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Inspired by the obvious discrepancies between experiment and nonrelativistic QCD (NRQCD) studies

of eþe� ! J= þ �c at
ffiffiffi
s

p ’ 10:6 GeV, we investigate contributions from intermediate meson loops as

long-range interaction transitions to this process. The intermediate meson loops include D �Dð �D�Þ,D �D� (D
or D�), D� �D�ðDÞ, and corresponding Ds intermediate mesons. With the constraints from experimental

data on the vertex couplings, we find that the intermediate meson loops account for 2:7� 6:7 fb of the

cross sections within a reasonable range of cutoff energies of the factor parameter. We also investigate

contributions from the absorptive part and find that it accounts for approximately 0:58� 1:38 fb. These

results imply that contributions from long-range interaction transitions may still play a role in such an

energy region.
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I. INTRODUCTION

Recently, one of the hottest topics is the significant
discrepancies between experimental and theoretical results
for exclusive double-charmonium production eþe� !
J= þ �c at the center mass energy of 10.58 GeV.
In 2002, Belle Collaboration first reported the exclusive
cross section for �½eþe� ! J= þ �c� �Bð�c !�
4 chargedÞ ¼ 33þ7

�6 � 9 fb [1]. In 2004, Belle Col-

laboration updated their results �½eþe� ! J= þ �c� �
Bð�c ! >2 chargedÞ ¼ 25:6� 2:8� 3:4 fb [2] and
BABAR Collaboration also measured the same
quantity and found �½eþe� ! J= þ �c� �Bð�c !
>2 chargedÞ ¼ 17:6� 2:8� 2:1 fb [3].

Theoretically, based on the nonrelativistic QCD
(NRQCD) factorization approach [4] at leading order
(LO) in the QCD coupling constant (�s) and charm-quark
relative velocity (v), the predictions given by Braaten and
Lee [5], Liu, He, and Chao [6], and Hagiwara, Kou, and
Qiao [7] are about 2:3� 5:3 fb, which are about 1 order of
magnitude smaller than the experimental measurements. In
order to solve this puzzle, many solutions have been pro-
posed. In Ref. [8], the authors consider the corrections of
next-to-leading order (NLO) in �s, which enhanced the
cross section with a K factor (the ratio of LO plus NLO to
LO) of about 1:8� 2:1. The authors of Ref. [5] find that
including relativistic corrections (order of v2) will lead to
theK � 2:0þ10:9

�1:1 , but with large uncertainties already bared

with the NRQCD matrix elements. In order to reduce the
uncertainties of the order-v2 matrix elements, a potential
model is applied to calculate the quarkonium wave func-
tion [9], by which the relativistic correlations and correc-
tions of NLO in �s can be treated [10], and a cross section
of 17:5� 5:7 fb is obtained. In Ref. [11], the authors

present their results by the resummation of relativistic
corrections which contains several refinements, such as
nonperturbative NRQCD matrix elements, inclusion of
the effects of the running of �s, etc. They conclude that
the discrepancies between the theoretical and experimental
can be understood. By determining the matrix elements in
a different way, Ref. [12] obtains a value of 20.04 fb. A
complete computation of LO and NLO contributions were
recently presented by Gong and Wang [13], which is a
direct confirmation of the results from Ref. [8]. Treatments
with light-front approach such as [14–17] and Bethe-
Salpeter formalism [18] also provide other possible
solutions.
In brief, the present theoretical studies show that NLO

contributions turn out to be important in this double-
charmonium production, which simultaneously raises con-
cerns about the perturbation expansion. On the other hand,
large contributions from NLO corrections suggest that
nonperturbative mechanisms may start to play a role.
This corresponds to the long-range part of the strong
interactions, among which intermediate meson loops could
be a natural explanation for the cross section enhancement
in eþe� ! J= þ �c at

ffiffiffi
s

p ’ 10:6 GeV.
Intermediate meson loop (IML), or intermediate meson

rescattering [or sometimes it is presented as final-state
interaction (FSI) with on-shell approximation], as an im-
portant nonperturbative transition has been investigated
extensively in heavy meson decays. Cheng et al. studied
the long-distance rescattering effects in hadronic B decays
[19]. From the data accumulated at B factories and CLEO,
it was found that soft final-state rescattering effects played
an essential role in B physics. In Ref. [20], Liu et al. also
found that contributions from the hadronic loops turned to
be important in charmonium hadronic decays. Recently, a
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systematic investigation of the IML effects in quarkonium
hadronic decays involving Okubo-Zweig-Iizuka (OZI)-
rule violations and isospin breaking reveals that IML plays
a role in many places and sometimes can even compete
against direct scatterings [21–23].

In eþe� ! J= þ �c, the absorptive contributions via
IML are supposed to be present, and they do not interfere
with the LO NRQCD transitions. With constraints from an
experiment on the effective couplings, we can explore the
IML mechanism in eþe� ! J= þ �c.

The paper is organized as follows: In Sec. II, we describe
the IML model with effective Lagrangians. The numerical
results are given in Sec. III. A discussion and summary are
given in Sec. IV.

II. THE MODEL

A. Effective Lagrangians

In reaction eþe� ! J= þ �c, the final J= and �c can
be produced by direct production of two c �c pairs. This
process is taken care of by pQCD transitions. In our model,
we consider an indirect production process where J= and

�c are produced by the intermediate meson loops as shown
by Fig. 1.
In principle, we should include all the possible inter-

mediate meson loops in the calculation. But, the break-
down of the local quark-hadron duality allows us to pick up
the leading contributions as a reasonable approximation in
the practical calculation [24,25]. Some possible leading
IML contributions are shown in Fig. 2. Since those inter-
mediate mesons can be off shell at

ffiffiffi
s

p ’ 10:6 GeV, apart
from the absorptive part of the loop transition amplitudes,
the real part can also contribute. This is different from the
FSI approach where only the absorptive amplitudes are
considered. In this work, we shall investigate both.
In order to evaluate the diagrams, we adopt the follow-

ing effective Lagrangians:

L�D �D ¼ g�D �DfD@� �D� @�D �DgA�;

L�D �D� ¼ �ig�D �D������@
�A�@� �D��Dþ H:c:;

L�D� �D� ¼ g�D� �D� fA�ð@�D�� �D�
� �D��@� �D�

�Þ
þ ð@�A�D

�� �A�@�D
��Þ �D��

þD��ðA�@� �D�
� � @�A�

�D��Þg;
L D �D ¼ g D �DfD@� �D� @�D �Dg �;
L D �D� ¼ �ig D �D������@

� �@� �D��Dþ H:c:

(1)

where A� and  � are photon and J= vector-meson
fields, respectively, and D is the pseudoscalar-meson field
with D ¼ ðD0; Dþ; Dþ

s Þ and �D ¼ ð �D0; D�; D�
s ÞT ; D� is

the vector-meson field with D� ¼ ðD�0; D�þ; D�þ
s Þ and

�D ¼ ð �D�0; D��; D��
s ÞT . The coupling constants appearing

in the above equations will be determined as follows.
For the couplings of photon with D-meson, such as

g�D �D, g�D �D� , g�D� �D� , we can extracted them from the

experimental data [26]. Applying the effective
Lagrangians, the � couplings can be obtained:

FIG. 1. The schematic diagram for the long-range IML con-
tributions to J= þ �c production in eþe� annihilation.

FIG. 2. Some possible leading intermediate meson loops contribute to eþe� ! J= þ �c.

YUAN-JIANG ZHANG, QIANG ZHAO, AND CONG-FENG QIAO PHYSICAL REVIEW D 78, 054014 (2008)

054014-2



g�D �D ¼
�
3s5=2�eþe�!D �D

2�ej ~PDj3
�
1=2
;

g�D �D� ¼
�
16s5=2�eþe�!D �D�

�ej ~PD� jCD �D�

�
1=2
;

g�D� �D� ¼
�
16s5=2�eþe�!D� �D�m4

D�

�ej ~P0
D� jCD� �D�

�
1=2
;

(2)

with

CD �D� ¼ m4
�D� � 2ðm2

D þ sÞm2
�D� þ ðm2

D � sÞ2 þ 4
3sj ~P �D� j2;

CD� �D� ¼ s3 þ 6s2m2
D� � 28sm4

D� � 48m6
D�

� 4
3ð12m4

D� � 6sm2
D� þ s2Þj ~P0

D� j2;
(3)

where ~PD, ~PD� , and ~P0
D� are the final-state three-

momentum for the processes eþe� ! D �D, D �D�, D� �D�,
respectively; �e ¼ 1=137 is the fine-structure constant;
� are the corresponding cross sections. In the SU(3) limit,
we have the following relations: g�Ds

�Ds
¼ g�D �D, g�Ds

�D�
s
¼

g�D �D� , and g�D�
s
�D�
s
¼ g�D� �D� . The values are listed in

Table I.
For the J= D �D� coupling, we use the relation in the

heavy quark mass limit [27,28],

g D �D� ¼ g D �D= ~MD; (4)

where ~MD is the mass scale of theD=D� mesons. We adopt
the coupling constants g D �D ¼ 7:44 and g D �D� ¼
3:84 GeV�1 from Ref. [28], and g�cD� �D� ¼ g D �D,

g�cD �D� ¼ g D �D� in the following calculation.

B. Intermediate meson loops contribution

We take D �Dð �D�Þ, D �D� (D or D�), D� �D�ðDÞ, and cor-
responding Ds intermediate mesons into account. The
transition amplitude for eþe� ! J= þ �c via intermedi-
ate meson loops can be expressed as follows:

M
Loop
fi ¼ �vðs0Þðp0

eÞð�ie�	ÞusðpeÞ i"
	
�

s

Z d4p2

ð2
Þ4

� T1T2T3
a1a2a3

F ðp2
2Þ; (5)

where T1;2;3 are the vertex functions of which the detailed

expressions have been given in Refs. [21,22]. We include
them in the appendix for all the above-mentioned loops.

The four-vector momentum p2 is for the exchange meson.
Variables a1 � p2

1 �m2
1, a2 � p2

2 �m2
2, and a3 � p2

3 �
m2

3 are the denominators of the propagators of the inter-

mediate mesons, respectively.
In the above equation a form factor F ðp2

2Þ is introduced
to take into account the off-shell effects of the exchanged
mesons and also kill the divergence of the integrals. The
following commonly used form factor is adopted:

F ðp2Þ ¼
�
�2 �m2

ex

�2 � p2

�
n
; (6)

where n ¼ 0, 1, 2 correspond to different treatments of the
loop integrals. � is the cutoff energy, which should not be
far away form the physical mass of the exchanged parti-
cles. Since there are different particles exchanged in the
meson loops, a useful parametrization is as follows [19]:

� ¼ mex þ ��QCD; (7)

where �QCD ¼ 220 MeV and � is a tunable parameter;

mex is the mass of the exchanged meson. This way of
parametrizing the cutoff energies is slightly different
from the previous works [21–23], where � was universal
for all the meson loops. Here, the mass differences between
the exchanged particles are taken into account. The pa-
rameter�will then be constrained by experimental data. In
this work, we apply the dipole form factor in the calcu-
lation, i.e. n ¼ 2. The relation between the loop amplitudes
with the dipole and monopole form factors are given in
Appendix C.

C. Absorptive contributions from the IML

It is important to examine the absorptive part of the IML
transitions. Non-negligible contributions from the absorp-
tive part would be strong evidence for possible long-range
transitions in the double-charmonium productions.
Taking Dðp1Þ [or D�ðp1Þ] and �Dðp3Þ [or D�ðp3Þ] as on-

shell particles, we obtain the absorptive transition:

MAbs
fi ¼ 1

2
�vðs0Þðp0

eÞð�ie�	ÞusðpeÞ i"
	
�

s

�
Z d3 ~p1

ð2
Þ32E1

d3 ~p3

ð2
Þ32E3

ð2
Þ4

��4ðp0
eþpe�p1 �p3Þ T1T2T3

p2
2 �m2

2 þ im2�2

F ðp2
2Þ

¼ �vðs0Þðp0
eÞð�ie�	ÞusðpeÞ i"

	
�

s

Z 1

�1

j ~p1jdcos�
16


ffiffiffi
s

p

� T1T2T3
p2
2 �m2

2 þ im2�2

F ðp2
2Þ; (8)

where � is the angle between ~p1 and ~p . The kinematic

definitions have been given in Appendix B. The vertex
functions T1;2;3 and form factor F ðp2

2Þ are the same as

the previous definitions.

TABLE I. The coupling constants of a photon with D-meson
determined in eþe� ! D �D, D �D�, D� �D�. The cross sections are
taken from Ref. [26].

Coupling constants Value Cross section (pb)

g�D �D 4:81� 10�3 0.04

g�D �D� 2:73� 10�3 GeV�1 0.71

g�D� �D� 1:10� 10�3 0.65

POSSIBLE CONTRIBUTIONS TO . . . PHYSICAL REVIEW D 78, 054014 (2008)

054014-3



D. EM transition via �ð4SÞ intermediate meson

The present data from Belle were taken at
ffiffiffi
s

p ¼
10:58 GeV and 10.52 GeV, respectively. The higher one
corresponds to the mass of �ð4SÞ while the lower one is a
sideband measurement. However, the datum samples are
not sufficient for determining the cross section differences
between these two energies. Therefore, the role played by
�ð4SÞ from the present Belle results [1,2,26] is still un-
clear, and the �ð4SÞ ! J= þ �c coupling is also un-
known. In Ref. [29], exclusive decays of �ð4SÞ to
double-charmonium states were evaluated and the branch-
ing ratio for �ð4SÞ ! J= þ �c was predicted to be at an
order of 10�9. At amplitude level, such a small contribu-
tion can still produce some structures at the �ð4SÞ mass
due to the destructive interference between the resonance
strong decay and continuum amplitudes.

In our calculation we take into account the contribution
of the �ð4SÞ. Its interference with the IML amplitudes is
useful for us to examine the model dependence of the IML
transition and sensitivities of the cross sections to its
coupling to J= �c.

Fortunately, the EM coupling for �ð4SÞ ! eþe� has
been relatively well measured [30]. We can then determine
the V�� coupling eM2

V=fV by the vector-meson dominance
(VMD) model [31],

e

fV
¼
�
3�V!eþe�
2�ejpej

�
1=2
; (9)

where �V!eþe� is the partial decay width, jpej is the
electron three-momentum in the vector-meson rest frame,
and �e ¼ 1=137 is the fine-structure constant. It should be
noted that this form of interaction is only an approximation
and can have large off-shell effects arising from either the
off-shell vector meson or virtual photon fields. In this
approach we consider such effects in the V�P coupling
form factor which will then be absorbed into the energy-
dependent widths of the vector mesons.

The transition amplitude that corresponds to Fig. 3 is

Mfi ¼ �vðs0Þðp0
eÞð�ie��ÞusðpeÞ i

sðs�M2
� þ i��M�Þ

� eM2
�

f�
g� �c"����p

�
�cp

�
 "

�
 :

In case the partial width of ��! �c is available, we can

extract the � �c coupling via

��! �c ¼
g2� �c jp j3

12

; (10)

where jp j is the three-momentum of J= in the � meson

rest frame.
The total transition amplitudes apart from the leading

QCD contribution can thus be expressed as

Mfi ¼ MEM
fi þMLoop

fi : (11)

We estimate the differential cross section via

d�

d�
¼ 1

64
2s

jPfj
jPej

1

4

X
spin

jMfij2; (12)

where pe is the three-momentum of the initial electron
(positron) in the overall center-of-mass (c.m.) system. The
mass of the electron has been neglected, i.e. pe ¼ Ecm=2 is
applied.

III. NUMERICAL RESULTS

As mentioned before, the present experimental data atffiffiffi
s

p ¼ 10:52 and 10.58 GeV cannot tell the role played by
�ð4SÞ. But we can still define quantity R, which is the
eþe� ! J= þ �c cross section ratio at

ffiffiffi
s

p ¼ 10:52 GeV
to that at

ffiffiffi
s

p ¼ 10:58 GeV, i.e. R � �10:52=�10:58. It is a
function of both resonance direct transition and IML am-
plitudes, and we expect that it should not be sensitive to the
cutoff energy introduced to the IML though the exclusive
IML contributions may have strong dependence on it.
Unfortunately, no information about the �ð4SÞ coupling
to J= �c is available. We then simply assume R ¼ 0:5 at
� ¼ 1:8 to fix the coupling g� �c ¼ 5:26� 10�5 GeV�1.

This corresponds to BRð� ! J= �cÞ ¼ 2:9� 10�7. One
should not take this value seriously since our strategy here
is to fix g� �c , and then examine the sensitivity of R to the

form factor parameter � as a test of the behavior of the
IML.
In Fig. 4, by fixing g� �c ¼ 5:26� 10�5 GeV�1, we

plot the ratio R with a varying �. It shows that within the
commonly accepted range of � ¼ 1:6� 2:0, the ratio R
varies from 0.43 to 0.57. This is an indication of insensi-
tivity of the loop contributions to the form factors within a
reasonable range of the cutoff energy. We also find that
such a property is retained even for larger g� �c . In such a

case, the cross section at the mass of �ð4SÞ is enhanced by
the resonance contribution while the sideband cross section
is relatively small. A quantitative determination of the
�ð4SÞ requires future precise measurements of the cross
sections at both

ffiffiffi
s

p ¼ 10:52 and 10.58 GeV.
We also plot the cross section dependence on � at

ffiffiffi
s

p ¼
10:52 and 10.58 GeV in Fig. 5. It shows that these two cross
sections increase with � slowly and also appear to be

FIG. 3. The J= þ �c production via resonance �ð4SÞ.
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stable. Again the difference between these two cross sec-
tions are due to the assumed contribution from �ð4SÞ.

In Fig. 6, we fix the form factor parameter � ¼ 1:8 and
then investigate the effects from the �ð4SÞ at different R
values. The total cross sections from the IML plus reso-
nance �ð4SÞ are presented. A smaller value of R corre-
sponds to a larger g� �c coupling in the present choice of a

constructive relative phase. It is possible that their inter-
ference is destructive and a dip will appear at

ffiffiffi
s

p ¼
10:58 GeV [29]. In this sense, we emphasize again that it
is essential to have precise data for the cross sections at
both

ffiffiffi
s

p ¼ 10:52 and 10.58 GeV.
In Fig. 7, we plot the total cross section again, but with

several different � values. The solid curve is the same as
that in Fig. 6 with � ¼ 1:8. Again, some sensitivities to �
are highlighted. We also present the results without �ð4SÞ,
i.e. exclusive cross sections from the IML, as denoted by

the dot-dashed curve. A flat behavior is observed along
with

ffiffiffi
s

p
.

It is interesting to see that the total cross section without
the �ð4SÞ has the same order of magnitude as the pQCD
leading order results. In Table II we list the total cross
sections with different � values. In a range of � ¼ 1:6�
2:0 the total cross sections increase from 2.74 fb to 6.76 fb.
Eventually, this range is acceptable for the form factor
uncertainties which is unavoidable in this effective
Lagrangian approach. Similarly, the sideband cross sec-
tions at

ffiffiffi
s

p ¼ 10:52 GeV (i.e. can be viewed as no �ð4SÞ
contributions) vary from 1.3 fb to 3.1 fb.

FIG. 4. The sensitivity of R to the form factor parameter �
with the �J �c coupling fixed at R ¼ 0:5 and � ¼ 1:8.

FIG. 5 (color online). Sensitivities of the eþe� ! J= þ �c
cross section to the form factor parameter � at

ffiffiffi
s

p ¼ 10:58 (solid
line) and

ffiffiffi
s

p ¼ 10:52 GeV (dashed line) with R ¼ 0:5.

FIG. 6 (color online). The
ffiffiffi
s

p
evolution of the eþe� ! J= þ

�c cross section with different R values which correspond to
different branch ratios for �ð4sÞ !  þ �c. The form factor
parameter � ¼ 1:8 is adopted.

FIG. 7 (color online). The
ffiffiffi
s

p
evolution of the eþe� ! J= þ

�c cross section with R ¼ 0:5 but varying values of � ¼ 1:7
(dashed line), 1.8 (solid line), and 1.9 (dotted line). The dot-
dashed line denotes the result without the �ð4SÞ contribution at
� ¼ 1:8.
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In order to further clarify the role played by the IML, we
calculate the absorptive contributions from the loops by
making the on-shell approximation for the intermediate
mesons. In Fig. 8, the � dependence of the cross section
at

ffiffiffi
s

p ¼ 10:58 GeV is presented. Since the absorptive part
will be present in the transition amplitudes, its stability
within the commonly accepted range of the form factor
parameter turns to be essential for understanding its role in
this process. As shown by Fig. 8, with � from 1.6–2.0, the
absorptive cross section varies from �0:6–1:4 fb, and can
be regarded as quite stable. We also list the cross sections
with different values of � in Table II to compare with the
full loop calculations.

We then examine the total absorptive cross sections with
fixed � values in Fig. 9. It shows that with � ¼ 1:8, the
cross section is about 0.924 fb, and its energy dependence
is rather weak. Again, larger values for � produce larger
cross sections. The most interesting feature is that the
absorptive cross sections are nearly the same order of
magnitude as the LO results of NRQCD.

One should be cautioned in the understanding of the
result of Fig. 9. It eventually reflects the energy depen-
dence of the IML form factors, and with the couplings of
eþe� ! D �D, etc. fixed at

ffiffiffi
s

p ¼ 10:58 GeV. In this ap-
proach QCD hard interactions have been contained in those

couplings derived at
ffiffiffi
s

p ¼ 10:58 GeV, i.e. g�D �D, g�D �D� ,

and g�D� �D� . The form factor in Eq. (5) will then take care of

the soft interactions arising from the intermediate meson
loops. Hence, one should not compare the energy depen-
dence of Fig. 9 with the QCD factorization [8,32] for the
direct production of double charmonia.
Also, it should be pointed out that the IML contributions

as a source of long-range interaction transition are different
from the soft exchanges in the pQCD factorization [32]. It
is not a full correspondence of the soft QCD. Ideally, we
expect that the sum of all the possible intermediate meson
loops be equivalent to the soft exchanges in the pQCD
factorization according to the quark-hadron duality argu-
ment [24,25]. In reality the breakdown of the local quark-
hadron duality allows us to pick up the leading IML con-
tributions as a first-order approximation.

IV. SUMMARY

We estimate the intermediate meson loop contributions
to eþe� ! J= þ �c in an effective Lagrangian theory.
By applying the available experimental information to the
constraints of the meson-meson coupling vertices, we in-
vestigate contributions from D �DðD�Þ, D �D�ðDÞ, D �D�ðD�Þ,
and D� �D�ðDÞ. The model dependence mainly comes from
the form factors adopted for the loop integrals. Fortunately,
it shows that the results do not vary dramatically with the
cutoff energies within the commonly accepted range. The
resonance �ð4SÞ effects are also estimated. Precise mea-
surements of the cross sections at the resonance energy and
sideband will be able to provide useful information on the
�ð4SÞ.
In order to clarify the IML contributions, we also cal-

culate the absorptive part of the loops and find that the IML
contributes nearly the same order of magnitude as the LO
of NRQCD. It is likely that the long-range IML is an
important mechanism apart from the NRQCD LO transi-

FIG. 8. The � dependence of the absorptive cross sections
from the meson loops.

TABLE II. eþe� ! J= þ �c cross sections with different �
values at

ffiffiffi
s

p ¼ 10:58 GeV. The ratio R ¼ 0:5 is applied. � is the
results from the IML with �ð4SÞ contribution [�0 without �ð4SÞ
contribution], while �A is from the absorptive transitions where
no �ð4SÞ is considered.

� 1.6 1.7 1.8 1.9 2.0

�10:58 (fb) 2.74 3.52 4.43 5.51 6.76

�0
10:58 (fb) 1.28 1.64 2.06 2.55 3.11

�A (fb) 0.587 0.741 0.924 1.14 1.38

FIG. 9 (color online). The energy evolution of the absorptive
cross sections from the meson loops with different � values.
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tions. Qualitatively, the long-range IML transitions may
have some overlaps with the NLO processes if they are not
obviously suppressed. Note that the IML contributions go
to the effective coupling of the antisymmetric tensor at
hadronic level. It suggests that the relativistic corrections
may also have some overlaps with the IML mechanism. To
understand the large cross sections from the experiment,
one perhaps should consider both short and long-range
transitions to obtain an overall consistent prescription.
Again, we emphasize the importance of extracting the
precise cross sections at and off resonance �ð4SÞ.
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APPENDIX A: VERTEX FUNCTIONS FOR THE
INTERMEDIATE MESON LOOPS

For D �DðD�Þ, the vertex functions are8>><
>>:
T1 � ig1ðp1 � p3Þ 	 "�;
T2 � ig2"����p

�
 "

�
 p

�
2 "

�
2 ;

T3 � ig3ðp�c þ p3Þ 	 "2;
(A1)

where g1, g2, and g3 are the coupling constants at the
meson interaction vertices (see Fig. 2). The four vectors,
pJ= , and p�c are the momenta for the final state J= and

�c meson; the four-vector momentum, p1, p2, and p3 are
the intermediate mesons, respectively.
As shown by Fig. 2, the vertex functions for the

D �D�ðDÞ þ c:c: loop are

8>><
>>:
T1 � if1"����p

�
3 "

�
3 p

�
�"��;

T2 � if2ðp2 � p1Þ 	 " ;
T3 � if3ðp�c � p2Þ 	 "3:

(A2)

where f1;2;3 are the coupling constants.

We also consider the transition amplitude from the
intermediateD �D�ðD�Þ þ c:c: loop, which can be expressed
as the following formula:

8>><
>>:
T1 � ih1"����p

�
�"

�
�p

�
3 "

�
3 ;

T2 � ih2"�0�0�0�0p
�0
2 "

�0
2 p

�0
 "

�0
 ;

T3 � ih3"�00�00�00�00p
�00
2 "

�00
2 p

�00
3 "�

00
3 ;

(A3)

where h1;2;3 are the coupling constants.

The transition amplitude from the intermediate
D� �D�ðDÞ þ c:c: loop can be written as Eq. (A4)

8>><
>>:
T1 � i1½�"� 	 ðp1 � p3Þ"1 	 "3 þ 2p1 	 "3"1 	 "� þ 2"1 	 p3"� 	 "3�;
T2 � i2"����p

�
1 "

�
1 p

�
 "

�
 ;

T3 � i3ðp�c � p2Þ 	 "3;
(A4)

where 1;2;3 are the coupling constants.

APPENDIX B: FOUR-VECTOR MOMENTUM EXPRESSIONS AND WAVE FUNCTIONS

In order to calculate the absorptive amplitude of eþe� ! J= þ �c, it is convenient if we choose the overall c.m. frame
and choose the z axis along the three-vector momentum of J= . After taking me ¼ meþ ’ 0, we have

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

p� ¼ ðE ; 0; 0; j ~pfjÞT;
p
�
�c ¼ ðE�c; 0; 0;�j ~pfjÞT;
p�1 ¼ ðE1; j ~p1j sin� cos’; j ~p1j sin� sin’; j ~p1j cos�ÞT;
p�2 ¼ ðE2;�j ~p1j sin� cos’;�j ~p1j sin� sin’; j ~pfj � j ~p1j cos�ÞT;
p
�
3 ¼ ðE3;�j ~p1j sin� cos’;�j ~p1j sin� sin’;�j ~p1j cos�ÞT;
p
�
e ¼ ðE;E sin�1 cos’1; E sin�1 sin’1; E cos�1ÞT;
p0�
e ¼ ðE;�E sin�1 cos’1;�E sin�1 sin’1;�E cos�1ÞT

(B1)
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and 8>>>>>><
>>>>>>:

�
�
 ð�1Þ ¼ 
 1ffiffi

2
p ð0; 1;�i; 0ÞT;

�� ð0Þ ¼ ðj ~pfj=M ; 0; 0; E =M ÞT;
usðpeÞ ¼ 6peffiffiffi

E
p ð�ðsÞT; 0; 0ÞT;

vsðp0
eÞ ¼ �6p0

effiffiffi
E

p ð0; 0; �ðsÞTÞT;

(B2)

where �ðsÞ is the wave function of the electron and posi-
tron; ð�1; ’1Þ are the azimuth angles opened by the three-
vector momentum,

�

�
þ 1

2

�
¼ cos�12

sin�12 e
i’1

 !
;

�

�
� 1

2

�
¼ � sin�12 e

�i’1

cos�12

 !
:

(B3)

APPENDIX C: USEFUL FORMULA

Started with the case of no form factor in the integral,
Eq. (5) can be expressed as the power of the four-vector
momentum of the exchange meson (p2), and it is easy to
show that the power of p2 is no more than three. We apply
the Feynman parameter dimensional regularization scheme
to express the integral as a linear combination of the
following forms:

Z d4p2

ð2
Þ4
p�2

½ðp2 � p Þ2 �m2
1�½p2

2 �m2
2�½ðp2 þ p2

�Þ �m2
3�

¼ i

16
2

Z
dxdy

�P�
M2 � P2

;

Z d4p2

ð2
Þ4
p
�
2 p

�
2

½ðp2 � p Þ2 �m2
1�½p2

2 �m2
2�½ðp2 þ p2

�Þ �m2
3�

¼ i

16
2

�Z
dxdy

P�P�

M2 � P2
þ 1

4
�

�
�

2

�
���

�
;

Z d4p2

ð2
Þ4
p
�
2 p

�
2p

�
2

½ðp2 � p Þ2 �m2
1�½p2

2 �m2
2�½ðp2 þ p2

�Þ �m2
3�

¼ i

16
2

�Z
dxdy

�P�P�P�
M2 � P2

� 1

4
�

�
�

2

�
ð���P� þ ���P� þ ���P�Þ

�
; (C1)

where P ¼ yp� � xp , M2 ¼ xðp2
 �m2

1Þ þ yðp2
� �

m2
3Þ � ð1� x� yÞm2

2; � is an infinitesimal parameter.

The details can be found in Refs. [33,34].
To cancel the divergence with a monopole form factor,

we just replace the exchanged-meson mass by the cutoff
energy � to obtain the transition amplitude since the
divergent term is independent of the intermediate meson
masses:

M mo
fi ðm1; m2; m3;�Þ ¼ Mfiðm1; m2; m3Þ

�Mfiðm1;�; m3Þ;
where Mfiðm1; m2; m3Þ denotes the amplitude of Eq. (5)

with F ðp2
2Þ ¼ 1.

For the case of a dipole form factor, we use the identity�
�2 �m2

�2 � p2

�
2 ¼ lim

�!0

�2 �m2

�2 � p2

ð�þ �Þ2 �m2

ð�þ �Þ2 � p2
; (C2)

to have

Mdi
fiðm1; m2; m3;�Þ ¼ Mmo

fi ðm1; m2; m3;�Þ

þ lim
�!0

m2
2 ��2

2��

�Mmo
fi ðm1;�; m3;�þ �Þ:
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