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In this paper, we give a direct method for calculating the partition function, and hence the equation of
state (EOS) of quantum chromodynamics (QCD) at finite chemical potential and zero temperature. In the
EOS derived in this paper the pressure density is the sum of two terms: the first term P(u)|,—o (the
pressure density at u = 0) is a u-independent constant; the second term, which is totally determined by
Grlul(p) (the renormalized dressed quark propagator at finite w), contains all the nontrivial
p-dependence. By applying a general result in the rainbow-ladder approximation of the Dyson-
Schwinger approach obtained in our previous study [Phys. Rev. C 71, 015205 (2005)], Ggl[u](p) is
calculated from the meromorphic quark propagator proposed in [Phys. Rev. D 70, 014014 (2004)]. From
this the full analytic expression of the EOS of QCD at finite u and zero T is obtained (apart from the
constant term 2P(u)| u=0 Which can in principle be calculated from the Cornwall-Jackiw-Tomboulis
effective action). A comparison between our EOS and the cold, perturbative EOS of QCD of Fraga,
Pisarski, and Schaffner-Bielich is made. It is expected that our EOS can provide a possible new approach

for the study of neutron stars.
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The study of the partition function is at the crux of
equilibrium statistical field theory (see, for example,
Refs. [1,2]). The thermodynamic properties of a system,
hence also the equation of state (EOS), are completely
determined by the partition function. The calculation of
the partition function of quantum chromodynamics (QCD)
at finite chemical potential is a contemporary focus; e.g.,
Refs. [3-9]. In addition, it is well known that in astrophys-
ics the study of the neutron star depends crucially on the
assumed EOS [10,11]. The study of EOS of QCD is thus of
extreme importance. In this paper, we try to give a direct
method for calculating the partition function and EOS of
QCD at finite chemical potential.

The renormalized partition function of QCD at zero
temperature and finite chemical potential reads

Zlp] = fDQRQDQRDARGXP{_SR[QR, qr. Ag]

PACS numbers: 12.38.Aw

where Sp[Ggr, gr, Ag] is the standard renormalized
Euclidean QCD action with gp being the renormalized
quark field with three flavors and three colors, Z, =
Z,(£?, A?) is the quark wave-function renormalization
constant ({ is the renormalization point and A is the
regularization mass-scale). Here we leave the ghost field
term and its integration measure to be understood. The
pressure density P(u) is given by

P () = 5 0Zu), @)

where "V is the four-volume normalizing factor. The above

+ [ d*x11Z,Gr(x) Y4 QR(X)}, (1) equation for the pressure is just the EOS and from this one
immediately obtains the quark-number density
|
o) = aP(w) _ 11 aZ[p] _ 1| [DgrDarDAg [ d*xZ,Gr(x)Yaqr(x) exp{—Skldr. gr Ar; n1} 3)
op V Z[u] op v I DgrDqrDAg exp{—Sklqr, qr. Ag; 11} '
where Sg[Gr, qr, Ars ] = Skldr, qr Al — [ d*xpZ23p(x)y4qz ().
On the other hand, the dressed quark propagator at finite chemical potential can be written as
DgrDqrDArgri(x)dr;(y) expl—Srldr qr, Ar;
GRU[M](X’ y) = f qdr 4R Rqu(x)qu(y) xp{—SrlGr qr Ag; 11} (4)

From Eq. (4), it is easy to obtain the following:
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I DgrDqrDAg exp{—Sklqr, qr. Ag; p1)}
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| DgrDarDAg [ d*xqr(x)ysqr(x) exp{—Sglgr, qr, Ags nl}
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Tr{Gglu]ys} =

where the notation Tr denotes trace over the color, flavor,
Dirac, and coordinate space indices. Comparing Eq. (3)
with (5), we obtain a well-known result (for its recent
application, see, e.g. Ref. [12])

plu) = =2 TGyl uly

4
— N2, [ (;’7’34 WGl (p)ysh (6

where N. and N, denote the number of colors and of
flavors, respectively, and the trace operation is over Dirac
indices. From Eq. (6) it can be seen that the quark-number
density p(u) is totally determined by the dressed quark
propagator at finite chemical potential. Setting x = 0 in
Eq. (6), one finds that the quark-number density at zero
chemical potential vanishes. This is because by writing out
the general Lorentz structure of Ggx[u = 0](p) and per-
forming the trace one can verify that the integrand is an odd
function of p, and therefore the integration vanishes. This
is what one expects in advance.

Integrating the equation p(u) = 22&)

ou

one obtains

P(u) = P(u)ly=o + foﬂ du'p(p')
= ?(M)M:o

“ 4
NNz [ aw [ S WG
)

From the above equation it can be seen that the pressure
density P(u) is the sum of two terms: the first term
P(u)l,—o (the pressure density at zero w) is only a
p-independent constant; the second term, which is totally
determined by Gg[u](p), contains all the nontrivial
p-dependence. Here we note that formula (7) is formally
model independent. However, at present it is very difficult
to calculate P(u)|,— and Gg[u](p) from first principles
of QCD. So when one uses formula (7) to calculate the
EOS of QCD, one has to resort to various nonperturbative
QCD models.

Over the past few years, considerable progress has been
made in the framework of the rainbow-ladder approxima-
tion of the Dyson-Schwinger (DS) approach [13-16],
which provides a successful description of various non-
perturbative aspects of strong interaction physics. We natu-
rally expect that it might be a useful nonperturbative
approach in the study of EOS of QCD at finite chemical
potential. In this paper we shall employ this approach.

Now let us turn to the actual calculation of Gg[u](p).
Here we apply the following general result proved in

I DgrDqrDAg exp{—Sgldr, qr. Ag; nl} '

&)

Refs. [17,18]: Under the rainbow approximation of the
Dyson-Schwinger equation (DSE), if one ignores the w
dependence of the dressed gluon propagator (this is a
commonly used approximation in calculating the dressed
quark propagator at finite chemical potential [14,17-23])
and assumes that the dressed quark propagator at finite u is
analytic in the neighborhood of u = 0, then the inverse
dressed quark propagator at finite chemical potential can
be obtained from the one at zero chemical potential by the
following simple substitution [17,18]:

Gx'[pl(p) = Gx'(p) = iy - pA(P*) + B(p»),  (8)

where p = (p, ps + i) and Gg'(p) =iy pA(p?) +
B(p?) is the inverse dressed quark propagator at u = 0.
Here one may ask whether the quark propagator given by
the above equation is valid for any w. This question has
two levels, those of mathematics and physics. On the
mathematical level, it should be noted that in deriving
Eq. (8) we have assumed that || is smaller than the radius
of convergence of Taylor expansion of Gx![u](p) around
= 0 (for details, see Ref. [17]). However, Eq. (8) holds
in the whole domain of analyticity of G!'[x](p) in the
complex u-plane, not only within the circle of conver-
gence of p expansion. This is a result of a well-known
theorem in complex analysis [24]: Suppose each of two
functions f(z) and g(z) is analytic in a common domain D.
If f(z) and g(z) coincide in some subportion D’ C D, then
f(z) = g(z) everywhere in D. On the physical level, it is
generally believed that at finite w there will be a chiral
transition. In particular, in the chiral limit, this is a first
order phase transition, and hence the quark mass function
derived from the quark propagator will drop discontinu-
ously to zero. This feature is not reproduced by the quark
propagator in Eq. (8). Hence it should be stressed that this
not happening is a pure assumption of the model employed
in this paper.

According to Eq. (8), once the dressed quark propagator
at 4 =0 is known, one can obtain the dressed quark
propagator at finite x by means of Eq. (8). Therefore, in
order to calculate Gg[u](p) using Eq. (8), one needs to
specify the form of the dressed quark propagator at zero
chemical potential in advance. In Ref. [25], guided by the
solution of the coupled set of DSEs for the ghost, gluon,
and quark propagator in the Landau gauge, the following
meromorphic form of the dressed quark propagator is
proposed:

rj r;

j
iﬁ+mj+i[5+m;f}’ ©)

Galp) = 23" A0 Y|
Jj=1

with m; = a; + ib;. The propagator of this form has np
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pairs of complex conjugate poles located at a; * ib;.
When some b is set to zero, the pair of complex conjugate
poles degenerates to a real pole. The residues r; are real
(note that a similar meromorphic form of the quark propa-
gator was previously proposed in Ref. [26], in which the
residues in the two additive terms are complex conjugate of
each other). In the chiral limit, the requirement that the
dressed quark propagator reduces to the free one in the
large momentum limit entails that

and Zra =0.

N =

p
Z Fi=
J=1

In this paper, following Ref. [25], we set the renormaliza-
tion point to be {> = 16 GeV?. Here it should be noted that
the quark propagator (9) is obtained from a calculation
going significantly beyond the rainbow approximation (for
details, see Ref. [25]) and not necessarily a solution to the
rainbow DSE for the quark propagator at 4 = 0. However,
it would be valid to assume for the moment that the quark
propagator obtained by substituting (9) into Eq. (8) is an
acceptable approximation for the quark propagator at finite
chemical potential and see what physical results it will
yield. With this in mind, from the form of Gz(p) given
in Eq. (9) we obtain

Grlul(p) = Z; (% A?) 2{1[5 +m; " i -ri-]m*}
=21 Az)Z{#
r ( llf + m*)
p+7m}' o

Substituting the above equation into Eq. (6) and perform-
ing the trace, one obtains

< ri(ps +ip)
4iN.N
plp) =4 fﬂzvzb+@uww+m
rips + i) }
ﬁ+m+muw2

a (277)4
pstip
+r | d* }
r’j P52+ (pa+ i) + m?

Py tip
ﬁz + (ps + ip)* + m;

Y

Now we need to evaluate the integrals in Eq. (11). We first
consider the first integral on the right-hand side of (11) and
write

PHYSICAL REVIEW D 78, 054001 (2008)

[dp Py tip
P>+ (py + ip)* + m3
. pstip
= dpf dps—= - .
f PR (py i)+ m?

The integral over p, can be written as a line integral from
—o00 + iu to +0o + iy in the complex plane:

f“°d pstip
o P4 92+(p4+z,u,)2+m

+oo+iu Z
= dz 5=
—ootip 2T pTtm;

The latter integral can be evaluated by means of contour
integration. For this purpose we choose the following con-

tour (see Fig. 1). The function f(z) = m has two
poles in the complex plane which are located at
JF TP+ B - -
Zj:i\j ! 3 ! jiisgn(—,Bj)
y (P> + a))* + B+ p* + a
2 ’

where mj2 = a; + B;i and sgn(—f3;) denotes the sign of
— ;. Among the two poles, one lies in the upper half-
plane, the other lies in the lower half-plane. The imaginary
part of the pole in the upper half-plane is

0.(3) = \j,/(ﬁz +a)?+ B7+ P+ a
J :

2

Here one should distinguish two cases:

(i) u < w;(p). In this case, since there are no poles
inside the contour (see Fig. 1), the integral along
the contour vanishes. The integral along the straight

Imz lz

-
-

Rez

L 3
L 2

FIG. 1. The integration contour in the complex z plane.
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segment from —R to R vanishes because f(z) is an
odd function. In the R — oo limit, the integral along
the two vertical segments gives zero contribution
because f(z) vanishes at infinity. So in the R — o
limit, the contour integral has its contribution only
from [g1;,* dzf(z). Therefore one has

[WW def() =0,  mw<w p). (12

—oot+iy

(ii) u > w;(p). In this case, there is one pole inside the
contour (see Fig. 2). According to the above expla-
nation and applying the residue theorem, one has

—j”w““ayc)=2wn%ﬁf@xz=zp==wa

—oo+im

> w(p). (13)

Equations (12) and (13) can be combined into the follow-
ing form:
/ Rl Py tip
o P (py i) + o}
+oo+iu . N
- [ dzf () = ~mi6(p — w, (). (14)

—oo+im

Z.BZ

Now, when p < 5

in this case

,one has w;(p) > u, V p, so

O(n — w;(p)) = 0.

a; +1[a ﬁz

When u = 5 w;(p) < p if and only if [p] <
2
(u? — 4% - a; )1/2 so in this case

N g
1, when [p| < (u?— il DES

O(u — w:(p) = .
(u /(P)) {0 when || > (M . B - )1/2

Im2z |z_
I
' Lwi(B) .z 4
> > Rez
-R O R

FIG. 2. The integration contour in the complex z plane.
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Therefore one has
fd b patip
P (s + i+ m]
= i [ dpoiu o))
0, when M<\'L W
. 2 a;it+qfa’+B?
— a2 _f_,;/z_ @), when p = , 1+1/2]+:B!
42 a/-+1[ae§+ﬁ§ 5
) e el | Vo

4u?

B; 3/2
—a;] .
2 ’)

(15)

The second integral on the right-hand side of Eq. (11) can
be obtained by making the replacement mf =a;+ Bi—
m}'fz = a; — B;i in Eq. (15) and it is equal to the first one:

fd“p patip
P>+ (ps+ i) +mp?

_477.21'9( B aj-i-‘,a?-i-ﬂi)( - sz B )3/2
3 \F 2 Bmgur %)
(16)
Substituting Eqgs. (15) and (16) into Eq. (11) gives
2Nc a»+1/a2.+,82.
p(p) = =57 Z rif| m— %
B2 3/2

In the numerical calculations in this paper, we use three
sets of parameters given in Ref. [25], which represent three
forms of the propagator: three real poles (3R), two pairs of
complex conjugate poles (2CC), and one real pole and one
pair of complex conjugate poles (1R1CC). These parame-
ters are listed in Table L.

The dependence of p(w) on u is plotted in Fig. 3. Just as
shown in Fig. 3, the obtained quark-number density distri-
bution differs significantly from the Fermi distribution of
the free quark theory. Physically this is a consequence of
dynamical chiral symmetry breaking and confinement in
the low energy region. We note that when u is smaller than
a critical value uy (o =351 MeV, 377 MeV, and
341 MeV for the 2CC, 1RICC, and 3R parametrization,
respectively), the quark-number density vanishes identi-
cally. Namely, u = u is a singularity which separates two
regions with different quark-number densities. This result
agrees qualitatively with the general conclusion of
Ref. [27]. In that reference, based on a universal argument,
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TABLE I. The parameters used in this paper. They are taken directly from Table II of Ref. [25].
Parametrization i a; (GeV) b, (GeV) ry a, (GeV) b, (GeV) r3 as (GeV)
2CC 0.360 0.351 0.08 0.140 —0.899 0.463
1R1CC 0.354 0.377 0.146 —-0.91 0.45 ce <o
3R 0.365 0.341 1.2 —1.31 —1.06 —1.40

it is pointed out that the existence of some singularity at the
point w=puo and T =0 is a robust and model-
independent prediction. The numerical value of the critical
chemical potential in pure QCD (i.e., with electromagnetic
interactions being switched off) is estimated to be (my —
16 MeV)/N, = 307 MeV (where m,, is the nucleon mass
and N, = 3 is the number of colors). The value of the
critical chemical potential obtained in this study is almost
of the same order of magnitude as the estimate in that

|

/Oﬂdn’p(,u’) NNf Z f du’ 6'(# -

’2 2

reference. This difference can be attributed to the choice of
the parameters of the model quark propagator employed in
this paper. In fact, as was pointed out in Ref. [25], the
choice of the parameters of the model quark propagator (9)
has some arbitrariness. We expect that our work can give
further constraints on the model parameters.

Now let us calculate [{" du'p(u’). From Eq. (17) one
obtains

B; 3/2
4'“/2 - af)

2 )(“2 B

B2

2NN, ”ZP 0( aj+,/a§+,3f)fﬂ J ,< H
. _\’
3’7T2 ‘ / K 2 J(aj+‘[a]2.+ﬂjz.)/2 M

i 3/2
- 41“’/2 o a/)

NN, & a;+qfai + B}
T 32 er"(#“ f)l(“?“r B))- (18)
=1
where I(u; a;, B)) is
2
“ B 3/2
I(p;a;, B;) = ,—dl</2_j_')
(m a; ,81) j(aj+ T M 4,le2 a;
ORI R CRRCIAR  C Rl
16 ,
‘/,u,z—aj/2+‘,a?+,812'/2_\/:“2_aj/2_ a?+ﬁ%/2
X arctan L — ] +%\/’“‘4_a/'“‘2_5?/4_%
V( a? + ,BJZ + aj)(,u,2 + 1/6@ + ,8/2/2 - aj/z)
B2 mt —aju —/32/4
e B e ®

Now let us turn to the calculation of P(u)l,—

n

o- The rainbow-ladder approximation of DSE is the stationary point

equation for the Cornwall-Jackiw-Tomboulis (CJT) effective action [28] which, evaluated at this stationary point, is [29]

A%(p*)p* + Bz(p2)] _PPAPIA?) — 1]+ Bz(pz)}

P [

4
2NN, [ %{m@ (Po2(p?) + 2 (p2)] + 1+ pray (P}

2

p*A%(p?) + B*(p?)

(20)
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FIG. 3. Relation between the quark-number density and the
chemical potential.

where G(p) = o —tyges = iy - po,(p?) + o,(p?) is
A(p*)+B(p?)

the unrenormalized dressed quark propagator at u = 0.

From the model quark propagator (9) one obtains

( 2) g“ Tj Tj
o,(p7)=— ( + >,
v = pz + mjz 2 2

p +m]-

n - ' (1))
o (p?) = ( M )
le p2+m12 p2+mj2

From Egs. (20) and (21) and the parameters of the model
quark propagator (9) listed in Table I, one can calculate
P(1)]-o.

The determination of the EOS of QCD is a long-standing
problem in strong interaction physics. Lattice QCD calcu-
lations and phenomenological models try to pin down a
usable EOS since two decades ago. It is interesting to
compare the EOS obtained in this paper to the EOS of
QCD proposed in previous studies. Here we shall take one
prominent example, the cold, perturbative EOS of QCD
proposed by Fraga, Pisarski, and Schaffner-Bielich in
Ref. [30]. The pressure density to second order in «; in
the MS scheme obtained in Ref. [30] is quoted as follows:

N 4
Prps(p) = —f'Lz {1 - 2<&) - [G + Ny ns
4 T T
2 INIZAY
+ (11 — —Nf) ln—](—‘) } 22)
3 mI\ 7

0.13 and A is the renormalization subtraction pomt. The
scale dependence of the strong coupling constant a (A) is
taken as

PHYSICAL REVIEW D 78, 054001 (2008)

_ 4w _%ln(u) 4,82 1y
a(d) ﬂou[l B u du ((l n() )
BaBo 5
Y ol
where u = 1n(]\2/A12m), Bo=11—2N;/3, B, =

51 — 19N;/3, and B, = 2857 — 5033N;/9 + 325N]%/27.
For Ny = 3, Ayg = 365 MeV. The only freedom in the
model of Ref. [30] is the choice of the ratio A/ M, which is
taken to be 2 in that reference. The perturbative EOS (22) is
applicable only in the chirally symmetric phase, when the
chemical potential w is larger than w,, the chiral phase
transition point. A plot of our EOS and the EOS of Fraga,
Pisarski, and Schaffner-Bielich is given in Fig. 4. Here we
note that when applying our EOS to the study of the
neutron star, owing to the boundary condition imposed
on the surface of the neutron star, the constant term
P(w)l u=0 does not contribute to the mass-radius relation,
so when comparing our EOS with that of Fraga, Pisarski,
and Schaffner-Bielich in Fig. 4, we do not consider this
term. From Fig. 4 it can be seen that in the region of u
studied, the pressure density in the EOS of Fraga, Pisarski,
and Schaffner-Bielich and our EOSs (for the three parame-
trization of the model quark propagator) increases mono-
tonically as u increases. In the large w region the EOS of
Fraga, Pisarski, and Schaffner-Bielich and our EOSs show
qualitatively similar behaviors: all of them tend to the free
quark gas result as w tends to infinity. Compared with the
EOS of Fraga, Pisarski, and Schaffner-Bielich, our EOSs
tend somewhat more rapidly to the free quark gas result.
When u is less than about 1.8 GeV, the EOS of Fraga,
Pisarski, and Schaffner-Bielich and our EOSs begin to
show appreciable difference: the pressure density given
in our EOSs is much lower than that given in the EOS of

12 — T T T T T T T T
f
10 ree gas
08 - T P
& o6l
e i —— EOS(18): 2CC
= EOS(18): 1R1CC
o o4 -
EOS(18): 3
——————— EOS(22): |nc|ud|ngterms 1
0.2 to order ~o, E
EOS(22): including terms 1
0.0 f to order~o<§ 1
.02 1 N 1 N 1 . 1 N 1 N
0.5 1.0 1.5 20 25 30
1 (Gev)

FIG. 4 (color online). The pressure, relative to the free quark
gas pressure Pge. = N.N,;u*/(127%), in our EOS (18) and the
EOS (22) of Fraga, Pisarski, and Schaffner-Bielich.
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Fraga, Pisarski, and Schaffner-Bielich. Here we note that
the form of our EOS depends strongly on the model quark
propagator at zero w one chooses. The parameters of the
model quark propagator (9) are determined by numerical
fitting [25] and there exist some arbitrariness in this pro-
cess. In further researches we will apply our EOS to the
study of the neutron star and we hope that by comparing
theoretical results with observational results of the neutron
star we can have further constraints to the parameters of
our model quark propagator.

To summarize, in the study of strongly interacting matter
at finite temperature and/or finite density, the knowledge of
the partition function of QCD determines all the thermo-
dynamic properties of the system. In this paper, we try to
give a direct method for calculating the partition function,
and hence the EOS of QCD at finite chemical potential and
zero temperature. In this method the quark-number density
p(w) is expressed in terms of the dressed quark propagator
at finite chemical potential G[u](p), and the pressure
density P(u) is given by the integration of p(w) plus an
additive constant, whose physical meaning is the pressure
density at zero chemical potential P(u)| u=0- Because of
the difficulty of calculating G[u](p) and P(u)|,—o from
first principles of QCD, one has to resort to nonperturbative
QCD models when applying our method. In this paper we
adopt one nonperturbative QCD model, the rainbow-ladder
approximation of the Dyson-Schwinger approach. In order
to obtain an EOS with explicit analytical form, we choose
the meromorphic model quark propagator proposed in

PHYSICAL REVIEW D 78, 054001 (2008)

Ref. [25]. Using the general result proved in the framework
of the rainbow-ladder approximation of the DS approach in
Refs. [17,18], G[ u](p) is obtained from this model quark
propagator. From this the quark-number density p(u) is
calculated, which is found to differ significantly from the
Fermi distribution of free quark theory. Physically this is a
consequence of dynamical chiral symmetry breaking and
confinement in the low energy region. It is found that when
M is below a critical value g (g = 351 MeV, 377 MeV,
and 341 MeV for the 2CC, IRICC, and 3R parametriza-
tion, respectively), the quark-number density vanishes
identically. This feature agrees with the general conclusion
in Ref. [27]. The value wu obtained here is almost of the
same order of magnitude as the estimate made in [27]
(307 MeV). The constant P(u)|,— is also self-
consistently calculated using the rainbow-ladder approxi-
mation of the DS approach. From these the full analytic
expression of the EOS of QCD at finite p and zero T is
obtained (apart from the constant term P(u)|,—o which
can in principle be calculated from the CJT effective
action). A comparison between our EOS and one promi-
nent example of the EOS of QCD, the cold, perturbative
EOS of QCD proposed by Fraga, Pisarski, and Schaffner-
Bielich in [30] is made.
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