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We investigate chiral properties of local (nonderivative) fields of baryons consisting of three quarks

with flavor SUð3Þ symmetry. We construct explicitly independent local three-quark fields belonging to

definite Lorentz and flavor representations. Chiral symmetry is spontaneously broken and therefore the

baryon fields can have different chiral representations. Because of the color antisymmetric and spatially

symmetric structure of the local three-quark fields, the allowed chiral representations are strongly

correlated with the Lorentz group representations. We discuss some implications of the allowed chiral

symmetry representations on physical quantities such as the axial coupling constants.
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I. INTRODUCTION

As the chiral symmetry of QCD is spontaneously bro-
ken, SUðNfÞL � SUðNfÞR ! SUðNfÞV (Nf being the num-

ber of flavors), the observed hadrons are classified by the
residual symmetry group representations of SUðNfÞV . The
full chiral symmetry may then conveniently be represented
by its nonlinear realization and this broken symmetry plays
a dynamical role in the presence of the Nambu-Goldstone
bosons to dictate their interactions.

Yet, as pointed out by Weinberg [1], there are situations
when it makes sense to consider algebraic aspects of chiral
symmetry, i.e. the chiral multiplets of hadrons. Such had-
rons may be classified in linear representations of the chiral
symmetry group with some representation mixing. One
such situation becomes realistic in the symmetry restored
phase which is expected at high temperatures and/or den-
sities [2]. If hadrons belong to certain representations of
the chiral symmetry group, physical properties such as the
axial coupling constants are determined by this symmetry.
Therefore, the question as to what chiral representations,
possibly with mixing, the hadrons belong to is of funda-
mental interest [3–5].

Another point of relevance is that the chiral representa-
tion can be used as a theoretical probe for the internal
structure of hadrons. For instance, for a �qq spin-one me-
son, the possible chiral representations are (8, 1) and (3, �3)
and their left-right conjugates for flavor octet mesons. As a
matter of fact, for the multiquark hadrons, the allowed
chiral representations can be more complicated/higher di-
mensional with increasing number of quarks and anti-
quarks. Hence the study of chiral representations may

provide some hints to the structure of hadrons, extending
possibly beyond the minimal constituent picture [6–11].
Motivated by these arguments, we have recently per-

formed a complete classification of baryon fields con-
structed from three quarks in the local form with two
light flavors (the so-called SU(2) sector) [12]. Such baryon
fields are used as interpolators for the study of two-point
correlation functions in the QCD sum rule approach and in
the lattice QCD [13–18]. Strictly speaking, however, the
chiral structure of an interpolator does not directly reflect
that of the physical state when chiral symmetry is sponta-
neously broken. But the minimal configuration of three
quarks provides at least a guide to the simplest expecta-
tions for baryons. Any deviation from such a simple struc-
ture may be an indication of higher Fock-space
components, such as the multiquark ones [19].
Another reason for such a study of chiral classifications

is related to the number of independent fields. In principle,
the correlation functions, when computed exactly, should
contain all information about the physical states.
Practically, however, one must rely on some approxima-
tion, and it has been observed in previous studies, that the
results may depend significantly on the choice of the
interpolators, which are generally taken as linear combi-
nations of the independent ones [5,15,20].
In this paper, we perform a complete classification of

baryon fields written as local products (without deriva-
tives) of three quarks according to chiral symmetry group
SUð3ÞL � SUð3ÞR. This is an extension of our previous
work for the case of flavor SU(2) [12]. The SU(3) algebra
introduces not only several technical complications, but
also brings some physically relevant difference from the
case of SU(2). For SU(2) the only allowed chiral represen-
tation for spin 1=2 baryon is the fundamental one of
ð12 ; 0Þ � ð0; 12Þ, while for SU(3), two representations ð8; 1Þ �
ð1; 8Þ and ð3; �3Þ � ð�3; 3Þ become possible. Indeed, they
predict different F=D ratio for the axial couplings of octet
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baryons. Thus, here we attempt a systematic classification.
We derive the chiral transformation rules for the baryon
fields and do their classification, utilizing the Fierz trans-
formations in order to implement the Pauli principle
among the three quarks.

As in the previous paper [12], we first establish a clas-
sification under the ordinary (vector) flavor SU(3) symme-
try, and then investigate the properties under the full chiral
symmetry group. The method is based essentially on the
tensor method for the SU(3) group representations, while
the Fierz method for the Pauli principle associated with the
structure in the color, flavor, and Lorentz (spin) spaces is
utilized when establishing the independent fields. It turns
out that for local three-quark fields, the Pauli principle puts
a constraint on the structure of the Lorentz and chiral
representations. This leads essentially to the same permu-
tation symmetry structures as in the case of flavor SU(2)
symmetry, with the one important difference being the
existence of flavor singlets in the present case.

This paper is organized as follows. In Sec. II, we estab-
lish the independent local baryon interpolating fields, and
investigate their flavor SU(3) symmetry properties. In
Sec. III, we investigate the properties of the baryon fields
under chiral symmetry transformations SUð3ÞL � SUð3ÞR.
We find that both flavor and chiral symmetry properties are
related to the structure of the Lorentz group. Eventually, in
Sec. IV, we find that this can be explained by the Pauli
principle for the left- and right-handed quarks, which puts
a constraint on permutation symmetry properties of three
quarks. Some complicated formulas are shown in
appendices.

II. FLAVOR SYMMETRIES OF THREE-QUARK
BARYON FIELDS

Local fields for baryons consisting of three quarks can
be generally written as

BðxÞ � �abcðqaTA ðxÞC�1q
b
BðxÞÞ�2q

c
CðxÞ; (1)

where a, b, c denote the color and A, B, C the flavor
indices, C ¼ i�2�0 is the charge-conjugation operator,
qAðxÞ ¼ ðuðxÞ; dðxÞ; sðxÞÞ is the flavor triplet quark field
at location x, and the superscript T represents the transpose
of the Dirac indices only (the flavor and color SU(3)
indices are not transposed). The antisymmetric tensor in
color space �abc, ensures the baryons’ being color singlets.
For local fields, the space-time coordinate x does nothing
with our studies, and we shall omit it. The matrices �1;2 are

Dirac matrices which describe the Lorentz structure. With
a suitable choice of �1;2 and taking a combination of

indices of A, B and C, the baryon operators are defined
so that they form an irreducible representation of the
Lorentz and flavor groups, as we shall show in this section.

We employ the tensor formalism for flavor SU(3) a la
Okubo [21–25] for the quark field q, although the explicit
expressions in terms of up, down and strange quarks are

usually employed in lattice QCD and QCD sum rule stud-
ies. We shall see that the tensor formulation simplifies the
classification of baryons into flavor multiplets and leads to
a straightforward, but lengthy derivation of the Fierz iden-
tities and the chiral transformations of baryon operators.
This is in contrast to the Nf ¼ 2 case where we explicitly

included isospin/flavor into the �1;2 matrices and thus

produced isospin invariant/covariant objects [12].

A. Flavor SUð3Þf decomposition for baryons

For the sake of notational completeness, we start with
some definitions. The quarks of flavor SU(3) form either
the contra-variant ð3Þ or the covariant ð�3Þ fundamental
representations. They are distinguished by either upper or
lower index as

qA 2 q ¼
u
d
s

0
@

1
A; qA 2 qy ¼ ðu�; d�; s�Þ: (2)

The two conjugate fundamental representations transform
under flavor SU(3) transformations as

q ! exp

�
i
~�

2
~a

�
q; qy ! qy exp

�
�i

~�

2
~a

�
; (3)

where aN (N ¼ 1; � � � ; 8) are the octet of SUð3ÞF group
parameters and �N are the eight Gell-Mann matrices. Since
the latter are Hermitian, we may replace the transposed
matrices with the complex conjugate ones. The set of eight
��N ¼ �ð�NÞT ¼ �ð�NÞ� matrices form the generators of
the irreducible �3 representation.
Now for three quarks, we show flavor SU(3) irreducible

decomposition 3 � 3 � 3 ¼ 1 � 8 � 8 � 10 explicitly in
terms of three quarks. It can be done by making suitable
permutation symmetry representations of three-quark
products qAqBqC.
(1) The totally antisymmetric combination which forms

the singlet,

�½ABC� ¼ N ðqAqBqC þ qBqCqA þ qCqAqB

� qBqAqC � qAqCqB � qCqBqAÞ: (4)

The normalization constant here is N ¼ 1=
ffiffiffi
6

p
. In

the quark model this corresponds to �ð1405Þ. In
order to represent this totally antisymmetric combi-
nation, we can use the totally antisymmetric tensor
�ABC. Then the flavor singlet baryon field � can be
written as:

� � �ABC�abcðqaTA C�1q
b
BÞ�2q

c
C: (5)

(2) The totally symmetric combination which forms the
decuplet,
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�fABCg ¼ N ðqAqBqC þ qBqCqA þ qCqAqB

þ qBqAqC þ qAqCqB þ qCqBqAÞ: (6)

The normalization constant depends on the set of
quarks for baryons. For example, for qA, qB, qC ¼
u, d, s,N ¼ 1=

ffiffiffi
6

p
, while it is 1=6 for qA, qB, qC ¼

u, u, u. In order to represent this totally symmetric
flavor structure, we introduce the totally symmetric
tensor SABCP (P ¼ 1; � � � ; 10). Then the flavor dec-
uplet baryon field � can be written as:

�P � SABCP �abcðqaTA C�1q
b
BÞ�2q

c
C: (7)

The nonzero components of SABCP ( ¼ 1) are sum-
marized in Table I. The rest of components are just
zero, for instance, S1121 ¼ 0.

(3) The two mixed symmetry tensors of the � and �
types are defined by

��
½AfB�Cg ¼ N ð2qAqBqC � qBqCqA � qCqAqB

� 2qBqAqC þ qAqCqB þ qCqBqAÞ;
��

fA½BgC� ¼ N ð2qAqBqC � qBqCqA � qCqAqB

þ 2qBqAqC � qAqCqB � qCqBqAÞ:
(8)

Here the two symbols in fg are first symmetrized and
then the symbols in ½� are antisymmetrized. The
normalization constant depends again on the num-
ber of different kinds of terms. The correspondence
of the octet fields of (8) and the physical ones can be
made first by taking the following combinations

NN
8� ¼ �ABDð�NÞDC�

�
½AfB�Cg;

NN
8� ¼ �BCDð�NÞDA�

�
fA½BgC�;

(9)

whereN is an octet indexN ¼ 1; 2; � � � ; 8. This kind
of ‘‘double index’’ (DC for NN

8� and DA for NN
8�)

notation for the baryon flavor has been used by
Christos [26]. In our discussions, we shall use the
following form for the flavor octet baryon field

NN � �ABDð�NÞDC�abcðqaTA C�1q
b
BÞ�2q

c
C: (10)

It is of the � type. But after using Fierz transforma-
tions to interchange the second and the third quarks,
the transformed one contains � type also, as we shall
show in the following. The octet of physical baryon
fields are then determined by

N1 	 iN2 ��
; N3 � �0; N8 ��;

N4 	 iN5 ���; p; N6 	 iN7 ��0; n;

(11)

or put into the 3� 3 baryon matrix

N ¼
�0ffiffi
2

p þ �8ffiffi
6

p �þ p

�� � �0ffiffi
2

p þ �8ffiffi
6

p n

�� �0 � 2ffiffi
6

p �8

0
BB@

1
CCA: (12)

B. Counting the (in)dependent fields

In this section we investigate independent baryon fields
for each Lorentz group representation which is formed by
three quarks. The Clebsch-Gordan series for the irreducible
decomposition of the direct product of three ð12 ; 0Þ � ð0; 12Þ
representations of the Lorentz group (the three quark Dirac
fields) is

ðð12; 0Þ � ð0; 12ÞÞ3 � ðð12; 0Þ � ð0; 12ÞÞ � ðð1; 12Þ � ð12; 1ÞÞ
� ðð32; 0Þ � ð0; 32ÞÞ; (13)

where we have ignored the different multiplicities of the
representations on the right-hand side. The three represen-
tations ðð12 ; 0Þ � ð0; 12ÞÞ, ðð1; 12Þ � ð12 ; 1ÞÞ, ðð32 ; 0Þ � ð0; 32ÞÞ de-
scribe the Dirac spinor field, the Rarita-Schwinger’s
vector-spinor field and the antisymmetric-tensor-spinor
field, respectively. In order to establish independent fields
we employ the Fierz transformations for the color, flavor,
and Lorentz (spin) degrees of freedom, which is essentially
equivalent to the Pauli principle for three quarks. Here we
demonstrate the essential idea for the simplest case of the
Dirac spinor, ð12 ; 0Þ � ð0; 12Þ. Other cases are briefly ex-

plained in Appendices A and B.

1. Flavor singlet baryon

Let us start with writing down five baryon fields which
contain a diquark formed by five sets of Dirac matrices, 1,
�5, ��, ���5, and ���,

TABLE I. Nonzero components of SABCP ð¼ 1Þ.
P 1 2 3 4 5 6 7 8 9 10

ABC 111 112 113 122 123 133 222 223 233 333

Baryons �þþ �þ ��þ �0 ��0 ��0 �� ��� ��� ��
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�1 ¼ �abc�
ABCðqaTA CqbBÞ�5q

c
C;

�2 ¼ �abc�
ABCðqaTA C�5q

b
BÞqcC;

�3 ¼ �abc�
ABCðqaTA C���5q

b
BÞ��qcC;

�4 ¼ �abc�
ABCðqaTA C��q

b
BÞ���5q

c
C;

�5 ¼ �abc�
ABCðqaTA C���q

b
BÞ����5q

c
C:

(14)

Among these five fields, we can show that the fourth and
fifth ones vanish, �4;5 ¼ 0. This is due to the Pauli princi-

ple between the first two quarks, and can be verified, for
instance, by taking the transpose of the diquark component
and compare the resulting three-quark field with the origi-
nal expressions [26]. The Pauli principle can also be used
between the first and the third quarks, so we construct the
primed fields where the second and the third quarks are
interchanged, for instance,

�0
1 ¼ �abc�

ABCðqaTA CqcCÞ�5q
b
B:

Now expressing �i in terms of the Fierz transformed fields
�0

i, we find the following relations (see Appendix C),

�1 ¼ �1
4�

0
1 � 1

4�
0
2 � 1

4�
0
3;

�2 ¼ �1
4�

0
1 � 1

4�
0
2 þ 1

4�
0
3;

�3 ¼ ��0
1 þ�0

2 þ 1
2�

0
3:

On the other hand, by changing the indices B, C and b, c,
for instance,

�0
1 ¼ �acb�

ACBðqaTA CqbBÞ�5q
c
C

¼ �abc�
ABCðqaTA CqbBÞ�5q

c
C;

we see that the primed fields are just the corresponding
unprimed ones, �0

i ¼ �i. Consequently, we obtain three
homogeneous linear equations whose rank is just one, and
we find the following solution

�3 ¼ 4�2 ¼ �4�1; �4 ¼ �5 ¼ 0:

We see that there is only one nonvanishing independent
field, which in the quark model corresponds to the odd-
parity �ð1405Þ.

2. The flavor decuplet baryons

Among the five decuplet baryon fields formed by the five
different �-matrices, only two are nonzero:

�P
4 ¼ �abcS

ABC
P ðqaTA C��q

b
BÞ���5q

c
C;

�P
5 ¼ �abcS

ABC
P ðqaTA C���q

b
BÞ����5q

c
C:

(15)

Performing the Fierz transformation and with the relation
�P0

i ¼ ��P
i (�acbS

ACB
P ¼ ��abcS

ABC
P ), we find that there

is only a trivial (null) solution to the homogeneous linear
equations. Therefore, the Dirac baryon fields (fundamental
representation of the Lorentz group) formed by three
quarks cannot survive the flavor decuplet.

3. The flavor octet baryon fields

Let us start once again with five fields, which have three
potentially nonzero ones

NN
1 ¼ �abc�

ABD�N
DCðqaTA CqbBÞ�5q

c
C;

NN
2 ¼ �abc�

ABD�N
DCðqaTA C�5q

b
BÞqcC;

NN
3 ¼ �abc�

ABD�N
DCðqaTA C���5q

b
BÞ��qcC;

NN
4 ¼ �abc�

ABD�N
DCðqaTA C��q

b
BÞ���5q

c
C ¼ 0;

NN
5 ¼ �abc�

ABD�N
DCðqaTA C���q

b
BÞ����5q

c
C ¼ 0:

(16)

These octet baryon fields have been studied in Refs. [13–
15], where the independent ones are clarified. As before,
we perform the Fierz rearrangement to obtain five equa-
tions with the primed fields, while NN0

4 and NN0
5 are not

zero. For the first three equations, N1;2;3 on the left-hand

side should be expressed by the primed fields. To this end,
we can use the Jacobi identity

�ABD�N
DC þ �BCD�N

DA þ �CAD�N
DB ¼ 0; (17)

which can be used to relate the original fields NN
i and

primed ones NN0
i , for instance,

ð�ABD�N
DC þ �BCD�N

DA þ �CAD�N
DBÞðqaTA CqbBÞ�5q

c
C ¼ 0;

from which we find

NN0
1 ¼ �1

2N
N
1 ;

and the same relations for NN
2;3. There are no relations

between NN
4;5 and N

N0
4;5. Altogether, we have five equations.

The equations related to NN
4 and NN

5 are also necessary

because the corresponding primed ones are not zero. They
can be solved to obtain the following solutions:

2
3N

N0
4 ¼ NN

3 ¼ NN
1 � NN

2 ; NN0
5 ¼ �3ðNN

1 þ NN
2 Þ;

which indicates that there are two independent octet fields,
for instance, NN

1 and NN
2 . Thus we have shown the same

result just as in the two-flavor case [12]. In the following
sections we shall show that the difference between the two
fields N1 and N2 lies in their chiral properties: NN

1 � NN
2

together with � belong to ð�3; 3Þ � ð3; �3Þ, and the other
NN

1 þ NN
2 belongs to ð8; 1Þ � ð1; 8Þ.

There are two ways to construct the octet baryon fields.
One is done already as shown in Eqs. (16), whose flavor
structure is the same as the � type baryon field NN

8� in

Eqs. (9):

3 � 3 � 3 ! ð3 � 3Þ � 3 ! �3 � 3 ! 8�: (18)

The other � type baryon field NN
8� is complicated when

used straightforwardly:

3 � 3 � 3 ! ð3 � 3Þ � 3 ! 6 � 3 ! 8�: (19)

Therefore, we use another way based on
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3 � 3 � 3 ! 3 � ð3 � 3Þ ! 3 � �3 ! 80�: (20)

This contains partly 8�, and it is easily to verify that (18)
and (20) compose a full description of octet baryon which
is also fully described by using (18) and (19). The way 8�
leads to octet fieldsNN

i , and the other way 8
0
� leads to other

five ones

~NN
1 ¼ �abc�

ACD�N
DBðqaTA CqbBÞ�5q

c
C;

~NN
2 ¼ �abc�

ACD�N
DBðqaTA C�5q

b
BÞqcC;

~NN
3 ¼ �abc�

ACD�N
DBðqaTA C���5q

b
BÞ��qcC;

~NN
4 ¼ �abc�

ACD�N
DBðqaTA C��q

b
BÞ���5q

c
C;

~NN
5 ¼ �abc�

ACD�N
DBðqaTA C���q

b
BÞ����5q

c
C:

(21)

However, these fields can be related to the previous ones by
changing the flavor and color indices B, C and b, c:

~N N
i ¼ �NN0

i :

In nearly all the cases, the octet baryon fields from the
second way can be related to the ones from the first way.
Therefore, we shall omit the discussion of the second octet.
One exception which concerns the chiral representation
ð�3; 3Þ � ð6; 3Þ is discussed in Appendix D.

C. A short summary of independent baryon fields

Properties of spin 3=2 baryons fields expressed by the
Rarita-Schwinger fields with one Lorentz index and those
of the antisymmetric tensor-spinor fields with two Lorentz
indices are discussed in Appendices A and B, respectively.
Here we shall make a short summary of independent
baryon fields for all cases constructed from three quarks.
For simplicity, here we suppress the antisymmetric tensor
in color space �abc, since it appears in all baryon fields in
the same manner. Furthermore, it is convenient to intro-
duce a ‘‘tilde-transposed’’ quark field ~q as follows

~q ¼ qTC�5: (22)

which differs from the two-flavor definition in Ref. [12] by
the absence of the flavor (G-parity) matrix.

As we have shown already, for Dirac fields without
Lorentz index, there are one singlet field � and two octet
fields NN

1 and NN
2 :

�1 ¼ �ABCð~qA�5qBÞ�5qC;

NN
1 ¼ �ABD�N

DCð~qA�5qBÞ�5qC;

NN
2 ¼ �ABD�N

DCð~qAqBÞqC:

For the Rarita-Schwinger fields with one Lorentz index,
we would consider one singlet, three octet, and one dec-
uplet fields:

�1� ¼ �ABCð~qA�5qBÞ��qC;

NN
1� ¼ �ABD�N

DCð~qA�5qBÞ��qC;

NN
2� ¼ �ABD�N

DCð~qAqBÞ���5qC;

NN
3� ¼ ��ABD�N

DCð~qA��qBÞ�5qC;

�P
5� ¼ �SABCP ð~qA���5qBÞqC:

However, we find that �1� ¼ ���5�, NN
1� ¼ ���5N

N
1 ,

and NN
2� ¼ ���5N

N
2 . So, there are two nonvanishing in-

dependent fields: one octet field NN
� and one decuplet field

��. By using the projection operator:

P3=2
�� ¼ ðg�� � 1

4����Þ; (23)

they can be written as

NN
� ¼ P3=2

��NN
3�

¼ �ðg�� � 1
4����Þ�ABD�N

DCð~qA��qBÞ�5qC

¼ NN
3� þ 1

4���5ðNN
1 � NN

2 Þ;
�P

� ¼ P3=2
���P

5� ¼ �ðg�� � 1
4����ÞSABCP ð~qA���5qBÞqC

¼ �P
5�:

For tensor fields with two antisymmetric Lorentz indi-
ces, we would have one singlet, three octet, and two
decuplet fields:

�1� ¼ �ABCð~qA�5qBÞ����5qC;

NN
3�� ¼ ��ABD�N

DCð~qA��qBÞ��qC þ ð� $ �Þ;
NN

10�� ¼ �ABD�N
DCð~qA�5qBÞ����5qC;

NN
11�� ¼ �ABD�N

DCð~qAqBÞ���qC;

�P
2�� ¼ �SABCP ð~qA���5qBÞ���5qC þ ð� $ �Þ;

�P
7�� ¼ SABCP ð~qA����5qBÞ�5qC:

But in this case, we can show that there is only one non-
vanishing field ���:

�P
�� ¼ ����	�P

7�� ¼ ����	SABCP ð~qA����5qBÞ�5qC

¼ �P
7�� �

i

2
���5�

P
5� þ

i

2
���5�

P
5�;

where

����	 ¼ ðg��g�	 � 1
2g

�	���� þ 1
2g

�	����

þ 1
6�

����	Þ: (24)

III. CHIRAL TRANSFORMATIONS

In this section, we establish the chiral transformation
properties of the baryon fields which we have obtained in
the previous section. Technically, this leads to somewhat
complicated algebraic results. However, the final result
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will be understood by making the left- and right-handed
decomposition, which we shall perform in the next section.

Let us start with the chiral transformation properties of
quarks which are given by the following equations:

U ð1ÞV: q ! exp

�
i
�0

2
a0

�
q ¼ qþ 
q;

SUð3ÞV: q ! exp

�
i
~�

2
� ~a

�
q ¼ qþ 
~aq;

Uð1ÞA: q ! exp

�
i�5

�0

2
b0

�
q ¼ qþ 
5q;

SUð3ÞA: q ! exp

�
i�5

~�

2
� ~b

�
q ¼ qþ 


~b
5q;

(25)

where �0 ¼ ffiffiffiffiffiffiffiffi
2=3

p
1, ~� are the eight Gell-Mann matrices

and 1 is a 3� 3 unit matrix. Here a0 is an infinitesimal
parameter for the Uð1ÞV transformation, ~a the octet of
SUð3ÞV group parameters, b0 an infinitesimal parameter

for the Uð1ÞA transformation, and ~b the octet of the chiral
transformations.

TheUð1ÞV chiral transformation is trivial which picks up
a phase factor proportional to the baryon number. The
Uð1ÞA chiral transformation is slightly less trivial, and the
baryon fields are transformed as


5� ¼ �i�5

ffiffi
1
6

q
b0�;


5ðNN
1 � NN

2 Þ ¼ �i�5

ffiffi
1
6

q
b0ðNN

1 � NN
2 Þ;


5ðNN
1 þ NN

2 Þ ¼ i�5

ffiffi
3
2

q
b0ðNN

1 þ NN
2 Þ;


5N
N
� ¼ i�5

ffiffi
1
6

q
b0NN

�;


5�
P
� ¼ i�5

ffiffi
1
6

q
b0�P

�;


5�
P
�� ¼ i�5

ffiffi
3
2

q
b0�P

��:

(26)

We note that the combinations of NN
1 	 NN

2 form different

representations.
Under the vector chiral transformation, the baryon fields

are transformed as


~a� ¼ 0; 
 ~aNN
1 ¼ �aMfNMONO

1 ;


 ~aNN
2 ¼ �aMfNMONO

2 ; 
 ~aNN
� ¼ �aMfNMONN

�;


~a�P
� ¼ 3i

2
aMgPMQ

7 �Q
�; 
~a�P

�� ¼ 3i

2
aMgPMQ

7 �Q
��;

(27)

where fABC is the standard antisymmetric structure con-
stant of SU(3), and gABC7 is defined in Table II.
Equations (27) show nothing but the flavor charge of the
baryons. For example, we can show explicitly:


a3p ¼ þ i

2
a3p; 
a3n ¼ � i

2
a3n;


a3�þþ ¼ 3i

2
a3�

þþ � � �

The transformation rule under the axial-vector chiral
transformations are rather complicated as they are no
longer conserved and reflect the internal structure of bary-
ons. To start with, we have the axial transformation of the
three-quark baryon fields such as



~b
5� ¼ �abc�

ABC½ðqaTA CqbBÞ�5ð
 ~b
5q

c
CÞ

þ ðqaTA Cð
 ~b
5q

b
BÞÞ�5q

c
C þ ðð
 ~b

5q
aT
A ÞCqbBÞ�5q

c
C�:

The calculation is complicated, but rather straightforward.
Here, we show therefore the final result of the axial trans-
formation:



~b
5� ¼ i

2
�5b

NðNN
1 � NN

2 Þ;



~b
5ðNN

1 � NN
2 Þ ¼

4i

3
�5b

N�þ i�5b
MdNMOðNO

1 � NO
2 Þ;



~b
5ðNN

1 þ NN
2 Þ ¼ ��5b

MfNMOðNO
1 þ NO

2 Þ;



~b
5N

N
� ¼ i�5b

M

�
dMNO � 2i

3
fMNO

�
NO

�

þ i�5b
MgMNP

3 �P
�;



~b
5�

P
� ¼ �2i�5b

MgPMO
5 NO

� þ i

2
�5b

MgPMQ
7 �Q

�;



~b
5�

P
�� ¼ 3i

2
�5b

MgPMQ
7 �Q

��: (28)

The coefficients dABC are the standard symmetric structure
constants of SU(3). For completeness, we show the follow-
ing equation which define the d and f coefficients

�N
AB�

M
BC ¼ ð�N�MÞAC ¼ 1

2f�N;�MgAC þ 1
2½�N;�M�AC

¼ 2
3


NM
AC þ ðdNMO þ ifNMOÞ�O
AC:

(29)

Furthermore, the following formulas define the coefficients
g3, g5 and g7, which are proved by using MATHEMATICA, a
software good at matrix calculation:

�ADE�N
DB�

M
EC ¼ gNMO

1 �ABD�O
DC þ gNMO

2 �ACD�O
DB

þ gNMP
3 SABCP þ gNM

4 �ABC;

SABDQ �M
DC ¼ gQMO

5 �ABD�O
DC þ gQMO

6 �ACD�O
DB

þ gQMP
7 SABCP þ gQM

8 �ABC; (30)

where indices A� E take values 1, 2, and 3, N, M and O
1; � � � ; 8, and P and Q 1; � � � ; 10. The coefficients g3, g5,
and g7 are listed in Table II, where we use ‘‘0’’ instead of
‘‘10.’’ Other coefficients can be related to d, f, g3, g5, and
g7:
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gMNO
1 ¼ �dMNO � i

3
fMNO;

gMNO
2 ¼ dMNO � i

3
fMNO;

gMN
4 ¼ � 1

3

MN;

gQMO
6 ¼ �2gQMO

5 ;

gMN
8 ¼ 0:

(31)

Let us explain Eqs. (30) a bit more. The quantities on the
left hand side have three indices A, B, and C, and therefore,
they are regarded as direct products of three fundamental
representations of SU(3): 3 � 3 � 3. They can be decom-

posed into irreducible components by applying the four
kinds of operators: �ABC, �

ABD�O
DC, �

ACD�O
DB, and SABCP ,

which correspond to 1, 8, 8, and 10 of SU(3), respectively.
Equations (26) and (28) imply that � and NN

1 � NN
2 are

together combined into one chiral multiplet, and NN
� and

�P
� are together combined into another chiral multiplet.

While NN
1 þ NN

2 and �P
�� are transformed into themselves

under chiral transformation. In our following discussion,
we will find that � and NN

1 � NN
2 belong to the chiral

representation ð�3; 3Þ � ð3; �3Þ, NN
1 þ NN

2 belongs to the chi-

ral representation ð8; 1Þ � ð1; 8Þ, NN
� and �P

� belong to the

chiral representation ð6; 3Þ � ð3; 6Þ, and �P
�� belongs to the

chiral representation ð10; 1Þ � ð1; 10Þ. We show several
examples of the axial-vector chiral transformation:

TABLE II. g-coefficients defined by Eqs. (30).

g3 133, 138, 144, 146, 254, 256, 272, 279, 439, 463, 468, 573, 578, 612, 619, 636 �1=3

162, 169, 313, 318, 349, 366, 414, 416, 524, 526, 643, 648, 722, 729, 753, 758 1=3

154, 179, 215, 233, 246, 269, 328, 359, 376, 424, 455, 478, 516, 563, 622, 658, 712, 743, 765 �i=3

125, 156, 172, 238, 244, 262, 323, 426, 473, 514, 539, 545, 568, 629, 653, 675, 719, 736, 748 i=3

183, 686, 818, 835, 849 �1=
ffiffiffi
3

p
167, 251, 277, 411, 570, 640 �1 342, 364 �2=3

188, 385, 489, 813, 866 1=
ffiffiffi
3

p
141, 460, 521, 617, 727, 750 1 432, 634 2=3

283, 288, 589, 876 �i=
ffiffiffi
3

p
177, 421, 470, 511, 560, 627 �i 352, 374 �2i=3

786, 823, 828, 859 i=
ffiffiffi
3

p
151, 241, 267, 650, 717, 740 i 532, 734 2i=3

g5 125, 141, 227, 261, 313, 346, 357, 414, 425, 614, 625 1=6 318, 668, 881, 984 1=2
ffiffiffi
3

p

663, 716, 727, 813, 846, 857, 927, 943, 961, 057, 064 381, 686, 818, 948 �1=2
ffiffiffi
3

p

114, 152, 216, 272, 331, 364, 375, 441, 452, 636, 641 �1=6 382, 678, 882, 985 i=2
ffiffiffi
3

p

652, 761, 772, 831, 864, 875, 916, 934, 972, 046, 075 328, 687, 828, 958 �i=2
ffiffiffi
3

p

115, 124, 217, 226, 332, 347, 365, 424, 451, 615, 642 i=6 234, 436 1=3

673, 726, 771, 823, 856, 874, 953, 962, 971, 065, 074 243, 463 �1=3

142, 151, 262, 271, 323, 356, 374, 415, 442, 624, 637 �i=6 253, 473, 512, 554, 567 i=3

651, 717, 762, 832, 847, 865, 917, 926, 935, 047, 056 235, 437, 521, 545, 576 �i=3

583 1=
ffiffiffi
3

p
538 �1=

ffiffiffi
3

p

g7 112, 143, 232, 245, 263, 315, 362, 448, 465, 619 1=3 214, 333, 346, 412, 513, 518 2=3

636, 665, 714, 768, 815, 844, 916, 945, 046, 069 542, 549, 564, 566, 643, 869, 968

434, 939 �1=3 838 �2=3

372, 675, 724, 825, 854, 926, 955, 056, 079 i=3 422, 523, 552, 574, 653, 978 2i=3

122, 153, 255, 273, 325, 458, 475, 629, 778 �i=3 224, 356, 528, 559, 576, 879 �2i=3

131, 211, 341, 417, 640, 867, 960 1 181, 282, 484, 787 1=
ffiffiffi
3

p

737 �1 686, 989 �1=
ffiffiffi
3

p

221, 351, 877 i 080 �2=
ffiffiffi
3

p

427, 650, 970 �i
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b3
5 p� ¼ i

2
�5b3p�; 
b3

5 pþ ¼ i

2
�5b3pþ;


b3
5 p� ¼ 5i

6
�5b3p� � 4i

3
�5b3�

þ
�;

where p� belongs to the octet baryon fields NN
1 � NN

2 , pþ
belongs to NN

1 þ NN
2 , and p� belongs to NN

� [see

Eqs. (11)].

IV. CHIRAL MULTIPLETS/REPRESENTATIONS

So far, we have performed classifications without ex-
plicitly taking into account the left- and right-handed
components of the quark fields. However, it does not
require great imagination to see that the chiral properties
are also conveniently studied in that language, since chiral
symmetry is defined as the symmetries upon each chiral
field. Hence, we define the left- and right-handed (chiral or
Weyl representation) quark fields as

L � qL ¼ 1� �5

2
q; and R � qR ¼ 1þ �5

2
q: (32)

They form the fundamental representations of both the
Lorentz group and the chiral group,

L: Lorentz:

�
1

2
; 0

�
; Chiral: ð3; 1Þ;

R: Lorentz:

�
0;
1

2

�
; Chiral: ð1; 3Þ:

It is convenient first to note that �-matrices are classified
into two categories; chiral-even and chiral-odd classes. The
chiral-even �-matrices survive forming diquarks with
identical chiralities, while the chiral-odd ones form di-
quarks from quarks with opposite chiralities. The chiral-
even and -odd �-matrices are

chiral-even : 1; �5; ���; chiral-odd: ��; ���5:

Therefore, we have six nonvanishing diquarks in the chiral
representations,

LTCL¼�LTC�5L
RTCR¼þRTC�5R

�
ð0;0Þ � ð0;0Þ; ð�3;1Þ � ð1; �3Þ;

LTC���5R¼þLTC��R
RTC���5L¼�RTC��L

�
ð12 ; 12Þ � ð12 ; 12Þ; ð3;3Þ � ð3;3Þ;

LTC���L
RTC���R

�
ð1;0Þ � ð0;1Þ; ð6;1Þ � ð1;6Þ;

where we have indicated the Lorentz and chiral represen-
tations of the diquarks.

For three quarks, we have

ðLþRÞ3!
�
LLLð12;0Þ�ð32;0Þ; ð1;1Þ�ð8;1Þ�ð8;1Þ�ð10;1Þ
LLRð0;12Þ�ð1;12Þ; ð�3;3Þ�ð6;3Þ

(33)

and together with the terms where L and R are exchanged.
Now we discuss the independent fields in terms of the

chiral representations. Once again, for illustration we will
discuss here the case of the simplest Lorentz representation
ð12 ; 0Þ � ð0; 12Þ for the Dirac fields.

A. Independent ðLLÞL fields

The ðLLÞL must belong to one of the following chiral
representations: ð1; 1Þ � ð8; 1Þ � ð8; 1Þ � ð10; 1Þ. For each
chiral representation, there is one flavor representation
available.
For ð1; 1Þ ! 1f, there are apparently two nonzero fields

�L1 ¼ �abc�
ABCðLaT

A CLb
BÞ�5L

c
C;

�L2 ¼ �abc�
ABCðLaT

A C�5L
b
BÞLc

C;

�L3 ¼ �abc�
ABCðLaT

A C���5L
b
BÞ��Lc

C ¼ 0;

(34)

where �L
3 vanishes because ���5 is chiral-odd

LTC���5L ¼ 0:

After performing the Fierz transformation to relate�Li and
�0

Li as we have done before, and solving the coupled
equations, we find the solution that all such fields vanish.
For ð10; 1Þ ! 10f, we would have again two nonzero

components:

�P
L4 ¼ �abcS

ABC
P ðLaT

A C��L
b
BÞ���5L

c
C;

�P
L5 ¼ �abcS

ABC
P ðLaT

A C���L
b
BÞ����5L

c
C:

(35)

Performing the Fierz transformation to relate �P
Li and �P0

Li,
we obtain the solution that all such ðLLÞL fields vanish.
Finally for ð8; 1Þ ! 8f, we may consider once again two

nonzero fields to start with

NN
L1 ¼ �abc�

ABD�N
DCðLaT

A CLb
BÞ�5L

c
C;

NN
L2 ¼ �abc�

ABD�N
DCðLaT

A C�5L
b
BÞLc

C:
(36)

Applying the Fierz transformation to relate NN
Li and NN0

Li ,
we obtain the solution

NN
L2 ¼ NN

L1:

Therefore, there is only one independent ðLLÞL 8f field.

B. Independent ðLLÞR fields

The chiral representations of ðLLÞR are ð�3; 3Þ � ð6; 3Þ.
We will study them separately in the following.
For ð�3; 3Þ ! 1f, there appears to exist two nonzero

components among the five fields,

�M1 ¼ �abc�
ABCðLaT

A CLb
BÞ�5R

c
C;

�M2 ¼ �abc�
ABCðLaT

A C�5L
b
BÞRc

C;

�M3 ¼ �abc�
ABCðLaT

A C���5L
b
BÞ��Rc

C ¼ 0;

�M4 ¼ �abc�
ABCðLaT

A C��L
b
BÞ���5R

c
C ¼ 0;

�M5 ¼ �abc�
ABCðLaT

A C���L
b
BÞ����5R

c
C ¼ 0;

(37)
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whereM (mixed) indicates that the fields contain both left-
and right-handed quarks. Performing the Fierz transforma-
tion to relate �Mi and �0

Mi, we obtain the following rela-
tions

�0
M4 ¼ ��0

M3 ¼ �2�M2 ¼ 2�M1:

We may consider other ten combinations formed by ðLRÞ
and ðRLÞ diquarks, ðLRÞL and ðRLÞL. However, they can
be related to the above ones of ðLLÞR by a rearrangement
of indices as well as the Fierz transformation, for instance,

�M6 ¼ �abc�
ABCðLaT

A CRb
BÞ�5L

c
C ¼ �0

M1: (38)

Therefore, we have only one independent field.
For the chiral representation ð6; 3Þ ! 10f, we can write

five fields containing diquarks formed by five Dirac matri-
ces. However, we can show that after performing the Fierz
transformation all fields vanish. Therefore, this representa-
tion cannot support three-quark fields.

The baryon fields of chiral representations ð�3; 3Þ ! 8f
can be formed

NN
M1 ¼ �abc�

ABD�N
DCðLaT

A CLb
BÞ�5R

c
C;

NN
M2 ¼ �abc�

ABD�N
DCðLaT

A C�5L
b
BÞRc

C;

NN
M3 ¼ �abc�

ABD�N
DCðLaT

A C���5L
b
BÞ��Rc

C ¼ 0;

NN
M4 ¼ �abc�

ABD�N
DCðLaT

A C��L
b
BÞ���5R

c
C ¼ 0;

NN
M5 ¼ �abc�

ABD�N
DCðLaT

A C���L
b
BÞ����5R

c
C ¼ 0;

(39)

where we see that there are two nonzero fields. Applying
the Fierz transformation, we can verify that there is only
one independent field with the following relations

NN0
M4 ¼ �NN0

M3 ¼ �2NN
M2 ¼ 2NN

M1:

Another chiral representation ð6; 3Þ ! 8f can be con-
structed by the combinations similar to (39), for instance,

NN
ð6;3Þ1 ¼ �abc�

ACD�N
DBfðLaT

A CLb
BÞ�5R

c
C

þ ðLaT
B CLb

AÞ�5R
c
Cg: (40)

After similar algebra we can verify that all these fields
vanish.

C. A short summary of chiral representations

To summarize this section, we find that possible chiral
representations for Dirac spinor baryon fields without
Lorentz index are

� ¼ �abc�
ABCðLaT

A CLb
BÞ�5R

c
C þ �abc�

ABCðRaT
A CRb

BÞ�5L
c
C

¼ �M1 þ ðL $ RÞ; (41)

NN
1 � NN

2 ¼ 2�abc�
ABD�N

DCðLaT
A CLb

BÞ�5R
c
C

þ 2�abc�
ABD�N

DCðRaT
A CRb

BÞ�5L
c
C

¼ 2NN
M1 þ ðL $ RÞ; (42)

NN
1 þ NN

2 ¼ 2�abc�
ABD�N

DCðLaT
A CLb

BÞ�5L
c
C

þ 2�abc�
ABD�N

DCðRaT
A CRb

BÞ�5R
c
C

¼ 2NN
L1 þ ðL $ RÞ: (43)

Sowe can see that the fields� andNN
1 � NN

2 have a type of

LLR � RRL, and belong to the chiral representation
ð�3; 3Þ � ð3; �3Þ; while the field NN

1 þ NN
2 has a type of

LLL � RRR, and belongs to the chiral representation
ð8; 1Þ � ð1; 8Þ.
The chiral properties of Rarita-Schwinger fields

ðLorentz rep:ð1; 12Þ � ð12 ; 1ÞÞ are listed in Appendix D. We

summarize the results here:

NN
� ¼ 2�abc�

ABD�N
DCðLaT

A C���5R
b
BÞ�5L

c
C

þ 2�abc�
ABD�N

DCðRaT
A C���5L

b
BÞ�5R

c
C

þ 1
2�abc�

ABD�N
DCðLaT

A CLb
BÞ��R

c
C

þ 1
2�abc�

ABD�N
DCðRaT

A CRb
BÞ��L

c
C; (44)

�P
� ¼ 2�abcS

ABC
P ðLaT

A C��R
b
BÞLc

C

þ 2�abcS
ABC
P ðRaT

A C��L
b
BÞRc

C: (45)

So we see thatNN
� and�P

� are of the type LLR � RRL, and

belong to the chiral representation ð6; 3Þ � ð3; 6Þ. The
(similar) results for �P

��, which is of the type LLL �
RRR, and belongs to the chiral representation ð10; 1Þ �
ð1; 10Þ, are omitted here.

V. AXIAL COUPLING CONSTANTS

As a simple application of the present mathematical
formalism, we can extract the (diagonal) axial coupling
constants gA for these baryons. All information is con-
tained in Eqs. (26) and (28), from which one can extract
the Abelian Uð1ÞA axial coupling constant g0A and the non-

Abelian SUð3ÞV � SUð3ÞA diagonal axial coupling con-
stants, g3A and g8A. The latter two can be extracted from

the 
b3
5 and 
b8

5 subset of chiral transformations Eqs. (28),

respectively.
In general, the diagonal elements of the SU(3) gA’s can

be decomposed into so-called F and D components, which
are defined by the axial-vector current Aa

� (a ¼ 0; 1; . . . 8)

Aa
� ¼ gFA tr

�
�N���5

�
�a

2
;N

��
þ gDA tr

�
�N���5

�
�a

2
;N

��
;

(46)

where N is the 3� 3 baryon octet matrix, Eq. (12).
Therefore, we have

A3
� ¼ ðgFA þ gDA Þðpþp� nþnÞ

þ 2gFAðð�þÞþ�þ � ð��Þþ��Þ
þ ðgFA � gDA Þðð�0Þþ�0 � ð��Þþ��Þ; (47)
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A8
� ¼

� ffiffiffi
3

p
gFA � gDAffiffiffi

3
p

�
ðpþpþ nþnÞ

þ 2gDAffiffiffi
3

p ðð�þÞþ�þ þ ð��Þþ��Þ

þ
�
� ffiffiffi

3
p

gFA � gDAffiffiffi
3

p
�
ðð�0Þþ�0 þ ð��Þþ��Þ

� 2gDAffiffiffi
3

p ð�8Þþ�8; (48)

where we omit the Lorentz indices. In other words,

g3AðNÞ � ðgFA þ gDA ÞIz; g3Að�Þ � 2gDAIz;

g3Að�Þ � ðgFA � gDA ÞIz; g8AðNÞ � ffiffiffi
3

p
gFA � gDAffiffiffi

3
p ;

g8Að�Þ �
2gDAffiffiffi
3

p ; g8Að�Þ � � ffiffiffi
3

p
gFA � gDAffiffiffi

3
p ;

g8Að�Þ � � 2gDAffiffiffi
3

p ;

(49)

for the octet parts. The operator Iz is the third component
of isospin, whereas the SU(3) singlet term g0A contains only
the D term and is therefore trivial.

For the decuplet baryons, the SU(3) coupling constants
contain only one SU(3) irreducible term because the SU(3)
Clebsch-Gordan series for �10 � 10 � 8 contains only one
singlet. In order to extract the coupling constants, we first
rewrite Eqs. (26) and (28) in the following form, for all the
singlet, octet and decuplet baryon fields:

(1) The Abelian g0A basically counts the difference be-
tween the numbers of left- and right-handed quarks
in a baryon of definite/positive chirality (helicity).
Several definitions of g0A can be found in the litera-

ture. No matter what convention we adopt, we must
make sure that it is consistent with the definition of
the SU(3) singlet vector current that counts the
baryon-, or the quark number. So, either we normal-
ize g0A to the baryon number, or to the quark number.

Of course, the difference is just a multiplicative
factor (3), but inconsistent definitions will lead to
confusion later on when one constructs chirally
invariant interactions. At this time we shall adopt
the latter (quark number) normalization.
Because �0

11 ¼ �0
22 ¼ �0

33 for g0A, the chiral trans-

formations 
5 are identical for all baryon fields
within the same chiral representation, so we may
define g0A by


5B ¼ i�5

�0
11b0
2

g0AB ¼ i�5b0ffiffiffi
6

p g0AB; (50)

where B represents the baryon field, such as � and
NN

1 � NN
2 etc. This convention is based on the quark

number, implying that the SU(3) singlet vector
charge of a nucleon is three (þ 3).

(2) For g3A, because �
3
11 ¼ ��3

22, the chiral transforma-
tion 
b3

5 is proportional to the isospin value of Iz,
which is factored out from the definition of g3A


b3
5 B ¼ i�5b3g

3
AIzBþ � � � ; (51)

where the ellipsis � � � on the right-hand side denote
the off-diagonal terms.

(3) For g8A, because �8
11 ¼ �8

22, the chiral transforma-
tions 
b8

5 is the same for the baryon fields belonging

to one isospin multiplet. We define it to be


b8
5 B ¼ i�5

�8
11b8
2

g8ABþ � � � ¼ i�5b8

2
ffiffiffi
3

p g8ABþ � � � :
(52)

The resulting axial coupling constants g0A, g
3
A, and g

8
A are

shown in Table III, where � is the (only) singlet field �;
then N�, ��, �� and �� are the octet fields of the type
NN

1 � NN
2 ; the Nþ, �þ, �þ and �þ are the octet fields of

the type NN
1 þ NN

2 ; the N�, ��, �� and �� are the octet

fields NN
�; the ��, �

�
�, �

�
� and �� are the decuplet fields

�P
�; ���, �

�
��, �

�
�� and ��� are the decuplet fields �P

��.

From the values in Table III, one can compute the F and
D couplings easily. The resulting F=D ratio,

� ¼ gDA
gFA þ gDA

; (53)

TABLE III. Axial coupling constants g0A, g
3
A, and g8A. In the

last column � ¼ gDA=ðgFA þ gDA Þ.
SUð3ÞL � SUð3ÞR SUð3ÞF g0A g3A g8A �

1 � �1 — — —

N� �1 1 �1
ð�3; 3Þ � ð3; �3Þ �� �1 0 2

8 �� �1 �1 �1 1

�� �1 — �2

Nþ 3 1 3

�þ 3 1 0

ð8; 1Þ � ð1; 8Þ 8 �þ 3 1 �3 0

�þ 3 — 0

N� 1 5=3 1

�� 1 2=3 2

8 �� 1 �1=3 �3 3=5
�� 1 — �2

ð3; 6Þ � ð6; 3Þ �� 1 1=3 1

��
� 1 1=3 0

10 ��
� 1 1=3 �1 —

�� 1 — �2

��� 3 1 3

��
�� 3 1 0

ð10; 1Þ � ð1; 10Þ 10 ��
�� 3 1 �3 —

��� 3 — �6
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is also tabulated in the last column of Table III.
Empirically, �� 0:6, which is fairly close to the SU(6)
quark model value. In the present formalism we see that
only the ð3; 6Þ � ð6; 3Þ chiral multiplet/representation re-
produces this value. Previous works have shown that this
value is physically related to the coupling of the nucleon to
the�ð1232Þ, as demonstrated in the Adler-Weisberger sum
rule [27,28]. This was also shown algebraically by
Weinberg [1]. In both cases, saturation of the pion (axial-
vector) induced transition from the nucleon to the �ð1232Þ
is essential [29]. In the present study, this is realized by the
chiral representation which includes both the nucleon (iso-
spin 1=2) and delta (isospin 3=2) states.

It is also interesting that Table III shows that g3AðNÞ ¼
5=3, g0AðNÞ ¼ 1 for ð3; 6Þ � ð6; 3Þ, while g3AðNÞ ¼ 1,
g0AðNÞ ¼ �1 for ð�3; 3Þ � ð3; �3Þ.

The flavor singlet g0A corresponds to the so-called nu-

cleon spin value, as measured in polarized deep-inelastic
lepton scattering. A suitable superposition of the two chiral
representations may improve the nucleon axial coupling in
either the isovector and/or isosinglet sectors. The impor-
tance of such mixing for the isovector axial coupling
constant has been emphasized by Weinberg since the late
1960’s, Ref. [1].

VI. SUMMARY

In this paper we have performed a classification of flavor
vector and chiral symmetries, and established indepen-
dence of several types of relativistic SU(3) baryon inter-
polating fields. The three-quark fields may belong to one of
several different Lorentz group representations which fact
imposes certain constraints on possible chiral symmetry
representations. This is due to the Pauli principle and has
been explicitly verified by the method of Fierz
transformations.

As the present results reflect essentially the Pauli prin-
ciple, they can be conveniently summarized by using the
permutation symmetry group properties/representations, as
shown in Table IV. This table ‘‘explains’’ also the previous
results for the case of isospin SUð2ÞL � SUð2ÞR [12]. In the
real world, with spontaneous breaking of chiral symmetry,
physical states of pure chiral (axial) symmetry representa-
tion do not occur, but in general they can mix in a state
having a definite flavor symmetry. The present results show
that the three-quark structures accommodate only a few
(sometimes just one) chiral representations, for instance,

for the total spin 1=2 field of Dirac spinor, there are two
allowed chiral representations, having the Young diagram
structures ð½21�;�Þ and ([1], [11]), where — indicates the
singlet. The ð½21�;�Þ Young diagram corresponds to the
ð12 ; 0Þ and ð8; 1Þ representations of SU(2) and SU(3),, re-

spectively, whereas the ([1], [11]) Young diagram corre-
sponds to the ð12 ; 0Þ and ð3; �3Þ of SU(2) and SU(3),

respectively.
Note that the Nf ¼ 2 chiral representations have the

same form as those of the Lorentz group. In this way, the
Lorentz (spin) and flavor structures are combined into a
general structure with total permutation symmetry. As
shown in the computation of gA, in general, various cou-
plings depend on the chiral representations.
We should conclude with a few historical remarks: the

two-flavor baryon fields’ Fierz identities have been known
since the early days of QCD sum rules [13], whereas the
three-flavor ones presented here seem to be the first ones.
Similarly, the chiral properties of the two-flavor baryon
fields’ have been known at least since the work of Christos
[30], but the three-flavor ones have been discussed by
Christos and H.q. Zheng [26], but not systematically
explored.
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APPENDIX A: RARITA-SCHWINGER FIELDS

In this appendix, we study the properties of Rarita-
Schwinger fields, in the form of

B�ðxÞ � �abcðqaTA ðxÞC�1q
b
BðxÞÞ�2q

c
CðxÞ; (A1)

TABLE IV. Structure of allowed three-quark baryon fields.

Lorentz J ¼ Spin Young diagram for Chiral rep. Axial Uð1ÞA charge g0A Chiral SU(2) Chiral SU(3) Flavor SU(3)

ð12 ; 0Þ � ð0; 12Þ 1=2 ð½21�;�Þ � ð�; ½21�Þ 3 ð12 ; 0Þ � ð0; 12Þ ð8; 1Þ � ð1; 8Þ 8

ð½1�; ½11�Þ � ð½11�; ½1�Þ �1 ð3; �3Þ � ð�3; 3Þ 1, 8

ð1; 12Þ � ð12 ; 1Þ 3=2 ð½2�; ½1�Þ � ð½1�; ½2�Þ 1 ð12 ; 1Þ � ð1; 12Þ ð3; 6Þ � ð6; 3Þ 8, 10

ð32 ; 0Þ � ð0; 32Þ 3=2 ð½3�;�Þ � ð�; ½3�Þ 3 ð32 ; 0Þ � ð0; 32Þ ð10; 1Þ � ð1; 10Þ 10
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where there are eight possible pairs of �1 and �2,

ð�1;�2Þ ¼ ð1; ��Þ; ð�5; ���5Þ; ð���5; �5Þ;
ð���5; ����5Þ; ð��; 1Þ; ð��; ���Þ;
ð���; �

�Þ; ð����5; �
��5Þ: (A2)

The fields formed by these ð�1;�2Þ pairs are labeled by the
subscript i ¼ ð1; � � � ; 8Þ with the ordering of Eq. (A2). The
discussion is separated into singlet, decuplet and octet
cases.

1. Flavor singlet baryon

For flavor singlet fields, there are four apparently non-
zero fields

�1� ¼ �abc�
ABCðqaTA CqbBÞ��q

c
C;

�2� ¼ �abc�
ABCðqaTA C�5q

b
BÞ���5q

c
C;

�3� ¼ �abc�
ABCðqaTA C���5q

b
BÞ�5q

c
C;

�4� ¼ �abc�
ABCðqaTA C���5q

b
BÞ����5q

c
C:

(A3)

As before, the Fierz transformed fields (primed fields) are
just the corresponding unprimed ones, �0

i� ¼ �i�. On the

other hand, by applying the Fierz rearrangement (see
Appendix. C), we obtain four equations

�1� ¼ � 1

4
�0

1� � 1

4
�0

2� þ 1

4
�0

3� � i

4
�0

4�;

�2� ¼ � 1

4
�0

1� � 1

4
�0

2� � 1

4
�0

3� þ i

4
�0

4�;

�3� ¼ 1

4
�0

1� � 1

4
�0

2� � 1

4
�0

3� � i

4
�0

4�;

�4� ¼ 3i

4
�0

1� � 3i

4
�0

2� þ 3i

4
�0

3� þ 1

4
�0

4�:

Thus we find the following solution

�1� ¼ ��2� ¼ �3� ¼ � i

3
�4� ¼ ���5�1;

�6� ¼ �7� ¼ �8� ¼ 0:

We see that there is only one nonvanishing independent
field. However, it has a structure of ���i. Therefore, they

are all Dirac fields, and there is no flavor singlet fields of
the Rarita-Schwinger type.

2. Flavor decuplet baryon

For flavor decuplet fields, we have four potentially non-
zero interpolators

�P
5� ¼ �abcS

ABC
P ðqaTA C��q

b
BÞqcC;

�P
6� ¼ �abcS

ABC
P ðqaTA C��qbBÞ���q

c
C;

�P
7� ¼ �abcS

ABC
P ðqaTA C���q

b
BÞ��qcC;

�P
8� ¼ �abcS

ABC
P ðqaTA C����5q

b
BÞ���5q

c
C:

(A4)

As before, the Fierz transformed fields can be related to the
corresponding unprimed ones, �P0

i� ¼ ��P
i�. On the other

hand, by applying the Fierz rearrangement to relate �N
i�

and �N0
i�, we obtain the solution

�P
5� ¼ i�P

6� ¼ �i�P
7� ¼ i�P

8�:

There are no Dirac decuplet fields. Therefore, we obtain
one extra nonvanishing field.

3. Flavor octet baryon

To study the octet baryon fields, we start with eight
baryon fields:

NN
1� ¼ �abc�

ABD�N
DCðqaTA CqbBÞ��q

c
C;

NN
2� ¼ �abc�

ABD�N
DCðqaTA C�5q

b
BÞ���5q

c
C;

NN
3� ¼ �abc�

ABD�N
DCðqaTA C���5q

b
BÞ�5q

c
C;

NN
4� ¼ �abc�

ABD�N
DCðqaTA C���5q

b
BÞ����5q

c
C;

NN
5� ¼ �abc�

ABD�N
DCðqaTA C��q

b
BÞqcC ¼ 0;

NN
6� ¼ �abc�

ABD�N
DCðqaTA C��qbBÞ���q

c
C ¼ 0;

NN
7� ¼ �abc�

ABD�N
DCðqaTA C���q

b
BÞ��qcC ¼ 0;

NN
8� ¼ �abc�

ABD�N
DCðqaTA C����5q

b
BÞ���5q

c
C ¼ 0:

(A5)

There are four zero fields, but the corresponding Fierz
transformed ones are nonzero. By using the Jacobi identity
in Eq. (17), we obtain

NN0
1� ¼ �1

2N
N
1�; NN0

2� ¼ �1
2N

N
2�;

NN0
3� ¼ �1

2N
N
3�; NN0

4� ¼ �1
2N

N
4�:

Similarly, performing the Fierz transformation to relate
NN

i� and NN0
i�, we obtain the solution

NN
4� ¼ �iNN

1� þ iNN
2� � iNN

3�;

NN0
5� ¼ � 1

2
NN

1� þ 1

2
NN

2� � 1

2
NN

3�;

NN0
6� ¼ �iNN

1� þ iNN
2� þ i

2
NN

3�;

NN0
7� ¼ iNN

1� þ i

2
NN

2� þ iNN
3�;

NN0
8� ¼ i

2
NN

1� þ iNN
2� � iNN

3�:

(A6)

Thus we have shown that there are three different kinds of
octets. However, NN

1� and NN
2� are nothing but ���5N

N
1

and ���5N
N
2 [see Eqs. (16)]. Therefore, we only obtain

one extra octet baryon field. It is formed by using the
projection operator:

P3=2
�� ¼ ðg�� � 1

4����Þ;
as
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NN
� ¼ P3=2

��NN
3�

¼ ðg�� � 1
4����Þ�abc�ABD�N

DCðqaTA C���5q
b
BÞ�5q

c
C

¼ NN
3� þ 1

4���5ðNN
1 � NN

2 Þ:

APPENDIX B: TENSOR FIELDS

In this appendix, we study the antisymmetric tensor
baryons fields J�� with J�� ¼ �J��. For the tensor fields,

we can form nine three-quark fields where the possible
pairs of �1 and �2 are

ð�1;�2Þ¼ ð��;���5Þ�ð�$�Þ; ð���5;��Þ�ð�$�Þ;
�����ð��;��Þ; �����ð���5;�

��5Þ;
ð1;����5Þ; ð�5;���Þ;
ð���;�5Þ; ð����5;1Þ; �����ð��l;��lÞ: (B1)

The fields formed by these ð�1;�2Þ pairs are labeled by the
subscript i ¼ ð1; � � � ; 9Þ with the ordering of Eq. (B1). The
discussion is separated into singlet, decuplet and octet
cases.

1. Flavor singlet baryon

The flavor singlet baryon fields have four potentially
nonzero interpolators among nine fields:

�2�� ¼ �abc�
ABCðqaTA C���5q

b
BÞ��q

c
C � ð� $ �Þ;

�4�� ¼ �abc�
ABC�����ðqaTA C���5q

b
BÞ���5q

c
C;

�5�� ¼ �abc�
ABCðqaTA CqbBÞ����5q

c
C;

�6�� ¼ �abc�
ABCðqaTA C�5q

b
BÞ���q

c
C:

(B2)

As before, the Fierz transformed fields are just the corre-
sponding unprimed ones,�0

i�� ¼ �i��. On the other hand,

by applying the Fierz rearrangement to relate �i�� and

�0
{��, we obtain the solution:

i�2�� ¼ �4�� ¼ 2�5�� ¼ �2�6��:

Therefore, there is only one independent field. However, it
has a structure of ����i. Therefore, there are no extra

fields.

2. Flavor decuplet baryon

The flavor decuplet baryon fields have five potentially
nonzero interpolators:

�P
1�� ¼ �abcS

ABCðqaTA C��q
b
BÞ���5q

c
C � ð� $ �Þ;

�P
3�� ¼ �abcS

ABC�����ðqaTA C��q
b
BÞ��q

c
C;

�P
7�� ¼ �abcS

ABCðqaTA C���q
b
BÞ�5q

c
C;

�P
8�� ¼ �abcS

ABCðqaTA C����5q
b
BÞqcC;

�P
9�� ¼ �abcS

ABC�����ðqaTA C��lq
b
BÞ��lq

c
C:

(B3)

As before, the Fierz transformed fields can be related to the
corresponding unprimed ones, �P0

i�� ¼ ��P
i��. On the

other hand, by applying the Fierz rearrangement to relate
�P

i�� and�
P0
i��, we obtain two independent fields:�

P
1�� and

�P
7��:

�P
3�� ¼ �i�P

1��; �P
8�� ¼ i�P

1�� þ�P
7��;

�P
9�� ¼ �i�P

1�� � 2�P
7��:

The first one �P
1�� can be related to the Rarita-Schwinger

baryon fields, but the second one �P
7�� cannot. Therefore,

we obtain one extra decuplet fields. It is formed by using
the projection operator:

����	 ¼ ðg��g�	 � 1
2g

�	���� þ 1
2g

�	����

þ 1
6�

����	Þ;
as

�P
�� ¼ ����	�P

7�� ¼ ����	�abcS
ABCðqaTA C���q

b
BÞ�5q

c
C

¼ �P
7�� �

i

2
���5�

P
5� þ

i

2
���5�

P
5�:

3. Flavor octet baryon

To study the octet baryon fields, we start with nine octet
baryon fields

NN
1�� ¼ �abc�

ABD�N
DCðqaTA C��q

b
BÞ���5q

c
C � ð� $ �Þ

¼ 0;

NN
2�� ¼ �abc�

ABD�N
DCðqaTA C���5q

b
BÞ��q

c
C � ð� $ �Þ;

NN
3�� ¼ �abc�

ABD�N
DC�����ðqaTA C��q

b
BÞ��q

c
C ¼ 0;

NN
4�� ¼ �abc�

ABD�N
DC�����ðqaTA C���5q

b
BÞ���5q

c
C;

NN
5�� ¼ �abc�

ABD�N
DCðqaTA CqbBÞ����5q

c
C;

NN
6�� ¼ �abc�

ABD�N
DCðqaTA C�5q

b
BÞ���q

c
C;

NN
7�� ¼ �abc�

ABD�N
DCðqaTA C���q

b
BÞ�5q

c
C ¼ 0;

NN
8�� ¼ �abc�

ABD�N
DCðqaTA C����5q

b
BÞqcC ¼ 0;

NN
9�� ¼ �abc�

ABD�N
DC�����ðqaTA C��lq

b
BÞ��lq

c
C ¼ 0:

(B4)

There are five zero fields, but the Fierz transformed ones
are nonzero. By using the Jacobi identity in Eq. (17), we
obtain

NN0
2�� ¼ �1

2N
N
2��; NN0

4�� ¼ �1
2N

N
4��;

NN0
5�� ¼ �1

2N
N
5��; NN0

6�� ¼ �1
2N

N
6��:

Similarly, performing the Fierz transformation to relate
NN

i�� and NN0
i��, we find that there are three independent

fields NN
2��, N

N
5�� and NN

6��. Here are the relations:
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NN
4�� ¼ �iNN

2�� � NN
5�� þ NN

6��;

NN0
1�� ¼ � 1

2
NN

2�� þ iNN
5�� � iNN

6��;

NN0
3�� ¼ i

2
NN

2�� �
1

2
NN

5�� þ
1

2
NN

6��;

NN0
7�� ¼ � i

2
NN

2�� �
1

2
NN

5��;

NN0
8�� ¼ i

2
NN

2�� �
1

2
NN

6��; NN0
9�� ¼ �NN

5�� � NN
6��:

(B5)

All these three fields can be related to the Dirac spinor and
Rarita-Schwinger fields. Therefore, there are no extra octet
fields.

APPENDIX C: FIERZ TRANSFORMATION

In this appendix, we list the Fierz transformations used
in our calculation, which are proved by using
MATHEMATICA [31]. Here we would like to show only the

change in the structure of Lorentz indices of direct prod-
ucts of two Dirac matrices under the Fierz rearrangement.
Therefore, in the following equations, we do not include
the minus sign which arises from the exchange of quark
fields. The formulas go for the three cases corresponding to
the Dirac, Rarita-Schwinger and tensor fields when applied
to three-quark fields.
(1) Products of two Dirac matrices without Lorentz

indices:

1 � �5

�� � ���5

��� � ����5

���5 � ��

�5 � 1

0
BBBBBBBB@

1
CCCCCCCCA

ab;cd

¼

1
4 � 1

4
1
8

1
4

1
4

�1 � 1
2 0 � 1

2 1

3 0 � 1
2 0 3

1 � 1
2 0 � 1

2 �1
1
4

1
4

1
8 � 1

4
1
4

0
BBBBBB@

1
CCCCCCA

1 � �5

�� � ���5

��� � ����5

���5 � ��

�5 � 1

0
BBBB@

1
CCCCA

ad;bc

(C1)

(2) Products of two Dirac matrices with one Lorentz index:

1 � ��

�� � 1

�5 � ���5

���5 � �5

�� � ���

��� � ��

���5 � ����5

����5 � ���5

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

ab;cd

¼

1
4

1
4

1
4 � 1

4 � i
4

i
4

i
4

i
4

1
4

1
4 � 1

4
1
4

i
4 � i

4
i
4

i
4

1
4 � 1

4
1
4

1
4

i
4

i
4 � i

4
i
4

� 1
4

1
4

1
4

1
4

i
4

i
4

i
4 � i

4
3i
4 � 3i

4 � 3i
4 � 3i

4 � 1
4 � 1

4 � 1
4

1
4

� 3i
4

3i
4 � 3i

4 � 3i
4 � 1

4 � 1
4

1
4 � 1

4

� 3i
4 � 3i

4
3i
4 � 3i

4 � 1
4

1
4 � 1

4 � 1
4

� 3i
4 � 3i

4 � 3i
4

3i
4

1
4 � 1

4 � 1
4 � 1

4

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

1 � ��

�� � 1
�5 � ���5
���5 � �5

�� � ���

��� � ��

���5 � ����5

����5 � ���5

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ad;bc

(C2)

(3) Products of two Dirac matrices with two antisymmetric Lorentz indices:

1 � ����5

�5 ����

��� � �5

����5 � 1

�������l � ��l

�� � ���5 � ð� $ �Þ
���5 � �� � ð� $ �Þ

������� � ��

��������5 � ���5

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

ab;cd
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APPENDIX D: CHIRAL PROPERTIES OF RARITA-
SCHWINGER FIELDS

In this appendix, we study the chiral properties of
Rarita-Schwinger fields. As previously described in
Sec. IV, we only need to study the properties of ðLLÞL,
ðLLÞR, ðLRÞL, and ðRLÞL.

1. Chiral properties of ðLLÞL
The chiral representations of ðLLÞL are ð1; 1Þ � ð8; 1Þ �

ð8; 1Þ � ð10; 1Þ. We will study them separately in the fol-
lowing.

(1) In principle, there are eight possibilities of making
the Rarita-Schwinger fields as shown in Eq. (A2).
However, the chiral representation ð1; 1Þ has just two
nonzero fields:

�L1� ¼ �abc�
ABCðLaT

A CLb
BÞ��L

c
C;

�L2� ¼ �abc�
ABCðLaT

A C�5L
b
BÞ���5L

c
C:

(D1)

Similarly performing the Fierz transformation to
relate �Li� and �0

Li�, we obtain the solution that

all such kind of fields vanish.
(2) The chiral representation ð10; 1Þ has two nonzero

fields:

�P
L7� ¼ �abcS

ABC
P ðLaT

A C���L
b
BÞ��Lc

C;

�P
L8� ¼ �abcS

ABC
P ðLaT

A C����5L
b
BÞ���5L

c
C:

(D2)

Similarly performing the Fierz transformation to
relate �P

Li� and �P0
Li�, we obtain the solution that

all such kind of fields vanish.
(3) The chiral representation ð8; 1Þ has two nonzero

fields:

NN
L1� ¼ �abc�

ABD�N
DCðLaT

A CLb
BÞ��L

c
C;

NN
L2� ¼ �abc�

ABD�N
DCðLaT

A C�5L
b
BÞ���5L

c
C:

(D3)

Similarly performing the Fierz transformation to
relate NN

Li� and NN0
Li�, we obtain the solution

NN
L2� ¼ NN

L1�:

Others are just zero. There is only one nonvanishing
octet baryon field.

2. Chiral properties of ðLLÞR, ðLRÞL, and ðRLÞL
The chiral representations of ðLLÞR, ðLRÞL, and ðRLÞL

are ð�3; 3Þ � ð6; 3Þ. We will study them separately in the
following.

(1) The chiral representation ð�3; 3Þ ! 1f has two non-
zero components:

�M1� ¼ �abc�
ABCðLaT

A CLb
BÞ��R

c
C;

�M2� ¼ �abc�
ABCðLaT

A C�5L
b
BÞ���5R

c
C:

(D4)

Similarly performing the Fierz transformation to
relate �Mi� and �0

Mi�, we obtain the solution

�M1� ¼ ��M2�:

Others are just zero. There is only one nonvanishing
field. Others ðLRÞL and ðRLÞL can be related to this
one.

(2) The chiral representation ð6; 3Þ ! 10f has two non-
zero components:

�P
M7� ¼ �abcS

ABCðLaT
A C���L

b
BÞ��Rc

C;

�P
M8� ¼ �abcS

ABCðLaT
A C����5L

b
BÞ���5R

c
C:

(D5)

Others are just zero. Similarly performing the Fierz
transformation to relate �P

Mi� and �P0
Mi�, we obtain

the solution

�P
M7� ¼ ��P

M8�:

There is only one nonvanishing field. Others ðLRÞL
and ðRLÞL can be related to this one.

(3) The chiral representations ð�3; 3Þ ! 8f has only two
nonzero interpolators:

NN
M1� ¼ �abc�

ABD�N
DCðLaT

A CLb
BÞ��R

c
C;

NN
M2� ¼ �abc�

ABD�N
DCðLaT

A C�5L
b
BÞ���5R

c
C:

(D6)

Similarly performing the Fierz transformation to
relate NN

Mi� and NN0
Mi�, we obtain the solution

NN
M1� ¼ �NN

M2�:

In order to study the chiral representations ð6; 3Þ !
8f, we need to consider the second way (see the
discussion in Sec. II B 3) which leads to four non-
zero fields:

~N N
M1� ¼ �abc�

ACD�N
DBðLaT

A CLb
BÞ��R

c
C;

~NN
M2� ¼ �abc�

ACD�N
DBðLaT

A C�5L
b
BÞ���5R

c
C;

~NN
M7� ¼ �abc�

ACD�N
DBðLaT

A C���L
b
BÞ��Rc

C;

~NN
M8� ¼ �abc�

ACD�N
DBðLaT

A C����5L
b
BÞ���5R

c
C:

(D7)

By using the Jacobi identity in Eq. (17), we obtain:

~N N
M1� ¼ 1

2N
N
M1�;

~NN
M2� ¼ 1

2N
N
M2�:

Similarly performing the Fierz transformation to
relate ~NN

Mi� and ~NN0
Mi�, we obtain the solution

~N N
M2� ¼ � ~NN

M1� ¼ �1
2N

N
M1�;

~NN
M8� ¼ � ~NN

M7�:

All together there are two nonvanishing independent
fields: ~NN

M1� and ~NN
M7�.

~NN
M1� is related to NN

M1�,

and so belongs to the chiral representation (ð�3; 3Þ).
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However, the other ~NN
M7� cannot be related to NN

Mi�,

and so contains some ð6; 3Þ component. other Others
ðLRÞL and ðRLÞL can be related to ðLLÞR. Chiral

properties of the tensor fields can be also explored in
completely the same procedure explained here.
Therefore, we do not show this case any more.
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