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The decay � ! ���� is analyzed using different methods to account for the resonance structure,

which is usually ascribed to the a1. One scenario is based on the recently developed techniques to generate

axial-vector resonances dynamically, whereas in a second calculation the a1 is introduced as an explicit

resonance. We investigate the influence of different assumptions on the result. In the molecule scenario the

spectral function is described surprisingly well by adjusting only one free parameter. This result can be

systematically improved by adding higher-order corrections to the iterated Weinberg-Tomozawa inter-

action. Treating the a1 as an explicit resonance on the other hand leads to peculiar properties.
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I. INTRODUCTION

The constituent quark model [1–3] has been very suc-
cessful in describing part of the observed hadron spectrum,
especially for the heavy-quark systems, e.g. charmonia and
bottomonia [4]. On the other hand, especially in the light-
quark sector, there is still a lively debate about the nature of
many hadronic states. One sector with a lot of activity is,
for example, the light scalar meson sector [�, a0ð980Þ,
f0ð980Þ, �ð900Þ]. These states cannot be explained within
the naive constituent quark model, and many models have
been proposed to explain the phenomenology of these
resonances. The suggestions for the nature of these reso-
nances vary between q �q states, multiquark states, K �K
bound states, and superpositions of them (see e.g. [1,5,6]
and references therein). A different route to explain the
low-lying scalars has been taken in [7,8] (see also refer-
ences therein). In these works the authors explain the states
as being dynamically generated by the interactions of the
pseudoscalar mesons. The scattering amplitudes are calcu-
lated by iterating the lowest-order amplitudes of chiral
perturbation theory (CHPT) [9–11], which leads to a uni-
tarization of the amplitudes and creates poles which can be
associated with the scalars.

A similar question about the nature of hadronic reso-
nances one encounters in the baryon sector, where the
quark model also has trouble to describe the baryon ex-
citations and their properties in a satisfying way (see e.g.
[12,13] and references therein). As in the scalar case, an
alternative approach to explain the resonance structure has
been to generate resonances by iterating the leading-order
interactions of a chiral effective theory. The pioneering
work in that direction has been done in [14,15] and was
followed by many other works [16–20], which suggest a
number of JP ¼ 1�

2 baryon resonances to be generated

dynamically by the interactions of Goldstone bosons and
baryons, e.g.�ð1405Þ andN�ð1535Þ (see also [21,22]). It is
interesting to note that recent studies [23] find another
interpretation of the same results. According to [23] the

N�ð1535Þ also requires a genuine quark component in
addition to an important contribution from dynamical gen-
eration. Studying the interaction of the pseudoscalar me-
sons with the decuplet of baryons [24,25] also led to the
generation of many known JP ¼ 3�

2 resonances, as e.g. the

�ð1520Þ.
Recent works applied the approach to the interactions of

the octet of Goldstone bosons with the nonet of vector
mesons focusing on the JP ¼ 1þ sector [26,27]. The au-
thors calculate the scattering amplitude by solving a Bethe-
Salpeter equation with a kernel fixed by the lowest-order
interaction of a chiral expansion. The leading-order ex-
pression for the scattering of Goldstone bosons off vector
mesons in a chiral framework is given by the Weinberg-
Tomozawa (WT) term [28,29] and leads to a parameter free
interaction. The only free parameter in the calculation
enters through the regularization of the loop integral in
the Bethe-Salpeter equation. Poles have been found, which
have been attributed to the axial-vector mesons.
A comparison of the pole position and width is neces-

sarily indirect and depends on the model, which is used to
extract these quantities from the actual observables. In
addition, the height of the scattering amplitude, or in other
words the strength of the interaction, is not tested in this
way. In the following we apply the method of dynamical
generation directly to a physical process, namely, the �
decay. The � decay offers a clean probe to study the
hadronic interactions since the weak interaction part is
well understood and can be cleanly separated from the
hadronic part, which we are interested in. The � decay
into three pions is dominated by a resonance structure,
which is usually ascribed to the a1 (see [1] and references
therein). Many of the references in [1] are based upon a
parametrization in terms of Breit-Wigner functions, which
leads to model dependent results. The relation of our
calculation to some more microscopic descriptions
[30,31] is discussed below.
We calculate the � decay in two different ways: We first

calculate it by assuming that the a1 is generated dynami-
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cally and use the method from [26,27] to describe the
decay (‘‘molecule scenario’’). This means that in this
framework the � decay is essentially described as follows:
From the weak interactions a pair of mesons emerges (one
pseudoscalar meson, one vector meson). Their final state
interaction produces the resonant a1 structure. This process
is depicted in Fig. 1(a), where the blob stands for the
iterated loop diagrams. There are at most two free parame-
ters in that calculation (in the simplest scenario only one),
which enter in the renormalization of the divergent loop
integrals. All other parameters are fixed by chiral symme-
try breaking and the properties of the �. In a second
calculation, we introduce the a1 explicitly. Here the idea
is that the a1 is a quark-antiquark state. At the hadronic
level this substructure is not resolved and the a1 should be
included as an elementary field. A similar approach using
chiral effective field theory including elementary vector
mesons and axial-vector mesons has been performed in
[30] (see also [32]). This method yields a good description
of the spectral function for the decay into three pions.
However, the width of the a1 in [30] has been parame-
trized, whereas we generate the width by the a1 decay into
Goldstone bosons and vector mesons. In [31] the authors
successfully describe the spectral function for the decay
�� ! 2�0��� in the framework of the linear �-model.
The width of the a1 in this model is generated from the
elementary decays of the a1.

Nonetheless, there is still a fundamental difference be-
tween the approach we suggest in the present paper and the
works [30,31]: Also for our second calculation with an
elementary a1 we still include the WT term. Here one
might worry about double counting: As we will see below,
the WT term alone is actually sufficient to generate a
resonant structure. Therefore, one reasonable point of
view for the construction of a truly effective field theory
is to include this dynamically generated resonance as an
explicit degree of freedom. In such an effective field theory
it would be double counting to iterate the WT term in
addition to the explicitly incorporated resonance. In that
sense one might ask: Are the models [30,31] just effective
Lagrangians in the sense that they include resonances as
effective degrees of freedom, no matter what the nature of
these resonances is? Or do these models include some

more QCD based information? An important tool is the
large-Nc approximation to QCD where Nc denotes the
number of colors. Since interactions between hadrons de-
crease when the number of colors is increased, hadron
molecules dissolve in the large-Nc limit while quark-
antiquark states become absolutely stable. The chiral reso-
nance theory used in [30] is actually based on large-Nc

considerations as spelled out e.g. in [33]. Hence the a1 field
used in [30] is supposed to be a quark-antiquark state. The
Weinberg-Tomozawa interaction between pseudoscalar
and vector mesons (and especially its iteration) is com-
pletely distinct from the elementary a1 field. Both the
large-Nc counting is different and the chiral counting.
Reference [31] deals with a linear sigma model where
the a1 and the � are introduced as chiral partners. This
implies that the nature of the two resonances is the same.
Thus, if the a1 was a �� molecule, then the � would be a
�� molecule. Such a scenario was checked in [8]. Using
the same arguments as in [23], it was found that the � is a
preformed state and not a hadron molecule. We conclude
that the models [30,31] deal with a preformed a1 resonance
state and not with parametrizations of resonances irrespec-
tive of their nature. The question we address in the present
work is to ask about the nature/origin of the axial-vector
meson. We want to know whether it is purely formed by an
attractive interaction between hadrons or whether it is a
preformed state (e.g. quark-antiquark state) with some
residual interaction between its decay products. The latter
is again described by the WT term and its iteration is not
double counting—provided one uses a proper renormal-
ization procedure. This issue is discussed in [23] and we
will elaborate further on this below.
Including an elementary a1, the essential additional

diagram is shown in Fig. 1(b), where the blob again rep-
resents the iterated loop diagrams, but that time the kernel
also includes the a1 interaction, which is discussed in detail
in Sec. V. Having both calculations at hand—one with and
one without an elementary a1—we can compare both to
experiment and see which scenario is favored by the data.
Since there exist excellent data for the � decay [34], one
can expect that the results will be quite decisive. In case
that the first scenario is favored by experiment, this would
be a sign that the a1 is a dynamically generated resonance

FIG. 1. (a) Basic diagram describing the dynamically generated a1 in the � decay and (b) additional diagram, when the a1 is included
explicitly. � and V are the intermediate pseudoscalar and vector meson, respectively, which can be either �� or KK�.

M. WAGNER AND S. LEUPOLD PHYSICAL REVIEW D 78, 053001 (2008)

053001-2



(molecule state) and in case the second calculation is
favored, this would be a hint that the a1 is a quark-
antiquark state. Some of the results of these calculations
have already been shown in [35]. In the present paper we
present much more details of the calculations and show
additional results, as, for example, the investigation of
Dalitz plot projection data from [36] within the molecule
scenario.

The a1 is especially interesting, since it is considered to
be the chiral partner of the � [11,37]. One expects a chiral
partner for every particle from chiral symmetry. Because of
the spontaneous symmetry breaking, one does not find
degenerate one-particle states with the right quantum num-
bers. Nevertheless, the chiral partners have to exist, not
necessarily as one-particle states, but at least as multi-
particle states. Unmasking the a1 as a bound state of a
vector meson with a Goldstone boson would therefore
approve its role of the chiral partner and disapprove its
existence as a one-particle state. In the meson-meson and
meson-baryon scattering examples, mentioned before, one
can also see that some of the dynamically generated reso-
nances would qualify as the chiral partners of the scattered
particles, although the question of the chiral partner for
these particles is not as clear as for the a1 and the �. Even
for the chiral partner of the � a different suggestion besides
the a1 exists, namely, the b1ð1235Þ [38].

The work is structured as follows: We first discuss the
general framework of our calculations in Sec. II, and we
write down the relevant interaction terms, which we will
need during the calculation. In Sec. III we discuss the
general strategy for the inclusion of rescattering effects.
Next we describe the unitarization procedure to account for
the final state correlations in Sec. IV. In Sec. V we calculate
the matrix elements for the � decay in the different scenar-
ios. Afterwards in Sec. VI we compare our results to
experiment and in Sec. VII we give a summary and an
outlook. Further details on the formalism can be found in
the appendix.

II. CHIRAL INTERACTIONS AT TREE LEVEL

The low-energy dynamics of the Goldstone bosons is
described by chiral perturbation theory (CHPT) [9–11]. To
lowest order the Lagrangian reads

L 2 ¼ F2
0

4
Tr½D�UðD�UÞy� þ F2

0

4
Tr½	Uy þU	y� (1)

with

U ¼ ei�=F0 ; 	 ¼ 2B0ðsþ ipÞ; (2)

where

� ¼
�0 þ 1ffiffi

3
p 


ffiffiffi
2

p
�þ ffiffiffi

2
p

Kþffiffiffi
2

p
�� ��0 þ 1ffiffi

3
p 


ffiffiffi
2

p
K0ffiffiffi

2
p

K� ffiffiffi
2

p
�K0 � 2ffiffi

3
p 


0
BB@

1
CCA (3)

and the covariant derivative

D�U ¼ @�U� ir�Uþ iUl�: (4)

r�, l�, s, and p are external fields, which promote the

global SUð3Þ � SUð3Þ symmetry to a local one. The inter-
action of the weak gauge boson with the Goldstone bosons
can be determined by setting (see e.g. [11])

r� ¼ 0; l� ¼ � gffiffiffi
2

p ðWþ
�Tþ þ H:c:Þ; (5)

where H.c. refers to the Hermitian conjugate and

Tþ ¼
0 Vud Vus

0 0 0
0 0 0

0
@

1
A: (6)

The scalar field s incorporates the explicit chiral symmetry
breaking through the quark mass matrix. In the following it
is sufficient to use s ¼ diagðmu;md;msÞ, F0 is the pion
decay constant in the chiral limit and B0 parametrizes the
connection between the quark masses and the Goldstone
boson masses. Following [26] we use F0 ¼ 90 MeV
throughout this work.
The Lagrangian equation (1) contains the direct cou-

pling of the weak current to three pions, which describe the
� decay at very low energies [39]. At higher energies,
however, the � decay is dominated by resonances, most
notably the vector mesons. In the molecule scenario we
assume that the process is driven by the decay into
Goldstone boson and vector meson. The structure, which
is usually attributed to the a1, is generated by the strong
final state interactions of the Goldstone bosons and the
vector mesons. This means that we need the interactions of
the vector mesons with the Goldstone bosons and with the
W boson.

A. Vector-meson couplings

Several models have been proposed to introduce the
vector mesons in the chiral Lagrangian, e.g. the Hidden
Symmetry approach [40] or the Weinberg-Callan-
Coleman-Wess-Zumino (WCCWZ) [41–43] scheme.
Most of them were motivated by the phenomenological
successful ideas of vector-meson dominance and universal
coupling. We will use the WCCWZ scheme, where these
features are implemented by putting constraints on the
couplings. Besides the choice of the scheme to introduce
the vector mesons, one also needs to choose the interpolat-
ing fields for the vector mesons. Instead of describing the
particles in terms of four-vectors, the vector mesons can
also be represented by antisymmetric tensor fields [33,44].
The approaches are of course equivalent since the choice of
fields can not influence the physics. However, due to the
truncation in momentum the two descriptions can differ by
higher-order contact terms (see e.g. [44,45]), which espe-
cially influence the behavior at higher energies. In this
work we use the WCCWZ scheme and describe the vector
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mesons by vector fields. In addition, we include contact
terms to improve the high-energy behavior. The octet of
vector mesons is given by

V� ¼
�0
� þ!8

�=
ffiffiffi
3

p ffiffiffi
2

p
�þ
�

ffiffiffi
2

p
Kþ

�ffiffiffi
2

p
��
� ��0

� þ!8
�=

ffiffiffi
3

p ffiffiffi
2

p
K0

�ffiffiffi
2

p
K�

�

ffiffiffi
2

p
�K0
� �2!8

�=
ffiffiffi
3

p

0
B@

1
CA:
(7)

!8
� is an admixture of the physical states !� and �� (for

details see e.g. [1]). We do not care about the details of this
mixing, since these states do not contribute to our
calculation.

One can define a convenient representation by introduc-
ing the auxiliary quantity u, which is the square root of U
[11]

u2 ¼ U: (8)

The transformation on U under the chiral group induces a
transformation on u, which is given by

u ! u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RULy

p
� RUK�1ðL; R;UÞ: (9)

The transformation of the vector fields under the chiral
group in terms of K is given by

V� ! V 0
� ¼ KðL; R;UÞV�K

yðL; R;UÞ: (10)

The SU(3) matrix K carries the SUð3ÞL � SUð3ÞR trans-
formation in a nonlinear way. The covariant derivative is
defined for any object X, which transforms as V�

r�X ¼ @�Xþ ½��; X�;
�� ¼ 1

2ðuyð@� � ir�Þuþ uð@� � il�ÞuyÞÞ:
(11)

In the following we also need V��, the field strength tensor

of the vector mesons, which is given by

V�� ¼ r�V� �r�V�: (12)

Using vector fields in the above representation the already
mentioned WT term is contained in the kinetic part of the
Lagrangian. Together with the remaining relevant cou-
plings of the vector mesons to lowest order [44], one is
led to the following interaction terms

L vec ¼ � 1

2
Tr½½V�; @�V����� � fV

4
Tr½V��f

��
þ �

� igV
4

Tr½V��½u�; u���; (13)

with

u� ¼ i½uyð@� � ir�Þu� uð@� � il�Þuy�;
and

f��
� ¼ uF��

L uy � uyF��
R u;

where F��
L=R are the field strength tensors of the external

left- and right-handed vector fields

F
��
L ¼ @�l� � @�l� � i½l�; l��;

F��
R ¼ @�r� � @�r� � i½r�; r��: (14)

The first term in Eq. (13) is the WT term, which is pa-
rameter free. In a heavy-vector formalism [26,46] it is the
only term of orderOðq1Þ, where q is the momentum of the
Goldstone bosons in a chiral counting. In this counting, we
followed [26,27] and treated the � as a heavy state.
Consequently derivatives acting on the vector meson are
not treated as soft. Only then the Weinberg-Tomozawa
interaction is the leading-order interaction, namely
Oðq1Þ. This is in contrast to the counting used, for ex-
ample, in [30], which is guided by the contact to low-
energy pure CHPT, i.e. they want a counting which con-
nects to CHPTonce the vector and axial-vector mesons are
integrated out. This is formally achieved by counting all
derivatives as soft and the tensor fields for vectors and
axial-vectors as Oðq2Þ.
The Lagrangian in Eq. (13) has already been written

down in [44]. We note that the definition of V� in [44]

differs from our definition by a factor of
ffiffiffi
2

p
, which yields

different coefficients in front of our terms. The two pa-
rameters fV , gV can be determined from the decay of the �
into dileptons and two pions, respectively [44], which
yields

fV ¼ 0:154 GeV

M�

; gV ¼ 0:069 GeV

M�

: (15)

In [44] the authors also give a theoretical estimate for these
parameters, which yields

fV ¼
ffiffiffi
2

p
F0

M�

� 0:127 GeV

M�

;

gV ¼ F0ffiffiffi
2

p
M�

� 0:064 GeV

M�

:

(16)

These values slightly differ from the experimental values,
and in Sec. VI we will study the influence of this differ-
ence. It will turn out that the experimentally measured
values Eq. (15) describe the data best.
Transforming the vector-field Lagrangian equation (13)

into a Lagrangian employing tensor fields, one finds that
one can account for the difference resulting from the
choice of fields by adding the following term (see e.g.
[44,45,47,48])

L ho ¼ �2Tr½j��j
��� (17)

with

j�� ¼ � fV
4
f��
þ � igV

4
½u�; u��:

Thus, the entire Lagrangian we use is
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L ¼ L2 þLvec þLho: (18)

We will study the importance of Lho below in Sec. VI.

B. Axial-vector meson couplings

In the second scenario, where we introduce the a1 ex-
plicitly, we also need to add the coupling of the axial-
vector mesons to the Lagrangian. The nonet of axial-vector
mesons A� is given by [27]

A� ¼
a01 þ f1ð1285Þ

ffiffiffi
2

p
aþ1

ffiffiffi
2

p
Kþ

1Affiffiffi
2

p
a�1 �a01 þ f1ð1285Þ

ffiffiffi
2

p
K0

1Affiffiffi
2

p
K�

1A

ffiffiffi
2

p
K0

1A

ffiffiffi
2

p
f1ð1420Þ

0
B@

1
CA

�

:

(19)

The additional Lagrangian we are going to use to describe
the interactions of the a1 is

L axial ¼ � fA
4

Tr½A��f
��� � þ ic1 Tr½V��½A�; u���

þ ic2 Tr½A��½V�; u���; (20)

where the first term incorporates the coupling of the a1 to
the W and the last two terms describe the decay of the a1
into Goldstone boson and vector meson with the unknown
constants c1 and c2. The first term has again already been
written down in [44], whereas one can find different ap-
proaches in the literature in order to describe the a1 decay
vertex. In [49] the authors propose a phenomenological
Lagrangian in terms of tensor fields, which is successful in
reproducing the decay branching ratios. In [50] the hidden
symmetry formalism was used to derive the pertinent
terms, which yields the same results as the phenomeno-
logical approach. Comparing the vertex resulting from the
Lagrangian above to these works, we find agreement by
choosing

c1 ¼ �1
4; c2 ¼ �1

8: (21)

Below we will also study variations of c1 and c2 around
these values. Looking at Eq. (20) we see that both terms
describing the decay into the vector and pseudoscalar
meson contain one u�. This means that integrating out
the axial-vector fields would generate to lowest order an
interaction term of vector mesons and Goldstone bosons,
which contains two u� and therefore leads to an expression
of order Oðq2Þ (here we still count only derivatives on the
Goldstone boson fields as small). Since the WT term is
Oðq1Þ including both interactions is not double counting—
provided one uses a proper renormalization scheme, which
will be explained further below in Sec. IV. This will be an
important aspect for our results.

III. � DECAY

The purpose of the present section is to point out our
strategy to calculate the decay � ! �����. One cannot

expect chiral perturbation theory to describe the � decay in
the whole energy region (see [39] for pure CHPT calcu-
lations), since the energies, which are involved are beyond
1 GeVand the decay is dominated by resonance structures.
Including vector mesons at tree level in the calculation will
certainly improve the calculation, but still one cannot
expect to find a satisfying description of the data due to
the strong correlations in the final state. In particular, the
vector mesons at tree level cannot produce an axial-vector
resonance. In Fig. 2 we see the spectral function calculated
in lowest-order CHPT and by including vector mesons in
comparison to data. The lowest-order CHPT calculation
using the Lagrangian equation (1) (cf. Fig. 3(a) and 3(b)]
can only describe the lowest data points, which are far
below the �� threshold. The onset of the rise in the region
0:5–0:7 GeV2 is described much better if one includes the
tree-level vector-meson diagrams Fig. 3(c) and 3(d).
Nonetheless, the main bump in the data at about
1:5 GeV2 is clearly out of reach. (For the scenario where
we include an elementary a1 there is a third tree-level
diagram depicted in Fig. 3(h).)
Thus, in addition to the tree-level diagrams we account

for rescattering. There are different situations where re-
scattering might appear:
(1) One possibility is to modify the three-pion channel

[Fig. 3(a) and 3(b)] and to include �� correlations
as, for example, in Fig. 4. Possibly interesting here is
the occurrence of the � in the scalar channel, which
we, however, do not expect to be important.
Although [36] finds a noteworthy contribution
from this channel, our investigation of the Dalitz
plots in Sec. VID will not show a significant sign of

 0
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 0  0.5  1  1.5  2  2.5  3

a1

s[GeV2]

lowest order CHPT
inc. vector mesons

data

FIG. 2 (color online). Spectral function for the decay �� !
2�0��� without including rescattering diagrams in comparison
to data from [34]. The lowest-order CHPT calculation corre-
sponds to the diagrams Fig. 3(a) and 3(b) and the second curve
(‘‘inc. vector mesons’’) additionally includes the diagrams Fig. 3
(c) and 3(d).
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the �. As we will see later in Sec. VI, this missing
�-channel might be part of the reason for the small
quantitative deviations from the data at lower ener-
gies, but it does not influence the qualitative
features.
In the vector channel the � might appear, which
might lead to a modification of the W�� vertex.
Nonetheless, this modification is expected to be less

important since already the tree-level contribution
(cf. Fig. 2) plays only a minor part in comparison to
the contribution including vector mesons.

(2) In line with the above reasoning, the process we
treat explicitly is the coupled-channel dynamics of
the �� state (cf. Fig. 3(e)–3(g)]. That point of view
is suggested by the improvement when we include
the � in the calculation and the height of the ampli-
tude, which we can see in Fig. 2. Details on the
description of the dynamics in this channel are given
in Sec. IV.

(3) Another rescattering might be introduced for the
pions which emerge from the �. The Lagrangian
equations (18) and (20) contribute for instance the
following vertices, which define a coupled-channel
problem: ����, ���, ��a1, ����, a1a1��.
However, the vector-isovector channel is well
known phenomenologically. It is dominated by the
elastic process �� ! �� mediated by an inter-
mediate s-channel �-meson, i.e. by the formation

FIG. 3. Relevant diagrams for the decay �� ! 2�0��� including the explicit a1.� and V correspond to the intermediate Goldstone
boson and vector meson (�� or KK�). The blob represents the final state interactions obtained from the solution of the Bethe-Salpeter
equation (see Fig. 5).

FIG. 4. Diagram describing pion correlations, which we do not
include in our calculation. The blob denotes the final state
interactions of the pions.
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and decay of the �. Thus, we disregard the coupled-
channel problem and use the established properties
of the � at this point, i.e. we include the coupling of
the � to two pions and the width of the � on a
phenomenological level by utilizing a Dyson-
Schwinger equation for the �-meson instead of a
Bethe-Salpeter equation for the coupled channels
ð��;�a1; ��; . . .Þ. The result for the whole
�-decay considering a stable �� final state in
Sec. VI will also show that the contribution from
the final decay does not alter the results qualita-
tively. Thus, in order to be able to focus on the
nature of the a1, we keep the treatment of the �
meson as simple as possible. A more complicated
treatment would not lead to additional insights in
this case.

IV. UNITARIZATION PROCEDURE

Unitarization methods have been used to extend the
applicability of the chiral Lagrangians to higher energies,
e.g. the N=D method [8], the inverse amplitude method
[51], or partial summations using the Bethe-Salpeter equa-
tion [26,27]. In [8] it was shown that the N=D method is
equivalent to a summation of diagrams using the Bethe-
Salpeter equation with the kernel taken on shell. We follow
the work in [26,27] and use the Bethe-Salpeter equation to
describe the final state interactions between vector and
pseudoscalar mesons. In the molecule scenario this serves
to generate the axial-vector mesons dynamically. In the
scenario with the explicit a1 the width of the latter is
generated. The iteration (of a point interaction) is shown
diagrammatically in Fig. 5. In case we are not including the
a1 explicitly, we will use the amplitudes from [26,27], i.e.
the iterated WT interaction, in order to describe the final
state correlations of the vector meson and the Goldstone
boson. In the scenario, where we explicitly take into ac-
count the a1, we include, in addition to the WT term, the a1
interaction (cf. Fig. 6). This in principle generates the
width of the a1 by the decay into vector meson and
Goldstone boson with the WT term as correction.

Concerning the choice for the kernel in the case that we
include the a1 explicitly, we note the following. The kernel
of the Bethe-Salpeter equation can consist of parts, which
are analytic in the energy region one is interested in, and
parts which are nonanalytic. The nonanalytic parts are
possible s-channel resonances, which have a pole in the
physical region. The analytic part consists of contact terms,

as well as t- and u-channel processes, since they do not
have any singularities in the physical energy region. The
analytic parts can be expanded in powers of the momenta
of the involved particles (and in powers of the Goldstone
boson masses). This leads to contact terms, which can
equivalently and systematically be expressed in terms of
a chiral Lagrangian. The approach we take is to consider
the relevant s-channel resonances in the kernel and keep
contact terms up to a specific order. This approximation is a
model assumption, and it is not guaranteed that it works for
the quite large energy region we are interested in. However,
it is certainly worthwhile to study its properties. Following
this strategy, one has to avoid double counting between the
s-channel processes and the contact terms, since for s <
m2

res these s-channel resonance terms can also contribute to
the analytic part. Restricting the contact terms to the WT
term, there is no problem at first place, since the WT term
contributes at OðqÞ and the elementary a1 at Oðq2Þ.
Nonetheless, since the iterated interaction has to be regu-
larized, a partial double counting might enter through the
renormalization procedure [23]. Thus, the WT term and its
iteration should be taken into account, but one has to be
careful with choosing the renormalization point. However,
in case the renormalization procedure introduces a partial
double counting, this can be compensated by adjusting the
strength of the coupling of the a1 to its decay channels. The
focus in discussing the results will therefore be on the
interplay between the a1 and the WT term. To summarize
the discussion on potential double counting related to the
renormalization: In the scenario, where an elementary a1 is
included, different renormalization points can be compen-
sated by the choice of coupling constants. In contrast,
much more care is needed for the case of a purely dynami-
cally generated state. Here we follow the suggestion of
[23,26] which avoids the problem that an incorrectly
chosen renormalization point hides the presence of a pre-
formed state.
In order to check the systematics of our model, we will

also study the influence of keeping contact terms up to
orderOðq2Þ instead ofOðqÞ in the scenario without explicit
a1. This power counting is well defined in a heavy-vector
formalism [26,46]. As soon as the vector mesons are
allowed to decay and therefore the number of vector me-
sons changes, this power counting cannot be applied any-
more. This leads to possible concerns about the ���
vertex. However, this decay and also the width of the vector
mesons are phenomenologically well known and we use

FIG. 5. Iteration of loop diagrams, corresponding to the approximation to the Bethe-Salpeter equation by using the WT term as
kernel. Full lines denote vector mesons, dashed lines Goldstone bosons.
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this knowledge. Thus, we apply a strict power counting to
the kernel and put the decay of the vector mesons phenom-
enologically on top. We will see in Sec. VI that this treat-
ment is reasonable since the decay of the vector mesons
does not influence the results qualitatively.

We will briefly summarize the formalism, which we
employ to iterate the respective kernels, which basically
follows the same lines as in [26]. The Bethe-Salpeter
equation for the coupled-channel problem is

Tab
��ð �q; q; wÞ ¼ Kab

��ð �q; q; wÞ þ
X
c;d

Z d4l

ð2�Þ4 K
ad
��ð �q; l; wÞ

�G��
dc ðl; wÞTcb

��ðl; q; wÞ; (22)

where T is the scattering amplitude, K the kernel, q ( �q) is
the incoming (outgoing) momentum of the Goldstone bo-
son, w the total four momentum, and

Gcd
�� ¼ i

ðw� lÞ2 �m2
� þ i

g�� � l�l�
M2

V

l2 �M2
V þ i

�cd (23)

is the two-particle propagator. The indices a, b, c, d
indicate the channel, which in our case can be either ��
or KK�. The indices are chosen such that Tab

�� denotes the

scattering of ðb; �Þ ! ða;�Þ.
We will solve the Bethe-Salpeter equation by employing

an expansion in helicity amplitudes as follows:

K
��
ab ðq; �q;wÞ ¼

X
J;M;P;i;j

VðJMPÞ
abij ðsÞY��ðJMPÞ

ij ðq; �q;wÞ; (24)

T��
ab ðq; �q; wÞ ¼

X
J;M;P;i;j

MðJMPÞ
abij ðsÞY��ðJMPÞ

ij ðq; �q; wÞ; (25)

where s ¼ w2 is the invariant mass of the hadronic final
state. The indices i, j correspond to the helicities and can

be either 0 or 1 in our calculation. The objects Y
��ðJMPÞ
ij are

similar to the projectors in [26] and are discussed in
Appendix A. In order to arrive at an expansion with co-
efficients which only depend on s, one has to take the
amplitudes on shell. This has been discussed in several
works and we refer to [7,26,27] for a justification.

In [26] the authors were concerned that the projectors
are not analytic outside the center-of-mass system (CMS)
and therefore performed a transformation to covariant
projectors, which mix different helicities. We will not do

that transformation since we only work in the CMS and
without this transformation it will be easier to connect to
states with definite angular momentum (see Appendix B).
The projectors fulfil the following orthogonality relation:

Z d4l

ð2�Þ4 Y
JMP
�1�2��ð �q; l; wÞG��ðl; wÞYJ0M0P0

�3�4��
ðl; q; wÞ

¼ ��2�3
�PP0�JJ0�MM0YJMP

�1�4��ð �q; q; wÞð�I�VÞ; (26)

with the divergent loop integral

I�VðsÞ ¼
Z d4l

ð2�Þ4
i

ðw� lÞ2 �m2
� þ i

1

l2 �M2
V þ i

:

(27)

The relation only holds up to additional tadpoles, which are
dropped. Note that a similar renormalization scheme has
been used in [18,26,27] and has also been shown to be
consistent with chiral constraints in [18]. Using relation
equation (26) the Bethe-Salpeter equation turns into an
algebraic equation for the expansion coefficients

Mabij ¼ Vabij þ
X
c

X
k

VacikMcbkjð�I�VÞ: (28)

We introduce the renormalized quantity J�Vðs;�Þ
J�Vðs;�Þ ¼ I�VðsÞ � I�Vð�Þ; (29)

which depends on the subtraction point �. In order to
render Eq. (28) finite we substitute

I�VðsÞ ! J�Vðs;�1Þ; (30)

which introduces the a priori unknown parameter �1. It
remains to determine the coefficients Vcbik in order to
calculate the scattering amplitude. The relevant formulas
are given in Appendix A.
In order to be more explicit about the renormalization,

we want to discuss briefly the structure of the counterterms
at the one-loop level. For simplicity we only consider the
�� channel. The WT term iterated once reads

T1
�� ¼

Z d4l

ð2�Þ4
1

ðw� lÞ2 �M2
�

g�� � l�l�
M2

�

l2 �M2
�

� ð2w � l� l2 � 2l � �pþ 2w � �p� �p2Þ
� ð2w � p� p2 � 2p � lþ 2w � l� l2Þ: (31)

The expected power of this expression is Oðq3Þ, as has
been discussed, for example, in [52] or in the context of
baryon chiral effective theories also in [18,53,54].
However, as also discussed in the just mentioned works,
this counting requires additional subtractions. The loop
integral in Eq. (27) includes a heavy scale, which destroys
the matching between a loop expansion and an expansion
in momenta as in CHPT. Thus, depending on the subtrac-
tion point, the above expression might contribute already at
Oðq2Þ. We use the above integral as an example to show

FIG. 6. Kernel of the Bethe-Salpeter equation when including
the a1 explicitly; i.e. one has to replace the point interaction in
Fig. 5 by the two diagrams on the right-hand side.
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explicitly the structure of the subtractions in the present
case. Rewriting Eq. (31), we can see the order of the
expression

T1
�� ¼

Z d4l

ð2�Þ4
1

ðw� lÞ2 �M2
�

g�� � l�l�
M2

�

l2 �M2
�

� 4ðl�l� �q�q� þ l�ð �q�p � qþ q� �p � �qÞ
þ ðp � qÞð �p � �qÞÞ; (32)

where we neglected pion tadpoles (but keep vector-meson
tadpoles). The pion tadpoles do not inhabit a heavy scale
and therefore do not compromise the power counting. The
terms which appear in Eq. (32) are at least order Oðq2Þ
since each term carries at least two powers of the small
scale quantities q and/or �q. Since the loop integral in
Eq. (27) contributes at Oðq0Þ without additional subtrac-
tions [18,53,54], the overall order of the expression can be
(depending on the renormalization) Oðq2Þ. The terms at
Oðq2Þ have two structures [	 ðw � qÞðw � �qÞ and 	q � �q],
which also appear as independent structures in the Oðq2Þ
Lagrangian which will be introduced later in Eq. (82). In
the already mentioned works [18,53,54] it has been shown
that the additional subtractions, which have to be per-
formed, are analytic and thus the divergent terms at
Oðq2Þ and the additionally required finite subtractions
can be absorbed by the higher-order terms at Oðq2Þ. All

other counterterms taking care of the divergencies are at
least Oðq3Þ and originate from higher-order Lagrangians
[Oðq3Þ and more]. In Sec. VI we will see that the higher-
order terms indeed reduce the dependence on the subtrac-
tion point �1. Choosing the subtraction point simulates
part of the higher-order corrections and we only have to be
careful to which extent the iteration simulates an elemen-
tary a1. This question has been investigated in [23] and also
in [26]. Our choice of �1 ¼ M2

� corresponds to the sug-

gestion of these works.

V. CALCULATION OF THE � DECAY

In the present section we will present the formalism for
different scenarios. Results are postponed to Sec. VI.

A. The decay width

Since the weak decay vertex is common in all diagrams
(cf. Figs. 3 and 7 below), we can separate it from the
hadronic information by writing the invariant matrix ele-
ment as

iM ¼ CðsÞS�
�
g�� � w�w�

M2
W

�
W�; (33)

where we used the following abbreviations:

S� ¼ �vðp�Þ��ð1� �5Þuðp�Þ (34)

FIG. 7. Relevant diagrams for the decay �� ! 2�0��� without including the a1.� and V correspond to the intermediate Goldstone
boson and vector meson (�� or KK�). The blob represents the final state interactions obtained from the solution of the Bethe-Salpeter
equation (see Fig. 5).
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and

CðsÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GFM
2
Wffiffiffi

2
p

s �
1

s�M2
W

’ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GFffiffiffi
2

p
M2

W

s
¼ C: (35)

W� denotes the hadronic tensor, which we will calculate in
detail below. GF is the Fermi constant, which is connected

to the weak gauge coupling by GF ¼ g2

4
ffiffi
2

p
M2

W

. The decay

width is given by

d� ¼ ð2�Þ4
2M�

jMj2d�4; (36)

where d�4 is the four-body phase space. We define the
hadronic tensor

W�� �
Z
�3

W�
�W�d�3; (37)

which by Lorentz invariance must have the following
structure:

W��ðsÞ ¼ W1ðsÞ
�
g�� � w�w�

w2

�
þW2ðsÞw

�w�

w2
: (38)

Plugging Eq. (33) into Eq. (36) and expressing the width in
terms ofW1 andW2 we get for the differential decay width
for the process �� ! 2�0����

d�

ds
¼ �2

2M�s
jCj2ðM2

� � sÞ2
�
W2 �W1

�
1þ 2s

M2
�

��
: (39)

W1 and W2 can then be calculated from the following two
equations:

3W1ðsÞ þW2ðsÞ ¼
Z
�3

W� �Wd�3; (40)

W2ðsÞ ¼ 1

s

Z
�3

w �W�w �Wd�3: (41)

The factor of 1
2 taking care of the identical particles in the

final state has been introduced in Eq. (39), and thus it does
not appear in Eqs. (40) and (41). The longitudinal part W2

has no visible effect on the calculation, which was ex-
pected since it is proportional to m2

� as can be seen below.
Therefore, we will drop it from now on.

The quantity we compare most of our calculations with
is the spectral function a1ðsÞ for the decay � ! 2�0����.
The complete spectral function AðsÞ is defined by

AðsÞ ¼ � 2�

s
=�TðsÞ; (42)

with the hadronic vacuum polarization

��� ¼ �T

�
g�� �

w�w�

s

�
þ�L

w�w�

s
(43)

and

��� ¼ i
Z

d4xeiwxh0jTA�ðxÞA�ð0Þyj0i; (44)

where T is the time ordering symbol and A� is the charged
axial current

A� ¼ �u���5d: (45)

In terms of W1 the spectral function for the decay � !
2�0���� is given by

a1ðsÞ ¼ � 26�5

g2V2
uds

W1: (46)

B. Calculation of � decay without a1

In Fig. 7 we see the processes which we take into
account. The diagrams Fig. 7(a) and 7(b) are the lowest-
order CHPT processes, Fig. 7(c) and 7(d) are the tree-level
processes including vector mesons, and the diagrams Fig. 7
(e) and 7(f) describe the rescattering. W� from Eq. (33) is

split into these contributions

W� ¼ W
�
3� þW

�
vec þW

�
�� þW

�
KK� ; (47)

where W
�
3� corresponds to the processes in Fig. 7(a) and 7

(b), W
�
vec to the diagrams Fig. 7(c) and 7(d), and W

�
�V to

Fig. 7(e) and 7(f). The first two functions are given by

W�
3� ¼ �

�
g�� � w�w�

w2

�
gVud

F0

q2�

� gVud

F0

w�

s

m2
�

s�m2
�

�
1

2
s� ðq2 � wÞ

�
; (48)

W
�
vec ¼

�
g�� � w�w�

w2

�
gVudgV

F3
0

m2
12

m2
12 �M2

� ��

� ðfVðm2
12q2� � ðm12 � q2Þm12�Þ

þ ðfV � 2gVÞððm12 � q3Þq2� �m12�ðq3 � q2ÞÞÞ

þ w�

s

m2
�

s�m2
�

2gVudg
2
V

F3
0

� ððm12 � q3Þðw � q2Þ � ðw �m12Þðq3 � q2ÞÞ

� m2
12

m2
12 �M2

� ��
þ ðq1 $ q3Þ; (49)

where q1 and q3 are the momenta of the likewise non-
charged pions, q2 is the momentum of the charged pion,
w ¼ q1 þ q2 þ q3, mij ¼ qi þ qj, and the self-energy of

the vector mesons� is taken from [55]. ðq1 $ q3Þ denotes
the same amplitude with the pion momenta q1 and q3
exchanged, which arise due to the appearance of two
identical pions. The rescattering part is given by
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W
�
T ¼ W

�
�� þW

�
KK� ¼

�
g�� � w�w�

w2

�
bT

m2
12

m2
12 �M2

� ��

� ðq1 � q2Þ� þ ðq1 $ q3Þ; (50)

where the nontrivial information is contained in bT . W
T
�

contains an additional loop diagram, which needs to be
renormalized. As in the Bethe-Salpeter equation [26] we
also drop additional tadpoles here [7,18], which leads to

bT ¼ 3gVgVud

4F3
0

M1111J��ð�2Þ
�
ðfV � 2gVÞ 12 ðs�m2

� þM2
�Þ þ 2gV

�
2

3
M2

� þ 1

12s
ðm2

� �M2
� � sÞ2

��

� 3gVgVud

4
ffiffiffi
2

p
F3
0

M1211JKK� ð�2Þ
�
ðfV � 2gVÞ 12 ðs�m2

K þM2
K� Þ þ 2gV

�
2

3
M2

K� þ 1

12s
ðm2

K �M2
K� � sÞ2

��
: (51)

The expansion coefficients for the scattering amplitude
Mabij have been given in Sec. IV. We numbered the differ-
ent isospin channels, where the channel 1 corresponds to
�� and 2 denotes KK�. Thus, e.g. M1111 denotes the
amplitude for�� scattering with the helicity of the � equal
to 1 in the incoming and outgoing channel. We note that the
renormalized loop integral J�Vð�2Þ appearing in bT does
not have to depend on the same subtraction constant as the
loop integrals in the scattering amplitude. Therefore we
denote the subtraction constant of this loop with�2 and the
subtraction constant appearing in the scattering amplitude
with�1. We will discuss the appearance of two subtraction
constants and their relation in more detail later.

The scattering amplitude we used for this calculation
was already determined in [26,27] and in terms of the
expansion in the projectors from Appendix A we have

V1þ
ab11 ¼ gab; (52)

V1þ
ab01 ¼

!affiffiffi
2

p
MVa

gab; (53)

V1þ
ab10 ¼

!bffiffiffi
2

p
MVb

gab; (54)

V1þ
ab00 ¼

!a!b

2MVaMVb

gab � CWTabp
2
cma �p

2
cmb

6F2
0MVaMVb

(55)

with

gab ¼ CWTab

12F2
0

�
3s� ðM2

�a þM2
�b þM2

Va þM2
VbÞ

� 1

s
ðM2

Vb �M2
�bÞðM2

Va �M2
�aÞ

�
; (56)

!a ¼ 1

2
ffiffiffi
s

p ðsþM2
Va �M2

�aÞ; (57)

pcma ¼ 1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� ðMVa þM�aÞ2Þðs� ðMVa �M�aÞ2Þ

q
;

(58)

and

CWT ¼ 2 � ffiffiffi
2

p
� ffiffiffi

2
p

1

 !
: (59)

The scattering amplitude is then determined by Eq. (28).
The second term in Eq. (56) is in principle a higher-order
term and we neglect it for the moment. We explicitly
checked the influence of this term and there was no visible
difference in the results by including the term. With these
coefficients the lowest partial wave of the potential takes
an easy form

KJP¼1þ
�� ¼ gabY

1þ
11�� þ gab

!affiffiffi
2

p
MVa

Y1þ
01��

þ gab
!bffiffiffi
2

p
MVb

Y1þ
10�� þ gab

!a!b

2MVaMVb

Y1þ
00��

¼ � 3

2
gabL

1
�� ¼ �gab

3

2

�
g�� �

w�w�

w2

�
: (60)

1. Choice of interpolating fields

The matrix element above was calculated by using vec-
tor fields as interpolating fields for the vector mesons. In
order to improve the high-energy behavior we include
additional higher-order interactions, which account for
the difference in using vector fields or tensor fields [44].
The additional terms are contained in Eq. (17), which leads
to the following contribution:

iMho ¼ CS�

�
g�� � w�w�

M2
W

�
W3�ho

� ; (61)

with
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W
�
3�ho ¼ �

�
g�� � w�w�

s

��
gVudgV

F3
0

ðfV � 2gVÞðq2�ðm12 � q3Þ �m12�ðq2 � q3ÞÞ þ gVudgVfV
F3
0

ðm2
12q�2 �

m2
12

2
m12�Þ

�

� 2gVudg
2
V

F3
0

m2
�

sðs�m2
�Þ

w�ððw � q2Þðm12 � q3Þ � ðq2 � q3Þðw �m12ÞÞ þ ðq1 $ q3Þ; (62)

which is shown diagrammatically in Fig. 8. We will show
that the net effect of adding this contribution (in a re-
summed way) is the replacement

p2

p2 �M2
� ��

! M2
�

p2 �M2
� ��

(63)

inW�
vec [Eq. (49)]. At a first look, it seems like we actually

have to replace p2 ! M2
� þ�. In order to show the va-

lidity of Eq. (63), we look at the sum of diagrams building
up the full � propagator, which are shown in Fig. 9. So far
we have just included additionally the two diagrams, which
can be seen in Fig. 8. But looking at the sum in Fig. 9, it
would be reasonable to also include the sum of diagrams in
Fig. 10, which we call W�

sum. The central relation in this
problem is that the higher-order contact term is propor-
tional to the lowest-order diagram including the �, which is
stated more precisely in Fig. 11. This relation guarantees
that one can split off the ��� vertex in the higher-order
contact term in the same way as for the resonance diagram.
Thus, using the relation in Fig. 11, both sums together yield

W�
vec þW�

sum ¼ W�
vec

�
1� p2 �M2

�

p2

�
¼ W�

vec

M2
�

p2
; (64)

which leads exactly to the replacement advocated in
Eq. (63).

We omitted the diagrams with the� intermediate state in
the discussion (right diagram Fig. 8), since the arguments
follow exactly the same lines.

C. Calculation of � decay with explicit a1

Next we include the a1 explicitly. We introduce it as a
bare resonance and generate the width by summing up the
self-energy contributions from the decay of the a1 in
pseudoscalar and vector meson. This is automatically
achieved by using the Bethe-Salpeter equation. As already
mentioned in Sec. IV, we also consider the WT term.
Together with the arguments from Sec. III this leads to
the diagrams shown in Fig. 3. In comparison to Fig. 7, there
are two additional diagrams, where the W merges into the
a1. Furthermore the blobs indicating the resummation are
not the same as in the calculation before, since we add the
a1 interaction to the kernel. The additional process consid-
ered in the kernel is shown in Fig. 6, and it leads to the
following expression:

K��
a1 ¼ CWT

16

F2
0

1

s�M2
a1

�
g�� �

w�w�

M2
a1

�
�ðc1ðq�p� �p �qg��Þþ c2ðw�q� � q �wg��ÞÞ
� ðc1ð �q� �p� � �p � �qg��Þþ c2ðw� �q� � �q �wg��ÞÞ;

(65)

whereMa1 is the mass of the a1, which is considered to be a

free parameter. The expansion into projectors is given by

V1þ
ab11 ¼ �2

3F1ab þ gab; (66)

V1þ
ab21 ¼ � 2

3
ffiffiffi
2

p
MVa

ðF1ab!a � F3ab

ffiffiffi
s

p
p2
aÞ þ !affiffiffi

2
p

MVa

gab;

(67)

V1þ
ab12 ¼

2

3
ffiffiffi
2

p
MVb

ð�!bF1ab þ F4abp
2
b

ffiffiffi
s

p Þ þ !bffiffiffi
2

p
MVb

gab;

(68)

FIG. 8. Higher-order contribution to the decay �� ! 2�0���.
The blob with label ‘‘4’’ denotes contact interactions emerging
from Eq. (17). In a chiral counting these contact interactions are
of fourth order.

FIG. 9. Sum of diagrams, which build up the full � propagator.
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V1þ
ab22 ¼

1

3MVaMVb

�
�!a!bF1ab � sp2

bp
2
a

16CWTab

F2
0

� 1

s�M2
a1

þ F3ab!bp
2
a

ffiffiffi
s

p þ F4ab!ap
2
b

ffiffiffi
s

p �

þ !a!b

2MVaMVb

gab; (69)

with

F1 ¼ 16CWT

F2
0

1

s�M2
a1

ðc21ð �p � �qÞðp � qÞ þ c1c2ð �q � wÞ

� ðp � qÞ þ c1c2ð �p � �qÞðq � wÞ þ c22ð �q � wÞðq � wÞÞ;
(70)

F3 ¼ 16CWT

F2
0

1

s�M2
a1

ððc21 � c1c2Þp � q

þ ðc1c2 � c22Þq � wÞ; (71)

F4 ¼ 16CWT

F2
0

1

s�M2
a1

ððc21 � c1c2Þ �p � �q

þ ðc1c2 � c22Þ �q � wÞÞ: (72)

We recall that the coefficient CWT is a matrix due to the
coupled-channel structure of the problem. The indices a, b,
which were attached to the functions Fi in Eqs. (66)–(72)
correspond to the respective channels. We also note that the
Fi are the coefficients defined in Eq. (A3). The whole
matrix element can be written similar to Eq. (33)

iMa1 ¼ CS�

�
g�� � w�w�

M2
W

�
W�; (73)

but this time with

W� ¼ W
0��
� þW 0KK�

� þW3�
� þWvec

� þWtree
� þW

a1��
�

þWa1KK�
� : (74)

The last two terms correspond to the diagram in Fig. 3(g),

W tree
� to the process in Fig. 3(h), andW 0V�

� differ fromWV�
�

because of the different kernel. The sum of the modified
contributions leads to

WTa1
� � W

0��
� þW 0KK�

� þW tree
� þW

a1��
� þWa1KK�

�

¼
�
g�� � w�w�

w2

�
m2

12

m2
12 �M2

� ��

� ðq1 � q2Þ�ðA1L
��
1 þ A2L

��
3 Þ þ ðq1 $ q3Þ:

(75)

The tensors L��
1 and L��

3 are given by

L��
1 ¼ g�� � w�w�

s
; L��

3 ¼ w� �q� � w�w� �q � w
s

:

(76)

The coefficients Ai, which incorporate the nontrivial part,
are given in Appendix C. The rest of the calculation
follows the same lines as in the calculation before. We
only have to substitute W�

T with W�
Ta1 in the calculation of

W1. W2 does not change, because neither W
�
T nor W

�
Ta1

contribute to W2 and we leave it out again.
At the beginning of this section we used that the a1

vertex, which results from the Lagrangian Eq. (20), is
given by

���
a1 ¼ � 2

ffiffiffi
2

p
c�V

F0

c1ðq�p� � p � qg��Þ

� 2
ffiffiffi
2

p
c�V

F0

c2ðw�q� � w � qg��Þ: (77)

Using �ðpÞp� ¼ 0, s ¼ M2
a1 , M

2
a1 ¼ 2M2

�, and c1 ¼ 2c2
the vertex can be cast into a different form

�
��
a1 ¼ 2

ffiffiffi
2

p
c�V

F0

c2ð2q�p� � ð2p � qþ w � qÞg�� þ w�q�Þ

¼ 2
ffiffiffi
2

p
c�V

F0

c2ðw�p� � w � pg��Þ; (78)

which is the actual vertex, which is used in [49]. We see
that only with the simplifications above, the vertex of [49]
is the same as the one we use. These simplifications,
however, basically mean to put certain momenta on shell
and apply Weinberg’s relation between the � and a1 mass
[37], as well as a relation between c1 and c2, which are
anyway free parameters. We will discuss the influence of
the difference between Eqs. (77) and (78) in Sec. VIB.

D. Calculation of � decay including higher-order terms

This time we again assume that the a1 is generated
dynamically. In addition to the WT term, we consider
higher-order corrections to the kernel of the Bethe-
Salpeter equation. One part of the higher-order correction,
as the WT term itself, is contained in the kinetic part of the

FIG. 11. Relation between higher-order contact term and
lowest-order resonance diagram.

FIG. 10. Sum of higher-order diagrams, contributing to the �
decay.
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Lagrangian and it leads to the new contribution

K
��
1 ¼ CWT

2F2
0

ðq� �q� � q� �q�Þ: (79)

Next we write down all terms with two pion momenta, which one can construct, taking care of parity, C-invariance,
Hermiticity, and of course chiral symmetry

Lho ¼ �0
1 Tr½V�V

�u�u
�� þ �0

2 Tr½V�u�V
�u�� þ �0

3 Tr½V�V�u
�u�� þ �0

4 Tr½V�V
�u�u

��
þ �0

5 Tr½V�u�V�u
� þ V�u

�V�u
�� þ �0

6 Tr½V��V
��u�u

�� þ �0
7 Tr½V��V

��u�u��
þ �0

8 Tr½V��u�V
��u� þ V��u

�V��u�� þ �0
9 Tr½V�u

��Tr½V�u�� þ �0
10 Tr½V�u

��Tr½V�u
��

þ �0
11 Tr½V�u��Tr½V�u�� þ �0

12 Tr½V��u
��Tr½V�

� u
�� þ �0

13 Tr½V��u��Tr½V��u��: (80)

This together with Eq. (79) leads to the following kernel in addition to the WT term:

K
��
ho ¼ 4CWT

F2
0

�
ð�0

1 � 2�0
2Þð �q � qÞg�� þ

�
�0
3 � 2�0

5 �
1

2

�
�q�q� þ

�
�0
4 � 2�0

5 þ
1

2

�
�q�q�

� ð�0
6 þ �0

7 � 2�0
8Þðw � qÞðw � �qÞg��

�
� 812

F2
0

ðð�0
9ðq � �qÞ þ ð�0

12 þ �0
13Þðw � qÞðw � �qÞÞg�� þ �0

10q
� �q� þ �0

11 �q
�q�Þ:

(81)

We see that there are only eight independent variables contributing to the process. Dropping terms, which will not
contribute to JP ¼ 1þ, we are down to six independent variables, which we call �1; �2; . . . ; �6. Thus, the kernel can be
written as

K��
ho ¼ CWT

F2
0

ðð�1ðq � �qÞ þ �2ðw � qÞðw � �qÞÞg�� þ �3q
� �q�Þ � 12

F2
0

ðð�4ðq � �qÞ þ �5ðw � qÞðw � �qÞÞg�� þ �6q
� �q�Þ: (82)

Together with the WT term the expansion of the kernel
reads

V1þ
ab11 ¼ �2

3F1ab þ gab; (83)

V1þ
ab21 ¼ � 2

3
ffiffiffi
2

p
MVa

ðF1ab!a � F3ab

ffiffiffi
s

p
p2
aÞ þ !affiffiffi

2
p

MVa

gab;

(84)

V1þ
ab12 ¼

2

3
ffiffiffi
2

p
MVb

ð�!bF1ab þ F4abp
2
b

ffiffiffi
s

p Þ þ !bffiffiffi
2

p
MVb

gab;

(85)

V1þ
ab22 ¼

1

3MVaMVb

�
�!a!bF1ab � ð�1CWTab � �4�abÞ

� 1

F2
0

p2
bp

2
a þ F3ab!bp

2
a

ffiffiffi
s

p þ F4ab!ap
2
b

ffiffiffi
s

p �

þ !a!b

2MVaMVb

gab; (86)

with

F1 ¼ CWT

F2
0

ðq0 �q0Þð�1 þ s�2Þ � 12

F2
0

ðq0 �q0Þð�4 þ s�5Þ;
(87)

F3 ¼ CWT

F2
0

q � w
s

�3 � 12

F2
0

q � w
s

�6; (88)

F4 ¼ CWT

F2
0

�q � w
s

�3 � 12

F2
0

�q � w
s

�6: (89)

The diagrams we have to include are the same as in Fig. 7
with a different scattering amplitude describing the final
state correlations, which leads to

iMho
�V ¼ CS�

�
g�� � w�w�

M2
W

�
W�; (90)

with

W� ¼ W
00��
� þW 00KK�

� þW3�
� þWdir

� ; (91)

where
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W00�V
� ¼ gVudgV

2
ffiffiffi
2

p
F3
0

c�VJ�Vð�2Þ
�
g�� � w�w�

w2

���
gV�

�V
1 þ 1

2
ðfV � 2gVÞ��V

2

�
L��
1 þ

�
gV�

�V
3 þ 1

2
ðfV � 2gVÞ��V

4

�
L��
3

�

� m2
12

m2
12 �M2

� ��
ðq1 � q2Þ� þ ðq1 $ q3Þ; (92)

The coefficients �i can be found in Appendix C. They are
the same as in the case of including the explicit a1 except
that one has to replace the expansion coefficients of the
scattering amplitude Mabij.

E. W form factor

Instead of first calculating the scattering amplitude, one
could introduce the W form factor to determine the decay.
Leaving out some details and only considering the WT
term, it is possible to work out the decay width in a few
lines. It is instructive to look at this simple calculation,
since here the intermediate steps are not clouded by
lengthy algebra and the core of the calculation is better
visible. ‘‘Leaving out details’’ means

(i) neglect longitudinal part of the hadronic tensor pro-
portional to m2

�

(ii) fV � 2gV ¼ 0
(iii) neglect lowest-order CHPT diagrams (direct three-

pion decays)
(iv) only �� channel, no coupled channels

The first simplification actually has no visible influence on
the result. The second simplification is numerically almost
fulfilled, i.e.

fV � 2gV
fV

� 0:1 ! fV 
 ðfV � 2gVÞ: (93)

The third approximation will only influence the very low-
energy region of the decay. The only serious simplification
is the last one, which we will later also see to have a minor
influence on the results. Therefore, we can expect this
slimmed down version to be pretty close to the full
calculation.

The equation, determining the W form factor, is

V��ðq;wÞ ¼ V��
0 ðq;wÞ

þ
Z d4l

ð2�Þ4 V
��ðl; wÞG��ðl; wÞK��ðl; q; wÞ;

(94)

which can be seen in pictorial form in Fig. 12. With the
simplifications above, V

��
0 is given by

V
��
0 ¼ �igVudfVp

2

2F0

�
g�� � w�w�

s

��
g�� � p�p

�

p2

�
;

(95)

where p is the momentum of the vector meson. We drop
the term proportional to p�, since it will not contribute due

to the form of the ��� vertex (	 ðq1 � q2Þ�) and the
renormalization scheme, in which tadpoles are dropped
[7,18]. Thus, we get

V
��
0 ¼ �igVudfVM

2
�

2F0

�
g�� � w�w�

s

�
� V0L

��
1 (96)

with L
��
1 defined in Eq. (A4). The kernel K�� is already

known to be [see Eq. (60)]

K�� ¼ K0L
��
1 (97)

with

K0 ¼ � 1

4F2
0

ð3s� ð2m2
� þ 2M2

�Þ � 1

s
ðM2

� �m2
�Þ2Þ:

(98)

Looking at Eq. (94) and the form of the kernel, i.e. that it
does not depend on q, we can write down a reasonable
ansatz for V��

V�� ¼ VðsÞL��
1 : (99)

Plugging in this ansatz in Eq. (94) we get

VL
��
1 ¼ V0L

��
1

þ K0VI��

�
2

3
þ 1

12M2
�s

ðm2
� �M2

� � sÞ2
�
L��
1 ;

(100)

and we can easily read off V to be

V ¼ V0

1� K0ð23 þ 1
12M2

�s
ðm2

� �M2
� � sÞ2ÞI��

: (101)

The result is rendered finite by substituting I�� !
J��ð�1Þ. The above calculation seems to employ only

one subtraction point �1. This is in contrast to our deriva-
tion in Sec. VB, where we argued that two different sub-

FIG. 12. Diagrammatic form of the equation to determine the
form factor of theW boson. The dashed lines represent pions, the
solid lines the � mesons, and the wiggly line the W boson. The
bare vertex includes also the diagram with the intermediate pion
[see Eq. (95)].
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traction points can appear, namely, one to renormalize the
Bethe-Salpeter equation and one for the entrance loop from
theW boson into the rescattering process. We will show in
the following how the second subtraction point can also be
recovered in the present calculation.

Omitting the Lorentz structure for the moment, the full
W decay vertex can be written as

V ¼ V0 þ V0GT: (102)

In the solution of the Bethe-Salpeter equation for the
scattering matrix T, we will use G0 in the following, in
order to indicate a possibly different subtraction point.
Using T ¼ ð1� KG0Þ�1K the form factor V can be written
as

V ¼ V0 þ V0Gð1� KG0Þ�1K

¼ V0ð1�G0KÞð1�G0KÞ�1 þ V0GKð1�G0KÞ�1

¼ V0ð1�G0K þGKÞð1�G0KÞ�1; (103)

which corresponds to an equation of the form shown in
Fig. 12, provided one takes the bare W form factor as

V 0
0 ¼ V0ð1�G0K þGKÞ: (104)

We see that in the vertex we can effectively include a
change in the subtraction point of the first loop relative to
the subtraction point of the Bethe-Salpeter equation. We
note that the change in the subtraction point is at least one
order higher in a chiral counting, since the kernel K is
already OðqÞ. We recall that Eq. (13) contains only the
lowest-order W ! �V vertex. Using different renormal-
ization points for the loops G and G0 gives us the possi-
bility to account for modifications of this lowest-order
expression.

For the calculation of the whole decay, we only use one
diagram, which is shown Fig. 13. Thus, we get

iM ¼ CS�
�
g�� �

w�w�

M2
W

�
W�

form (105)

with

W
�
form ¼ � iVgV

F2
0

m2
12

m2
12 �M2

� ��
L
��
1 ðq1� � q2�Þ

þ ðq1 $ q3Þ: (106)

We do not show the results of the simplified calculations
explicitly, since one can anticipate the outcome by looking
at the discussions in Sec. VI. In particular, in Fig. 20 we
will see that neglecting the strangeness channel does not
have a big effect. The other simplifications have already
been estimated above to be less important.

VI. RESULTS

A. Calculation without a1

First we want to investigate the spectral function for the
decay �� ! 2�0���� calculated by iterating theWT term
in order to dynamically generate the a1. Wewill discuss the
influence of different aspects of the calculation on the
results in detail and determine the values of the subtraction
points.
(i) Influence of interpolating fields and spectral

distribution

We discussed the different possibilities to describe vector
particles, namely, in terms of vector fields and in terms of
antisymmetric tensor fields. We introduced higher-order
corrections in order to account for the difference stemming
from the choice of fields. For the present calculation we
note that using the antisymmetric tensor fields leads to the
appearance of less derivatives, and therefore we expect a
better high-energy behavior. Instead of explicitly using the
antisymmetric tensor fields, we use the vector representa-
tion but also include the higher-order contact terms given

FIG. 13. Diagram describing the � decay in the simplified
version.
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FIG. 14 (color online). Spectral function for the decay �� !
2�0���� calculated with different choices for the interpolating
fields. v1 only uses the vector-field Lagrangian equation (13),
whereas v2 additionally includes the contact terms from
Eq. (17).
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in Eq. (17). Figure 14 shows the spectral function calcu-
lated with vector fields (v1) and with vector fields includ-
ing the higher-order terms (v2). One clearly sees the better
high-energy behavior for the case of v2. In Fig. 14 we used
dimensional regularization with �1 ¼ �2 ¼ M2

�, which is

the value from [26]. We will discuss the influence of the
subtraction points in detail below. The kink which can be
seen at about 1:9 GeV2 results from the threshold of the
KK� channel. Using spectral distributions for the vector
mesons, taken from [55], smoothes the curve, which can be
seen in Fig. 15. The curve also gets a little broader and
moves to the right, but the overall structure is unchanged. If
we do not state otherwise, the following calculations will
always contain the higher-order corrections (i.e. v2) and
the spectral function for the vector mesons in the loop.

(i) Influence of renormalization

In Sec. V we encountered two subtraction points in our
calculation. In the following we will investigate the influ-
ence of these two parameters. We start by setting �1 ¼ �2

and vary them simultaneously. In Fig. 16 we see the
spectral function for the decay �� ! 2�0���� calculated
with different renormalization points in comparison to data
from [34]. The lowest curve is calculated using dimen-
sional regularization with �1 ¼ �2 ¼ M2

�, which corre-

sponds to the value employed in [26]. For the curve, which
turned out to be the highest, we choose a cutoff scheme
with a cutoff at 1 GeV in momentum, which corresponds to
the choice in [7]. The result in between was again calcu-
lated with dimensional regularization, but this time with a
subtraction point at �1 ¼ �2 ¼ 8:5M2

�. Since including

the spectral function for the vector mesons in the cutoff
scheme is more complicated and does not lead to new
insights for this comparison, we did not include the spec-
tral distribution for the calculations shown in Fig. 16. The

different curves clearly differ in the height of the peak, but
the position of the peak is not influenced. The width of the
peak turns out to be too small in all prescriptions.
It is also instructive to look directly at the scattering

amplitudes, which describe the rescattering. We note that
the scattering amplitude only depends on �1 and is inde-
pendent of �2. In Fig. 17 we see the real and imaginary
part of the scattering amplitude for �� scattering (corre-
sponding to M1111) for different renormalization descrip-
tions. The curves shown in Fig. 17 correspond to the
highest and lowest curve in Fig. 16. In addition, we plotted
the lowest curve using a spectral distribution for vector
mesons in the loop, which corresponds to the result in
Fig. 15. We see that the scattering amplitude hardly shows
a resonance structure by using the subtraction point at M2

�

(full curve in Fig. 17). The resonant structure is more
pronounced for the cutoff scheme (dashed curve in
Fig. 17). Including the spectral function of the � (dotted
curve in Fig. 17) basically smooths the curve. The bump in
the imaginary part is moved to the left in the cutoff scheme,
whereas in Fig. 16 one could hardly see a difference in the
position of the peak. This shows that it is not so obvious to
translate the structure seen in the scattering amplitude to
the spectral function of the � decay. In other words, inter-
ferences between the tree-level diagrams and the rescatter-
ing diagrams (cf. Fig. 7) play an important role.
In the following we will only use dimensional regulari-

zation to render the loops finite. With this restriction we
nevertheless cover the full discussion on the renormaliza-
tion parameter since there are only marginal differences by
using different schemes, provided that the parameters are
properly chosen. In principle this can be seen in Fig. 16,
where one can easily imagine that a further increase of the
subtraction point leads to the same result as the one which
was calculated with the cutoff.
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FIG. 15 (color online). Spectral function for the decay �� !
2�0���� calculated with and without including the width of the
vector mesons in the loop integral. The curve labeled v2 is the
same as in Fig. 14.
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FIG. 16 (color online). Spectral function for the decay �� !
2�0���� calculated with different renormalization schemes in
comparison to data from [34].
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Next we want to investigate the effect of changing �2

while keeping �1 fixed. We will use �1 ¼ M2
�, which in

[26] was determined by using crossing symmetry argu-
ments. Thus, using these arguments to fix one subtraction
point, we are in principle left with only one free parameter.
The results for different choices of �2 can be seen in
Fig. 18. We see that we can describe the data very well
by varying only that subtraction point and keeping �1 ¼
M2

� fixed in the scattering amplitude [35]. We note that

choosing the subtraction point at �2 ¼ 8:5M2
�, which de-

scribes the data best, corresponds approximately to a cutoff
of 1 GeV in a cutoff scheme. Obviously this value is very
reasonable. In Fig. 19 we see the spectral function for
�1 ¼ M2

� and �2 ¼ 8:5M2
� (cf. Fig. 18) split into the

different contributions from the diagrams shown in
Fig. 7. We see that the bump is partly created by the
negative interference of the rescattering diagrams and the
diagrams including the vector mesons at tree level. The
little bump we see in the rescattering contribution alone
appears at the wrong position and only the sum of all
diagrams gives the pronounced peak, which is of course
the only quantity that can be measured.
(i) Influence of coupled channels

The spectral function calculated with and without includ-
ing the strangeness channel is shown in Fig. 20, which
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FIG. 18 (color online). Spectral function for the decay �� !
2�0����, calculated by varying the subtraction point �2 of the
first loop and keeping the subtraction point in the scattering
amplitude fixed at �1 ¼ M2

�, in comparison to data from [34].

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0.8  1  1.2  1.4  1.6  1.8

R
ea

l(M
11

11
)

sqrt(s)[GeV]

Dim.Reg.
Mom.Cutoff
w.spec.fun.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.8  1  1.2  1.4  1.6  1.8

Im
ag

(M
11

11
)

sqrt(s)[GeV]

Dim.Reg.
Mom.Cutoff
w.spec.fun.

FIG. 17 (color online). Real (left) and imaginary (right) part of the scattering amplitude for �� scattering. The curves correspond to
the highest curve in Fig. 16 and to the two curves shown in Fig. 15, where the curve labeled ‘‘v2’’ in Fig. 15 corresponds to the curve
labeled ‘‘Dim.Reg.’’ in this picture.
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FIG. 19 (color online). Spectral function for �1 ¼ M2
� and

�2 ¼ 8:5M2
� (cf. Fig. 18) split up into the different contributions

from the diagrams in Fig. 7 in comparison to data from [34]. The
‘‘lowest-order CHPT’’ curve corresponds to Fig. 7(a) and 7(b),
‘‘inc. vector mesons’’ to Fig. 7(c) and 7(d), and ‘‘only rescatter-
ing’’ to Fig. 7(e) and 7(f).
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shows that the bump also appears without the kaon chan-
nel. The height is a little less by leaving out the kaons, but
that could be compensated by varying the subtraction point
�2. The rise in the data in the energy region up to about
1:1 GeV2 can also be described by leaving out the kaons,
but the width of the peak is better described by including
both channels. However, the effect is pretty small and one
can safely say that the�� channel plays the dominant role.

(i) Varying gV and fV

So far we used the experimentally measured values for fV
and gV , which are given by

fV ¼ 0:154 GeV

M�

; gV ¼ 0:069 GeV

M�

: (107)

As already noted in Sec. II, these values slightly differ from

fV ¼ 2gV; gV ¼ F0ffiffiffi
2

p
M�

; (108)

which are the values, obtained by theoretical considera-
tions and approximations in [44]. In order to see the
influence of these parameters on the results, we show in
Fig. 21 the spectral function calculated with different
values for gV and fV . ‘‘g1’’ corresponds to the theoretically
motivated values of fV and gV according to Eq. (108) with
the subtraction points �1 ¼ M2

� and �2 ¼ 8:5M2
�. ‘‘g2’’

uses the same parameters as g1, except for �2, which is
chosen to be �2 ¼ 14M2

� in order to fit approximately the

height of the peak (and still get roughly the shape). We see
that the moderate difference in fV and gV has a sizeable
impact on the results, which is due to the fact that the
combination fVgV appears quadratically in the final for-
mulas. The difference of fVgV between using the values of
Eqs. (107) and (108) is about 25%. The change in the

height of the peak can be compensated by a readjustment
of the subtraction point�2, but the spectral function in this
case seems to be shifted to the right. We note that there is
no other parameter, which potentially can influence the
spectral function up to about s � 0:7 GeV2, as can be seen
from the discussions before.
Except of the influence at low energies and the resulting

small shift, varying fV and gV seems to have a similar
effect as varying �2. This is not too surprising, since
changing fV and gV changes also the W decay vertex
and leaves the scattering amplitude untouched
(cf. discussion in Sec. VE).
(i) Stable �

In Sec. III we discussed which diagrams we should include
in our calculation, and we assumed that the contribution
from the pion final state interactions is small. In order to
show that this is a reasonable assumption, we compare our
previous calculations with one, where the � is assumed to
be stable. This means we look at a spectral function ob-
tained from the final state �� instead of 3�. With the
notation from Sec. V and neglecting the longitudinal part
proportional to m2

�, we get

W�
stable ¼�

�
g���w�w�

s

�
bT

F2
0

gV
��ðpÞ

þ
�
g�� �w�w�

s

�
gVudfV
2F0

ðp2g�� �p�p�Þ��ðpÞ;
(109)

and therefore
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FIG. 21 (color online). Spectral function for the decay �� !
2�0���� calculated with different values for gV and fV in
comparison to data from [34]. ‘‘g1’’ corresponds to the theoreti-
cally motivated values of fV and gV according to Eq. (108) with
the subtraction points�1 ¼ M2

� and�2 ¼ 8:5M2
�. ‘‘g2’’ uses the

same parameters as g1, except �2, which is chosen to be �2 ¼
14M2

�.
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FIG. 20 (color online). Spectral function for the decay �� !
2�0���� calculated with and without including the kaon chan-
nel in comparison to data from [34].
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W1 ¼ � 1

3

pcm

2ð2�Þ5 ffiffiffi
s

p
�
jbTj2 F

4
0

g2V
þ g2V2

udf
2
V

4F2
0

M4
�

� fV
gV

F0gVudM
2
�<ðbTÞ

�

�
�
2þ 1

4sM2
�

ðsþM2
� �m2

�Þ2
�
: (110)

For simplicity, we also neglected terms	ðfV � 2gVÞ in the
tree-level diagram (W�

vec). We checked explicitly that these
terms influence the results by less than 10%, and therefore
they would only lengthen the formulas above. The negli-
gible influence is of course expected from Eq. (93). In
order to see the net effect of assuming a stable �, we do
not include the spectral function for the vector mesons in
the loops. When the � is stable, the threshold for the decay
of the � is of course sharper and moved to the right, which
can be seen in Fig. 22. We see that besides these differ-
ences, the structure is the same as before and there is not
much room for a big contribution from pion final state
interactions.

We want to summarize shortly what we saw so far. In a
scenario where the a1 is generated dynamically we employ
two parameters �1 and �2. Varying both simultaneously
with �1 ¼ �2, we saw that we always got a peak at the
same position with varying height and a too small width.
Using the value from [26] to fix �1, we describe the data
very well by choosing the only remaining free parameter
�2 at 8:5M2

�. We also saw that in the process under

consideration the main contribution came from the ��
channel, while the kaon channel plays a minor role. In

addition, we investigated the influence of the parameters
fV and gV and found that the results are quite sensitive to
these parameters. In particular, the low-energy behavior is
best described by using the values, which are directly
determined from experiment. Finally we assumed the �
to be stable, which yields a qualitatively similar result. This
eliminates concerns about possibly large final state inter-
actions of the pions (cf. Fig. 4).

B. Calculation with explicit a1

Now we want to look at the results of the calculation
when we include the a1 explicitly. Avery small coupling of
the a1 together with the values from the calculations before
will of course reproduce the results from before and will
give a good description of the data. To check whether a
scenario with an explicit a1 can also describe the data
reasonably well, we have to demand that the coupling is
not almost zero, and we expect the value of the coupling to
be comparable to the values found in [30,49,50], i.e. com-
parable to Eq. (21). In order to get nonzero couplings and
still be reasonably close to the data, we have to keep the
contribution from theWT term small. We start by choosing
�1 ¼ �2 ¼ M2

� according to [26], which we can expect to

be a good choice by looking at Fig. 16. Scanning through
the parameter space, it turned out that in most cases a two
bump structure is observed. We show an example of this in
Fig. 23 (set 3). By fine-tuning the parameters, it is possible
to merge these two bumps into one, which can also be seen
in Fig. 23 (set 1 or set 2). The parameters leading to these
curves are given in Table I. From set 1 and set 2, we see that
there are different possible choices for the parameters,
which can (more or less) describe the data. A deviation is
only seen for 0:8 GeV2 & s & 1:1 GeV2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2  2.5  3

a1

s[GeV2]

data
pion final state

stable ρ

FIG. 22 (color online). Spectral function for the decay �� !
�0���� calculated by assuming the � to be stable (‘‘stable �’’)
and spectral function for the usual three-pion final state (‘‘pion
final state’’) in comparison to data from [34]. In order to see the
mere difference by assuming different final states, we do not use
a spectral distribution for the vector mesons in the loop. The
subtraction points are chosen according to the best choice at
�1 ¼ M2

� and �2 ¼ 8:5M2
�.
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FIG. 23 (color online). Spectral function for the decay �� !
2�0���� including the a1 with different sets of parameters in
comparison to data from [34]. The parameter sets are given in
Table I.
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Next we want to see how far we get by switching off the
WT term. We perform such an analysis without the WT
term for completeness. We recall our strategy discussed in
Sec. IV to approximate the �V scattering kernel by pos-
sible resonances (here the a1) plus contact terms of lowest
order. In that strategy there is no justification to neglect
even the lowest-order contact term, which is just the WT
term with its strength fixed model independently by chiral
symmetry breaking. In Fig. 24 we see the spectral function
calculated with explicit a1 but without the WT term in the
kernel (set 4). In that case the second bump disappears and
by changing the parameters, one can determine the position
and the height of the peak. Although one might expect that
the width of the peak can be adjusted by the choice of c1
and c2, this is not the case, since there is a more complex
interplay between the position and the width of the peak.
There are lots of parameter choices which give a qualita-
tively similar curve. The curve labeled ‘‘set 4’’ represents

the best fit to the data by varying all parameters and we see
that it agrees with the choice for c1 and c2 from [49,50]
[cf. Eq. (21)]. For the curve labeled ‘‘set 5,’’ we used the a1
decay vertex from Eq. (78) and we see that in this case the
shape of the peak is described very well. This shows the
uncertainties in the shape of the width and how it is
influenced by the energy dependence of the a1 decay
vertex. Therefore, we have to be careful to draw conclu-
sions from the exact shape of the width.
From Fig. 24 (set 4) and Fig. 23 one should not conclude

that the WT term is a correction, which improves the shape
of the width, since one does not simply switch on the WT
term in order to get from Fig. 24 to Fig. 23. Instead the
parameter sets are quite different (cf. Table I) and one has
to fine-tune the parameters in order to arrive at a single
reasonable peak, when one includes the WT term.
Looking at set 4 in Fig. 24 one might worry that we do

not have the most sophisticated model describing the ex-
plicit a1 and that other models describe the data better (e.g.
[30,31]). However, our description of the a1 is completely
sufficient to show the strong influence of the WT term.
Next, we want to see the role of the WT term played in

the best result, which was shown in Fig. 23 (set 1). In
Fig. 25 we plotted the result from parameter set 1 with and
without including the WT term. Although with this choice
of subtraction points the WT term is suppressed very
strongly, it obviously still has a major influence on the
result.
In the discussion of the results without the explicit a1,

we showed results for the theoretically motivated values of
fV and gV given in Eq. (108). Using these theoretical
values, it is possible to further suppress the WT term in
comparison to the explicit a1. In Fig. 26 we see the best
result, which we found in this case (set 6). In Fig. 21 we
found that the rise in the data for energies between about
0:7 GeV2 & s & 1:2 GeV2 is described worse. Here, we
find the same problem in the case of the a1. However, we
note that using the theoretically motivated parameters for
fV and gV it is much easier to get rid of the second bump.
In this case one can hardly call it fine-tuning to obtain a
single reasonable one-peak structure. Nonetheless, we

TABLE I. Different sets of parameters for the calculations with explicit a1. The remark ‘‘w/o WT’’ means that the WT term is not
included, the additional remark ‘‘Eq. (78)’’ means that the a1 decay vertex from Eq. (78) is used (which does not employ the parameter
c1) and ‘‘fV , gV Eq. (108)’’ means that we choose the values from Eq. (108) for fV and gV .

Ma1 [GeV] fA c1 c2 �1 [M2
�] �2 [M2

�] Remark

set 1 1.23 F0ffiffi
2

p
M�

� 1:05 � 1
4

1
1:65 � 1

8
1
1:6 2 1.05

set 2 1.195 F0ffiffi
2

p
M�

� 1:45 � 1
4

1
2:6 � 1

8
1
1:6 1 2.5

set 3 1.21 F0ffiffi
2

p
M�

� 1:45 � 1
4

1
2:4 � 1

8
1
1:6 1 2.5

set 4 1.5 F0ffiffi
2

p
M�

� 1
4 � 1

8 2 5.5 w/o WT

set 5 1.5 F0ffiffi
2

p
M�

� � � � 1:4
8 2 5.8 w/o WT, Eq. (78)

set 6 1.2 F0ffiffi
2

p
M�

� 1:05 � 1
4

1
1:7 � 1

8
1
1:6 2 6 fV , gV Eq. (108)
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FIG. 24 (color online). Spectral function for the decay �� !
2�0���� including the a1 with different sets of parameters in
comparison to data from [34]. The WTwas not included in these
calculations. In addition, the curve labeled ‘‘set 5’’ uses a
different energy dependence to describe the a1 decay (see text
for details).
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stress again that the � decay data favor the experimental
values for fV and gV given in Eq. (107) as compared to the
theoretically motivated values of Eq. (108). Using the latter
the rise of the data in the energy region 0:7 GeV2 & s &
1:2 GeV2 is underestimated (cf. Fig. 21 curves g1, g2 and
Fig. 26 set 6).

Looking at the results including the a1 it is not so easy to
draw an immediate conclusion. For sure, one can say that
the WT term has a major influence on the result. The
second bump structure can be recovered in almost every
calculation including the a1 together with the WT term. An
important point is that the inclusion of the WT term leads
to very strong effects, although we already kept the con-
tribution very small. Only by fine-tuning one can merge the
two appearing bumps. However, merging two bumps by

fine-tuning the parameters does not seem to be a natural
way of reproducing the data. In other words: Why should
an elementary state appear right at the position, where an
attractive potential already created a peak? We note again
that the strength of the WT term is model independently
fixed by chiral symmetry breaking. Since the WT term
alone already produces a peak at the right position, one
could already expect that a description of the data includ-
ing the a1 has to be accompanied by a delicate choice of the
parameters. Still, it would be too much to talk about a
definite sign that there is no explicit a1. However, the
peculiarities with explicit a1 together with the success of
the description without the a1 (molecule scenario) should
be regarded as a good indication. In the next section, we
will show that adding higher-order corrections to the WT
term it is possible to systematically improve the situation in
the molecule scenario and that the ordering of diagrams
makes sense in this scenario without an explicit a1.

C. Higher-order terms

In Sec. VD we determined the corrections to the kernel
atOðq2Þ, which led to six new unknown parameters. In the
following we leave out the explicit a1 again and show the
influence of these corrections on the results. In Fig. 27 we
show the spectral function with and without including the
higher-order correction. There are several parameter sets
(Table II), which can describe the data in a qualitatively
similar way. We see that the higher-order terms can be
chosen such that they systematically improve the agree-
ment with the data. Note that the size of the higher-order
terms is not constrained by chiral symmetry (except that
they should be of natural size—a demand of every effective
field theory).
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FIG. 26 (color online). Spectral function for the decay �� !
2�0���� including the a1 using different sets of parameters in
comparison to data from [34].
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FIG. 27 (color online). Spectral function for the decay �� !
2�0���� including higher-order terms in the kernel in compari-
son to data from [34]. For the choice of the parameters see
Table II.
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FIG. 25 (color online). Spectral function for the decay �� !
2�0���� including the a1 using parameter set 1 with and
without including the WT term in comparison to data from [34].
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Next we investigate the connection between the higher-
order terms and the subtraction points. Changing �2 can
hardly be compensated by the higher-order terms, which is
expected, since �2 acts as a higher-order correction to the
W decay vertex and not to the scattering amplitude.
However, a slight raise in �2 can be compensated, as can
be seen in Fig. 28. There we use �2 ¼ 9M2

� for both

calculations. We recall that without higher-order terms
the best value was �2 ¼ 8:5M2

� (cf. Fig. 18). It can also

be seen that the higher-order terms do not touch the energy
region up to about s � 1 GeV2.

Next we want to discuss the connection to �1. Here we
can expect that the higher-order terms are at least to some
extent able to compensate for changes. In Fig. 29 we can
see that we can account for moving the subtraction point
�1 by changing the parameters of the higher-order terms.
The parameters are again given in Table II. We see that the
compensation is even better than expected, since the cor-
rections up to order Oðq2Þ do not carry all the structures,
which might be influenced by moving the subtraction
point. We also note that similar to the subtraction point,
the higher-order terms might also partially simulate the
explicit a1. In this case the connection can be seen even

clearer since, as explained in Sec. II B, integrating out the
a1 leads to a term of order Oðq2Þ, which is of the same
order as the higher-order terms. However, since we do not
introduce the a1 as elementary field in the calculations
including the higher-order terms, we do not have to worry
about double counting.
It is also interesting to look directly at the changes

induced in the scattering amplitude. In Fig. 30 we see the
real and imaginary part of the scattering amplitude for the
different parameter sets given in Table II in comparison to
the calculation without higher-order corrections. In order
not to overload the figures, we show four different plots.
Figures 30(a) and 30(b) show the scattering amplitudes for
the first three parameter sets in comparison to a calculation
without higher-order corrections and �1 ¼ M2

�. We see

that the scattering amplitude is not modified much. Only
‘‘hoset 2’’ shows a different structure, which becomes most
obvious in the imaginary part. This change in the scattering
amplitude seems to be correlated with the parameter �3,
which we will further investigate, when we look at the
Dalitz plot projections in Sec. VID. Figures 30(c) and 30
(d) show the scattering amplitudes for ‘‘hoset 4,’’ which
was chosen to compensate for the change in the subtraction
point �1. The figure shows the scattering amplitude for
�1 ¼ M2

� and �1 ¼ 8:5M2
� without higher-order terms in

TABLE II. Different sets of parameters, which yield a good description of the spectral function.

�1 �2 [GeV�1] �3 �4 �5 [GeV�1] �6 �1 [GeV2] �2 [GeV2]

hoset 1 0 0 1.5 �1:4 0 0 M2
� 8:5M2

�

hoset 2 0.6 0.3 2.5 0 0 0 M2
� 9M2

�

hoset 3 0 �0:3 0 �1:4 0 0 M2
� 8:5M2

�

hoset 4 0.85 0 0 �0:45 0 0 8:5M2
� 8:5M2

�
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FIG. 28 (color online). Spectral function for the decay �� !
2�0���� including higher-order terms in the kernel in compari-
son to data from [34]. For the choice of the parameters see
Table II. In the calculation including only the WT term we
employ the same subtraction point �2 ¼ 9M2

� as in the calcu-

lation including the higher-order terms.
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FIG. 29 (color online). Spectral function for the decay �� !
2�0���� with and without higher-order terms using �1 ¼
�2 ¼ 8:5M2

� in comparison to data. The parameters for the

higher-order corrections are given in Table II.
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comparison to �1 ¼ 8:5M2
� with higher-order corrections.

We see that the corrections bring the scattering amplitudes
for�1 ¼ 8:5M2

� back into the shape they had before, when

we used �1 ¼ M2
� without higher-order corrections. In

other words, changes in the renormalization point can be
replaced by changes in the higher-order terms. The renor-
malization scale dependence is reduced as it should, when
including higher-order terms.

One might argue that including the higher-order correc-
tions was unnecessary and describing the data with 6
parameters is no success. However, the point in including
the higher-order corrections is not that we can describe the
data with seven parameters, but that they systematically
improve the result. In case of the inclusion of an explicit
a1, we saw that adding the WT term to the a1 interaction
worsened the results. Here, however, adding the higher-

order terms to the kernel behaves as a correction. Note that
the calculations are not ordered according to usual pertur-
bation theory. Instead the kernel of the Bethe-Salpeter
equation is calculated in perturbation theory. The conver-
gence of that kind of perturbative expansion is not guar-
anteed. Therefore it is encouraging to see that the next-to-
leading order terms behave as a correction and are even
able to improve the agreement with the data.
We note that there are many possible choices for the

parameters, which describe the data. In Sec. VID we will
see that the different sets can be further discriminated by
looking at the Dalitz plot projections.

D. Dalitz plot projections

In Fig. 31 we show the Dalitz plot projections in m2
12 or

m2
23 for the calculation using the WT term only and for the
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FIG. 30 (color online). Real (left) and imaginary (right) part of the scattering amplitude for �� scattering with and without higher-
order corrections. The upper two plots show the scattering amplitudes for hoset 1–3 in comparison to a calculation without higher-
order terms and �1 ¼ M2

�. The lower two plots show the scattering amplitude for hoset 4 in comparison to a calculation without

higher-order corrections and �1 ¼ M2
� and �1 ¼ 8:5M2

�, respectively.
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FIG. 31 (color online). Dalitz plot projections in m2
12 or m
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23 with and without higher-order corrections in comparison to data from
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FIG. 32 (color online). Dalitz plot projections in m2
13 with and without higher-order corrections in comparison to data from [36]. The

different parameter sets can be found in Table II. The curve labeled �2 ¼ 8:5M2
� corresponds to a calculation using the WT term only,

�1 ¼ M2
� and �2 ¼ 8:5M2

�.

M. WAGNER AND S. LEUPOLD PHYSICAL REVIEW D 78, 053001 (2008)

053001-26



calculation including the higher-order terms in comparison
to data from [36]. We determined the normalization of the
theoretical curve such that the area under all curves, cor-
responding to different slices of

ffiffiffi
s

p
, agrees with the area

under the data points. We also subtracted the contribution
to the data, which was identified as background in [36].
Using this normalization, we do not really lose any infor-
mation, since we already saw before that the spectral
function was well reproduced for all invariant masses,
which implies a proper total decay width and therefore a
proper normalization. Figure 31 clearly shows that the final
state is dominated by the � meson, and the data are
described quite well by all parameter sets. The last two
plots seem to show an improvement by including the
higher-order corrections. The improvement in the last
two plots is most pronounced for hoset 2. But since we
overshoot at lower m2

12 and the error bars are pretty large

for these invariant masses, the advantage is not very strin-
gent. We recall that q1 and q3 are the momenta of the
likewise pions and that the amplitude is symmetric under
the exchange q1 ! q3. Thus,m

2
12 and m

2
23 are the invariant

mass of the intermediate �, which we clearly see in the
Dalitz plot projections. In Fig. 32 we plot the number of
decays versus m2

13, which is the invariant mass of the

likewise pions. These pions do not build up the � and
therefore the structure in these plots is completely different
from Fig. 31. When we look at Fig. 32, we also find that the
calculations including the higher-order corrections de-
scribe the data better, which again is more pronounced
for hoset 2. The steep rise at small m2

13 is much better

reproduced by hoset 2 and also the additional structure at
higher invariant masses is reproduced better with hoset 2,
although we overshoot that structure. We note that using
hoset 3 and hoset 4, we do not get a noteworthy difference
in the Dalitz plot projections in comparison to a calculation

without higher-order corrections. Thus, the improvement
in the Dalitz plots seems to be correlated with the parame-
ter �3, which is nonvanishing for hoset 1 and hoset 2
(cf. Table II). It is interesting to see the amount of
d-wave contributions from the different parameter sets.
In Fig. 33 we plotted the absolute value of the ratio of
the respective coefficient css and cds to the sum of all
coefficients (see Appendix B). We see that the parameter
sets, which describe the Dalitz plot projections better,
clearly have a higher d-wave contribution. Thus, our cal-
culation indicates a population of d-waves in the � decay in
the amount, which is shown in Fig. 33. We note that the
leading-order contribution to csd is given by the terms
proportional to �3 and �6 in Eq. (82). A statement about
pure d-wave transitions given by cdd would be more com-
plicated, since terms of higher chiral order than q2 would
contribute at leading order.

VII. SUMMARYAND OUTLOOK

We calculated the process �� ! 2�0���� for different
scenarios. In the first scenario (molecule scenario) we
analyzed the decay based on the recently developed tech-
niques to generate axial-vector resonances dynamically
[26,27]. The picture we promote is that the process is
dominated by �� final state interactions, which are de-
scribed by iterating the WT term. The weak decay is part of
the standard model and theWT term is predicted parameter
free from chiral symmetry. The remaining coupling con-
stants ðfV; gVÞ, which describe the interaction of the vector
mesons are determined by the properties of the � [44]. The
only unknown parameters in the calculation enter through
the renormalization of the loop integrals. We introduced
two subtraction constants to render the loop integrals finite.
One subtraction constant (�1) renormalizes the loops in
the scattering amplitude describing the final state interac-
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FIG. 33 (color online). Population of angular momentum states expressed in css=ðcss þ 2csd þ cddÞ (left) and csd=ðcss þ 2csd þ cddÞ
(right). The curve labeled ‘‘WT term’’ shows the population for the WT term only, whereas the other kernels include higher-order
corrections with the parameters given in Table II.
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tions. This parameter was already introduced in [26] and
fixed by crossing symmetry arguments. The other subtrac-
tion constant (�2) enters in the renormalization of the first
loop, which contains the W decay vertex. We investigated
the influence of these parameters on the results. First, we
varied �1 and �2 simultaneously with �1 ¼ �2 and com-
pared, in particular, the different values used in [26,27]. We
found that all choices produce a peak at the same position
with a different height. The position of this peak was
roughly in the region of the resonant structure seen in the
data, but the width always turned out to be too small.
Afterwards we investigated the influence of �2 by keeping
�1 fixed. Using the crossing symmetry argument from [26]
in order to determine �1, leaves us with one free parame-
ter. Fitting this parameter �2, we reproduced the spectral
function for the decay �� ! 2�0���� quite well.

In a second scenario, we explicitly introduced the a1 in
the calculation. This introduces new parameters, namely,
the mass of the a1, its coupling fA to theW boson, and the
couplings c1 and c2 to the vector-meson Goldstone boson
states. The most obvious feature in that calculation is that
due to the strong influence of the WT term a second bump
appears. Fine-tuning the parameters, one can merge the
two bumps into one and the data can be described more or
less satisfyingly. However, the results of these calculations
are unsatisfying. An important point is that the inclusion of
the WT term leads to very strong effects, although we
already kept the contribution very small. Merging two
bumps by fine-tuning the parameters does not seem to be
a natural way of reproducing the data. Since the WT alone
already produces a peak at the right position, one could
expect already that a description of the data including the
a1 has to be accompanied by a delicate choice of the
parameters. In addition, one can obviously not talk about
a small correction, which is induced by the WT term.

We also mentioned a possible modification of the ���
vertex, which one might include in a consistent treatment
including the a1. Here we used phenomenology to fix the
properties of the � and, in particular, the ��� vertex. The
calculation with a stable �, which yields qualitatively the
same results, shows that this approach is justified and the
decay of the � does not influence the basic features of the
calculation. This result and also the comparison with the
Dalitz plot projection data in addition show that our phe-
nomenological description fits the � very well and that the
final decay of the � and also possible final state interactions
of the pions only play a minor role.

A further improvement of the molecule scenario was
found by introducing higher-order corrections to the ker-
nel. These corrections introduce six new parameters and
many combinations of these parameters could be found,
which fit the spectral function very well. The correction
induced by these terms were well behaved. That was not
clear from the beginning, since we calculated the kernel of
the Bethe-Salpeter equation perturbatively, which does not

automatically guarantee that we picked up all important
contributions for the scattering amplitude itself. Therefore,
this is an encouraging fact, which puts further foundation
to the calculation and shows its systematic nature.
Comparing our calculation to the Dalitz projections, we

found that including higher-order terms, which carry
d-wave components, describe the data better. We com-
pared the size of the coefficient csd, which describes the
transitions from an s-wave to d-wave state, for different
parameter sets. The size of this coefficient was clearly
correlated with the qualitative description of the Dalitz
plot data.
To summarize, one finds that without the explicit a1 one

has a well-behaved model, which can be systematically
improved and which describes the data very well. Most
parameters (in the simplest scenario, all but one) are fixed
by chiral symmetry breaking and the well-known proper-
ties of the �. Including an explicit a1 leads to peculiar
properties, if one tries to generate the width consistently
from the Bethe-Salpeter equation and includes the WT
term. When we tried to describe the data with an explicit
a1 the strength of the WT interaction caused the most
severe problems. On the other hand, this strength is fixed
by chiral symmetry breaking. In addition, we recall that
taking into account an explicit a1 and the WT interaction is
not double counting—at least not at tree level. For the
process of rescattering which involves renormalization
one has to be more careful as outlined in Sec. IV.
Essentially we claim that the WT interaction should not
be disregarded as has, however, been done in many pre-
vious approaches. On the other hand without an explicit a1
the WT interaction has the right strength to generate a
resonant structure dynamically. These indications point
towards a dynamical nature of the a1 as a (coupled-
channel) meson molecule.
As an outlook we note that a further step in the calcu-

lation would be to include medium effects in order to see
what happens to the a1 in case we approach the chiral
symmetry restoration [56]. In principle, when the restora-
tion happens, the axial-vector spectral function, defined in
Sec. VA, must be degenerate with the corresponding vector
spectral function. In the latter the � meson prominently
appears, at least in the vacuum [34]. It is, however, not so
clear what chiral restoration implies for the specific part of
the spectral function with a three-pion final state. In any
case one would expect a drastic reshaping of both the
vector and the axial-vector spectral function.
It would also be interesting to figure out how well the

molecule scenario agrees with QCD lattice calculations
[57] of the axial-vector current-current correlator (in the
specific region accessible by lattice QCD). Here one has to
perform the calculations with a higher pion mass in order
to connect to lattice QCD calculations. This also brings
into play pion mass corrections to the involved coupling
constants as for example F0, fV , gV [58]. Still one can
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expect that the presented framework offers enough predic-
tive power to obtain a valuable comparison to lattice QCD.
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APPENDIX A: PROJECTORS

We briefly summarize the most important formulas,
which define the projectors and which are used to deter-
mine the expansion coefficients. A scalar amplitude for the
scattering of vector mesons with a scalar particle can be
expanded as follows [59]:

y�ð �p; ��ÞT���ðp; �Þ ¼
X
JM

2J þ 1

4�
DJ�

M ��
ð ��; ��;� ��Þ

�DJ
M�ð�; �;��ÞhJM ��jTjJM�i;

(A1)

where p, �ð �p; ��Þ are the momenta and helicities of the
incoming (outgoing) vector mesons, D are the Wigner
rotation functions, and jJM�i denotes a state with total
angular momentum J, its projection M, and with the he-
licity of the vector particle being �. Choosing the incoming
particles to fly along the z-axis and the scattered particles
to move in the xz plane, the formula reduces to

y�ð �p; ��ÞT���ðp; �Þ ¼
X
J

ð2J þ 1Þh ��jTJj�idJ
� ��
ð�Þ;

(A2)

where we omitted J,M in the denotation of the states and d
are the simplified Wigner functions or d-functions. By
Lorentz invariance the scattering amplitude can be written
in terms of five scalar functions Fi

T�� ¼ X
i

FiL
i
��; (A3)

with

L
��
1 ¼ g�� � w�w�

s
;

L
��
2 ¼ w�w�;

L
��
3 ¼ w� �q� � w�w� �q � w

s
;

L��
4 ¼ q�w� � w�w� q � w

s
;

L
��
5 ¼

�
q� � w� q � w

s

��
�q� � w� �q � w

s

�
;

(A4)

where qð �qÞ is the incoming (outgoing) momentum of the
Goldstone boson. We note that there are only five indepen-
dent terms, since terms containing p� or �p� vanish due to
�ðpÞp� ¼ 0. Thus, using the orthogonality relation of the

d-functions, one can express the expansion coefficients of
Eq. (A2) in terms of the Fi

h ��jTJj�i ¼ 1

2

Z �

0
y�ð �p; ��Þ

�X
i

FiL
��
i

�
�ðp; �ÞdJ� ��

sin�d�:

(A5)

We further introduce parity eigenstates, which are given by

h1�j ¼ 1ffiffi
2

p ðh�1j � h1jÞ: (A6)

The defining equation for a projector with total angular
momentum J, its projection M, parity P, and helicities �2,
�3 is

�yð �p; �1ÞYJMP

�2�3��ð �q; l; sÞ�ðl; �4Þ
¼ �j�1j�2

��3j�4jð2J þ 1ÞD�J
M�1

ð ��ÞDJ
M�4

ð�Þ

�
�
1ffiffiffi
2

p
�
�2þ�3

Pð�1��4Þ=2: (A7)

For JP ¼ 1þ and the kinematics described above the ex-
plicit form of the projectors is

Y1þ
11�� ¼ 3

2

�
�L1

�� þ L2
��

! �!x

p �ps
þ L3

��

� �!

�p2
ffiffiffi
s

p þ L4
��

�!

p2
ffiffiffi
s

p
�
;

Y1þ
10�� ¼ M

3ffiffiffi
2

p
�
� �!x

p �ps
L2
�� þ L4

��

1

p2
ffiffiffi
s

p
�
;

Y1þ
01�� ¼ � �M

3ffiffiffi
2

p
�
!x

p �ps
L2
�� � L3

��

1

�p2
ffiffiffi
s

p
�
;

Y1þ
00�� ¼ 3M �MxL2

��

p �ps
;

(A8)

where M, !ð �M; �!Þ are the mass and the energy of the
incoming (outgoing) vector meson, pcm the center-of-mass
momentum, and s ¼ ðpþ qÞ2 the total invariant energy of
the process. For practical calculations in the center-of-mass
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system, however, it is enough to know Eq. (A7) and the
expansion coefficients from Eq. (A5).

APPENDIX B: CONNECTION BETWEEN
HELICITY STATES AND ORBITAL ANGULAR

MOMENTUM

In order to determine the s- and d-wave component of
the vector-meson Goldstone boson two-particle state, we
need to know the relation between the helicity states and
the orbital angular momentum l. In particular, we first want
to determine the following overlap:

hJ;M; l; s ¼ 1jJ;M; �i ¼ ? (B1)

In order to do so, we express both states in Eq. (B1) in
terms of orbital angular momentum and spin states, which
is pretty simple for the left-hand side. The states of total
angular momentum J can be written as a combination of
states with definite orbital angular momentum l and spin s

jJ;M; l; si ¼ X
ms

CðmmsðlsÞJMÞjl; mijs;msi; (B2)

where s ¼ 1 is the spin of the vector meson, ms the
z-projection of the spin, m the z-projection of the orbital
angular momentum, M ¼ mþms, and C is a Clebsch-
Gordan coefficient. We choose the following notation for
the Clebsch-Gordan coefficients:

hj1j2; m1m2jj1j2; jmi ¼ Cðm1m2ðj1j2ÞjmÞ�m;m1þm2
:

(B3)

Next we turn to the state jJ;M; �i in Eq. (B1). We want to
express the helicity states of the moving system in terms of
the spin and orbital angular momentum states. Since the
spin and the orbital angular momentum are not conserved
quantum numbers in a relativistic framework, the helicity

states will be a mixture of different states. We need the
following relations:

jl; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s Z
d�j�;�iDl�

m;0ð�; �; 0Þ; (B4)

and the inverse of that equation, which is

j�;�i ¼X
l;m

jl; mi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s
Dl

m0ð�; �; 0Þ: (B5)

At the same time we can write for a helicity state moving
along the z axis jẑ; �i

jẑ; �i ¼ jẑijs; �i; (B6)

where js; �i is the usual spin state with ms ¼ �. Although
the spin is not a conserved quantum number, it coincides
with the helicity state in the rest frame of the particle. Since
one cannot produce any orbital angular momentum along
the direction of motion, after a boost the z-projection of the
total angular momentum is still given by the spin projec-
tion of the particle, which is the same as the helicity. Thus,
we can use the above decomposition. Next we apply the
rotation operator Uð�; �; 0Þ to the state. After the rotation
the spin and helicity states will not be the same anymore,
but the connection is given by the Wigner rotation func-
tions. We have to rotate each factor on the right-hand side
of Eq. (B6) separately, which gives

j�;�; �i ¼ Uð�; �; 0Þjẑ; �i
¼ X

mS

j�;�iD1
mS�

ð�; �; 0Þj1; mSi: (B7)

Applying the projection operator (see [60] or [59]) on
definite total angular momentum states, we get

jJ;M; �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4�

s Z
DJ�

M�ð�; �; 0Þj�;�; �id� ¼X
mS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4�

s Z
DJ�

M�ð�; �; 0Þj�;�iD1
mS�

ð�; �; 0Þj1; mSid�

¼ X
mS;l;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4�

s Z
DJ�

M�ð�; �; 0Þjl; miDl
m0ð�; �; 0ÞD1

mS�
ð�; �; 0Þj1; mSid�: (B8)

We use the following relation for the Wigner rotation functions:

Dj
mnðRÞDj0

m0n0 ðRÞ ¼
X

J;M;N

Cðmm0ðjj0ÞJMÞiDJ
MNðRÞCðnn0ðjj0ÞJNÞ; (B9)

which yields
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jJ;M; �i ¼ X
mS;l;m;l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4�

s Z
DJ�

M�ð�; �; 0ÞDl0
mþmS;�

ð�; �; 0Þd�jl; mijm1i � CðmSmðl1Þl0mS þmÞCð0�ðl1Þl0�Þ

¼ X
mS;l;m;l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J þ 1

4�

s
2��M;mþmS

Z
dJM�ðxÞdl0M�ðxÞdxjl; mij1; mSi � CðmSmðl1Þl0ms þmÞCð0�ðl1Þl0�Þ

¼ X
l;mS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2J þ 1

s
CðmSðM�mSÞðl1ÞJMÞCð0�ðl1ÞJ�Þjl;M�mSij1; mSi: (B10)

Therefore, we get from Eqs. (B2) and (B10)

hJ;M; l; 1jJ;M; �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

2J þ 1

s
Cð0�ðl1ÞJ�Þ; (B11)

where we used X
mS;ms0

CðmSðM�mSÞðl1ÞJMÞCððM0 �ms0 Þms0 ðl1ÞJ0M0Þ ¼ �JJ0�MM0 : (B12)

Now we will connect the helicity projectors to angular momentum projectors. In order to do so we notice that

M� �� ¼ hJ;M; ��jTjJ;M; �i ¼X
l;l0
hJ;M; ��jJ;M; l0; 1ihJ;M; l0; 1jTjJ;M; l; 1ihJ;M; l; 1jJ;M; �i

¼ X
l;l0
hJ;M; l0; 1jTjJ;M; l; 1i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þð2l0 þ 1Þp
2J þ 1

Cð0�ðl1ÞJ�ÞCð0 ��ðl01ÞJ ��Þ; (B13)

where we used that also the orbital angular momentum
states build a complete basis. By building quotients of the
respective amplitudes, we can pin down constraints. If we
only consider JP ¼ 1þ and therefore only deal with s- and
d-waves, we know for all possible combinations of l

M11

M1�1

¼ M11

M�1�1

¼ M11

M�11

¼ M10

M�10

¼ M01

M0�1

¼ 1: (B14)

Therefore, we can use

Mþ
11 ¼ M11 þM1�1 ¼ 2M11; (B15)

Mþ
10 ¼ 1ffiffi

2
p ðM10 þM�10Þ ¼

ffiffiffi
2

p
M10; (B16)

Mþ
01 ¼ 1ffiffi

2
p ðM01 þM0�1Þ ¼

ffiffiffi
2

p
M01: (B17)

Looking up the Clebsch-Gordan coefficients of Eq. (B13),
we get the following relations for the respective transitions:

s� wave ! s� wave:
Mþ

11

Mþ
10

¼ ffiffiffi
2

p
;

Mþ
11

Mþ
01

¼ ffiffiffi
2

p
;

Mþ
11

M00

¼ 2;

(B18)

s� wave ! d� wave:
Mþ

11

Mþ
10

¼ �
ffiffiffi
2

p
2

;

Mþ
11

Mþ
01

¼ ffiffiffi
2

p
;

Mþ
11

M00

¼ �1;

(B19)

d� wave ! s� wave:
Mþ

11

Mþ
10

¼ ffiffiffi
2

p
;

Mþ
11

Mþ
01

¼ �
ffiffiffi
2

p
2

;
Mþ

11

M00

¼ �1;

(B20)

d� wave ! d� wave:
Mþ

11

Mþ
10

¼ �
ffiffiffi
2

p
2

;

Mþ
11

Mþ
01

¼ �
ffiffiffi
2

p
2

;
Mþ

11

M00

¼ 1

2
:

(B21)

Calling the transitions with definite angular momentum
Dab, where a, b 2 fs; dg and suppressing the Lorentz in-
dices, we get

Dss ¼ Y11 þ 1ffiffi
2

p Y10 þ 1ffiffi
2

p Y01 þ 1
2Y00; (B22)

Dsd ¼ Y11 � 2ffiffi
2

p Y10 þ 1ffiffi
2

p Y01 � Y00; (B23)

Dds ¼ Y11 þ 1ffiffi
2

p Y10 � 2ffiffi
2

p Y01 � Y00; (B24)
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Ddd ¼ Y11 � 2ffiffi
2

p Y10 � 2ffiffi
2

p Y01 þ 2Y00: (B25)

In principle we can multiply each of these expressions by
an arbitrary normalization constant, which we choose to be
one, which means we use the above expressions. If wewant
to express our amplitude in terms of orbital angular mo-
mentum

T�� ¼ Mþ
11Y

��
11 þMþ

10Y
��
10 þMþ

01Y
��
01 þMþ

00Y
��
00

¼ cssD
��
ss þ csdD

��
sd þ cdsD

��
ds þ cddD

��
dd ; (B26)

we have to solve the following equations:

1 1 1 1
1ffiffi
2

p � 2ffiffi
2

p 1ffiffi
2

p � 2ffiffi
2

p
1ffiffi
2

p 1ffiffi
2

p � 2ffiffi
2

p � 2ffiffi
2

p
1
2 �1 �1 2

0
BBBB@

1
CCCCA �

css
csd
cds
cdd

0
BBB@

1
CCCA ¼

Mþ
11

Mþ
10

Mþ
01

M00

0
BBB@

1
CCCA: (B27)

The solution to that equation is

1

9

4 2
ffiffiffi
2

p
2

ffiffiffi
2

p
2

2 �2
ffiffiffi
2

p ffiffiffi
2

p �2
2

ffiffiffi
2

p �2
ffiffiffi
2

p �2
1 � ffiffiffi

2
p � ffiffiffi

2
p

2

0
BBB@

1
CCCA �

Mþ
11

Mþ
10

Mþ
01

M00

0
BBB@

1
CCCA ¼

css
csd
cds
cdd

0
BBB@

1
CCCA:
(B28)

It is interesting to note that only for a particle at rest, the
Weinberg-Tomozawa term is a pure s-wave, while for
moving particles, factors of !

M reduce the s-wave part.

APPENDIX C: DETAILS ON THE a1

CALCULATION

In this appendix we explicitly give the coefficients Ai

from Sec. VC, which incorporate the nontrivial part of the
calculation including the a1. The explicit expressions read

A1 ¼ � fAgVudgVsffiffiffi
2

p
F3
0

ðc1ðMa1
1 Þ1 þ c2ðMa1

2 Þ1Þ

þX
�V

gVudgV

2
ffiffiffi
2

p
F3
0

c�VJ�Vð�2Þ

�
�
gV�

�V
1 þ 1

2
ðfV � 2gVÞ��V

2

�
(C1)

and

A2 ¼ � fAgVudgVsffiffiffi
2

p
F3
0

1ffiffiffi
s

p
p2
cm��

ðc1ð!��ðMa1
1 Þ1

� ffiffiffi
2

p
M�ðMa1

1 Þ3Þ þ c2ð!��ðMa1
2 Þ1 �

ffiffiffi
2

p
M�ðMa1

2 Þ3ÞÞ
þX

�V

gVudgV

2
ffiffiffi
2

p
F3
0

c�VJ�Vð�2Þ

�
�
gV�

�V
3 þ 1

2
ðfV � 2gVÞ��V

4

�
; (C2)

where c�� ¼ ffiffiffi
2

p
and cKK� ¼ �1. The first part of the

coefficients Ai contains the functions Ma1
i , which result

from adding the last two diagrams of Fig. 3

Ma1
1 ¼ 1

s�M2
a1

ð1þ VJÞ�1

ffiffiffi
2

p ðs�m2
� �M2

�Þ
�ðs�M2

K �M2
K� Þ

M�ffiffi
s

p ðsþm2
� �M2

�Þ
� MK�ffiffi

2
p ffiffi

s
p ðsþM2

K �M2
K� Þ

0
BBBBB@

1
CCCCCA;

(C3)

Ma1
2 ¼ 1

s�M2
a1

ð1þ VJÞ�1

�

ffiffiffi
2

p ðsþm2
� �M2

�Þ
�ðsþM2

K �M2
K� Þffiffi

s
p
M�

ðs�m2
� �M2

�Þ
�

ffiffi
s

pffiffi
2

p
MK�

ðs�M2
K �M2

K� Þ

0
BBBBB@

1
CCCCCA; (C4)

where VJ is the matrix resulting from Eq. (28) and is given
by

VJ ¼
V1111J1 V1211J2 V1110J1 V1210J2
V2111J1 V2211J2 V2110J1 V2210J2
V1101J1 V1201J2 V1100J1 V1200J2
V2101J1 V2201J2 V2100J1 V2200J2

0
BBB@

1
CCCA: (C5)

The remaining part of the coefficients Ai corresponds to the
diagrams Fig. 3(e) and 3(f). The �i contain the expansion
coefficients of the scattering amplitudeMabij and are given

by

�
��
1 ¼ 2M2

�M1111 þ
ffiffiffi
2

p
!��M�M1112;

�KK�
1 ¼ 2M2

K�M1211 þ
ffiffiffi
2

p
!KK�MK�M1212;

(C6)

���
2 ¼ ðs�m2

� þM2
�ÞM1111 þ

ffiffiffi
2

p ffiffiffi
s

p
M�M1112;

�KK�
2 ¼ ðs�m2

� þM2
K� ÞM1211 þ

ffiffiffi
2

p ffiffiffi
s

p
MK�M1212;

(C7)

�
��
3 ¼ 1

p2
cm��

ffiffiffi
s

p ð!���
��
1 � ffiffiffi

2
p

M�ð2M2
�M1121

þ ffiffiffi
2

p
M�!��M1122Þ; (C8)

�KK�
3 ¼ 1

p2
cmKK�

ffiffiffi
s

p ð!KK��KK�
1 � ffiffiffi

2
p

M�ð2M2
K�M1221

þ ffiffiffi
2

p
MK�!KK�M1222Þ; (C9)

�
��
4 ¼ 1

p2
cm��

ffiffiffi
s

p ½!���
��
2 � 2sM�ð

ffiffiffi
2

p
!��M1121

þM�M1122Þ�; (C10)

�KK�
4 ¼ 1

p2
cmKK�

ffiffiffi
s

p ½!KK��KK�
2 � 2sMK� ð ffiffiffi

2
p

!KK�M1221

þMK�M1222Þ�: (C11)
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