defined through the me-
son dispersion relation EðpÞ2 ¼ M2 þ p2=�2f) and Mt is

the PCAC quark mass measured in Schrödinger-functional
background field [from Eq. (14)]. �Ms;t are the mass

differences measured in two different background field
directions. However, this requires that we search a five-
dimensional parameter space with dynamical simulations
which is costly.

In this work, we set the spatial and temporal clover
coefficients csSW and ctSW [in Eq. (10)] to the tree-level

tadpole-improved values. [Later in the numerical section,
we demonstrate using these values that the last two con-
ditions in Eq. (20) do hold within a few percent.] To
determine the remaining three coefficients, we parametrize
�g, �f, and Mt as functions fið�g; �f; m0Þ. For simplicity,

we choose functions of the bare parameters with the form

�gð�g; �f; m0Þ ¼ a0 þ a1�g þ a2�f þ a3m0

�fð�g; �f; m0Þ ¼ b0 þ b1�g þ b2�f þ b3m0

Mtð�g; �f; m0Þ ¼ c0 þ c1�g þ c2�f þ c3m0:

(21)

These parametrizations are linear functions in the coeffi-
cients. We can choose higher powers of the bare parame-
ters such as a m2

0 term; however, the coefficients that we

need to determine would remain linear.
Once the coefficients ai, bi, and ci are determined, we

impose our renormalization conditions

�gð��
g; �

�
f; m

�
0Þ ¼ � �fð��

g; �
�
f; m

�
0Þ ¼ �

Mtð��
g; �

�
f; m

�
0Þ ¼ mq

(22)

to obtain the critical values for the bare parameters as a
function of the input quark massmq. If only linear terms in

the bare parameters are used, then the intersection of these
three hyperplanes is the solution of a 3� 3 linear system of
equations. If higher-order terms are used, then the inter-

section is the root of a system of functions. The fitted
parameters determine the chiral limit when the input
mq ¼ 0.

III. ALGORITHM

Our configurations were generated with the Rational
Hybrid Monte Carlo (RHMC) algorithm [38–40].
Strictly, RHMC refers only to the method for simulating
odd flavors of fermions, and one can combine several
orthogonal algorithmic improvements with the RHMC
scheme resulting in a wide variety of possible RHMC
algorithms. In order to be specific therefore, we describe
the RHMC method in brief below and then detail our
particular combination of improvements.

A. Rational Hybrid Monte Carlo

The basic technique for gauge generation is a Markov
chain Monte Carlo method, where one moves from an
initial gauge configuration to a successive one by generat-
ing a new trial configuration and then performing an ac-
ceptance/rejection test upon it. If the trial configuration is
accepted, it becomes the successive configuration in the
chain, otherwise, the original configuration becomes the
next state in the chain.
In order to use a global Metropolis accept/reject step

with a reasonable acceptance rate, the space of states is
extended to include momenta��ðxÞ canonical to the gauge
links U�ðxÞ so that one may define a Hamiltonian

H ¼ 1

2

X
x;�

��ðxÞy��ðxÞ þ SðUÞ; (23)

where S is the action. It is then possible to propose new
configurations from previous ones by performing molecu-
lar dynamics (MD). Using a reversible and area-preserving
MD step maintains detailed balance, which is sufficient for
the algorithm to converge. In order to ensure ergodicity in
the entire phase space, the momenta need to change peri-
odically. This can be affected by refreshing the momenta
from a Gaussian heatbath prior to the MD update step.
In order to deal with the fermion determinant, it is

standard to use the method of pseudofermions. One inte-
grates out the Grassman-valued fermion fields in the action
and rewrites the resulting determinant as an integral over
bosonic fields

Z ¼
Z
½d �	�½d	�e� �	D	 ¼ detðDÞ

¼
Z
½d�y�½d��e��yD�1�; (24)

where 	 and �	 are the Grassman-valued fields, D is some
fermionic kernel and �y and � are the bosonic pseudo-
fermion fields. Our phase space is thus enlarged to include
also the pseudofermion fields, which similarly to the mo-
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menta, need to be refreshed before each MD step, to carry
out the pseudofermion integral.

In the case of a two-flavor simulation, D is typically of
the form

D ¼ QyQ; (25)

where Q is the fermion matrix for an individual flavor of
fermion. In this case D is manifestly Hermitian and posi-
tive definite, and the integral in Eq. (24) is guaranteed to
exist. Furthermore, the pseudofermion fields can easily be
refreshed by producing a vector � filled with Gaussian
noise with a variance of 1

2 and then forming � ¼ Qy�.
In the case of an odd number of flavors, since Q itself is

not guaranteed to be positive definite, one works instead

with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQyQÞ

p
:

detðQÞ ¼ detðQyQÞ1=2 ¼
Z
½d�y�½d��e��yðQyQÞ�1=2�:

(26)

The square root of D can be approximated to numerical
precision using a low-order rational approximation

r�1=2ðQyQÞ which can be expressed in a partial fraction
(sum over poles) form as

ðQyQÞ�1=2 � r�1=2ðQyQÞ ¼ 0I þ
X
k

k½QyQþ �k��1;

(27)

where the rational function approximation is specified by
the coefficients k and �k. In particular, the action of all
the denominator pieces onto one vector � involves the
solution of linear systems

½QyQþ �k�� ¼ � (28)

which can be performed simultaneously using a multiple-
shift (a.k.a. multimass) conjugate-gradient solver [41].
Refreshment of the � field now proceeds by evaluating

� ¼ r1=4ðQyQÞ	; (29)

where the 	 are once again filled with Gaussian noise of

variance 1
2 , and r

1=4 is now a rational approximation to

ðQyQÞ1=4. Molecular dynamics forces now need to be
calculated for each pole term in the partial fraction

Frational ¼ �X
k

k�
yðQyQþ �kÞ�1

�
dQy

dU
QþQy dQ

dU

�

� ðQyQþ �kÞ�1�: (30)

The idea of using a rational approximation in the action,
and its consequences for field refreshment and molecular
dynamics forces make up the basics of the RHMC
algorithm.

In terms of tuning, in our single-precision simulations
we tune the rational approximation coefficients by requir-
ing that the approximation has a maximum error over the

approximation interval that is smaller than the solver re-
sidua we require in the evaluation of the partial fraction
expansions, namely 10�8 for energy calculations and 10�6

for the force calculations. Further, in the case of the force
calculations we successively relax the solver criteria for
poles that have smaller contributions to the force as in
Refs. [38–40].

B. Multiscale anisotropic molecular dynamics update

While any reversible and area-preserving MD update
scheme can be used in the MD step, the acceptance rate
is controlled by the truncation error in the scheme. This
manifests itself as a change in the Hamiltonian, �H, over
an MD trajectory, since we use the Metropolis acceptance
probability

Pacc ¼ minð1; e��HÞ: (31)

We may easily construct a manifestly reversible scheme by
combining symplectic update steps Upð��Þ and Uqð��Þ
which update momenta and coordinates by a time step of
length ��, respectively,

Upð���Þ: ð��ðxÞ; U�ðxÞÞ
! ð��ðxÞ þ F�ðxÞ���;U�ðxÞÞ (32)

U qð���Þ: ð��ðxÞ; U�ðxÞÞ ! ð��ðxÞ; ei����U�ðxÞÞ;
(33)

where F�ðxÞ is the MD force coming from the variation of

the action with respect to the gauge fields. We emphasize
that one may update all the links pointing in direction �
with a separate step size ���. While this may not be useful

in isotropic simulations, in an anisotropic calculation with
one fine direction, it may be advantageous to use a shorter
time step to update the links in that direction to ameliorate
the typically larger forces that result from the shorter
lattice spacing [22]. The anisotropy in step size requires
a small amount of manual fine-tuning, but should be simi-
lar to the anisotropy in the lattice spacings.
Our base integration scheme in this work is due to

Omelyan [42–44]; we use the combined update operator

U1ð��Þ ¼ Upð
��ÞUqð12��ÞUpð1� 2
��ÞUqð12��Þ
�Upð
��Þ (34)

which results in a manifestly reversible scheme that is
accurate to Oð��3Þ. The size of the leading error term
can be further minimized by tuning the parameter 
. In
our work we used the value of 
 from Ref. [44] without any
further tuning, which promises an efficiency increase of
approximately 50% over the simple leapfrog algorithm.
In Refs. [42,45] it was shown that a reversible, multi-

level integration scheme can be constructed which allows
various pieces of the Hamiltonian to be integrated at differ-
ent time scales. Let us consider a Hamiltonian of the form
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Hð�;UÞ ¼ 1
2�

y
�ðxÞ��ðxÞ þ S1ðUÞ þ S2ðUÞ; (35)

where S1ðUÞ and S2ðUÞ are pieces of the action with
corresponding MD forces F1 and F2, respectively. One
can then split the integration into 2 time scales. One can
integrate with respect to action S1ðUÞ using U1ð��1Þ,
where in the component Upð��1Þ we use only the force

F1. The whole system can then be integrated with the
update

U2ð��2Þ ¼ U0
pð
��2ÞU1ð12��2ÞU0

pð1� 2
��2Þ
�U1ð12��2ÞU0

pð
��2Þ; (36)

where inU0
p we update the momenta using only F2. Thus,

we end up with two characteristic integration time scales
��1 and ��2. The scheme generalizes recursively to a
larger number of scales. A criterion for tuning the algo-
rithm is to arrange for terms in the action to be mapped to
different time scales so that on two time scales i and j we
have kFik��i � kFjk��j, as suggested in Ref. [46]. We

now proceed to outline how we split our action.

C. Even-odd preconditioning the clover term

The clover term may be preconditioned by labeling sites
as even and odd, and grouping together the terms in the
operator that connect sites of various labels. In particular,

Q ¼ Aee Deo

Doe Aoo

� �
; (37)

where the blocks Aee and Aoo contain the clover term and
the diagonal parts of the Wilson operator whereas the Deo

and Doe contain the Wilson hopping term. This matrix can
be block diagonalized as

Q ¼ 1 0
DoeA

�1
ee 1

� �
Aee 0
0 Aoo �DoeA

�1
ee Deo

� �

� 1 A�1
ee Deo

0 1

� �
; (38)

and it is clear that

detðQÞ ¼ detðAeeÞ detðAoo �DoeA
�1
ee DeoÞ: (39)

We can write an action containing Nf degenerate fermion

flavors as

detðQyQÞNf=2 ¼ e
P

x
Nf tr logAeeðxÞ�

PNf
i¼1

�y
i ½r�1=2ð ~Qy ~QÞ��i

(40)

with the preconditioned fermion matrix

~Q ¼ Aoo �DoeA
�1
ee Deo: (41)

This manner of preconditioning the clover term is quite
standard; guides to implementation are detailed in
Ref. [46]. We mention that it may be possible to combine
the three pseudofermion terms each containing

r�1=2ð ~Qy ~QÞ into a single one containing instead a single

rational approximation r�3=2; however, the Remez algo-
rithm for this approximation results in negative roots with
dire implications for our multishift solver. In this work
therefore, we have simulated with three separate one-flavor
pseudofermion terms.
It is our experience that the forces resulting from the

tr logAee terms were at least an order of magnitude smaller
than the pseudofermion terms, and so the two kinds of
terms could be run on separate time scales.

D. Stout-link smearing in fermion actions

The fermionic terms in our action employ stout-link
smearing [24] on the links in the spatial direction. We
leave the temporal direction unsmeared to keep the transfer
matrix physical. The Schrödinger-functional boundary
condition is imposed at every iteration of the stout-link

smearing. Our fermion operator ~Q is evaluated on the
stout-smeared fields. In the calculation of the fermion
forces, we compute the force on the stouted links, but
then have to also apply the chain rule to compute the force
coming from the original thin links:

d ~Q

dUthin

¼ d ~Q

dUstout

dUstout

dUthin

: (42)

In particular, the dUstout

dUthin
term is common to all the poles in

the rational function approximation; hence, in our rational
force computations we compute all the forces with respect
to the stout links first and then perform the recursion to the
thin links only once. The Schrödinger-functional boundary
conditions imply that the force for the links which we hold
fixed are set to zero.

E. Split gauge term

We can write our gauge action schematically as

S ¼ SsðUÞ þ StðUÞ; (43)

where the term Ss contains only loops with spatial gauge
links, and the St term contains loops with spatial and
temporal links. While the term Ss produces forces only in
the spatial directions, the St term produces forces in both
the spatial and the temporal directions. In particular, the
spatial forces from St are larger in magnitude than the
spatial forces from Ss by roughly the order of the anisot-
ropy, and in turn, the temporal forces from St are larger
than the spatial forces from St. Our anisotropic integration
step-size balances the spatial and temporal forces of the St
term against each other. However, in order to balance the
spatial forces from St and Ss against each other, we inte-
grate them on separate time scales.
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F. Summary

To summarize, we use the RHMC algorithm, with ap-
proximations tuned separately for the force and energy
calculations. Our molecular dynamics scheme uses aniso-
tropic time steps and a recursively defined multilevel in-
tegration scheme based on Omelyan’s integrator. Our
fermionic terms employ stout smearing in the spatial di-
rections only. We have 4 kinds of terms in our molecular

dynamics integration: the tr logAee term, the �y
i r

�1=2ð ~QÞ�
pseudofermionic terms, the spatial gauge action term Ss,
and the temporal gauge action term St.

Based upon the magnitude of the molecular dynamics
forces, we split our integration scheme onto three time
scales:

(i) Time scale 1 uses the Omelyan integrator with a time
step of �t1, and contains the tr logAee term and the
pseudofermion terms.

(ii) Time scale 2 uses a leapfrog integrator with a time
step of �t2 relative to time scale 1, and contains the
spatial gauge action term.

(iii) Time scale 3 uses a leapfrog integrator with a time
step of �t3 relative to time scale 2, and contains the
temporal gauge action term.

For our 123 � 32 volume results with a background field,
we used time steps ð�t1; �t2; �t3Þ ¼ ð1=4; 1=4; 1=3Þ for the
three time scales, and for our 123 � 96 volume results with
antiperiodic boundary conditions we used ð1=5; 1=3; 1=2Þ.
In addition, the time step for the temporal direction was a
factor of � ¼ 3:5 times smaller than the spatial time steps.
The acceptance rate was typically between 60% and 70%.
These technologies are all implemented in the Chroma
software system [29].

IV. NUMERICAL RESULTS

We are interested in a spatial lattice spacing on the order
of 0.1–0.2 fm with a target anisotropy of � ¼ 3:5, which
would provide a fine-enough temporal lattice spacing for
excited-state physics. We proceeded by making an initial
guess for the anisotropy parameters, �g ¼ �f ¼ � ¼ 3:5

and m0 ¼ �0:05, and computed the Sommer scale r0=as
(Ref. [47]) over a range of � with lattice sizes of 123 � 32.
Anticipating significant running in r0=as, we chose to use
� ¼ 1:5. A preliminary investigation indicates a lattice
spacing of roughly 0.12 fm. However, a careful determi-
nation of the lattice spacing involves a study of the static-
quark potential as well as hadron masses on Nf ¼ 2þ 1

ensembles, a determination of the strange quark mass,
extrapolation of the light-quark mass to the physical limit,
and examining different approaches to include potential
systematic uncertainties which will be presented in
Ref. [48]. Note that, in the earlier part of this section, we
will vary � to make a global search and to get an under-
standing of the stout-smearing parameters and tadpole
factors.

We tune the gauge and fermion anisotropies in three-
flavor simulations. The determination of the tadpole factors
used in the gauge and fermion action and the stout-link
parameter study will be described in Sec. IVA. We ulti-
mately decide to 3D stout-link smear with n� ¼ 2 and � ¼
0:14. Section IVB and IVC describe how the gauge and
fermion anisotropies are measured, and finally the target
coefficients in the fermion action are determined in
Sec. IVD.

A. Plaquette, tadpole factors, and stout links

In this work, we tadpole improve [49] the gauge and
fermion actions. This procedure amounts to replacing the

gauge-link fields with Û�ðxÞ ¼ U�ðxÞ=u. We obtain the

tadpole factors used in the simulation from a nonperturba-
tive tuning. There are two types of tadpole factors; we
denote using ~us;t the tadpole factors with the stout-smeared

fields (which are used in the gauge links of the fermion
action), and us;t are those without smearing (which are in

the gauge action). For each parameter set, we start with a
perturbative guess, us ¼ ut ¼ 1, and calculate the actual
us;t from the plaquette. Then, we use the new value to feed

back into the next dynamical run. The value of us;t will
converge, giving the nonperturbative value with 1%–2%
precision.
We calculated these tadpole factors with a large range of

� values in three-flavor simulations. Over a wide range of
parameters, we find that the square root of the spatial
plaquette is consistent with the temporal plaquette, for
both smeared and unsmeared links, indicating that the
temporal tadpole factor is close to 1. We chose to fix ut ¼
~ut ¼ 1 throughout the remainder of the work. It still re-
mains to determine the spatial tadpole factors.
Let us first concentrate on the influence of the stout-

smearing parameters on the plaquette. In Sec. II, we set the
stout-link parameters to be � ¼ 0:22 and n� ¼ 2, follow-

ing the choice of the two-flavor anisotropic study done in
Ref. [22]. At one-loop level we expect the spatial plaquette
to be

hP si ¼ 1� cð1Þss g2; (44)

where cð1Þss is a function of the gauge action and stout-link

parameters. Figure 4 shows cð1Þss as a function of � for n� ¼
1, 2, 3, as calculated in Ref. [50] with our choice of a
Symanzik-improved gauge action. We find that the choice

of � ¼ 0:14 corresponds to a minimum of cð1Þss which
corresponds to the maximum of the spatial plaquette in
Eq. (44) for g2 > 0. We note that this value of � ¼ 0:14 is
also consistent with the suggestion [51] that the maximum
allowable value, given by a classical argument, is 1=6 in
our case of three-dimensional smearing. We also investi-
gate the spatial plaquettes in our numerical studies; see
Fig. 5. In this investigation, we use three different three-
flavor ensembles with sea-sector parameters as follow:
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(i) Ensemble A: � ¼ 2:0, �g ¼ 3:5, �f ¼ 3:89,

f�; n�g ¼ f0:22; 2g
(ii) Ensemble B: � ¼ 2:0, �g ¼ 3:5, �f ¼ 3:5,

f�; n�g ¼ f0:14; 1g
(iii) Ensemble C: � ¼ 1:0, �g ¼ 3:0, �f ¼ 3:33,

f�; n�g ¼ f0:22; 2g

with fixed m0 ¼ 0, 123 � 32 volume with antiperiodic
boundary conditions in time. We vary � in the valence
sector and study the resulting behavior of the spatial pla-
quettes. We find that plaquette is maximized in the vicinity
close to our initial choice � ¼ 0:22.

We then concentrate on one set of fermion coefficients,
� ¼ 0:14, m0 ¼ 0, �g ¼ 3:5, and �f ¼ 3:5, and study the

tadpole factors as functions of � with two values of n�, as

shown in Fig. 6. We see that the fermion stout-link smeared

tadpole factor ~us (denoted as uðstÞs in the plot) increases
when we double the number of smearing steps and gets
closer to one, which is what we expected. The gauge tad-

pole factor (without stout-link smearing, denoted as uðunÞs )
remains unchanged, as if the stout-smearing in fermion
sector had no impact in the gauge sector. This tells us the
ultraviolet observable does not change with n� ¼ 2; there-

fore, in the rest of this paper, we will fix the smearing
parameters to � ¼ 0:14 and n� ¼ 2.

We parametrize the smeared and unsmeared spatial tad-
pole factors as

u ¼ X3
n¼1

1þ ang
2n

1þ bng
2n

(45)

with the constraint a1 � b1 ¼ cð1Þ, where g2 is defined as

6=� and cð1Þ is the one-loop perturbative value of the
tadpole factor [50]. Figure 7 shows the data for n� ¼ 2

and � ¼ 0:14 and the fit using Eq. (45). The tadpole factors
are interpolated well over a large range of �. At � ¼ 1:5
(on which we will focus for the rest of the paper) this
parametrization gives

us ¼ 0:7336; ~us ¼ 0:9267: (46)

In all further investigations, we use the values as deter-
mined by Eq. (45). We note that, as we vary �, anisotro-
pies, and masses, the values predicted by Eq. (45) agree to
a few percent.
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FIG. 4 (color online). The one-loop coefficient of the spatial

plaquette, cð1Þss , as a function of � for n� ¼ 1, 2, 3. The minimum

cð1Þss (where the plaquette is near 1) in all three cases, as shown
above, indicates � � 0:14.
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FIG. 6 (color online). The self-consistent tadpole factors as a
function of � at fixedm0, �g ¼ �f ¼ � ¼ 3:5, and ut ¼ ~ut ¼ 1.

The unsmeared spatial tadpole factors uðunÞs are nearly identical
for both n� ¼ 1 and n� ¼ 2.
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FIG. 5 (color online). This graph shows how the spatial stout-
smeared plaquette varies as a function of valence stout parame-
ter, �, on three different ensembles with different choices of
fermion parameters, � and stout-smearing factors, as indicated
in the legend box. The smeared threshold is only observed for
�thresh � 0:2 in � ¼ 2:0 case; for smaller �, the maximum
�thresh � 0:25.
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B. Gauge anisotropy

We determine the gauge anisotropy from the static-
quark potential using Klassen’s ‘‘Wilson-loop ratio’’ ap-
proach [52]. In this method, we use Wilson loops involving
the temporal direction, Wst, and those in the spatial direc-
tions, Wss, with Schrödinger-functional boundary condi-
tions applied in the z direction. We measure the ratios

Rssðx; yÞ ¼ Wssðx; yÞ
Wssðxþ 1; yÞ ���!

asym
e�asVsðyasÞ;

Rstðx; tÞ ¼ Wstðx; tÞ
Wstðxþ 1; tÞ ���!

asym
e�asVsðtatÞ

(47)

on lattice volumes of 123 � 32. Naturally, one should
impose Rssðx; yÞ ¼ Rstðx; tÞ to get the renormalized gauge
anisotropy �g. An advantage to this method is that finite-

volume artifacts tend to cancel in the ratios as demon-
strated in the case of the (quenched) Wilson gauge action
[52] and the Iwasaki gauge action [21] with dynamical
fermions. We determine �g by minimizing [21]

Lð�gÞ ¼
X
x;y

ðRssðx; yÞ � Rstðx; �gyÞÞ2
ð�RsÞ2 þ ð�RtÞ2

; (48)

where �Rs and �Rt are the statistical errors of Rss and Rst.
We interpolate Rstðx; tÞ by a cubic spline in terms of t. To
avoid short-range lattice artifacts, x and y should not be too

small. It has been observed in the Nf ¼ 2 case [21] that

including data with y ¼ 1 introduces significant artifacts
due to excited-state contamination.
While this method was originally proposed for use in

gauge actions with periodic boundary conditions, we note
that it can also be applied to the case of a constant back-
ground field. The basic observation is that if we use Wilson
loops orthogonal to the background-field direction (the
boundary condition direction), the flux from the back-
ground field that propagates should cancel in the ratios
Rss or Rst. To confirm this, we measured �g with two

different three-flavor ensembles with the same action pa-
rameters � ¼ 1:5, �g ¼ 4:4,m0 ¼ �0:0570 and �f ¼ 3:3

but under two boundary conditions: Schrödinger-
functional and periodic boundary conditions in the z direc-
tion. Figure 8 shows the results from both measurements.
The gauge anisotropy from periodic boundaries, �PBCg , as a

function of minðxyÞ is plotted. Compared with two-flavor
simulation [21], the three-flavor results show larger depen-
dence onminðxyÞ. The band in Fig. 8 is the resulting gauge
anisotropy from Schrödinger-functional boundaries, �SFg ,

[obtained from minðxyÞ ¼ 4]; it is consistent with �PBCg .

We gain advantages by calculating �SFg instead of �PBCg for

reasons described in Sec. II C. Therefore, for the rest of this
work, we will use the gauge anisotropy �SFg as �g.

C. Fermion anisotropy

We determine the fermion anisotropy �f through the

conventional relativistic meson dispersion relation

Eð ~pÞ2 ¼ m2 þ ~p2

�2f
; (49)

where the energy E and the mass m are in units of at, and
~p ¼ 2�~n=Ls, with Ls the spatial lattice size, is in units of
as. Gauge configurations are generated using periodic
boundary conditions in space and antiperiodic in time on
lattice volumes of 123 � 96 with parameters chosen as in
Sec. IVB. We use six equally separated time sources, two
different source quark smearings and an unsmeared (local)
sink to produce the correlators. These are then averaged
over the six time sources. The two resulting hadron corre-
lators for each momentum, averaged over equivalent rota-
tions, were used in a constrained fit to two amplitudes and

FIG. 7 (color online). Padé approximation for tadpole factors us and u
ðstÞ
s for n� ¼ 2.

FIG. 8 (color online). Consistency check on �g measured in
Schrödinger-functional boundary conditions (band) and periodic
boundary conditions (points) as functions of the product of x and
y. The fermion action parameters for this run are �g ¼ 4:4,

m0 ¼ �0:0570, and �f ¼ 3:3.
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one mass. These results are also cross-checked against a fit
including two masses (a ground and excited state).

We calculate the energy Eð ~pÞ at the spatial momenta
~p ¼ 2�~n=Ls for n ¼ ð0; 0; 0Þ, (1,0,0), (1,1,0), and (2,0,0).
The resulting jackknife energies are used in a linear fit [in
Eð ~pÞ2] to Eq. (49) to extract �f. We find no significant

deviation from linearity. An example is in Fig. 9 which
shows the pseudoscalar and vector-meson energies with
action parameters � ¼ 1:5, �g ¼ 4:4, m0 ¼ �0:0540 and

�f ¼ 3:3 at multiple momentum projections. [The effec-

tive energy is shown as lnðCðtþ 1Þ=CðtÞÞ.] We measure
�f ¼ 3:44ð8Þ from the pseudoscalar meson and �f ¼
3:44ð10Þ from the vector meson, which are consistent.

In our earlier work [30], we determined the fermion
anisotropy through the PCAC mass ratio from
Schrödinger-functional boundary conditions in the z and
t directions. However, unlike the case of the Wilson loop,
we found it difficult to exclude excited-state contamination
with the limited size of the spacial direction; thus, such a
method suffers from a larger systematic error due to the
extraction of the PCAC mass. We also investigated using
the Schrödinger-functional scheme with Dirichlet (zero)
gauge boundary conditions and a pointlike (but smeared)
fermion boundary condition [53] in time allowing us to
project our correlators onto nonzero momenta, and thus
allowing an extraction of the fermion anisotropy from the
meson dispersion relation. This method, however, did not
give as reliable results as in the antiperiodic case due to the
small time extent which makes it difficult to exclude
potential excited-state contamination. Therefore, we
choose to use the meson dispersion to determine �f on

(anti)periodic boundary gauge ensembles.

D. Tuning result

With � fixed at 1.5, we only need to tune the parameters
�g, �f, and m0. Our strategy is to choose some suitable

estimates of the anisotropies, and make a coarse scan inm0

to find the region of the critical point as determined from
the PCAC mass Mt, where, as described in Sec. II C, a
background field in the t direction was used. Because of the
nice properties of the algorithm using the background field,
fairly short runs over roughly 1000 trajectories with mea-
surements every fifth trajectory are sufficient for the pur-
pose of determining Mt. Given a mass regime of interest,
the gauge anisotropy �g is determined using a background

in the z direction as described in Sec. IVB. Again, roughly

FIG. 9 (color online). Effective mass plots as a function of time for pseudoscalar (left) and vector (right) mesons and corresponding
fits; various momentum projections are indicated by different colors and symbols. The fermion action parameters for this run are
m0 ¼ �0:0540, Lt ¼ 96, �g ¼ 4:4, and �f ¼ 3:3 with (anti)periodic boundary conditions. The insets summarize the fitted energies as

functions of squared momentum; a linear extrapolation gives the fermion anisotropy.

TABLE I. PCAC mass (in units of the inverse temporal lattice
spacing) measured from the t-direction Schrödinger-functional
boundary condition ensemble with volume 123 � 32.

m0 �g �f Mt �Mt �Mð0Þ
t

�0:0950 4.3 3.5 �0:0122ð9Þ 0.0003(10) �0:001 547
�0:0950 4.3 3.4 �0:0121ð9Þ 0.0003(9) �0:001 67
�0:0950 4.3 3.3 �0:0141ð8Þ 0.0002(9) �0:001 798
�0:0734 4.3 3.5 0.0160(9) �0:0007ð9Þ �0:001 547
�0:0734 4.3 3.4 0.0149(7) �0:0007ð6Þ �0:001 67
�0:0734 4.3 3.3 0.0139(7) 0.0006(11) �0:001 798
�0:0618 4.2 3.5 0.0431(11) 0.0002(4) �0:001 427
�0:0618 4.2 3.4 0.036(2) �0:0004ð8Þ �0:001 545
�0:0618 4.2 3.3 0.0339(11) 0.0004(8) �0:001 672
�0:0618 4.3 3.5 0.0321(9) 0.0003(5) �0:001 547
�0:0618 4.3 3.4 0.0303(6) �0:0001ð5Þ �0:001 67
�0:0618 4.3 3.3 0.0297(6) �0:0003ð4Þ �0:001 798
�0:0618 4.4 3.4 0.0218(5) �0:0004ð5Þ �0:001 791
�0:0618 4.4 3.3 0.0213(7) 0.0001(6) �0:001 923
�0:0570 4.3 3.4 0.0349(7) 0.0002(5) �0:001 67
�0:0570 4.3 3.3 0.0342(10) 0.0004(7) �0:001 798
�0:0570 4.3 3.2 0.0311(12) 0.0005(8) �0:001 935
�0:0570 4.3 3.1 0.0300(9) 0.0025(8) �0:002 078
�0:0570 4.4 3.3 0.0248(12) 0.0002(8) �0:001 923
�0:0570 4.4 3.2 0.0239(6) 0.0005(7) �0:002 065
�0:0570 4.4 3.1 0.0220(7) 0.0012(11) �0:002 212
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1000 trajectories are sufficient. The measurements of Mt

and �g used 123 � 32 volumes, and provide a reasonable

range of the bare parameters m0 and �g for further deter-

minations of the fermion anisotropy �f. These latter mea-

surements used the method described in Sec. IVC on
123 � 96 volumes with antiperiodic boundary conditions
in time. Longer runs of roughly 2000 trajectories are used
with measurements every fifth trajectory and binned twice,
so they are effectively measured every tenth trajectory.

Of course, each of these simulations is independent of
the others. The ensemble parameters, and the results of the

determinations of Mt, �g, and �f, are summarized in

Tables I, II, and III, respectively.
Using a bootstrap analysis, we fit the measurements

according to the linear ansatz in Eq. (21). The fit parame-
ters are

a0 ¼ 0:5ð8Þ; a1 ¼ 0:41ð14Þ; a2 ¼ 0:39ð8Þ;
a3 ¼ 1:3ð7Þ; b0 ¼ �4:8ð12Þ; b1 ¼ 0:6ð2Þ;
b2 ¼ 1:74ð17Þ; b3 ¼ 4ð3Þ; c0 ¼ 0:395ð18Þ;

c1 ¼ �0:082ð3Þ; c2 ¼ 0:0194ð17Þ;
c3 ¼ 1:282ð16Þ: (50)

The values of �2 per degree of freedom are 6:0=16, 13:2=8,
34:7=17, respectively. Figures 10–12 demonstrate how the
fits work using two-dimensional slices of the parameter
and measurement spaces. Both �g and �f show little

sensitivity to the parameterm0, and thus the slope is poorly
determined in our fits. However, we do not expect this
would affect our final result much since the changes in
m0 are Oð10�2Þ and the �g and �f are Oð1Þ. The inter-

actions of �g and �f also have large uncertainties in the fits;

this is also expected since the running coefficients, �f and

�g, are around 3–4 and there is a long extrapolation to 0. In

terms of fits toMt, m0 has the dominant effect, a few times
larger than �g while �f has one magnitude smaller con-

tribution. We found that �g and �f have positive linear

dependence on the bare parameters, while for the case of
Mt versus �g, we found that Mt increases while �g de-

creases. The �g parameter is the dominant factor in � ¼
as=at. Increasing it, at will increase as well; this leads to
the only dimensional measurement Mt becoming smaller
in units of at. Similar effects are observed when we pa-
rametrize the pion mass squared or rho-meson mass (which
are measured on the antiperiodic boundary condition en-
semble); see Figs. 13 and 14.

TABLE II. Renormalized gauge anisotropy measured from the
z-direction Schrödinger-functional boundary condition ensemble
with volume 123 � 32.

m0 �g �f �g

�0:0950 4.3 3.5 3.48(5)

�0:0950 4.3 3.4 3.42(3)

�0:0950 4.3 3.3 3.40(3)

�0:0743 4.3 3.4 3.47(10)

�0:0734 4.3 3.4 3.46(4)

�0:0618 4.2 3.5 3.48(4)

�0:0618 4.2 3.4 3.41(3)

�0:0618 4.2 3.3 3.42(2)

�0:0618 4.3 3.5 3.50(4)

�0:0618 4.3 3.4 3.47(4)

�0:0618 4.3 3.3 3.43(4)

�0:0618 4.3 3.2 3.38(7)

�0:0618 4.4 3.3 3.47(5)

�0:0570 4.3 3.4 3.48(7)

�0:0570 4.3 3.3 3.43(9)

�0:0570 4.3 3.2 3.39(3)

�0:0570 4.3 3.1 3.36(4)

�0:0570 4.4 3.3 3.50(4)

�0:0570 4.4 3.2 3.54(5)

�0:0570 4.4 3.1 3.399(16)

TABLE III. Fermion anisotropy, vector-meson mass, and pseudoscalar mass squared (in units
of the inverse temporal lattice spacing) from the periodic boundary condition ensemble with
volume 123 � 96.

m0 �g �f �f m� m� m�=m�

�0:0743 4.3 3.4 3.43(4) 0.1501(9) 0.222(3) 0.677(9)

�0:0618 4.2 3.5 3.62(5) 0.2830(9) 0.348(2) 0.814(5)

�0:0618 4.2 3.4 3.38(4) 0.2753(10) 0.337(2) 0.816(5)

�0:0618 4.2 3.3 3.18(3) 0.2604(10) 0.319(5) 0.817(11)

�0:0618 4.3 3.4 3.47(6) 0.2232(15) 0.290(4) 0.769(9)

�0:0618 4.4 3.3 3.25(6) 0.1639(17) 0.217(5) 0.754(16)

�0:0570 4.3 3.3 3.23(4) 0.2401(13) 0.299(4) 0.804(8)

�0:0570 4.3 3.2 3.19(5) 0.2290(16) 0.292(4) 0.784(10)

�0:0570 4.3 3.1 2.99(4) 0.2164(18) 0.261(7) 0.828(20)

�0:0570 4.4 3.3 3.43(6) 0.193(3) 0.255(6) 0.758(17)

�0:0570 4.4 3.2 3.22(8) 0.182(3) 0.233(5) 0.780(17)

�0:0570 4.4 3.1 2.91(11) 0.151(3) 0.194(6) 0.78(2)
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We can gain a qualitative understanding of the origin of
the opposite sign in the slopes of �g versus �f for the mass

measurements by considering the classical dispersion rela-
tion for the action in Eq. (10). For a small background
chromoelectric field F0i, we find that the lattice dispersion

relation energy at zero spatial momentum Ê ¼
2 sinhðatm0Þ=at satisfies for our choice of clover coeffi-
cient ct from Eq. (7):

Ê 2ð1þ atm0Þ ¼ m2
0 �

�
�g
�f

þ 1

2

�
�
�g
�f

þ 1

�

� sinhðatm0Þ
�X

i

�0iF0i: (51)

Thus, the derivatives @Ê2=@�g / �F0i and @Ê2=@�f /
þF0i have opposite sign.

We impose the renormalization condition that in the
chiral limit f�g; �f;Mtg ¼ f3:5; 3:5; 0g. By solving

Eq. (22) with the parameters in Eq. (50), we found that

fmcr; �
�
g; �

�
fg ¼ f�0:080ð6Þ; 4:38ð8Þ; 3:44ð7Þg: (52)

In our previous work [30], where we studied the case of
� ¼ 2:2, we found that both ��

g and �
�
f were very close to

the desired anisotropy. We also found that the lattice spac-
ing was about as ¼ 0:07 fm—based upon using r0 to set
the scale with the quark mass tuned to the physical�mass.
In the physical limit, we expect this lattice spacing to be
smaller. Thus, these previous results were in a weak cou-
pling regime. In the present work at � ¼ 1:5, the lattice
spacing in the physical limit is about 0.12 fm which is a
fairly coarse coupling. When looking at the gluonic self-
energy at one-loop order, there is a fermionic contribution
proportional to Nf which is absent from the fermionic self-

FIG. 10 (color online). Gauge anisotropy as a function of �f, �g at various fixed m0. The straight lines are the fitted functions
according to Eqs. (21) and (50) while keeping the remaining two parameters, m0 and �g (left panel) or �f (right panel), fixed. Table II

lists the details of the ensemble parameters.
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FIG. 12 (color online). PCAC mass (in units of the temporal lattice spacing) as a function of �f, �g at various fixed m0. The straight
lines are the fitted functions according to Eqs. (21) and (50) while keeping the remaining two parameters, m0 and �g (left panel) or �f
(right panel), fixed. Table I lists the details of the ensemble parameters.

FIG. 11 (color online). Fermion anisotropy as a function of �f, �g at various fixed m0. The straight lines are the fitted functions
according to Eqs. (21) and (50) while keeping the remaining two parameters, m0 and �g (left panel) or �f (right panel), fixed. Table III

lists the details of the ensemble parameters.
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energy. So, while the one-loop correction to the gauge
anisotropy is small in the pure gauge case [54], the larger
renormalization effect seen in Nf ¼ 3 (about 25% overall)

is consistent with the presence of an additional fermionic
contribution proportional to Nf ¼ 3 that is missing in the

fermionic anisotropy. However, we note that we changed

the smearing width from � ¼ 0:22 at � ¼ 0:22 to � ¼
0:14 at � ¼ 1:5 which complicates this perturbative
analysis.
By fixing the renormalization condition in the general

case, f�g; �f;Mtg ¼ f3:5; 3:5; mqg, we obtain the desired

action parameters as a functions of the bare quark mass, as

FIG. 13 (color online). Pion mass squared (in units of a�2
t ) as a function of �f, �g at various fixedm0. The straight lines are the fitted

functions according to m2
�ð�g; �f; m0Þ ¼ d0 þ d1�g þ d2�f þ a3m0 while keeping the remaining two parameters, m0 and �g (left

panel) or �f (right panel), fixed. Table III lists the details of the ensemble parameters.

FIG. 14 (color online). Rho-meson mass (in units of a�1
t ) as a function of �f, �g at various fixed m0. The straight lines are the fitted

functions according to m�ð�g; �f; m0Þ ¼ e0 þ e1�g þ e2�f þ a3m0 while keeping the remaining two parameters, m0 and �g (left

panel) or �f (right panel), fixed. Table III lists the details of the ensemble parameters.
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shown in Fig. 15. As emphasized in the discussions above,
��
g and ��

f have very small quark mass dependence from

the chiral limit up to the heaviest m0 used in this work,
�0:057 (which corresponds to mq � 0:03). Of course, m0

is linearly proportional to the bare quark mass.
Figure 16 shows a subset of the m0 values with their

corresponding gauge and fermion anisotropies. The two
simulation points that are consistent with the desired points
of f�g; �fg ¼ f3:5; 3:5g are consistent with Eq. (52).

Based upon the negligible mass dependence that is
observed, we henceforth fix the anisotropy bare parameters
to

��
g ¼ 4:3; ��

f ¼ 3:4 (53)

which corresponds to a parameter set used in Fig. 16. The
corresponding clover coefficients are

csSW ¼ 1:589; ctSW ¼ 0:903:

Figure 17 shows a PCAC measurement as a function of m0

with � ¼ 1:5, �g ¼ 4:4, and �f ¼ 3:3; and linear inter-

polation to Mt ¼ 0 gives us

atmcr ¼ �0:0854ð5Þ: (54)

Finally, we will discuss how our initial tadpole-
improved clover coefficients cs;tSW differ from the nonper-

turbative coefficients in the Schrödinger-functional
scheme (as described in Sec. II C). Table I lists the
PCAC mass, �Mt, and its tree-level value (in units of
a�1
t ) measured with the t-direction Schrödinger-functional

boundary condition. If we had nonperturbatively tuned cs;tSW
and imposed the renormalization conditions from Eq. (20),

we should expect that�Mt ¼ �Mð0Þ
t . There are four sets of

ensemble parameters that satisfy the conditions on ��
g and

��
f. If we extrapolate �Mt to mcr, we find �Mt ¼

�0:000 22ð57Þ, which is about 1.5 standard deviations
away from the tree-level value: �0:001 67 (see Fig. 18.)
We conclude that the tadpole-corrected tree-level coeffi-
cients with stout-link smearing are close enough to the

FIG. 15 (color online). Tuned gauge and fermion action pa-
rameters, m�

0 (top), �
�
g (middle) and ��

f (bottom), as functions of

the bare quark mass, atmq, corresponding to the solution of

Eq. (22). There is negligible mass dependence in the tuned
anisotropy parameters. With a spatial lattice spacing as ¼
0:12 fm, the maximum extent of the horizontal axis is about
175 MeV.

NP
m0 0.0743
m0 0.0618
m0 0.057

4.1 4.2 4.3 4.4 4.5 4.6
3.0

3.1

3.2

3.3

3.4

3.5

3.6

γ g

γ f

FIG. 16 (color online). Renormalized gauge and fermion anisotropies (left) and the corresponding bare parameter (right). The
detailed parameters can be found in Tables II and III. Note that the predicted coefficients from fitting Eq. (22) in the chiral limit are
f��

g; �
�
fg ¼ f4:38ð8Þ; 3:44ð7Þg. Each color denotes ensembles with a particular mass m0, and the selection of symbols is consistent

between the two figures.
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nonperturbative OðaÞ-improved coefficients in the three-
flavor dynamical simulation.

V. CONCLUSION AND OUTLOOK

This is the first calculation that combines Schrödinger
functional with stout-link smearing on three-flavor aniso-
tropic clover action. The Schrödinger-functional boundary
conditions allow us to work on small volumes and small
quark masses with improved signal, which improves our
ability to probe the chiral limit. Stout-link smearing im-
proves the chiral and scaling properties of our chirally
broken fermion action. We take advantage of the much
smaller cost by implementing both in our calculation.

We studied a range of stout-link parameters that may be
safely applied to multiple choices of � and different co-
efficients in the fermion sector in three-flavor simulation.
Although our numerical simulations suggested that higher
values of � could be applied, in the end, the stout-link
parameters we chose conservatively to be � ¼ 0:14 and
n� ¼ 2, as suggested by a one-loop perturbative

calculation.
In a preliminary three-flavor study of various � values,

we found through the static-quark potential that � ¼ 1:5
gave us the desired spatial lattice spacing around 0.12 fm in
the physical limit. The remaining coefficients in the gauge
action and clover coefficients cs;tSW in the fermion action

were set to their tree-level tadpole-improved values, which
were numerically determined and interpolated using a Padé
approximation.

We determined the gauge anisotropy using Wilson-loop
ratios and Schrödinger-functional boundary conditions in
the z direction; we determined the fermion anisotropy
using antiperiodic boundary conditions in time. The quark
mass was estimated from PCAC measurements using
Schrödinger-functional boundary conditions in the t direc-
tion from which we found the critical mass.

We then tuned the remaining parameters �g;f to achieve

the desired renormalized anisotropy � ¼ 3:5 in the chiral
limit. We found fmcr; �

�
g; �

�
fg ¼ f�0:080ð6Þ; 4:38ð8Þ;

3:44ð7Þg from a linear parametrization. The mass depen-
dence of the gauge and fermion anisotropies is found to be
negligible. Hence, we have for the final parameters

��
g ¼ 4:3; ��

f ¼ 3:4;

csSW ¼ 1:589; ctSW ¼ 0:903;

with atmcr ¼ �0:0854ð5Þ. Further, we showed in the
Schrödinger-functional scheme that, when using stout-
link smearing and numerically determined tadpole factors,
our fermion action automatically fulfills an (on-shell)
OðaÞ-improved renormalization condition. In particular,
the clover coefficients cs;tSW are consistent with being non-

perturbatively tuned. We will apply the same approach for
future tuning as we move to finer lattices.
With the determined coefficients from this work, we are

currently generating Nf ¼ 2þ 1-flavor ensembles with

multiple masses. Further measurements are being made
during the gauge generation process to precisely determine
the lattice spacing in the chiral limit and some hadronic
properties [48].
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FIG. 17 (color online). PCAC mass at � ¼ 1:5, �g ¼ 4:3, and
�f ¼ 3:4 as a function of m0. A linear interpolation gives mcr ¼
�0:0854ð5Þ.

FIG. 18 (color online). The measured �Mt (down triangles) in
units of at as a function of m0 at fixed �g ¼ 4:3 and �f ¼ 3:4,

along with �Mð0Þ
t (dashed line).
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