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Recent experimental data on the radiative decays B ! V�, where V is a light vector meson, find small

isospin violation in B ! K�� while isospin asymmetries in B ! �� are of order 20%, with large

uncertainties. Using soft-collinear effective theory, we calculate isospin asymmetries in these radiative B

decays up to Oð1=mbÞ, also including Oðv�sÞ contributions from nonperturbative charming penguins

(NPCP). In the absence of NPCP contributions, the theoretical predictions for the asymmetries are a few

percent or less. Including the NPCP can significantly increase the isospin asymmetries for both B ! V�

modes. We also consider the effect of the NPCP on the branching ratio and CP asymmetries in B� !
V��.
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The rare radiative B decays B ! V�, where V is a light
vector meson, are important in heavy flavor physics be-
cause the dominant processes are due to the flavor chang-
ing neutral current. Isospin asymmetries are interesting
observables for testing the standard model (SM) and in-
vestigating new physics in the flavor sector. The isospin
asymmetries for B ! K�� and B ! �� are defined to be

�K�
0� ¼ �ð �B0 ! �K�0�Þ � �ðB� ! K���Þ

�ð �B0 ! �K�0�Þ þ �ðB� ! K���Þ ;

��
0� ¼ 2�ð �B0 ! �0�Þ � �ðB� ! ���Þ

2�ð �B0 ! �0�Þ þ �ðB� ! ���Þ :
(1)

In these asymmetries, the decay rates are averaged over
charge conjugate modes. Recent experimental measure-
ments find [1]

�K�
0� ¼ 0:03� 0:04; ��

0� ¼ 0:26� 0:14; (2)

where the average values for the decay rates for B !
K�ð�Þ� are taken from the Heavy Flavor Averaging
Group [2]. The isospin asymmetry for B ! K�� is con-
sistent with zero within an error of a few percent. The data
suggest that the asymmetry in B ! �� is significantly
larger, but because of large uncertainties it is not yet
possible to draw a definitive conclusion. The work in this
paper is motivated by the question of whether an anom-
alously large isospin asymmetry in B ! �� can be under-
stood within the SM. In particular, we calculate subleading
contributions to the leading QCD factorization theorems
for B ! V� to see if they can explain the observed
asymmetries.

In the heavy quark limit, the leading amplitudes are
factorizable [3–7]. However, isospin-violating asymme-
tries come from Oð1=mbÞ suppressed power corrections

for which the factorization is necessarily more compli-
cated. In this paper we calculate Oð1=mbÞ corrections to
the asymmetries using soft-collinear effective theory
(SCET) [8], which provides a systematic power counting.
In addition, possible endpoint divergences in these higher
order corrections can be regulated without imposing an
arbitrary infrared cutoff by including the zero-bin subtrac-
tion of Ref. [9]. Previous QCD analyses of isospin asym-
metries in radiative B decays appear in Refs. [10–12]. The
main difference between our analysis and previous work is
the inclusion of nonperturbative charming penguin (NPCP)
contributions, which are already known to play an impor-
tant role in nonleptonic B decays [13–15]. (For an alter-
native point of view, see Ref. [16]).
The NPCP contributions to B ! V� are depicted in

Fig. 1(a). In certain kinematic regimes, the invariant
mass of the charm quark pair in the loop in Fig. 1(a) is
near the threshold 2mc in which case the charm quark pair
is described by nonrelativistic QCD (NRQCD) and addi-
tional interactions need to be taken into account. As
pointed out in Ref. [15], contributions from this regime
are suppressed by only v�sð2mcÞ compared to the leading
contribution. Here v is the relative velocity of the charm
quarks in the threshold region. Therefore, the NPCP con-
tribution to the isospin asymmetry could dominate over
other 1=mb suppressed contributions. In this paper, we

FIG. 1. Nonperturbative charming penguin (NPCP) contribu-
tions for (a) B ! V� and (b) B ! M1M2 arise when �x ¼ 1�
x � 4m2

c=m
2
b, in which case the charm quark pair is in the

threshold region.
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calculate the isospin asymmetries including the NPCP
along with 1=mb suppressed contributions. We also calcu-
late the NPCP contributions to the branching ratio and CP
asymmetries for B� ! V��.

In the absence of NPCP contributions, the theoretical

predictions for �K�
0� and �

�
0� are no larger than a few

percent. Including the NPCP contributions can signifi-
cantly modify the theoretical predictions for the isospin
asymmetries. We will see below that the NPCP contribu-
tion can be factorized using SCET, and the result expressed
in terms of nonperturbative matrix elements. The NPCP
matrix elements are fitted to available data on the isospin

asymmetries, �K�
0� and �

�
0�, the CP asymmetry for B� !

��� (recently measured by Belle [17]), and the branching

ratio for Bþ ! �þ� [2]. The predictions for �K�
0� and ��

0�
are of order 10%, with uncertainties large enough that both
predictions are consistent with experiment. However, the

NPCP does not predict a large difference between �K�
0� and

��
0�, as suggested by the central values in Eq. (2).

The isospin asymmetry in B ! V� can arise from either
the mass difference of the spectator quark in the B-meson
or the electric charge difference when the spectator quark
emits the photon in the final state. However the isospin
asymmetry due to the mass difference is negligible because
it is Oððmu �mdÞ=�QCDÞ and therefore of order 1% or

smaller. So the dominant piece comes from electromag-
netic (EM) interactions with the spectator quark.

In order to describe the isospin-breaking corrections to
B ! V�, we need the following effective weak
Hamiltonian

HW ¼ GFffiffiffi
2

p
� X
p¼u;c

�ðqÞ
p ðC1O1p þ C2O2pÞ

� �ðqÞ
t

�X6
i¼3

CiOi þ C8gO8g þ C7�O7�

��
; (3)

where the operators are

O1p ¼ ð �pbÞV�Að �qpÞV�A;

O2p ¼ ð �p�b�ÞV�Að �q�p�ÞV�A;

O3;5 ¼ ð �qbÞV�A

X
q0¼u;d;s;c;b

ð �q0q0ÞV�A;

O4;6 ¼ ð �q�b�ÞV�A

X
q0¼u;d;s;c;b

ð �q0�q0�ÞV�A;

O7� ¼ � emb

8�2
�q��	F�	ð1þ �5Þb;

O8g ¼ �gmb

8�2
�q��	Ga

�	T
að1þ �5Þb:

(4)

Here q is the d or s quark, the Cabibbo-Kobayashi-

Maskawa (CKM) factor is �ðqÞ
p ¼ VpbV

�
pq, and V � A ¼

��ð1� �5Þ.
For the asymmetric contributions, the photon radiates

from either the initial or final spectator quark as shown in

Fig. 2. If the photon is radiated from the initial spectator

quark, we need SCET operators of the type Oð0;4qÞ ¼
�
 �n�bv ��n��n where �nð
 �nÞ is an nð �nÞ-collinear field1 and
n and �n are light-cone vectors satisfying n2 ¼ �n2 ¼ 0, n �
�n ¼ 2. The analysis of factorization for these operators
appears in Refs. [19,20] and the Wilson coefficients at
next-to-leading order (NLO) in �s have been calculated
in Refs. [18,20].
The leading operator in SCET only contributes to lon-

gitudinally polarized vector meson production, but in B !
V� the vector meson must be transversely polarized.
Transversely polarized vector mesons can be produced
from subleading operators that are higher order in the
SCET expansion parameter �. The relevant effective
weak Hamiltonian in SCET is

Hð1;4qÞ
W;SCET ¼ GFffiffiffi

2
p X

p

�ðqÞ
p

X6
i¼1

Z 1

0
dxBp

i ðx;�ÞOð1;4qÞ
i ðx;�Þ;

(5)

where Oð1;4qÞ
i are

Oð1;4qÞ
1 ¼ �
u

�nW �n�
?
� ð1� �5ÞYy

�n bv½ ��q
�nWn�

�
?ð1� �5ÞWy

n �u
n

þ ��q
nWn�

�
?ð1� �5ÞWy

n �u
�n�x;

Oð1;4qÞ
2;3 ¼ �
q

�nW �n�
?
� ð1� �5ÞYy

�n bv½ ��u
�nWn�

�
?ð1� �5ÞWy

n �u
n

þ ��u
nWn�

�
?ð1� �5ÞWy

n �u
�n�x;

Oð1;4qÞ
4 ¼ X

q0¼u;d;s

�
q0
�n W �n�

?
� ð1� �5ÞYy

�n bv½ ��q
�nWn�

�
?ð1� �5Þ

�Wy
n �

q0
n þ ��q

nWn�
�
?ð1� �5ÞWy

n �
q0
�n �x;

Oð1;4qÞ
5;6 ¼ X

q0¼u;d;s

�
q
�nW �n�

?
� ð1� �5ÞYy

�n bv½ ��q0
�n Wn�

�
?ð1� �5Þ

�Wy
n �

q0
n þ ��q0

n Wn�
�
?ð1� �5ÞWy

n �
q0
�n �x: (6)

Here the superscript 1 denotes suppression by one power of
� compared to the leading operator, Wnð �nÞ is a collinear

Wilson line in the nð �nÞ-direction, and Y �n is an ultrasoft
Wilson line. The subscript outside the square brackets
denotes that a delta function which fixes the momentum
fraction x is included in the bilinear operator:

½ �� �nWn�W
y
n �n�x 	 �� �nWn�

�
x�

�P y

2EV

�
�Wy

n �n; (7)

where �P ¼ �n � P is a derivative operator taking the largest
momentum component and EV is the energy of the pro-
duced vector meson. Here, � �n is the power-suppressed

component in the spin projection of qn ¼ ð6n �6n=4Þ�n þ
ð �6n6n=4Þ� �n, where qn is the collinear quark field. Using the
equation of the motion, � �n can be expressed in terms of �n

1Our conventions are the same as Ref. [18] except that we have
exchanged n $ �n compared to that paper.
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as

� �n ¼ Wn

1
�P
Wy

n i 6D?
�6n
2
�n: (8)

TheWilson coefficientsBp
i in Eq. (5) are the same as the

leading Wilson coefficients Cpi of Ref. [18] due to repar-
ametrization invariance [21]. Because the isospin-breaking

contributions from Hð1;4qÞ
W;SCET are suppressed by �QCD=mb

compared to the leading decay amplitude, we will suppress
EM penguins with C7;8;9;10 at tree level and keep only

C1;2;8g at one-loop order in Bp
i for our phenomenological

analysis.
The four-quark operators in the effective weak SCET

Hamiltonian, Eq. (5), contribute to the radiative weak
decay when the photon is emitted from the initial spectator
quark, as shown in Fig. 3(a). To calculate their contribu-

tion, we need to take the time-ordered products of Oð1;4qÞ
i

with the electromagnetic interaction term Lð1Þ
EM,

L ð1Þ
EM ¼ eq �qusY �n 6A?W

y
�n 


q
�n þ H:c:; (9)

where A� is a photon field and eq is the electric charge of

the quark. The time-ordered products are performed in
SCETI with possible off-shellness p2 
mb� and then
matched onto SCETII, which describes dynamics with
fluctuations of p2 
�2. In the matching, �n-collinear fields
having large off-shellness of Oðmb�Þ must be integrated
out, giving a jet function

h0jTfWy
�n 
 �nðzÞ; �
 �nW �nð0Þgj0i¼ i

�6n
2
�ðz�Þ�2ðz?Þ

�
Z dk�

2�
e�ik�zþ=2Jn�p�

ðk�Þ;
(10)

where kþ ¼ n � k, k� ¼ �n � k, and the momentum of the
photon p�

� ¼ n � p� �n
�=2 ¼ mb �n

�=2. At the lowest order

in �s, the jet function is simply Jn�p�
¼ 1=k�.

The n- and �n-collinear degrees of freedom are decoupled
at leading order in SCET, and by using a field redefinition it
is possible to decouple ultrasoft degrees of freedom from
both. Therefore the n-collinear piece of the matrix element
describing the production of the light vector meson is
decoupled from the �n-collinear and ultrasoft parts. Thus,

we can compute B to � from Hð1;4qÞ
W;SCET, which only depends

on ultrasoft and �n-collinear physics, independently of the
light-meson production process, which depends on
n-collinear physics. After a brief calculation, we find2

T̂
�
4q ¼ i

Z
d4zh�ð
�?ÞjTf �
q

�nW �n�
?
�ð1� �5Þ

� Yy
�n bvð0Þ;Lð1Þ

EMðzÞgjBi;
¼ �i

eq
2
fBmBð
��? þ i"

�	
? 
�?	Þ

�
Z

dl�Jn�p�
ð�l�Þ�þ

B ðl�Þ; (11)

where "
�	
? ¼ "�	��n� �n�=2 setting "0123 ¼ �1. �þ

B is a

light-cone distribution amplitude (LCDA) of the B-meson
[23]. We use the convention of Ref. [24] with n and �n
interchanged.
The light meson production is described by the

n-collinear part of the matrix elements. The matrix ele-
ments for production of transversely polarized vector me-
sons in SCET are

hV?ð��
?Þj½ �� �nWn�

�
?W

y
n �n þ ��nWn�

�
?W

y
n � �n�xj0i

¼ �ifVmV�
��
? gðvÞ? ðxÞ; (12)

FIG. 3. SCET diagrams for the isospin-breaking corrections.
Each diagram represents the electromagnetic interactions from
initial and final spectator quarks, respectively.

FIG. 2. Various isospin-breaking contributions in full QCD. Here crosses denote another possible photon emission from the spectator
quark. If we do not consider the long-distance contribution in the diagram (c), all the contributions are power-suppressed byOð�=mbÞ.

2At higher order in �s, this factorization theorem continues to
hold but the jet function Jn�p�

contains additional terms beyond
what is given in Eq. (10). See Ref. [22] for details.
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hV?ð��
?Þj½ �� �nWn�

�
?�5W

y
n �n þ ��nWn�

�
?�5W

y
n � �n�xj0i

¼ � fV
4
mV"

�	
? ��

?	

@

@x
gðaÞ? ðxÞ; (13)

where gðv;aÞ? are chiral-even, twist-3 LCDAs [25] whose

asymptotic forms are gðvÞ? ðxÞ ¼ 3ðx2 þ �x2Þ=2 and gðaÞ? ðxÞ ¼
6x �x, where �x ¼ 1� x.

Combining Eqs. (11)–(13), the matrix element ofOð1;4qÞ
1

for B� ! ���, for example, is

h���jOð1;4qÞ
1 ðx;�ÞjB�i ¼ � eu

2
fBf�mBm�ALð
�?; ��

?Þ

�
Z

dl�Jn�p�
ð�l�; �;�0Þ

��þ
B ðl�; �0Þ

�
gðvÞ? ðx;�Þ

� @

4@x
gðaÞ? ðx;�Þ

�
; (14)

where the renormalization scales are roughly given by �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�QCD

q
and �0 
�QCD, and AL ¼ 
�? � ��

? �
i"

�	
? 
�?��

�
?	 is the polarization factor for the left-handed

�� and �. In the case of B ! ��, it is necessary to include
one-loop corrections to the jet function; see Ref. [22] for
details.

When the photon radiates from a final state quark (i.e.,
from the crosses in Fig. 2), the intermediate quark line is
hard with off-shellness of order m2

b. Matching onto SCET

we obtain localized four-quark operators with photons,
shown in Fig. 3(b). In this case, the effective weak
Hamiltonian that contributes to the decay amplitudes is

Hð1;4q�Þ
W;SCET ¼ GFffiffiffi

2
p X

p

�ðqÞ
p

X2
i¼1

Z 1

0
dxAp

i ðx;�ÞOð1;4q�Þ
i ðx;�Þ;

(15)

where the five-particle operators Oð1;4q�Þ
i are

Oð1;4q�Þ
f1;2g ðxÞ ¼ X

q0¼u;d;s

eq0 �q
0Ynf �6n; 6ngð1þ �5ÞYy

n bv

�
�
��q
nWn

�6n
2
6A?ð1þ �5Þ 1�P Wy

n �
q0
n

�
x
: (16)

In Eq. (15), the Wilson coefficients Ap
i at NLO are

A p
1 ðx;�Þ ¼ C6 þ C5

N
þ �s

4�

CF

N

�
2C1

3

�
1þ ln

m2
B

�2

� 3

2
Gðsp; xÞ

�
� 2C8g

mb

�xmB

�
;

Ap
2 ðx;�Þ ¼ C6 þ C5

N
þ �s

4�

CF

N

�
C1

3

�
1þ ln

m2
B

�2

� 3

2
Gðsp; xÞ

�
� C8g

mb

mB

�
;

(17)

where Gðsp; xÞ is

Gðsp; xÞ ¼ �4
Z 1

0
dzz�z lnðsp � z�z �x�i
Þ; (18)

and sp 	 m2
p=m

2
B. Similar toBp

i , we neglect EM penguins

at tree level and only keep C1;2;8g at one loop. The sum of

the terms in Eq. (17) proportional to C1 differs by a factor
of 3=4 from Ref. [10].
Again, the B ! � piece of the matrix element factors

from the light-meson production piece. The n-collinear
part in Eq. (16), describing the vector meson production,
gives a leading twist LCDA �?ðxÞwhose asymptotic form
is 6x �x. It can be obtained from the following projection:

hV?ð��
?Þj

�
��nWn�

�
x�

�P y

2EV

��
�

a
½Wy

n �n��b j0itwist�2

¼ � i

2
f?V EV

�
�6 �
?
6n
2

�
ba

���

N
�?ðxÞ: (19)

As an example, the B ! K�� matrix elements from

Oð1;4q�Þ
i are

h �K�0�jOð1;4q�Þ
1 j �B0i ¼ h �K�0�jOð1;4q�Þ

2 j �B0i
¼ � ed

2
fBf

?
K�mBALð
�?; ��

?Þ

� �?ðx;�Þ
�x

: (20)

Next we turn to the contributions from NPCP, shown in
Fig. 1(a). The size of this contribution is Oðv�sð2mcÞÞ
[15] and therefore is suppressed only logarithmically in
the large mc limit, compared to the power suppression
of previously considered Oð1=mbÞ contributions.
Numerically, �QCD=mb and v�sð2mcÞ are roughly the

same size, so a priori it is sensible to include them at the
same order. In fact we will see below that the NPCP gives
an important contribution to isospin violation in B ! ��.
When �x is close to 4s2c, long-distance interactions govern
the charm quark pair in the loop and hence it cannot be
separated from the B-meson. However, the n-collinear
piece of V? can still be decoupled, with the dominant
part obtained from the leading twist projection of
Eq. (19). The factorization process is similar to the treat-
ment in Ref. [18] and we refer the reader to that paper for
details. The NPCP contribution to the decay amplitude is

Mc �c ¼ GFffiffiffi
2

p �ðqÞ
c hV?�jC1O1cjBiNPCP

¼ i
GF

4N
ffiffiffi
2

p �ðqÞ
c f?V mB�

�
?�

Z
dx�ð �x� 4s2cÞ

��?ðxÞHc �cðx;mBÞh�jO�
c �cjBi; (21)

where Hc �c ¼ 4C1��s=ð �xm2
BÞ at lowest order and the six-

quark operator O�
c �c, including nonrelativistic charm quark

fields c�v, is defined as
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O�
c �c ¼ i

Z
d4y �c�vYn�

	
?T

aYy
�n cþvðyÞ �
q0

�n W �nðyÞ�?
	 �

�
?
6n
2

� ��ð1� �5ÞTaYy
n c�v �cþv��ð1� �5Þbvð0Þ: (22)

In order to integrate out �n-collinear fields with fluctuations
greater than �QCD, we consider time-ordered products of

O�
c �c with Lð1Þ

EM,

T̂ c �c ¼ i��
?�

Z
d4zh�ð
�?ÞjTfO�

c �cð0Þ;Lð1Þ
EMðzÞgjBi

¼ ieq0
Z

d4y
dzþdk�

4�
e�ik�ðzþ�yþÞ=2Jn�p�

ðk�Þ
� h0jOc �cq0bð
�?; ��

?; zþ; yÞjBi; (23)

where we employed Eq. (10) to obtain the second line of
Eq. (23) and Oc �cq0b is

Oc �cq0bð
�?;��
?; zþ; yÞ ¼ q0usY �n

�
zþ
2
; y?;

y�
2

� �6n
2
6
�?�	

?�6 �
?
6n
2

���ð1��5ÞTaYnc�vð0Þ �c�vYn�
?
	

�TaYy
�n cþvðyÞ �cþv��ð1��5Þbvð0Þ:

(24)

The matrix element of Oc �cq0b in Eq. (23) is purely non-

perturbative. It can be decomposed into left- and right-
handed polarized contributions,

Z
d4yh0jOc �cq0bð
�?; ��

?; zþ; yÞjBieik�yþ=2

¼ fBm
3
B

Z
dl�e�il�zþ=2½ALð
�?; ��

?ÞFL
c �cðk�; l�Þ

þ ARð
�?; ��
?ÞFR

c �cðk�; l�Þ�; (25)

where AR ¼ 
�? � ��
? þ i"

�	
? 
�?��

�
?	 is the polarization

factor for decay into right-handed final states. An impor-
tant point is that the NPCP can give a right-handed polar-
ized contribution which is not Oð1=mbÞ suppressed. As
pointed out in Ref. [26], any other right-handed polarized
contributions to the decay amplitude should be suppressed
by 1=mb. Therefore NPCP could give the dominant con-
tribution to the right-handed polarized decay amplitudes.
Since the right-handed polarized contribution from NPCP
cannot interfere with the leading order amplitude which
produces only left-handed final states, the right-handed
contribution does not enter into the asymmetries until
higher orders. Therefore, we neglect any possible right-
handed contribution from NPCP in our calculations of the
asymmetries.

Combining Eqs. (21), (23), and (25), we obtain

Mc �c ¼ �GFffiffiffi
2

p �ðqÞ
c eq0fBf

?
V m

2
BALð
�?; ��

?Þ
��s

N�c �c

�
Z 1

0
dx

�?ðxÞ
�x

�ð �x� 4s2cÞĤc �cð �xÞ; (26)

where q ¼ d or s, q0 is the B-meson spectator quark, and

Ĥc �c ¼ �xm2
BHc �c=ð4��sÞ ¼ C1 þ � � � . Here we have de-

fined ��1
c �c to be

��1
c �c ¼�

Z
dl�

dzþdk�
4�

e�iðk�þl�Þzþ=2Jn�p�
ðk�ÞFL

c �cðk�; l�Þ

¼�
Z

dl�Jn�p�
ð�l�ÞFL

c �cð�l�; l�Þ



Z

dl�
FL
c �cð�l�; l�Þ

l�
: (27)

Following Ref. [15], we can power count the size of this
correction. The NPCP contribution is suppressed relative
to the leading order term by v�sð2mcÞ, and thus of order
mbv�sð2mcÞ=�QCD relative to the other isospin-breaking

terms considered. Based on this power counting, we expect
that

mB

�c �c

�?ð4s2cÞ
4s2c


 vmb

�QCD

: (28)

The factor �?ð4s2cÞ=ð4s2cÞ is formally Oð1Þ in the power
counting of Ref. [15], but numerically �?ð4s2cÞ=ð4s2cÞ �
4:3, so we keep this factor in estimating mB=�c �c. Taking
vmb=�QCD 
 3 we find mB=�c �c 
 0:7. The value of

mB=�c �c [see Eq. (47) below] we extract from fits to the

isospin asymmetries �K�
0� and �

�
0�, the CP asymmetry

�
�
þ�, and Br½Bþ ! �þ��, is consistent with this naive

estimate but smaller. For these values of mB=�c �c, the
NPCP gives significant contributions to the isospin
asymmetries.
Finally, there is another interesting isospin-breaking

source, a double photon contribution with the EM penguin
O7�. It is only available for the decay with an unflavored

vector meson, i.e., B ! �0�. The largest contributions are
depicted in Fig. 4. Concentrating first on Fig. 4(a), the off-
shell photon coming from O7� produces the vector meson

and then an additional photon is emitted from the B-meson
spectator quark. Integrating out the hard photon, we can
match onto the SCETI operator

C7�O7� ! eeq0

4�2

mbmB

m2
V

Z
dxC��ðxÞ �
q

�nW �n

6n
2
��
?ð1þ �5Þ

� Yy
�n hv½ ��q0

�n Wn�
?
�W

y
n �

q0
n þ ��q0

n Wn�
?
�W

y
n �

q0
�n �x;
(29)

where C�� is equal to C7� at tree level. Next we integrate

out the �n-collinear fields in the time-ordered product with

Lð1Þ
EM and match onto SCETII. Applying Eqs. (10)–(12), we

find

hV?�jC7�O7�jBi2�ðaÞ ¼
eeqeq0

8�2
fBfV

mbm
2
B

mV

C7�ALð
�?;��
?Þ

�
Z

dl�Jn�p�
ð�l�Þ�þ

B ðl�Þ; (30)
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and, in the case of B ! �0�,

h�0
?�jC7�O7�j �B0i2�ðaÞ ¼QdðQu�QdÞffiffiffi

2
p e�

2�
fBf�

�mbm
2
B

m�

C7�ALð
�?;��
?Þ

�
Z

dl�Jn�p�
ð�l�Þ�þ

B ðl�Þ; (31)

where Qq ¼ eq=e with Qu ¼ 2=3 and Qd ¼ �1=3.

At the lowest order in �s, the contribution of Fig. 4(b) is
the same as Fig. 4(a) with n and �n exchanged. So the result
can be written as

h�0
?�jC7�O7�j �B0i2�ðbÞ ¼QdðQu �QdÞffiffiffi

2
p e�

2�
fBf�

�mbm
2
B

m�

C7�ALð
�?;��
?Þ

�
Z

dlþJn�p�
ð�lþÞ�þ

B ðlþÞ: (32)

The double-photon contribution is suppressed by �, but
enhanced by a factor of m2

b=m
2
V due to the virtual photon.

Compared to the other isospin-breaking contributions,
such as those in Eqs. (14) and (20), this contribution is
rather small.

The isospin asymmetries in Eq. (1) are given by

�V
0� ¼ ReðbVd � bVu Þ þ RReð �bVd � �bVu Þ

1þ R
; (33)

where

bVd ¼ AV
0

cVLV

; bVu ¼ AV�
LV

; (34)

AV
0;� are the leading isospin-breaking corrections to the

decay amplitude, LV are the leading isospin symmetric

decay amplitudes, and cV ¼ 1 for K�, cV ¼ �1=
ffiffiffi
2

p
for

�. In Eq. (33), �bVu;d are the corresponding ratios for the

charge conjugate modes, and R ¼ jLV j2=jLV j2. LV can be
written as

LK� ¼ GFffiffiffi
2

p e

4�2
m2

bmBALð
�?; ��
?Þ�ðsÞ

c ac7;K��K
�

? ;

L� ¼ GFffiffiffi
2

p e

4�2
m2

bmBALð
�?; ��
?Þ

X
p¼u;c

�ðdÞ
p ap7;��

�
?;

(35)

where the transition form factor for B ! V, �V?, is defined
as

hVð��
?Þj ��nWn�

�
?ð1� �5ÞYy

n bvjBi
¼ mBði"�	

? ��
?	 � ���

? Þ�V?; (36)

and we will use �K
�

? ¼ 0:36� 0:07 and ��? ¼ 0:27� 0:05
[11] for the numerical analysis. The Wilson coefficients
ap7;V in Eq. (35) are

ap7;V ¼ C7�A
ð0Þ
7 þ �sCF

4�
½C1G1ðspÞ þ C8gG8ðspÞ�

þ ��s

CF

N

fBf
?
V mB

m2
b

Z
dlþ

�þ
B ðlþÞ
lþ

Z 1

0
dx

�?ðxÞ
�x

�
�
C7� þ C1

6
Hðx; spÞ þ

C8g

3

�
1

�V?
; (37)

where the hard functions Að0Þ
7 , G1;8, and H are available in

Refs. [3,5,27], and we followed the conventions of Ref. [5].
Finally we obtain

bK
�

q ¼ Qq

2�2fB

mba
c
7;K��K

�
?

�
2
fK

�
?
mb

KK�
1 þ fK�mK�

�Bmb

KK�
2q

�
; (38)

b�q ¼ Qq

2�2fB

mb

P
p¼u;c

�ðdÞ
p ap7;��

�
?

�
2
f
�
?

mb

K�
1 þ f�m�

�Bmb

K�
2q

�
:

(39)

Here ��1
B ¼ R

dl�þ
B ðlÞ=l and we use the following model

for �þ
B ðlÞ [28]:

�þ
B ðl; �Þ ¼ 4�l

��Bðl2 þ�2Þ
�

�2

l2 þ�2
� 2ð�B � 1Þ

�2
ln

l

�

�
;

(40)

where the parameters �B and �B are �B ¼ 460�
110 MeV, �B ¼ 1:4� 0:4 at � ¼ 1 GeV. K1;2 can be

written as

KK�
1 ¼

Z 1

0
dx

�?ðxÞ
�x

�
� 1

2
½Ac

1ðxÞ þAc
2ðxÞ�

� C1

��s

N

mB

�c �c

�ð �x� 4s2cÞ
�
; (41)

KK�
2q ¼

Z 1

0
dx

�
gðvÞ? � @

4@x
gðaÞ?

�
ðxÞ

�
�ðsÞ
u

�ðsÞ
c

�
C1 þ C2

N

�
�qu

þBc
4ðx;mbÞ

�
; (42)

FIG. 4. Leading double photon contribution to the isospin
asymmetry, where � represents O7�. They are suppressed by

�m2
b=m

2
V compared to other usual isospin-breaking contribu-

tions.
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K
�
1 ¼ X

p¼u;c

�ðdÞ
p

Z 1

0
dx

�?ðxÞ
�x

�
� 1

2
½Ap

1 ðxÞ þAp
2 ðxÞ�

� �pcC1

��s

N

mB

�c �c

�ð �x� 4s2cÞ
�
; (43)

K�
2q ¼

X
p¼u;c

�ðdÞ
p

�Z 1

0
dx

�
gðvÞ? � @

4@x
gðaÞ?

�
ðxÞ

�
�
��B

Z
dl��þ

B ðl�ÞJp�
ð�l�Þð�quB

p
1 ðxÞ

� �qdB
p
2 ðxÞÞ þBp

4 ðxÞ
�
þ 2�qdC7�

�

�

mbmB

m2
�

�
:

(44)

Here we include only the tree-level contributions to

Cabibbo-suppressed terms with �ðsÞ
u in Eq. (42) because it

is numerically comparable to the other term with Bc
4.

In the convolutions ofA1 and�?ðxÞ= �x in Eqs. (41) and
(43) and B4 and gðvÞ? in Eqs. (42) and (44), there are end-

point divergences, which can be eliminated with the zero-
bin subtractions [9]

Z 1

0
dx

�?ðxÞ
�x2

!
Z 1

0
dx

�?ðxÞ þ �x�0
?ð1Þ

�x2
;

Z 1

0
dx

gðvÞ? ðxÞ
�x

!
Z 1

0
dx

gðvÞ? ðxÞ � gðvÞ? ð1Þ
�x

:

(45)

The zero-bin subtraction removes infrared divergences
from the x integrals. We have dropped all finite terms
including logarithms associated with rapidity scale depen-
dence. We estimate the uncertainty associated with this
procedure to be 50%.

For numerical estimates of bK
�;�

q in Eqs. (38) and (39),
we use the following set of parameters: fmb;mc;mB;mK� ;

m�;fB;fK� ;f�;f
K�
? ;f�?g¼ f4:8;1:3;5:28;0:894;0:775;0:2�

0:03;0:218;0:209;0:175�0:025;0:150�0:025gGeV. The
CKM parameters are �� ¼ 0:221� 0:064 and �� ¼
0:340� 0:045. All Wilson coefficients and hard functions
are evaluated at the scale � ¼ mb, we do not include any
renormalization group evolution, and we use the asymp-
totic forms for the vector meson wave function �? and

gðvÞ;ðaÞ? . Our estimates for the isospin asymmetries in the

absence of NPCP contributions are

�K�
0� ¼ 0:04� 0:02; �

�
0� ¼ 0:02� 0:02; (46)

where the dominant errors come from �B, �
V
?, and CKM

factors. These estimates for �V
0� are comparable to pre-

vious theoretical results [10,11,29]. Comparing to Eq. (2),

we see that �K�
0� is consistent, but �

�
0� disagrees by about

1.7 �.
Next we include the NPCP contribution in our calcula-

tion. In addition to the isospin asymmetries, the NPCP can
contribute to the CP-violating asymmetry, ��

þ� [17], and

to the branching ratio, Br½Bþ ! �þ�� [2]. In order to
obtain values of mB=�c �c that are not inconsistent with
measurements of these quantities, we perform a least
squares fit to all four observables. In our calculations of
��

þ� and Br½Bþ ! �þ��, we include only the leading
order and NPCP contributions, without any Oð1=mbÞ cor-
rections. An analysis that includes theOð1=mbÞ corrections
to all four observables is clearly required but is beyond the
scope of this paper.
The results of the fits along with experimental results are

shown in Table I. The first column lists the observables
considered and the second gives their measured values
including errors. In the third column, we show the theo-
retical prediction in the absence of the NPCP contribution
for the values of the parameters given earlier. The last
column gives the results of the fit with the NPCP included.
We extract

Re

�
mB

�c �c

�
¼ �0:102� 0:063;

Im

�
mB

�c �c

�
¼ 0:022� 0:255:

(47)

The 
2 of the predictions in column three of Table I is 15.2.
Including the NPCP, the 
2 is 12.1, so the overall agree-
ment between experiment and theory is slightly improved.
Note that after including the NPCP the theoretical predic-
tion for ��

0� increases so that the 1� error band of the

experimental result and the theoretical result now overlap.

However, the prediction for �K�
0� is now significantly in-

creased. The trend suggested by the central values of the
experimental data, namely, a large value of �

�
0� and small

value of�K�
0�, does not seem to be naturally accommodated

by including NPCP contributions. However, once theoreti-
cal and experimental uncertainties are taken into account,
the theoretical predictions are consistent with both isospin
asymmetries. For the range of values of mB=�c �c obtained
in our fit, the NPCP does not have significant impact on the
theoretical predictions for �

�
þ� and Br½Bþ ! �þ��.

Finally, inclusion of NPCP contributions substantially in-
creases the uncertainty in all theoretical predictions be-
cause the parameter mB=�c �c is not well constrained.
These results indicate that the NPCP can increase the

isospin-violating asymmetry �
�
0� to bring theoretical pre-

dictions closer to current data, while maintaining consis-
tency with the other observed asymmetries. It is not
possible to obtain predictions for the two isospin asymme-
tries that are in agreement with the central values of both

�K�
0� and ��

0�. However, the uncertainties in the current

measurements of all asymmetries are large and better
measurements are needed to determine whether the
NPCP is an important contribution to B ! �� isospin
and CP-violating asymmetries.
To summarize, we have used SCET to calculate the

isospin asymmetries in B ! V� decays, including all
Oð1=mbÞ contributions as well as the Oðv�sÞ NPCP con-
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tribution. As in nonleptonic B-decays [30], our analysis
allows for large NPCP contributions, which could account
for the large isospin asymmetries measured (with large
errors) in B ! ��. If the isospin asymmetries are large
and the NPCP is the source of these asymmetries, then we
also expect the NPCP to contribute to CP asymmetries in
B ! �� and give larger than expected contributions to the
right-handed polarized decay rates in B ! V�. We specu-
late that the NPCP could also be responsible for the re-
cently measured enhanced transversely polarized decay
amplitude for B ! VV [31]. More precise experiments

will be needed to determine the exact size of NPCP and
confirm these predictions.
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