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We study the tetraquark states with IGJPC ¼ 1�1�þ in the QCD sum rule. After exhausting all possible

flavor structures, we analyze both the Shifman-Vainshtein-Zakharov (SVZ) and finite energy sum rules.

Both approaches lead to a mass around 1.6 GeV for the state with the quark contents qq �q �q , and around

2.0 GeV for the state with the quark contents qs �q �s . The flavor structure ð�3 � �6Þ � ð6 � 3Þ is preferred. Our
analysis strongly indicates that both �1ð1600Þ and �1ð2015Þ are also compatible with the exotic tetraquark

interpretation, which are sometimes labeled as candidates of the 1�þ hybrid mesons. Moreover one of

their dominant decay modes is a pair of axial-vector and pseudoscalar mesons such as b1ð1235Þ�, which
is sometimes considered as the characteristic decay mode of the hybrid mesons.
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I. INTRODUCTION

Hadrons beyond the conventional quark model have
been studied for more than thirty years. For example,
Jaffe suggested the low-lying scalar mesons as good can-
didates of tetraquark states composed of strongly corre-
lated diquarks in 1976 [1]. Especially, there may exist
some low-lying exotic mesons with quantum numbers
such as ðJPCÞ ¼ ð1�þÞ which �qq mesons cannot access
[2,3]. However the hybrid mesons with explicit glue can
carry such quantum numbers. The experimental establish-
ment of these states is a direct proof of the glue degree of
freedom in the low energy sector of QCD and of funda-
mental importance.

The mass of the nonstrange exotic hybrid meson from
lattice QCD simulations includes: 2 GeV [4], 1.74 GeV [5],
and 1.8 GeV [6]. The mass of its strange partner is
1.92 GeV [5] and 2 GeV [6]. The hybrid meson mass
from the constituent glue model is 2 GeV [7] while the
value from the flux tube model is around 1.9 GeV [8,9].
The prediction from the QCD sum rule approach is around
1.6 GeV [10,11]. However, Yang obtained a surprisingly
low mass around 1.26 GeV for the 1�þ hybrid meson using
QCD sum rule [12].

Up to now, there are several candidates of the exotic
mesons with IGðJPCÞ ¼ 1�ð1�þÞ experimentally. They
are �1ð1400Þ, �1ð1600Þ, and �1ð2015Þ. Their masses
and widths are ð1376� 17; 300� 40Þ MeV,
ð1653þ18

�15; 225
þ45
�28Þ MeV, and ð2014� 20� 16; 230�

21� 73Þ MeV, respectively [13]. �1ð1400Þ was observed
in the reactions ��p! ��0n [14]; �pp! �0�0� and
�pn! ���0� [15]; ��p! ���p [16]. �1ð1600Þ was
observed in the reaction ��p! �0��p (�0 decays to
��þ�� with a fraction 44.5%) [17]. Both �1ð1600Þ and
�1ð2015Þ were observed in the reactions ��p!

!���0p [18] and ��p! ��þ����p [19]. However,
a more recent analysis of a higher statistics sample from
E852 3� data found no evidence of �1ð1600Þ [20]. All the
above observations were from hadron-production
experiments.
Recently, the CLAS Collaboration performed a photo-

production experiment to search for the 1�þ hybrid meson
in the speculated 3� final state in the charge exchange
reaction �p! �þ�þ��ðnÞ [21]. If �1ð1600Þ was a hy-
brid state, it was expected to be produced with a strength
near or much larger than 10% of the a2ð1320Þ meson from
the theoretical models [22]. However, �1ð1600Þ was not
observed with the expected strength. In fact its production
rate is less than 2% of the a2ð1320Þmeson. If the �1ð1600Þ
signal from the hadron-production experiments is not an
artifact, the negative result of the photoproduction experi-
ment suggests (1) either theoretical production rates are
overestimated significantly or (2)�1ð1600Þ is a meson with
a different inner structure instead of a hybrid state.
In fact, the tetraquark states can also carry the exotic

quantum numbers IGðJPCÞ ¼ 1�ð1�þÞ. It is important to
note that the gluon inside the hybrid meson can easily split
into a pair of q �q. Therefore tetraquarks can always have the
same quantum numbers as the hybrid mesons, including
the exotic ones. Discovery of hadron candidates with
JPC ¼ 1�þ does not ensure that it is an exotic hybrid
meson. One has to exclude the other possibilities including
tetraquarks based on its mass, decay width, decay patterns,
etc. This argument holds for all these claimed candidates of
the hybrid meson.
Tetraquark states in general have a richer internal struc-

ture than ordinary q �q states. For instance, a pair of quarks
can be in channels which cannot be allowed in the ordinary
hadrons. The richness of the structure introduces compli-
cation in theoretical studies. Therefore, one usually as-
sumed one or a few particular configurations which are
motivated by some intuitions.
Recently, we have developed a systematic method for

the study of multiquark states in the QCD sum rule, and
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particular applications have been made for several tetra-
quark states [23–25]. Our method is essentially based on
complete classification of independent currents. By mak-
ing suitable linear combinations of the independent cur-
rents we can perform advanced analysis as compared with
the analysis of using only one type of current which limits
the potential of the operator product expansion (OPE), and
sometimes leads to unphysical results.

In this paper, we first classify the flavor structure of the
four-quark system with quantum numbers JPC ¼ 1�þ. We
find that there are five isovector states. Then we construct
tetraquark interpolating currents by using both diquark-
antidiquark construction [ðqqÞð �q �qÞ] and quark-antiquark
pairs [ðq �qÞðq �qÞ]. We verify that they are just different bases
and can be related to each other. Therefore they lead to the
same results. By using diquark-antidiquark currents, we
perform the QCD sum rule analysis, and calculate their
masses. Our results suggest that �1ð1400Þ may not be
explained by just using tetraquark structure, and
�1ð1600Þ and �1ð2015Þ could be explained by the tetra-
quark mesons with quark contents ðqqÞð �q �qÞ and ðqsÞð �q �sÞ,
respectively. The diquark and antidiquark inside have a
mixed flavor structure ð�3 � �6Þ � ð6 � 3Þ.

This paper is organized as follows. In Sec. II, we con-
struct the tetraquark currents using both diquark (qq) and
antidiquark ( �q �q ) currents. The tetraquark currents con-
structed by using quark-antiquark ( �qq) pairs are shown in
Appendix A. In Sec. III, we perform a QCD sum rule
analysis by using these currents, and calculate their
OPEs. In Sec. IV, the numerical result is obtained for their
masses. In Sec. V, we use finite energy sum rule to calcu-
late their masses again. We discuss the decay patterns of
these 1�þ tetraquark states in Sec. VI. Section VII is a
summary.

II. TETRAQUARK CURRENTS

In order to construct proper tetraquark currents, let us
start with the consideration of the charge-conjugation sym-
metry. The charge-conjugation transformation changes di-
quarks into antidiquarks, while it maintains their flavor
structures. If a tetraquark state has a definite charge-
conjugation parity, either positive or negative, the internal
diquark (qq) and antidiquark ( �q �q ) must have the same
flavor symmetry, which is either symmetric flavor structure
6f � �6f (S) or antisymmetric flavor structure �3f � 3f (A),
and cannot have mixed flavor symmetry neither �3f � �6f nor
6f � 3f (M). However, combinations of �3f � �6f and 6f � 3f
can have a definite charge-conjugation parity. Therefore, in
order to study the tetraquark state of IGJPC ¼ 1�1�þ, we
need to consider the following structures of currents:

qq �q �qðSÞ; qs �q �sðSÞ � 6f � �6f ðSÞ;
qs �q �sðAÞ � �3f � 3f ðAÞ;

qq �q �qðMÞ; qs �q �sðMÞ � ð�3f � �6fÞ � ð6f � 3fÞ ðMÞ;

where q represents an up or down quark, and s represents a
strange quark. The flavor structures are shown in Fig. 1 in
terms of SUð3Þ weight diagrams. The quark contents in-
dicated at vertices follow the ideal mixing scheme for inner
vertices where the mixing is allowed. In the SUð3Þ limit,
the quark contents are suitable combinations of the ones
shown in this figure. However, the strange quark has a
significantly larger mass than up and down quarks (current
quark mass), and so, the ideal mixing is expected to work
well for hadrons except for pseudoscalar mesons. The
flavor structure in the ideal mixing is also simpler than
that in the SUð3Þ limit. Therefore, we will use the ideal
mixing in our QCD sum rule studies.
In the following subsections, we first construct currents

by using diquark (qq) and antidiquark ( �q �q ) currents, and
then we show the currents with explicit quark contents. The
currents constructed by using quark-antiquark ( �qq) pairs
can be related to these diquark currents, and are shown in
the Appendix A. The tensor currents ��� (��� ¼ ����)
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FIG. 1. Weight diagrams for 6f � �6fðSÞ (top panel), �3f � 3fðAÞ
(middle panel), and �3f � �6fðMÞ (bottom panel). The weight
diagram for 6f � 3fðMÞ is the charge-conjugation transformation
of the bottom one.
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can also have IGJPC ¼ 1�1�þ. By using tensor currents,
we obtain the similar results, which will be shown in our
future work.

A. ðqqÞð �q �qÞ currents
We attempt to construct the tetraquark currents using

diquark (qq) and antidiquark ( �q �q ) currents. For each state
having the symmetric flavor structure 6f � �6f (S), there are
two ðqqÞð �q �qÞ currents of JPC ¼ 1�þ, which are indepen-
dent

 S1� ¼ qT1aC�5q2bð �q3a���5C �qT4b þ �q3b���5C �qT4aÞ
þ qT1aC���5q2bð �q3a�5C �qT4b þ �q3b�5C �qT4aÞ;

 S2� ¼ qT1aC�
�q2bð �q3a���C �qT4b � �q3b���C �qT4aÞ

þ qT1aC���q2bð �q3a��C �qT4b � �q3b�
�C �qT4aÞ;

(1)

where the sum over repeated indices (�;�; � � � for Dirac
spinor indices, and a; b; � � � for color indices) is taken. C is
the charge-conjugation matrix, q1 and q2 represent quarks,
and q3 and q4 represent antiquarks. For the antisymmetry
flavor structure �3f � 3f (A), we also find that there are two
independent ðqqÞð �q �qÞ currents,
 A1� ¼ qT1aC�5q2bð �q3a���5C �qT4b � �q3b���5C �qT4aÞ

þ qT1aC���5q2bð �q3a�5C �qT4b � �q3b�5C �qT4aÞ;
 A2� ¼ qT1aC�

�q2bð �q3a���C �qT4b þ �q3b���C �qT4aÞ
þ qT1aC���q2bð �q3a��C �qT4b þ �q3b�

�C �qT4aÞ:

(2)

For each state containing a diquark and antidiquark
having either the flavor structure �3f � �6f or 6f � 3f, there
are no currents of quantum numbers JPC ¼ 1�þ. However,
their combinations ð�3f � �6fÞ � ð6f � 3fÞ can have the quan-
tum numbers JPC ¼ 1�þ. We first define the currents  MLi�
which belong to the flavor representation �3f � �6f, and the
currents  MRi� which belong to the flavor representation

6f � 3f separately. We find the following four independent
currents:

 ML1� ¼ qT1aC��q2bð �q3aC �qT4b þ �q3bC �qT4aÞ;
 ML2� ¼ qT1aC����5q2bð �q3a���5C �qT4b þ �q3b�

��5C �qT4aÞ;
 ML3� ¼ qT1aCq2bð �q3a��C �qT4b � �q3b��C �qT4aÞ;
 ML4� ¼ qT1aC�

��5q2bð �q3a����5C �qT4b � �q3b����5C �qT4aÞ;

 MR1� ¼ qT1aCq2bð �q3a��C �qT4b þ �q3b��C �qT4aÞ;
 MR2� ¼ qT1aC�

��5q2bð �q3a����5C �qT4b þ �q3b����5C �qT4aÞ;
 MR3� ¼ qT1aC��q2bð �q3aC �qT4b � �q3bC �qT4aÞ;
 MR4� ¼ qT1aC����5q2bð �q3a���5C �qT4b � �q3b�

��5C �qT4aÞ:
They all have quantum numbers JP ¼ 1� but no good
charge-conjugation parity. However, their mixing can
have a definite charge-conjugation parity,

 Mi� ¼  MLi� �  MRi� ; (3)

where theþ and� combinations correspond to the charge-
conjugation parity positive and negative, respectively. In
the present work, we only consider the positive one.

B. Isovector currents

For the study of the present exotic tetraquark state, we
need to construct isovector (I ¼ 1) currents. There are two
isospin triplets belonging to the flavor representation 6f �
�6f, one isospin triplet belonging to the flavor representa-

tion �3f � 3f, and two isospin triplets belonging to the

flavor representation ð�3f � �6fÞ � ð6f � 3fÞ (Fig. 1). For

each state, there are several independent currents. We list
them in the following.
(1) For the two isospin triplets belonging to 6f � �6f (S):

��S1� �  S1�ðqq �q �qÞ � uTaC�5dbð �ua���5C �dTb þ �ub���5C �dTa Þ þ uTaC���5dbð �ua�5C �dTb þ �ub�5C �dTa Þ;
�S2� �  S2�ðqq �q �qÞ � uTaC�

�dbð �ua���C �dTb � �ub���C �dTa Þ þ uTaC���dbð �ua��C �dTb � �ub�
�C �dTa Þ;�

�S3� �  S1�ðqs �q �sÞ � uTaC�5sbð �ua���5C�s
T
b þ �ub���5C�s

T
a Þ þ uTaC���5sbð �ua�5C�s

T
b þ �ub�5C�s

T
a Þ;

�S4� �  S2�ðqs �q �sÞ � uTaC�
�sbð �ua���C�sTb � �ub���C�s

T
a Þ þ uTaC���sbð �ua��C�sTb � �ub�

�C�sTa Þ;

where �S1� and �S2� are the two independent currents containing only light flavors, and �S3� and �S4� are the two
independent ones containing one s�s quark pair.

(2) For the isospin triplet belonging to �3f � 3f (A):

��A1� �  A1�ðqs �q �sÞ � uTaC�5sbð �ua���5C�s
T
b � �ub���5C�s

T
a Þ þ uTaC���5sbð �ua�5C�s

T
b � �ub�5C�s

T
a Þ;

�A2� �  A2�ðqs �q �sÞ � uTaC�
�sbð �ua���C�sTb þ �ub���C�s

T
a Þ þ uTaC���sbð �ua��C�sTb þ �ub�

�C�sTa Þ;

where �A1� and �A2� are the two independent currents.
(3) For the two isospin triplets belonging to ð�3f � �6fÞ � ð6f � 3fÞ (M):
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8>>>>>><
>>>>>>:

�M1� �  M1�ðqq �q �qÞ � uTaC��dbð �uaC �dTb þ �ubC �dTa Þ þ uTaCdbð �ua��C �dTb þ �ub��C �dTa Þ;
�M2� �  M2�ðqq �q �qÞ � uTaC����5dbð �ua���5C �dTb þ �ub�

��5C �dTa Þ þ uTaC�
��5dbð �ua����5C �dTb þ �ub����5C �dTa Þ;

�M3� �  M3�ðqq �q �qÞ � uTaCdbð �ua��C �dTb � �ub��C �dTa Þ þ uTaC��dbð �uaC �dTb � �ubC �dTa Þ;
�M4� �  M4�ðqq �q �qÞ � uTaC�

��5dbð �ua����5C �dTb � �ub����5C �dTa Þ þ uTaC����5dbð �ua���5C �dTb � �ub�
��5C �dTa Þ;8>>>><

>>>>:

�M5� �  M1�ðqs �q �sÞ � uTaC��sbð �uaC�sTb þ �ubC�s
T
a Þ þ uTaCsbð �ua��C�sTb þ �ub��C�s

T
a Þ;

�M6� �  M2�ðqs �q �sÞ � uTaC����5sbð �ua���5C�s
T
b þ �ub�

��5C�s
T
a Þ þ uTaC�

��5sbð �ua����5C�s
T
b þ �ub����5C�s

T
a Þ;

�M7� �  M3�ðqs �q �sÞ � uTaCsbð �ua��C�sTb � �ub��C�s
T
a Þ þ uTaC��sbð �uaC�sTb � �ubC�s

T
a Þ;

�M8� �  M4�ðqs �q �sÞ � uTaC�
��5sbð �ua����5C�s

T
b � �ub����5C�s

T
a Þ þ uTaC����5sbð �ua���5C�s

T
b � �ub�

��5C�s
T
a Þ;

where �M1;2;3;4 are the four independent currents con-
taining only light flavors, and �M1;2;3;4 are the four
independent ones containing one s�s quark pair.

We use� to make clear that the quark contents here are not
exactly correct. For instance, in the current �A1�, the state

us �u �s does not have an isospin one. The correct quark
contents should be (us �u �s�ds �d �s ). However, in the fol-
lowing QCD sum rule analysis, we shall not include the
mass of up and down quarks and choose the same value for
h �uui and h �ddi. Therefore, the QCD sum rule results for �A1
with quark contents us �u �s and (us �u �s�ds �d �s ) are the
same.

III. SVZ SUM RULE

For the past decades QCD sum rule has proven to be a
very powerful and successful nonperturbative method
[26,27]. In sum rule analyses, we consider two-point cor-
relation functions:

���ðq2Þ � i
Z
d4xeiqxh0jT��ðxÞ�y

�ð0Þj0i; (4)

where �� is an interpolating current for the tetraquark. The

Lorentz structure can be simplified to be

���ðq2Þ ¼
�
q�q�

q2
� g��

�
�ð1Þðq2Þ þ q�q�

q2
�ð0Þðq2Þ:

(5)

We compute �ðq2Þ in the operator product expansion
(OPE) of QCD up to a certain order in the expansion,
which is then matched with a hadronic parametrization to
extract information of hadron properties. At the hadron
level, we express the correlation function in the form of the
dispersion relation with a spectral function:

�ð1Þðq2Þ ¼
Z 1

s<

�ðsÞ
s� q2 � i"

ds; (6)

where the integration starts from the mass square of all
current quarks. The spectral density �ðsÞ is defined to be

�ðsÞ � X
n

�ðs�M2
nÞh0j�jnihnj�yj0i

¼ f2Y�ðs�M2
YÞ þ higher states: (7)

For the second equation, as usual, we adopt a parametri-
zation of one pole dominance for the ground state Y and a
continuum contribution. The sum rule analysis is then
performed after the Borel transformation of the two ex-
pressions of the correlation function, (4) and (6)

�ðallÞðM2
BÞ � BM2

B
�ð1Þðp2Þ ¼

Z 1

s<

e�s=M2
B�ðsÞds: (8)

Assuming the contribution from the continuum states can
be approximated well by the spectral density of OPE above
a threshold value s0 (duality), we arrive at the sum rule
equation

�ðM2
BÞ � f2Ye

�M2
Y=M

2
B ¼

Z s0

s<

e�s=M2
B�ðsÞds: (9)

Differentiating Eq. (9) with respect to 1=M2
B and dividing it

by Eq. (9), finally we obtain

M2
Y ¼

@
@ð�1=M2

BÞ�ðM2
BÞ

�ðM2
BÞ

¼
R
s0
s<
e�s=M2

Bs�ðsÞdsR
s0
s<
e�s=M2

B�ðsÞds : (10)

In the following, we study both Eqs. (9) and (10) as
functions of the parameters such as the Borel mass MB

and the threshold value s0 for various combinations of the
tetraquark currents.
We have performed the OPE calculation up to dimension

12. Here we only show the results for currents �M1 and �M5 ,
which have quark contents qq �q �q and qs �q �s , respectively.
Others are shown in Appendix B.

�M
1 ðM2

BÞ ¼
Z s0

0

�
1

18432�6
s4� hg2sGGi

18432�6
s2þh �qqi2

18�2
s

þh �qqihgs �q�Gqi
12�2

�
e�s=M2

Bds

þ
�hgs �q�Gqi2

48�2
�5hg2sGGih �qqi2

864�2

�

þ 1

M2
B

�
�32g2sh �qqi4

81
þhg2sGGih �qqihgs �q�Gqi

576�2

�
;

(11)
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�M
5 ðM2

BÞ ¼
Z s0

4m2
s

�
1

18 432�6
s4 � 17m2

s

7680�6
s3 þ

�
� hg2sGGi
18 432�6

�msh �qqi
96�4

þmsh�ssi
48�4

�
s2

þ
�
�h �qqi2

36�2
þ h �qqih�ssi

9�2
� h�ssi2

36�2
�mshgs �q�Gqi

48�4
þmshgs �s�Gsi

96�4
þm2

shg2sGGi
4608�6

�
s

� h �qqihgs �q�Gqi
24�2

þ h �qqihgs �s�Gsi
12�2

þ h �ssihgs �q�Gqi
12�2

� h�ssihgs �s�Gsi
24�2

þmshg2sGGih �qqi
256�4

�m2
sh �qqi2
6�2

�m2
sh �qqih�ssi
2�2

þm2
sh �ssi2
24�2

�
e�s=M2

Bds

þ
�
�hgs �q�Gqi2

96�2
þ hgs �q�Gqihgs �s�Gsi

24�2
� hgs �s�Gsi2

96�2
� 5hg2sGGih �qqih�ssi

864�2
þ 2msh �qqi2h�ssi

3

þ 4msh �qqih�ssi2
9

þ 5mshg2sGGihgs �q�Gqi
4608�4

�m2
sh�ssihgs �q�Gqi

4�2
�m2

sh �qqihgs �s�Gsi
6�2

�

þ 1

M2
B

�
� 32g2sh �qqi2h�ssi2

81
þ hg2sGGih �qqihgs �s�Gsi

1152�2
þ hg2sGGih�ssihgs �q�Gqi

1152�2
� 2msh �qqi2hgs �s�Gsi

9

� 5msh �qqih�ssihgs �q�Gqi
9

þmsh �qqih�ssihgs �s�Gsi
9

þmsh �ssi2hgs �q�Gqi
9

þm2
shgs �q�Gqi2

24�2
�m2

shgs �q�Gqihgs �s�Gsi
24�2

�
: (12)

In the above equations, h�ssi is the dimension D ¼ 3 strange quark condensate; hg2GGi is a D ¼ 4 gluon condensate;
hg�s�Gsi is aD ¼ 5mixed condensate. There are many terms which give minor contributions, such as hg3G3i, and we omit
them. As usual, we assume the vacuum saturation for higher dimensional condensates such as h0j �qq �qqj0i � h0j �qqj0i�
h0j �qqj0i. To obtain these results, we keep the terms of orderOðm2

qÞ in the propagators of a massive quark in the presence of
quark and gluon condensates:

iSab � h0jT½qaðxÞqbð0Þ	j0i

¼ i�ab

2�2x4
x̂þ i

32�2

	nab
2
gcG

n
��

1

x2
ð���x̂þ x̂���Þ � �ab

12
h �qqi þ �abx2

192
hgc �q�Gqi �

mq�
ab

4�2x2

þ i�abmqh �qqi
48

x̂þ i�abm2
q

8�2x2
x̂: (13)

IV. NUMERICAL ANALYSIS

In our numerical analysis, we use the following values
for various condensates andms at 1 GeVand 
s at 1.7 GeV
[13,28–33]:

h �qqi ¼ �ð0:240 GeVÞ3;
h�ssi ¼ �ð0:8� 0:1Þ � ð0:240 GeVÞ3;

hg2sGGi ¼ ð0:48� 0:14Þ GeV4;

hgs �q�Gqi ¼ �M2
0 � h �qqi;

M2
0 ¼ ð0:8� 0:2Þ GeV2;

msð1 GeVÞ ¼ 125� 20 MeV;


sð1:7 GeVÞ ¼ 0:328� 0:03� 0:025:

(14)

There is a minus sign in the definition of the mixed
condensate hgs �q�Gqi, which is different from that used
in some other QCD sum rule studies. This difference just
comes from the definition of coupling constant gs [28,34].
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FIG. 2. Spectral densities for the current �A1�, �
A
2� (solid

lines), �S1�, �
S
2� (short-dashed lines), �S3� and �S4� (long-dashed

lines). The labels beside the lines indicate the flavor symmetry (S
or A) and the suffix i of the current �S;Ai� (i ¼ 1, 2, 3, 4).

IGJPC ¼ 1�1�þ TETRAQUARK STATES PHYSICAL REVIEW D 78, 054017 (2008)

054017-5



For the currents which belong to the flavor representa-
tion 6f � �6f (S) and �3f � 3f (A), the spectral densities turn
out to be negative in the energy region 1 GeV� 2 GeV as
shown in Fig. 2. The spectral densities of these currents
become positive in the region s > 4 GeV2. They may
couple to the state �1ð2015Þ. However, after performing
the sum rule calculation, we find that the mass obtained
from the currents �Ai� and �Si� is larger than 2.5 GeV, for

instance, we show the mass calculated from the current
�A1� in Fig. 3. The curves are obtained by setting M2

B ¼
2 GeV2 (solid line), 3 GeV2 (short-dashed line), and
4 GeV2 (long-dashed line). The left curves (disconnected
from the right part) are obtained from a negative Borel
transformed correlation function, and have no physical
meaning. Therefore, our QCD sum rule analysis does not
support �1ð1400Þ, �1ð1600Þ, and �1ð2015Þ as tetraquark
states with a flavor structure either 6f � �6f or �3f � 3f.

When using the currents �Mi�, the spectral densities are

positive as shown in Fig. 4. And so we shall use these
currents to perform a QCD sum rule analysis. First we need
to study the convergence of the OPE. The Borel trans-

formed correlation function of the current �M5� is shown in

Fig. 5, when we take s0 ¼ 4 GeV2. Besides the first term,
which is the continuum piece, the D ¼ 6 and D ¼ 8 terms
give large contributions. The D ¼ 6 terms contain h �qqi2
and theD ¼ 8 terms contain h �qqihgc �q�Gqi, which are the
important condensates. We find that the convergence is
very good in the region of 2 GeV2 <M2

B < 5 GeV2.
Therefore, in this region, OPEs are reliable.
The mass is calculated by using Eq. (10), and results are

obtained as functions of Borel mass MB and threshold
value s0. In Figs. 6–9, we show the mass calculated from
currents�M1�,�

M
2�,�

M
3�, and�

M
4�, whose quark contents are

qq �q �q . Although these four independent currents look
much different, we find that they give a similar result.
From figures on the left-hand side, we find that the depen-
dence on Borel mass is weak. From figures on the right-
hand side, where the mass is shown as functions of s0, we
find that there is a mass minimum for all curves where the
stability is the best. It is 1.7 GeV, 1.6 GeV, 1.6 GeV, and
1.7 GeV for four independent currents, respectively. We
find that sometimes the threshold values become smaller
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FIG. 4. Spectral densities for the current �Mi�. The spectral densities for the currents with the quark contents qq �q �q are shown on the
left-hand side, and those with the quark contents qs �q �s are shown on the right-hand side. The labels beside the lines indicate the suffix i
of the current �Mi� (i ¼ 1; � � � ; 8).
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functions of s0 in units of GeV. The curves are obtained by
setting M2

B ¼ 2 GeV2 (solid line), 3 GeV2 (short-dashed line),
and 4 GeV2 (long-dashed line). The left curves (disconnected
from the right part) are obtained from a negative correlation
function, and have no physical meaning.

Dim=0

Dim=2

Dim=4

Dim=6

Dim=8,10,12

2 3 4 5
0

2

4

6

8

Borel Mass  [GeV  ]2 2

-6
10

FIG. 5. The various contribution to the correlation function for
the current �M5� as functions of the Borel mass MB in units of

GeV10 at s0 ¼ 4 GeV2. The labels indicate the dimension up to
which the OPE terms are included.

HUA-XING CHEN, ATSUSHI HOSAKA, AND SHI-LIN ZHU PHYSICAL REVIEW D 78, 054017 (2008)

054017-6



than the mass obtained in the mass minimum region. This
is due to the negative part of the spectral densities. We also
met this in the study of Yð2175Þ. See Ref. [25] for details.

In Figs. 10–13, we show the mass calculated from
currents �M5�, �

M
6�, �

M
7�, and �

M
8�, whose quark contents

are qs �q �s . The results are similar as the previous four
currents. But now the mass obtained is about 0.4 GeV

larger than the previous ones. The minimum occurs at
2.1 GeV, 2.0 GeV, 1.9 GeV, and 2.0 GeV, respectively.
In a short summary, we have performed a QCD sum rule

analysis for qq �q �q and qs �q �s . The mass obtained is around
1.6 GeV and 2.0 GeV, respectively. There are four inde-
pendent currents for each case, which give similar results.
Their mixing would lead to a similar result, too. Compared
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FIG. 6. The mass of the state qq �q �q calculated by using the current �M1�, as functions of M
2
B (left) and s0 (right) in units of GeV.
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with the experimental data, they can be used to interpret the
states �1ð1600Þ and �1ð2015Þ of IGJPC ¼ 1�1�þ. These
analyses are very similar to our previous paper [25], where
we studied the state Yð2175Þ by using vector tetraquark
currents which have quantum numbers JPC ¼ 1�� and
quark contents ss �s �s .

The pole contribution

R
s0
s<
e�s=M2

B�ðsÞdsR1
s<
e�s=M2

B�ðsÞds (15)

is not large enough for all currents due to the high dimen-
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FIG. 13. The mass of the state qs �q �s calculated by using the current �M8�, as functions of M
2
B (left) and s0 (right) in units of GeV.
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FIG. 10. The mass of the state qs �q �s calculated by using the current �M5�, as functions of M
2
B (left) and s0 (right) in units of GeV.
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FIG. 11. The mass of the state qs �q �s calculated by using the current �M6�, as functions of M
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sion nature of tetraquark currents. Another reason is that
these currents have a large coupling to the continuum,
which is difficult to be removed. Therefore, we arrive at
a stable mass, but with a small pole. To make our analysis
more reliable, we go on to use the finite energy sum rule.

V. FINITE ENERGY SUM RULE

In this section, we use the method of the finite energy
sum rule (FESR). In order to calculate the mass in the
FESR, we first define the nth moment by using the spectral
function �ðsÞ in Eq. (7)

Wðn; s0Þ ¼
Z s0

0
�ðsÞsnds: (16)

This integral is used for the phenomenological side, while
the integral along the circular contour of radius s0 on the q

2

complex plain should be performed for the theoretical side.
With the assumption of quark-hadron duality, we obtain

Wðn; s0Þjhadron ¼ Wðn; s0ÞjOPE: (17)

The mass of the ground state can be obtained as

M2
Yðn; s0Þ ¼

Wðnþ 1; s0Þ
Wðn; s0Þ : (18)

The spectral functions �Mi ðsÞ can be drawn from the
Borel transformed correlation functions shown in
Sec. III. The d ¼ 12 terms which are proportional to
1=ðq2Þ2 do not contribute to the function Wðn; s0Þ of
Eq. (16) for n ¼ 0, or they have a very small contribution
for n ¼ 1, when the theoretical side is computed by the
integral over the circle of radius s0 on the complex q2 plain.

The mass is shown as a function of the threshold value s0
in Fig. 14, where n is chosen to be 1. We find that there is a
mass minimum. It is around 1.6 GeV for currents �M1 , �

M
2 ,

�M3 , and �
M
4 , whose quark contents are qq �q �q , while it is

around 2.0 GeV for currents �M5 , �
M
6 , �

M
7 , and �

M
8 , whose

quark contents are qs �q �s . Here we again find that the
threshold values become smaller than the mass obtained
in the mass minimum region. See Ref. [25] for details. In a
short summary, we arrive at the same results as the pre-
vious SVZ QCD sum rule.

VI. DECAY PATTERNSOF THE 1�þ TETRAQUARK
STATES

In this paper, we have verified that ðqqÞð �q �qÞ construc-
tion and ð �qqÞð �qqÞ construction are equivalent (see
Appendix A), and from the second one we can obtain
some decay information. The four independent ð �qqÞð �qqÞ
currents �Mi� lead to the same mass, and therefore, we shall

study the decay patterns from all these currents. We can
obtain the S-wave decay patterns straightforwardly:
(1) The current �M1� naively falls apart to one scalar

meson and one vector meson:

�M1�: �1ð1600Þ ! 0þð�ð600Þ; f0ð980Þ � � �Þ
þ 1�ð�ð770Þ; !ð782Þ � � �Þ;

�1ð2000Þ ! 0þð�ð600Þ; �ð800Þ � � �Þ
þ 1�ð�ð770Þ; K
ð892Þ � � �Þ:

(19)

(2) The current �M2� naively falls apart to one axial-

vector meson and one pseudoscalar meson:

�M2�: �1ð1600Þ ! 1þða1ð1260Þ; b1ð1235Þ � � �Þ
þ 0�ð�ð135Þ � � �Þ;

�1ð2000Þ ! 1þða1ð1260Þ; K1ð1270Þ; � � �Þ
þ 0�ð�ð135Þ; Kð498Þ � � �Þ:

(20)

(3) The current �M3� naively falls apart to one vector

meson and one axial-vector meson:

�M3�: �1ð1600Þ ! 1�ð�ð770Þ; !ð782Þ � � �Þ
þ 1þða1ð1260Þ; b1ð1235Þ � � �Þ;

�1ð2000Þ ! 1�ð�ð770Þ; K
ð892Þ � � �Þ
þ 1þða1ð1260Þ; K1ð1270Þ � � �Þ:

(21)

(4) The current �M4� naively falls apart to one axial-

vector meson and one vector meson:
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�M4�: �1ð1600Þ ! 1þða1ð1260Þ; b1ð1235Þ � � �Þ
þ 1�ð�ð770Þ; !ð782Þ � � �Þ;

�1ð2000Þ ! 1þða1ð1260Þ; K1ð1270Þ � � �Þ
þ 1�ð�ð770Þ; K
ð892Þ � � �Þ:

(22)

�1ð2000Þ contains one �ss pair, so its final states should also
contain one �ss pair, and its decay patterns are more com-
plicated than �1ð1600Þ. We see that the decay modes (21)
and (22) are kinematically forbidden (or strongly sup-
pressed) due to energy conservation. The decay modes
(19) are difficult to be observed in the experiments due to
the large decay width of scalar mesons (� and �).
Moreover, the scalar mesons below 1 GeV are sometimes
interpreted as tetraquark states, and if so, these decay
modes should be suppressed due to the extra �qq pair
[24]. Therefore, the decay modes (20) are preferred. The
�1 meson first decays to one axial-vector meson and one
pseudoscalar meson. Then the axial-vector meson decays
into two or more pseudoscalar mesons. However, the sec-
ond step is a P-wave decay. Considering the conservation
of G parity, the decay mode a1ð1260Þ� is forbidden. One
possible decay pattern is that �1ð1600Þ first decays to
b1ð1235Þ�, and then decays to !��.

We can also check the P-wave decay patterns besides
S-wave decay patterns. We find that the current �M2� leads

to a decay mode of two P-wave pseudoscalar mesons by
naively relating �q���5q and @��

�1ð1600Þ ! 0�ð�;�;�0 � � �Þ þ 0�ð�;�; �0 � � �Þ;
�1ð2000Þ ! 0�ð�;�; �0 � � �Þ þ 0�ð�;�; �0 � � �Þ: (23)

Considering the conservation ofG parity, decay modes��
and ��, etc. are forbidden, and possible decay modes are
�� and ��0, etc. Summarizing the decay patterns, there
are two possible decay modes: P-wave many body decay,
such as!��, and P-wave two body decay, such as�� and
��0. This is partly consistent with the experiments which
observe �1ð1600Þ and �1ð2015Þ in the decay modes ��0,
!��, and ����. However, the experiment has not ob-
served them in the final state ��. Certainly it is desired to
study these decay patterns to obtain more information on
the structure of the �1s mesons.

VII. SUMMARY

In this paper we have performed the QCD sum rule
analysis of the exotic tetraquark states with IGJPC ¼
1�1�þ. The tetraquark currents have rich internal struc-
ture. There are several independent currents for a given set
of quantum numbers. We have classified the complete set
of independent currents and constructed the currents in the
form of either ðqqÞð �q �qÞ or ð �qqÞð �qqÞ. As expected, they are
shown to be equivalent by having the complete set of
independent currents. Physically, this seems to make it
difficult to draw interpretation of the internal structure

such as diquark (qq) dominated or meson ( �q �q ) dominated
ones. Using the complete set of the currents, one can
perform an optimal analysis of the QCD sum rule.
A somewhat complicated feature arises from the flavor

structure. We have tested all possibilities for the isovector
I ¼ 1 states. In the SUð3Þ limit, there are three cases of, in
the diquark ðqqÞð �q �qÞ construction, 6 � �6, �3 � 3, and ð�3 �
�6Þ � ð6 � 3Þ. We find that the former two cases cannot
result in a meaningful sum rule since the spectral functions
become negative. On the other hand, the mixed case ð�3 �
�6Þ � ð6 � 3Þ allows positive OPE with which we can per-
form the QCD sum rule analysis. Actual currents have been
constructed in the limit of the ideal mixing where the
currents are classified by the number of the strange quarks.
Hence the quark contents are either qq �q �q or qs �q �s .
We have then performed the SVZ and finite energy sum

rules. The resulting masses are around 1.6 GeV for qq �q �q ,
and around 2.0 GeV for qs �q �s . The four independent
currents lead to the same mass and couple to a single state
as shown above. Hence one of our main conclusions is that
the higher energy states �1ð1600Þ and �1ð2015Þ are well
compatible with the tetraquark picture in the present QCD
sum rule analysis. On the other hand, any combination of
the independent currents does not seem to couple suffi-
ciently to the lower mass state �1ð1400Þ, which was, how-
ever, described as a hybrid state by K. C. Yang in Ref. [12].
He obtained a low mass around 1.26 GeV by using the
renormalization-improved QCD sum rules. The �1ð1400Þ
state seems somewhat special, as the experiments show the
similarity between �1ð1600Þ and �1ð2015Þ as well as the
difference between �1ð1400Þ and the above two states,
which we have discussed in the introduction.
We have also studied their decay patterns and found that

these states can be searched for in the decay mode of the
axial-vector and pseudoscalar meson pair such as
b1ð1235Þ�, which is sometimes considered as the charac-
teristic decay mode of the hybrid mesons. The P-wave
modes ��, ��0 are also quite important.
It is also interesting to study the partners of �1s.

Especially, we can study the one with quark contents

ud�s �s , which is at the top of the flavor representation 10
(see Fig. 1). It has a mass around 2.0 GeV, and the decay
modes are Kþð�suÞK0ð�sdÞ (P-wave) and KKK (P-wave),
etc. BESIII will start taking data very soon. The search/
identification of exotic mesons is one of its important
physical goals. Hopefully the dedicated experimental pro-
grams on the exotic mesons at BESIII and JLAB in the
coming years will shed light on their existence, and then
their internal structure. More work on the theoretical side is
also needed. We will go on to study other tetraquark
candidates.
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APPENDIX A: ð �qqÞð �qqÞ CURRENTS
In this appendix, we attempt to construct the tetraquark

currents using quark-antiquark ( �qq) pairs. For each state
containing a diquark and antidiquark having the symmetric
flavor 6f � 6f, there are four ð �qqÞð �qqÞ currents:

�S1� ¼ ð �q3a���5q1aÞð �q4b�5q2bÞ þ ð �q3a�5q1aÞ
� ð �q4b���5q2bÞ þ ð �q3a���5q2aÞð �q4b�5q1bÞ
þ ð �q3a�5q2aÞð �q4b���5q1bÞ;

�S2� ¼ ð �q3a��q1aÞð �q4b���q2bÞ þ ð �q3a���q1aÞð �q4b��q2bÞ
þ ð �q3a��q2aÞð �q4b���q1bÞ þ ð �q3a���q2aÞ
� ð �q4b��q1bÞ;

�S3� ¼ 	ab	cdfð �q3a���5q1bÞð �q4c�5q2dÞ þ ð �q3a�5q1bÞ
� ð �q4c���5q2dÞ þ ð �q3a���5q2bÞð �q4c�5q1dÞ
þ ð �q3a�5q2bÞð �q4c���5q1dÞg;

�S4� ¼ 	ab	cdfð �q3a��q1bÞð �q4c���q2dÞ þ ð �q3a���q1bÞ
� ð �q4c��q2dÞ þ ð �q3a��q2bÞð �q4c���q1dÞ
þ ð �q3a���q2bÞð �q4c��q1dÞg:

Among these currents, only two are independent. We can
verify the following relations:

�S3� ¼ �5
3�

S
1� � i�S2�; �S4� ¼ 3i�S1� þ 1

3�
S
2�:

Moreover, they are equivalent to the ðqqÞð �q �qÞ currents

 S1� ¼ � 1

2
�S1� þ i

2
�S2�;  S2� ¼ � 3i

2
�S1� þ 1

2
�S2�:

For each state containing a diquark and antidiquark
having the antisymmetric flavor �3f � 3f, there are also
four ð �qqÞð �qqÞ currents which are nonzero:

�A1� ¼ ð �q3a���5q1aÞð �q4b�5q2bÞ þ ð �q3a�5q1aÞ
� ð �q4b���5q2bÞ � ð �q3a���5q2aÞð �q4b�5q1bÞ
� ð �q3a�5q2aÞð �q4b���5q1bÞ;

�A2� ¼ ð �q3a��q1aÞð �q4b���q2bÞ þ ð �q3a���q1aÞð �q4b��q2bÞ
� ð �q3a��q2aÞð �q4b���q1bÞ � ð �q3a���q2aÞ
� ð �q4b��q1bÞ;

�A3� ¼ 	ab	cdfð �q3a���5q1bÞð �q4c�5q2dÞ þ ð �q3a�5q1bÞ
� ð �q4c���5q2dÞ � ð �q3a���5q2bÞð �q4c�5q1dÞ
� ð �q3a�5q2bÞð �q4c���5q1dÞg;

�A4� ¼ 	ab	cdfð �q3a��q1bÞð �q4c���q2dÞ þ ð �q3a���q1bÞ
� ð �q4c��q2dÞ � ð �q3a��q2bÞð �q4c���q1dÞ
� ð �q3a���q2bÞð �q4c��q1dÞg;

where two are independent

�A3� ¼ 1
3�

A
1� þ i�A2�; �A4� ¼ �3i�A1� � 5

3�
A
2�:

They are equivalent to the ðqqÞð �q �qÞ currents

 A1� ¼ � 1

2
�A1� þ i

2
�A2�;  A2� ¼ � 3i

2
�A1� þ 1

2
�A2�:

For the currents which have a mixed flavor symmetry,
we just show the ð �qqÞð �qqÞ currents which belong to the
flavor representation �3f � �6f.

�ML1� ¼ ð �q3aq1aÞð �q4b��q2bÞ � ð �q3a��q1aÞð �q4bq2bÞ
� ð �q3aq2aÞð �q4b��q1bÞ þ ð �q3a��q2aÞð �q4bq1bÞ;

�ML2� ¼ ð �q3a���5q1aÞð �q4b�5q2bÞ � ð �q3a�5q1aÞ
� ð �q4b���5q2bÞ � ð �q3a���5q2aÞð �q4b�5q1bÞ
þ ð �q3a�5q2aÞð �q4b���5q1bÞ;

�ML3� ¼ ð �q3a��q1aÞð �q4b���q2bÞ � ð �q3a���q1aÞð �q4b��q2bÞ
� ð �q3a��q2aÞð �q4b���q1bÞ þ ð �q3a���q2aÞ
� ð �q4b��q1bÞ;

�ML4� ¼ ð �q3a���5q1aÞð �q4b����5q2bÞ � ð �q3a����5q1aÞ
� ð �q4b���5q2bÞ � ð �q3a���5q2aÞð �q4b����5q1bÞ
þ ð �q3a����5q2aÞð �q4b���5q1bÞ:

There are also four currents which have a color 8c � 8c
structure, and they can be written as a combination of these
color 1c � 1c currents. The relations between ML

i� and

�MLi� are
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 ML1� ¼ � 1

4
�ML1� þ 1

4
�ML2� þ i

4
�ML3� � i

4
�ML4� ;

 ML2� ¼ 3i

4
�ML1� þ 3i

4
�ML2� þ 1

4
�ML3� þ 1

4
�ML4� ;

 ML3� ¼ 1

4
�ML1� þ 1

4
�ML2� þ i

4
�ML3� þ i

4
�ML4� ;

 ML4� ¼ � 3i

4
�ML1� þ 3i

4
�ML2� þ 1

4
�ML3� � 1

4
�ML4� :

We can obtain similar results for �MRi� , which belong to the

flavor representation 6f � 3f can be obtained similarly, and

the currents with JPC ¼ 1�þ are

�Mi� ¼ �MLi� þ �MRi� : (A1)

APPENDIX B: TWO-POINT CORRELATION
FUNCTIONS

In this appendix we show the results for the Borel trans-
formed correlation functions as defined in Eq. (8). Results
for the currents �A1 , �

M
2 , �

M
3 , �

M
4 , �

M
6 , �

M
7 , and �

M
8 are

indicated by the same upper and lower indices.

�A
1 ðM2

BÞ ¼
Z s0

s<

�
1

36 848�6
s4 � 17m2

s

15 360�6
s3 þ

� hg2sGGi
18 432�6

þmsh �qqi
192�4

þmsh�ssi
96�4

�
s2

þ
�
�h �qqi2

72�2
� h�ssi2

72�2
� h �qqih�ssi

18�2
þmshgs �q�Gqi

96�4
þmshgs �s�Gsi

192�4
�m2

shg2sGGi
4608�6

�
s

� h �qqihgs �q�Gqi
48�2

� h�ssihgs �s�Gsi
48�2

� h �qqihgs �s�Gsi
24�2

� h �ssihgs �q�Gqi
24�2

þmshg2sGGih �qqi
256�4

�m2
sh �qqi2
12�2

þm2
sh�ssi2
48�2

þm2
sh �qqih�ssi
4�2

�
e�s=M2

Bdsþ
�
�hgs �q�Gqi2

192�2
� hgs �s�Gsi2

192�2
� hgs �q�Gqihgs �s�Gsi

48�2

� 5hg2sGGih �qqih�ssi
864�2

þmsh �qqi2h �ssi
3

� 2msh �qqih�ssi2
9

þ 5mshg2sGGihgs �q�Gqi
4608�4

þm2
sh �qqihgs �s�Gsi

12�2

þm2
sh�ssihgs �q�Gqi

8�2

�
þ 1

M2
B

�
� 16g2sh �qqi2h�ssi2

81
þ hg2sGGih �qqihgs �s�Gsi

1152�2
þ hg2sGGih�ssihgs �q�Gqi

1152�2

�msh �qqi2hgs �s�Gsi
9

�msh �ssi2hgs �q�Gqi
18

� 5msh �qqih�ssihgs �q�Gqi
18

�msh �qqih�ssihgs �s�Gsi
18

þm2
shgs �q�Gqi2

48�2

þm2
shgs �q�Gqihgs �s�Gsi

48�2

�
;

�M
2 ðM2

BÞ ¼
Z s0

0

�
1

6144�6
s4 þ 11hg2sGGi

18 432�6
s2 þ h �qqi2

6�2
sþ h �qqihgs �q�Gqi

4�2

�
e�s=M2

Bdsþ
�hgs �q�Gqi2

16�2
þ 5hg2sGGih �qqi2

864�2

�

þ 1

M2
B

�
� 32g2sh �qqi4

27
� hg2sGGih �qqihgs �q�Gqi

576�2

�
;

�M
3 ðM2

BÞ ¼
Z s0

0

�
1

36 864�6
s4 þ hg2sGGi

18 432�6
s2 þ h �qqi2

36�2
sþ h �qqihgs �q�Gqi

24�2

�
e�s=M2

Bdsþ
�hgs �q�Gqi2

96�2
þ 5hg2sGGih �qqi2

864�2

�

þ 1

M2
B

�
� 16g2sh �qqi4

81
� hg2sGGih �qqihgs �q�Gqi

576�2

�
;

�M
4 ðM2

BÞ ¼
Z s0

0

�
1

12 288�6
s4 þ hg2sGGi

18 432�6
s2 þ h �qqi2

12�2
sþ h �qqihgs �q�Gqi

8�2

�
e�s=M2

Bdsþ
�hgs �q�Gqi2

32�2
� 5hg2sGGih �qqi2

864�2

�

þ 1

M2
B

�
� 16g2sh �qqi4

27
þ hg2sGGih �qqihgs �q�Gqi

576�2

�
;
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�M
6 ðM2

BÞ ¼
Z s0

4m2
s

�
1

6144�6
s4 � 17m2

s

2560�6
s3 þ

�
11hg2sGGi
18 432�6

�msh �qqi
32�4

þmsh �ssi
16�4

�
s2 þ

�
�h �qqi2

12�2
þ h �qqih�ssi

3�2
� h �ssi2

12�2

�mshgs �q�Gqi
16�4

þmshgs �s�Gsi
32�4

� 109m2
shg2sGGi

18432�6

�
s� h �qqihgs �q�Gqi

8�2
þ h �qqihgs �s�Gsi

4�2
þ h �ssihgs �q�Gqi

4�2

� h�ssihgs �s�Gsi
8�2

� 3mshg2sGGih �qqi
128�4

þ 5mshg2sGGih�ssi
256�4

�m2
sh �qqi2
2�2

� 3m2
sh �qqih�ssi
2�2

þm2
sh�ssi2
8�2

�
e�s=M2

Bds

þ
�
�hgs �q�Gqi2

32�2
þ hgs �q�Gqihgs �s�Gsi

8�2
� hgs �s�Gsi2

32�2
� 25hg2sGGih �qqi2

1728�2
þ 5hg2sGGih �qqih�ssi

144�2

� 25hg2sGGih�ssi2
1728�2

� 5mshg2sGGihgs �q�Gqi
768�4

þ 25mshg2sGGihgs �s�Gsi
4608�4

þ 2msh �qqi2h�ssi þ 4msh �qqih�ssi2
3

�m2
sh �qqihgs �s�Gsi

2�2
� 3m2

sh�ssihgs �q�Gqi
4�2

�
þ 1

M2
B

�
� 32g2sh �qqi2h�ssi2

27
þ 5hg2sGGih �qqihgs �q�Gqi

1152�2

� hg2sGGih �qqihgs �s�Gsi
192�2

� hg2sGGih�ssihgs �q�Gqi
192�2

þ 5hg2sGGih�ssihgs �s�Gsi
1152�2

� 2msh �qqi2hgs �s�Gsi
3

� 5msh �qqih�ssihgs �q�Gqi
3

þmsh �qqih�ssihgs �s�Gsi
3

þmsh �ssi2hgs �q�Gqi
3

� 5m2
shg2sGGih�ssi2
1152�2

þm2
shgs �q�Gqi2

8�2

�m2
shgs �q�Gqihgs �s�Gsi

8�2

�
;

�M
7 ðM2

BÞ ¼
Z s0

4m2
s

�
1

36 864�6
s4 � 17m2

s

15 360�6
s3 þ

� hg2sGGi
18 432�6

�msh �qqi
192�4

þmsh�ssi
96�4

�
s2 þ

�
�h �qqi2

72�2
þ h �qqih�ssi

18�2
� h �ssi2

72�2

�mshgs �s�Gsi
96�4

þmshgs �s�Gsi
192�4

�m2
shg2sGGi
4608�6

�
s� h �qqihgs �q�Gqi

48�2
þ h �qqihgs �s�Gsi

24�2
þ h �ssihgs �q�Gqi

24�2

� h �ssihgs �s�Gsi
48�2

�mshg2sGGih �qqi
256�4

�m2
sh �qqi2
12�2

�m2
sh �qqih�ssi
4�2

þm2
sh �ssi2
48�2

�
e�s=M2

Bdsþ
�
�hgs �q�Gqi2

192�2

þ hgs �q�Gqihgs �s�Gsi
48�2

� hgs �s�Gsi2
192�2

þ 5hg2sGGih �qqih�ssi
864�2

þmsh �qqi2h �ssi
3

þ 2msh �qqih�ssi2
9

� 5mshg2sGGihgs �q�Gqi
4608�4

�m2
sh �ssihgs �q�Gqi

8�2
�m2

sh �qqihgs �s�Gsi
12�2

�
þ 1

M2
B

�
� 16g2sh �qqi2h�ssi2

81

� hg2sGGih �qqihgs �s�Gsi
1152�2

� hg2sGGih�ssihgs �q�Gqi
1152�2

�msh �qqi2hgs �s�Gsi
9

� 5msh �qqih�ssihgs �q�Gqi
18

þmsh �qqih�ssihgs �s�Gsi
18

þmsh�ssi2hgs �q�Gqi
18

þm2
shgs �q�Gqi2

48�2
�m2

shgs �q�Gqihgs �s�Gsi
48�2

�
;
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�M
8 ðM2

BÞ ¼
Z s0

4m2
s

�
1

12 288�6
s4 � 17m2

s

5120�6
s3 þ

� hg2sGGi
18 432�6

�msh �qqi
64�4

þmsh �ssi
32�4

�
s2 þ

�
�h �qqi2

24�2
þ h �qqih�ssi

6�2
� h �ssi2

24�2

�mshgs �q�Gqi
32�4

þmshgs �s�Gsi
64�4

� 17m2
shg2sGGi

18 432�6

�
s� h �qqihgs �q�Gqi

16�2
þ h �qqihgs �s�Gsi

8�2
þ h�ssihgs �q�Gqi

8�2

� h �ssihgs �s�Gsi
16�2

þmshg2sGGih�ssi
256�4

�m2
sh �qqi2
4�2

� 3m2
sh �qqih�ssi
4�2

þm2
sh �ssi2
16�2

�
e�s=M2

Bdsþ
�
�hgs �q�Gqi2

64�2

þ hgs �q�Gqihgs �s�Gsi
16�2

� hgs �s�Gsi2
64�2

� 5hg2sGGih �qqi2
1728�2

� 5hg2sGGih�ssi2
1728�2

þ 5mshg2sGGihgs �s�Gsi
4608�4

þmsh �qqi2

�h �ssi þ 2msh �qqih�ss2i
3

� 3m2
sh �ssihgs �q�Gqi

8�2
�m2

sh �qqihgs �s�Gsi
4�2

�
þ 1

M2
B

�
� 16g2sh �qqi2h�ssi2

27

þ hg2sGGih �qqihgs �q�Gqi
1152�2

þ hg2sGGih�ssihgs �s�Gsi
1152�2

�msh �qqi2hgs �s�Gsi
3

� 5msh �qqih�ssihgs �q�Gqi
6

þmsh �qqih�ssihgs �s�Gsi
6

þmsh �ssi2hgs �q�Gqi
6

�m2
shg2sGGih�ssi2
1152�2

þm2
shgs �q�Gqi2

16�2

�m2
shgs �q�Gqihgs �s�Gsi

16�2

�
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