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We study the transverse and longitudinal momentum spectra of fermions produced in a strong, time-

dependent non-Abelian SU(2) field. Different time-dependent field strengths are introduced. The mo-

mentum spectra are calculated for the produced fermion pairs in a kinetic model. The obtained spectra are

similar to the Abelian case, and they display exponential or polynomial behavior at high pT , depending on

the given time dependence. We investigated different color initial conditions and discuss the recognized

scaling properties for both Abelian and SU(2) cases.
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I. INTRODUCTION

During the past years, a large amount of data on particle
spectra has been collected in relativistic heavy ion colli-
sions at the Super-Proton Synchrotron (SPS, CERN) and at
the Relativistic Heavy Ion Collider (RHIC, BNL) at a c.m.
energy of

ffiffiffi
s

p ¼ 10–200 GeV [1,2] in a wide transverse
momentum range, 0 � pT � 20 GeV. Since the micro-
scopic mechanisms of hadron production in hadron-hadron
and heavy ion collisions are not fully understood, it is very
important to improve our theoretical understanding of this
field. The forthcoming hadron and heavy ion experiments
at the Large Hadron Collider (LHC, CERN) at

ffiffiffi
s

p ¼
5500 GeV will increase the transverse momentum window
to 0 � pT � 50 GeV. Thus LHC experiments will become
a decisive test between different perturbative and nonper-
turbative models of hadron formation, especially in the
high-pT region.

Theoretical descriptions of particle production in high
energy pp collisions are based on the introduction of
chromoelectric flux tube (‘‘string’’) models, where these
tubes are connecting the quark and diquark constituents of
the colliding protons [3–6]. The string picture is a good
example of how to convert the kinetic energy of a collision
into field energy. New hadrons will be produced via quark-
antiquark and diquark-antidiquark pair production from
the field energy, namely, from the unstable flux tubes.
These models can describe experimental data very success-
fully at small pT , especially at pT < 2–3 GeV. At higher
pT one can apply perturbative QCD-based models [7–9],
which can provide the necessary precision to analyze
nuclear effects in the nuclear collisions.

However, at RHIC and LHC energies the string density
is expected to be so large that a strong collective gluon field
will be formed in the whole available transverse volume.
Furthermore, the gluon number will be so high that a
classical gluon field as the expectation value of the quan-
tum field can be considered and investigated in the reaction

volume. The properties of such non-Abelian classical fields
and details of gluon production were studied very inten-
sively during the past years, especially asymptotic solu-
tions (for summaries, see Refs. [10,11]). Fermion
production was calculated recently [12,13]. Lattice calcu-
lations were performed to describe strong classical fields
under finite space-time conditions in the very early stage of
heavy ion collision, especially immediately after the over-
lap [14–16]. New methods have been developed to inves-
tigate the influence of inhomogeneity on particle
production [17–19].
Fermion pair production together with boson pair pro-

duction were investigated by different kinetic models of
particle production from strong Abelian [20–27] and non-
Abelian [28–30] fields. These calculations concentrated
mostly on the bulk properties of the gluon and quark
matter, the time evolution of the system, the time depen-
dence of energy and particle number densities, and the
appearance of fast thermalization.
Our main interest is the transverse momentum distribu-

tion of produced fermions and bosons; however, the lon-
gitudinal momentum can become equally interesting
considering wide rapidity ranges. In our previous paper
(see Ref. [31]) we investigated the Abelian case, namely,
particle pair production in a strong external electric field.
We focused on the numerical solution of a kinetic model
and discussed the influence of the field strength applying
different time dependences. We demonstrated a scaling

behavior in time and transverse momenta, namely, t �
E1=2
0 and kT=E

1=2
0 . The kinetic equation and the numerical

calculation yielded a fermion dominance in the midrapid-
ity region. In the case of a realistic Bjorken-type time
evolution our numerical result on fermion spectra has
overlapped the boson spectra obtained in 1þ
2-dimensional lattice calculations both in magnitude and
shape.
In this paper we solve the kinetic model in the presence

of an SU(2) non-Abelian color field. We focus on the
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determination of the appropriate kinetic equation system
and its numerical solution in case of different initial con-
ditions. Section II summarizes the kinetic equation for the
color Wigner function. In Sec. III we introduce phenom-
enologically the fermion distribution function. In Sec. IV
the kinetic equation and its simplifications are displayed in
detail, especially with zero fermion mass. In Sec. V we
present a kinetic equation for the case when the external
non-Abelian field has a fixed direction in color space. The
appropriate form of the kinetic equation is determined,
which was solved numerically at different time-dependent
strong fields. Results on field components and fermion
distribution functions are displayed in Sec. VI. We display
recognized scaling properties of the solutions in Sec. VII.
In the Appendix we show a special non-Abelian setup,
which leads to similar results obtained in the Abelian case.

II. THE KINETIC EQUATION FOR THE WIGNER
FUNCTION

The fermion production in a strong external field can be
characterized by a space homogeneous Wigner function,
Wðk; tÞ. The evolution of this Wigner function is inves-
tigated by the kinetic equation in the frame of the covariant
single-time formalism, where a time-dependent Abelian
(A�) [32–35] or non-Abelian (Aa

�) [28,33] external field

is included. Here we choose a longitudinally dominant
color vector field in the Hamilton gauge described by the
4-potential

Aa
� ¼ ð0;�AaÞ ¼ ð0; 0; 0; Aa

3Þ: (1)

The Wigner function depends on the 3-momenta k ¼
ðk1; k2; k3Þ. In the ‘‘instant’’ frame of Ref. [28] we obtain
the kinetic equation for Wðk; tÞ as

@tW þ g

8

@

@ki
ð4fW;F0ig þ 2fFi�; ½W;�0���g

� ½Fi�; fW;�0��g�Þ
¼ ikif�0�i;Wg � im½�0; W� þ ig½Ai; ½�0�i;W��: (2)

Here m denotes the current mass of the fermion produced
in the strong field and g is the coupling constant.

The color decomposition with SUðNcÞ generators in
fundamental representation (ta) is

W ¼ Ws þWata; a ¼ 1; 2; . . . ; N2
c � 1; (3)

whereWs is the color singlet andWa is the color multiplet
component [triplet in SU(2) with Nc ¼ 2].

The spinor decomposition is the following:

Wsja ¼ asja þ bsja� �� þ csja����� þ dsja� ���5 þ iesja�5:

(4)

The time evolution of the Wigner function is described
by Eq. (2). Using the color and spinor decomposition terms
in Eqs. (3) and (4), we will determine the time evolution

numerically. However, our main goal is to obtain the
transverse momentum spectra of the produced fermion
pairs; thus we need to introduce the fermion distribution
function. There is no straightforward way to define this
distribution function, but we can find a phenomenological
way, summarized in the next chapter.

III. THE FERMION DISTRIBUTION FUNCTION
FROM THE ENERGY DENSITY

The energy density carried by the produced fermions is
defined throughout the Wigner function [28,33]:

"f ¼ Trhðm� �ikiÞW þ!ðkÞi; (5)

where the second term fixes the zero energy level to the
physical value [note that expression (5) is free from diver-
gent vacuum contributions]. Here the one-particle energy

is denoted by !ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The trace is over color

and spinor and the averaging is taken over momenta:

hXi ¼
Z d3k

ð2�Þ3 Xðk; tÞ: (6)

After the color and spinor decomposition one obtains

"f ¼ 2Nch2mas þ 2kbs þ!ðkÞi: (7)

In parallel, focusing on the one-particle distribution func-
tion the usual energy density formula has the following
form:

"f ¼ 4Nch!ðkÞffðkÞi ¼ 4Nc

Z d3k

ð2�Þ3 !ðkÞffðkÞ: (8)

Note that both averages (5) and (8) may contain ultraviolet
divergence that can be properly regularized (for Abelian
fields, see, e.g., [36,37]). However, since we are not going
to calculate bulk properties of produced pairs, the issue of
regularization is not important in the current consideration
and will be considered elsewhere.
Now, combining Eqs. (7) and (8) one can derive phe-

nomenologically a distribution function, namely,

ffðk; tÞ ¼ masðk; tÞ þ kbsðk; tÞ
!ðkÞ þ 1

2
: (9)

The time dependence in ffðk; tÞ is connected to the time

evolution of asðk; tÞ and bsðk; tÞ, which is followed by
solving the decomposed kinetic equation of Eq. (2).
The fermion distribution function should be zero in

vacuum. The expression in Eq. (9) satisfies this request.
Indeed the vacuum solution (A� ¼ 0) for the singlet

Wigner function has the following form (see Ref. [28]):

Ws ¼ � 1

2

mþ k�

!ðkÞ : (10)

The vacuum solution for the multiplet Wigner function is
zero,Wa ¼ 0. The substitution of thisWigner function into
the definition of the distribution function in Eq. (9) leads to
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ff ¼ 0 in vacuum, which is physically correct.

Furthermore, one can see that ffðk; tÞ is positive definite

in presence of a nonzero field (A� � 0).

Although our fermion distribution function ffðk; tÞ has
been postulated phenomenologically and possibly it is not
a unique solution, but it seems to be the right tool to
investigate the time evolution of the energy distribution
at the microscopical level in a space homogeneous
environment.

IV. KINETIC EQUATION FOR THE WIGNER
FUNCTION IN SU(2)

Our basic aim is to determine the fermionic distribution
function and its time evolution in the presence of a strong,
time-dependent non-Abelian SU(2) field. For this task we
need to substitute the color and spinor decomposedWigner
function of Eq. (3) into the kinetic equation in Eq. (2).
After evaluating the color and spinor iindices we obtain a
system of coupled differential equations, which consists of
32 components in SU(2):

@ta
s þ g

4
Ea @

@k3
aa ¼ �4kcs1; (11)

@ta
a þ gEa @

@k3
as ¼ �4kca1 ; (12)

@tb
s
0 þ

g

4
Ea @

@k3
ba0 ¼ 0; (13)

@tb
a
0 þ gEa @

@k3
bs0 ¼ 2gfabcAbbc; (14)

@tb
s þ g

4
Ea @

@k3
ba ¼ 2k� ds þ 4mcs1; (15)

@tb
a þ gEa @

@k3
bs ¼ 2k� da þ 4mca1 þ 2gfabcAbbc0;

(16)

@tc
s
1 þ

g

4
Ea @

@k3
ca1 ¼ kas �mbs; (17)

@tc
a
1 þ gEa @

@k3
cs1 ¼ kaa �mba � 2gfabcðAb � cc2Þ;

(18)

@tc
s
2 þ

g

4
Ea @

@k3
ca2 ¼ kes; (19)

@tc
a
2 þ gEa @

@k3
cs2 ¼ kea � 2gfabcðAb � cc1Þ; (20)

@td
s
0 þ

g

4
Ea @

@k3
da0 ¼ 2mes; (21)

@td
a
0 þ gEa @

@k3
ds0 ¼ 2mes þ 2gfabcAbdc; (22)

@td
s þ g

4
Ea @

@k3
da ¼ 2k� bs; (23)

@td
a þ gEa @

@k3
ds ¼ 2k� ba þ 2gfabcAbdc0; (24)

@te
s þ g

4
Ea @

@k3
ea ¼ �4kcs2 � 2mds0; (25)

@te
a þ g

4
Ea @

@k3
es ¼ �4kca2 � 2mda0 : (26)

Here we use the notation bsja� ¼ ðbsja0 ;�bsjaÞ, and a similar

one for dsja� . The antisymmetric tensor component of the

Wigner function is defined as c�� ¼ ðc1; c2Þ [38]. The
strength of the color electric field is Ea � Ea

3 ¼ � _Aa
3 .

Since the mass of light quarks is small [39], we neglect
the mass term in our SU(2) calculation. In this case the
distribution function for massless fermions is solely de-
fined by bs:

ffðk; tÞ ¼ kbs

jkj þ
1

2
: (27)

The zero fermion mass leads to the simplification of the
above kinetic equation, which finally is split into two

independent parts: one for asja, csja1 , csja2 , and esja and

another one for bsja0 , bsja, dsja0 , and dsja. One can recognize
that the second set completely defines the evolution of the
fermion distribution function. This way the chiral symme-
try of the massless case is manifested itself. Thus we focus
on these equations, only,

@tb
s þ g

4
Ea @

@k3
ba ¼ 2k� ds; (28)

@tb
a þ gEa @

@k3
bs ¼ 2k� da þ 2gfabcAbbc0; (29)

@td
s þ g

4
Ea @

@k3
da ¼ 2k� bs; (30)

@td
a þ gEa @

@k3
ds ¼ 2k� ba þ 2gfabcAbdc0; (31)

@tb
s
0 þ

g

4
Ea @

@k3
ba0 ¼ 0; (32)
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@tb
a
0 þ gEa @

@k3
bs0 ¼ 2gfabcAbbc; (33)

@td
s
0 þ

g

4
Ea @

@k3
da0 ¼ 0; (34)

@td
a
0 þ gEa @

@k3
ds0 ¼ 2gfabcAbdc: (35)

The vacuum initial conditions are given by Eq. (10):

b sðt ! �1Þ ¼ � k

2jkj : (36)

The other components of the Wigner function have zero
initial values.

The system of equations in (28)–(35) can be solved
numerically for different color configurations. Thus the
evolution of the color could be followed in detail, similar
to the color evolution in the Wong–Yang-Mills equations
[40,41]. However, in the next section for the sake of
simplicity wewill consider the assumption that the external
field has a fixed direction in color space.

V. KINETIC EQUATION IN SU(2) WITH
EXTERNAL FIELD OF FIXED DIRECTION IN

COLOR SPACE

Equations (28)–(35) provide a full description of the
fermion production in a time-dependent SU(2) color field.
Here we will consider the case of the external field that has

a fixed direction in color space: Aa � A�na, where

nana ¼ 1 and @tn
a ¼ 0, in a general case, and Aa

3 �
A�na, a ¼ 1, 2, 3 in our calculation. Then Eqs. (28)–
(35) have the following particular solution:

b a ¼ b�na; da ¼ d�na: (37)

Taking into account the zero initial conditions for ba0 , d
a
0

and bs0, ds0, Eqs. (32)–(35) become trivial and do not

contribute to the set of Eqs. (28)–(31). The last simplifies
to give

@tb
s þ 3g

4
E� @

@k3
b� ¼ 2k� ds; (38)

@tb
� þ gE� @

@k3
bs ¼ 2k� d�; (39)

@td
s þ 3g

4
E� @

@k3
d� ¼ 2k� bs; (40)

@td
� þ gE� @

@k3
ds ¼ 2k� b�: (41)

Introducing the unit vector collinear to the field direction,

n ¼ E�=jE�j ¼ ð0; 0; 1Þ, and k? ¼ ðk1; k2; 0Þ, we can
perform the following vector decomposition:

b�js ¼ b�js
3 nþ b�js

?
k?
k?

; (42)

d�js ¼ d�jsn� k?
k?

: (43)

Finally we obtain six equations, only,

@tb
s
? þ 3g

4
E� @

@k3
b�? ¼ �2k3d

s; (44)

@tb
s
3 þ

3g

4
E� @

@k3
b�3 ¼ 2k?ds; (45)

@td
s þ 3g

4
E� @

@k3
d� ¼ 2k3b

s
? � 2k?bs3; (46)

@tb
�
? þ gE� @

@k3
bs? ¼ �2k3d

�; (47)

@tb
�
3 þ gE� @

@k3
bs3 ¼ 2k?d�; (48)

@td
� þ gE� @

@k3
ds ¼ 2k3b

�
? � 2k?b�3 : (49)

These equations determine the time evolution of the
wanted distribution function:

ffðk; tÞ ¼
k3b

s
3 þ k?bs?
jkj þ 1

2
: (50)

The numerical solution of Eqs. (44)–(49) requires initial
conditions. In our case the appropriate vacuum initial con-
ditions are the following:

bs3ðk; t ¼ �1Þ ¼ � k3
2k

; (51)

bs?ðk; t ¼ �1Þ ¼ � k?
2k

; (52)

b�3 ðk; t ¼ �1Þ ¼ b�?ðk; t ¼ �1Þ ¼ 0; (53)

d�ðk; t ¼ �1Þ ¼ dsðk; t ¼ �1Þ ¼ 0: (54)

Now we have all the parts to proceed numerically for
any time-dependent field strength and determine the mo-
mentum distribution of the produced fermions.

VI. NUMERICAL RESULTS

In heavy ion collisions, one can assume three different
types of time dependence for the color field to be formed:
(a) the pulselike field develops with a fast increase, which
is followed by a fast fall in the field strength; (b) formation
of a constant field (E0) is maintained after the fast increase
in the initial time period; (c) a scaled decrease of the field
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strength appears, which is caused by particle production
and/or transverse expansion, and the decrease is elongated
in time much farther than the pulselike assumption.

Figure 1 displays three sets for the time dependence of
the external field [31]:

E�
pulseðtÞ ¼ E0 � ½1� tanh2ðt=�Þ�; (55)

E�
constðtÞ ¼

�
E�
pulseðtÞ at t < 0;

E0 at t � 0;
(56)

E�
scaledðtÞ ¼

�
E�
pulseðtÞ at t < 0;
E0

ð1þt=t0Þ� at t � 0:
(57)

In Eq. (55) we choose � ¼ 0:1=E1=2
0 , which corresponds

to RHIC energies. In Eq. (57) the value � ¼ 2=3 indicates a

longitudinally scaled Bjorken expansion with t0 ¼
0:01=E1=2

0 . In fact, the whole time dependence is scaled

by E1=2
0 .

Before comparing the momentum distributions obtained
numerically in the three different physical scenarios of
Eqs. (55)–(57) we investigate our results on the quantities
responsible for the momentum distribution. Detailed nu-
merical results are shown in the following five figures for
the specific case of the Bjorken expansion.

The distribution function ffðk?; k3Þ depends directly on

bs?ðk?; k3Þ and bs3ðk?; k3Þ as Eq. (50) shows. Figures 2 and
3 display the magnitudes of these quantities in 2-
dimensional plots. The k3 symmetry of bs?ðk?; k3Þ can be

seen clearly, as well as the asymmetric behavior of
bs3ðk?; k3Þ. The values of these functions are in Oð1Þ.

The distribution function ffðk?; k3Þ is color neutral; thus
the color quantities b�?ðk?; k3Þ and b�3 ðk?; k3Þ do not con-

-0.5 0 0.5 1 1.5 2

t E 0
1/2

0

0.2

0.4

0.6

0.8

1

E
( 

t )
/E

0

FIG. 1. The time dependence of external field EðtÞ in three
physical scenarios: (a) pulse (dotted line); (b) constant field, E0

(dashed line); and (c) scaled decrease (solid line).
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k 3
/E

01/
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6

FIG. 3. The momentum dependence of the longitudinal, color

singlet component bs3ðk?; k3Þ at t ¼ 2=E1=2
0 for the Bjorken

expanding scenario.

0.5 1 1.5 2 2.5 3

kT/E0
1/2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k 3
/E

01/
2

-0.5 -0.4 -0.3 -0.2 -0.1

FIG. 2. The momentum dependence of the transverse, color

singlet component bs?ðk?; k3Þ at t ¼ 2=E1=2
0 for the Bjorken

expanding scenario.
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tribute directly. However, they play an important role in the
kinetic equation; see Eqs. (44)–(49). Their oscillating be-
havior can be seen in Figs. 4 and 5.

Now we return to the three physical scenarios with
different time dependence described in Eqs. (55)–(57)

and investigate the fermion spectra at a large time, t ¼
2=E1=2

0 . Figure 6 indicates the behavior of the longitudinal

momentum spectra at a small transverse momentum value,

where we choose k?=E
1=2
0 ¼ 0:5. Pulse-type time depen-

dence leads to a narrow k3 distribution (dotted line), which
mimics a Landau-type hydrodynamical initial condition.
The longitudinal spectra from the constant field scenario
(dashed line) leads to a flat distribution function in k3. This
result agrees well with a 1-dimensional, longitudinally
invariant hydrodynamical initial condition, as we expect.
Considering the scaled field scenario (solid line), since its
time dependence is very similar to the pulse-type case (see
Fig. 1), the similarity in the longitudinal spectra is well
understandable.

If we increase the transverse momentum and choose

k?=E
1=2
0 ¼ 2:5, then Fig. 7 displays the obtained longitu-

dinal spectra: the k3 dependence becomes very similar in
the small k3 region for the three different time evolutions.
For pulse-type time dependence (dotted line) and for the
constant field scenario (dashed line), even the magnitude is
very close to each other. Further numerical investigations
are needed to understand these similarities.

The interplay between transverse and longitudinal mo-
mentum spectra is displayed in Fig. 8. In the Bjorken
expansion scenario of Eq. (57) we choose different longi-

tudinal momentum windows, namely, k3=E
1=2
0 ¼ 0, 1, 2

and extract the transverse momentum spectra at t ¼
2=E1=2

0 . In Fig. 8 one can see a large deviation at small

transverse momenta and similar spectra at high transverse

0.5 1 1.5 2 2.5 3

kT/E0
1/2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k 3
/E

01/
2

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1

FIG. 5. The momentum dependence of the longitudinal, color

component b�3 ðk?; k3Þ at t ¼ 2=E1=2
0 for the Bjorken expanding

scenario.

0.5 1 1.5 2 2.5 3

kT/E0
1/2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k 3
/E

01/
2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

FIG. 4. The momentum dependence of the transverse, color

component b�?ðk?; k3Þ at t ¼ 2=E1=2
0 for the Bjorken expanding

scenario.

−4 −2 0 2 4
10−6

10−5

10−4

10−3

10−2

10−1

100

 k3 /E0
1/2

 f f
(k

3)

FIG. 6. Longitudinal momentum (k3) spectra for fermions at

k?=E
1=2
0 ¼ 0:5 and t ¼ 2=E1=2

0 in the three physical scenarios

(see Fig. 1 and the text for an explanation).
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momenta: hard fermion production is similar at different
rapidities, but soft production (and any ‘‘effective tempera-
ture’’) is very strongly rapidity dependent.

Figure 9 displays the transverse momentum spectra for
the three different physical scenario at momentum k3 ¼ 0

and time t ¼ 2=E1=2
0 . Pulse-type time dependence leads to

exponential spectra (dotted line), ff / expðkT=TÞ with a

slope value T ¼ 1:54� E1=2
0 . In the other two cases, we

obtain nonexponential spectra generated by the long-lived
field. Here the spectra from constant (dashed line) and
scaled (solid line) fields are close, because the production
and annihilation rates balance each other. Slight differ-
ences appear because of the fast fall of the scaled field
immediately after t ¼ 0.

In our previous paper [31] we considered fermion pro-
duction in a U(1) classical field. A comparison between the
current SU(2) calculation and the U(1) results can be made,
if we fix both field strengths at the same value. Taking the

value E1=2
0 =�s ¼ 0:54 used in Ref. [31], we obtain trans-

verse momentum spectra depicted in Fig. 10, where parti-
cle production in the scaled field scenario was considered.
We have found that the obtained transverse distribution
functions for fermions are close to each other and have
almost the same shape. Figure 11 displays the ratio of the
two numerical results on a linear scale. It clearly shows the
appearance of a numerical value of fSUð2Þðk?Þ=fUð1Þðk?Þ ¼
0:75 for transverse momenta k? � �s. This value may
indicate the presence of scaling solutions of the investi-

−4 −2 0 2 4
10−5

10−4

10−3

10−2

 k3 /E0
1/2

 f f
(k

3)

FIG. 7. Longitudinal momentum (k3) spectra for fermions at

k?=E
1=2
0 ¼ 2:5 and t ¼ 2=E1=2

0 in the three physical scenarios

(see Fig. 1 and the text for an explanation).
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FIG. 9. The transverse momentum spectra for fermions at k3 ¼
0 and t ¼ 2=E1=2

0 in the three physical scenarios (see Fig. 1 and

the text for an explanation).

FIG. 10. Transverse momentum spectra of fermions from our
calculation with scaled time evolution, EscaledðtÞ, for the SU(2)
case (solid line), and from Ref. [31] for U(1) (dash-dotted line).
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FIG. 8. Transverse momentum spectra for fermions at

k3=E
1=2
0 ¼ 0, 1, 2 in the time step t ¼ 2=E1=2

0 for the Bjorken

expansion scenario.
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gated kinetic equations. The direct study of the kinetic
equations in Secs. IV and V does not reveal scaling, but
special cases can indicate such a behavior.

VII. SCALING SOLUTIONS

In this section we consider specific initial conditions and
corresponding solutions for the kinetic equations (44)–
(49). At first we assume that the singlet and the color
multiplet components have the same initial values. This
‘‘symmetry’’ is generally violated by vacuum initial con-

ditions demanding b� and d� to be zero in vacuum in
contrast to initial conditions for bs and ds [cf. Eqs. (51)–
(54)]. Accepting this assumption, one may note that

Eqs. (44)–(49) have the following special solution: b� ¼
�bs and d� ¼ �ds, where � is a numerical value to be
defined in the Appendix. In this case the SU(2) kinetic
equations for massless fermions can be shortened and
rewritten into the following form (see the Appendix for
details):

_f ¼ 1
2Wv; (58)

_v ¼ Wð1� 2fÞ � 2jkju; (59)

_u ¼ 2jkjv: (60)

One can recognize that formally these equations have been
used earlier in the Abelian case to calculate massless
fermion production [see Eqs. (22)–(24) with zero fermion
mass in Ref. [31]].

The region of our interest is the small longitudinal (k3 !
0) and high transverse (k? ! 1) momenta. It is reasonabe
to assume that for this region the distribution function is
much smaller than unity, fðk? ! 1Þ 	 1, demonstrating

small particle yield in the high transverse momentum
region. Thus the term of (1� 2f) in Eq. (59) can be
simplified to unity.
Equations(58)–(60) allow us to introduce new scaled

variables, namely, Ŵ ¼ W�, f̂ ¼ f�2, v̂ ¼ v�, and û ¼
u�. Thus the above equations can be rewritten into the
following form:

_̂f ¼ 1
2Ŵ v̂; (61)

_̂v ¼ Ŵ � 2jkjû; (62)

_̂u ¼ 2jkjv̂: (63)

In the U(1) case we have solved this set of equations with
the scale parameters � ¼ 1, and obtained the fð� ¼ 1Þ
momentum distribution functions [31]. Thus we know any
scaled solution fð�Þ ¼ fð� ¼ 1Þ � ��2. In the case of SU

(2) we have scale variable � ¼ 
2=
ffiffiffi
3

p
(see the

Appendix). Thus we can easily extract the wanted ratio
fSUð2Þ=fUð1Þ ¼ 3=4. This number agrees with the numeri-

cally calculated value in the high transverse momentum
region, as Fig. 11 displays.
For small transverse momentum our analysis cannot be

performed, because the Pauli suppression factor (1� 2f)
differs from unity (see, e.g., Fig. 6). The numerical calcu-
lations have shown a ratio of fSUð2Þ=fUð1Þ > 3=4 in this

momentum region (see Fig. 11).
The physical meaning of this � scaling is evident: the

number of particles with high transverse momentum is
proportional to the second power of the field strength,
namely, ðgEÞ2.
An additional scaling property has been used during the

presentation of our numerical values. Namely, in
Eqs. (38)–(41) one can introduce a basic scaling in the
variables:

~k ! 	 � ~k; (64)

E0 ! 	2 � E0; (65)

t ! 	�1 � t: (66)

In this case the obtained distribution function will not
change.
Furthermore, in the case of the external pulse field of

Eq. (55), at t ! 1 the exponential transverse spectra of the
stationary solution for the distribution function f can be
characterized by an effective temperature as we have
shown in Fig. 9. This temperature will be scaled as the
momentum, T ! 	 � T.
In our previous paper [31] for the Abelian external field

with scaled time evolution we obtained numerical trans-
verse spectra, which was very close to the perturbative
QCD results for high-kT , namely, scaling with
logðkT=�sÞ � ðkT=�sÞ4 [42]. As Figs. 10 and 11 displayed,

FIG. 11. The ratio of the numerical results from Fig. 10 on
transverse momentum spectra for fermions in a linear scale: the
SU(2) case (this calculation) is divided by the U(1) case from
Ref. [31].
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we obtain the same behavior for the SU(2) case, although
we cannot prove this scaling analytically.

VIII. CONCLUSION

In this paper we investigated fermion production from a
strong classical SU(2) field in a kinetic model. We derived
the appropriate system of differential equations, which
became simplified after introducing zero fermion mass.
Following the physical ideas suggested in our earlier paper
on the U(1) case (see Ref. [31]), we assumed three different
time dependences for the longitudinal color field of fixed
direction in color space and obtained three different types
of longitudinal and transverse momentum spectra for the
SU(2) fermions. We have found that the time dependence
of the external field determines if the transverse momen-
tum spectra are exponential or polynomial, similar to the U
(1) case. We solved the kinetic equation numerically and
displayed the obtained results on longitudinal and trans-
verse momentum distributions for the massless fermions.
Furthermore, for the scaled time-dependent external field
in the transverse momentum spectra we obtained a constant
ratio of 0.75 at high pT between the recent SU(2) and
earlier U(1) results. We could reproduce this scaling be-
havior analytically in the high transverse momentum limit,
together with the factor of 0.75. Furthermore, our numeri-
cal results display the presence of a logðkT=�sÞ � ðkT=�sÞ4
scaling, similar to results obtained from perturbative QCD
calculations.
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APPENDIX

In this Appendix we display a specific solution of the SU
(2) kinetic equation of (2), which leads to the form of
equations known and solved already in the U(1) case (see
Ref. [31]). These equations allow us to recognize scaling
properties in U(1) and SU(2), discussed in Sec. VII.

Considering the form of SU(2) Eqs. (44)–(49) can be
solved assuming a very specific condition for the singlet
and the color multiplet components [28], namely,

b� ¼ �bs; (A1)

d� ¼ �ds: (A2)

Substituting this constraint into Eqs. (44)–(49), a definite

value can be obtained for parameter �, namely, � ¼

2=

ffiffiffi
3

p
.

In parallel, these equations become even simpler:�
@t þ g

�
E� @

@k3

�
bs? ¼ �2k3d

s; (A3)

�
@t þ g

�
E� @

@k3

�
bs3 ¼ 2k?ds; (A4)

�
@t þ g

�
E� @

@k3

�
ds ¼ 2k3b

s
? � 2k?bs3; (A5)

For further consideration it is appropriate to rewrite this
set of equations in terms of the distribution function

ffð ~k; tÞ. Applying the differential operator

Dt ¼ @t þ g

�
E� @

@k3
(A6)

to the distribution function (50) and using (A3)–(A5) we
obtain

Dtf ¼ 1
2Wv; (A7)

Dtv ¼ Wð1� 2fÞ � 2j ~kju; (A8)

Dtu ¼ 2j ~kjv; (A9)

where we introduced the functions W, v, and u as

W ¼ g

�

Ek?
k2

; (A10)

v ¼ 2
k?
jkjb

s
3 � 2

k3
jkjb

s
?; (A11)

u ¼ �2ds: (A12)

Using the method of characteristics [43] we finally get

_f ¼ 1
2Wv; (A13)

_v ¼ Wð1� 2fÞ � 2j ~kju; (A14)

_u ¼ 2j ~kjv; (A15)

where k3 becomes time dependent

_k 3 ¼ g

�
E�: (A16)

One can recognize that the same equations have been
used to calculate fermion production in the Abelian case
with � ¼ 1 [see Eqs. (22)–(24) with zero fermion mass in
Ref. [31]]. This surprising discovery indicates that in very
specific cases Abelian-like equations can be derived from
non-Abelian kinetic equations.
However, there is a conflict between the constraint in

Eqs. (A1) and (A2) and the physical vacuum solution in
Eq. (10), which indicates a more complicated connection
between the non-Abelian and Abelian cases.
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