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We perform a Dalitz plot analysis of Dþ ! K��þ�þ decay with the CLEO-c data set of 572 pb�1 of

eþe� collisions accumulated at the  ð3770Þ. This corresponds to 1:6� 106 DþD� pairs from which we

select 140 793 candidate events with a small background of 1.1%. We compare our results with previous

measurements using the isobar model. We modify the isobar model with an improved description of some

of the contributing resonances and get better agreement with our data. We also consider a quasi-model-

independent approach and measure the magnitude and phase of the contributing K� S wave in the range

of invariant masses from the threshold to the maximum in this decay. This gives an improved description

of our data over the isobar model. Finally we allow for an isospin-two �þ�þ Swave contribution and find
that adding this to both the isobar model and the quasi-model-independent approach gives the best

description of our data.
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I. INTRODUCTION

In comparison to other Dþ decay modes, the Dþ !
K��þ�þ decay is unique in many aspects. The large
branching fraction BðDþ ! K��þ�þÞ ¼ ð9:51�
0:34Þ% [1] for this Cabibbo favored mode makes it the
usual choice for normalization of other Dþ-meson decay
rates. Understanding its peculiar intermediate substructure
will be beneficial. The only obvious contribution to this
decay, observed in the K�-mass spectrum, is K�ð892Þ0�þ,
which comprises merely 12% of the total rate [1]. A large
contribution of over 60% from a K� S wave intermediate
state has been observed in earlier experiments, including
MARK III [2], NA14 [3], E691 [4], E687 [5], and E791
[6,7], where the Dþ ! K��þ�þ decay has been studied
with the Dalitz plot technique [8]. Hence, the Dþ !
K��þ�þ decay is a good laboratory to study K� S
wave dynamics.

The previous analysis by E791 [6] achieved good agree-
ment with their data by including a low-mass K��þ scalar
resonance � that significantly redistributed all fit fractions
(FF) observed by earlier experiments. This particular
model, even though it is based on the largest data set,
greatly disagrees with previous analyses and has been
excluded from the average given by the Particle Data
Group (PDG) [1].

There has been significant theoretical interest in this
decay, sparked by the large, low-mass K� S wave contri-
bution. In Refs. [9–11] the authors reanalyze the E791 data
with their own models. E791 later reinterpreted their own
data with a model-independent partial wave analysis [7],
and we apply this in our analysis with minor modifications.

The two identical pions in the final state should obey
Bose symmetry. Assuming that the three-body decay is
dominated by two-body intermediate states, there would
be two identical K��þ waves interfering with each other.
This twofold symmetry significantly reduces the degrees of
freedom in the regular Dalitz plot analysis and allows the
application of a model-independent partial wave analysis
[7]. We would also expect a small contribution from the
isospin-two �þ�þ S wave, which exhibits nontrivial dy-
namics as observed in scattering experiments [12].

The data used in this analysis were accumulated with the
CLEO-c detector [13]. Our event sample is based on
572 pb�1 of eþe� collisions at

ffiffiffi
s

p � 3774 MeV, pro-
duced by the Cornell Electron Storage Ring (CESR).
This sample corresponds to the production of 1:6� 106

DþD� pairs in the process eþe� !  ð3770Þ ! DþD�.
We select 140 793 Dþ ! K��þ�þ candidates for the
Dalitz plot analysis (charge conjugation is implied
throughout this paper). Our sample is very clean with a
background fraction of about 1.1% and is 9 times larger
than the data set used by E791. The invariant mass resolu-
tion in this three-track D-meson decay is very good; we
estimate it is better than 5 MeV=c2 in most cases. It is
improved by a kinematic fit requiring a three-track com-

mon vertex with the D-meson mass constraint. Our kine-
matic conditions are similar to those of MARK III, where
D mesons are produced with small momentum.
In Sec. II we briefly discuss CLEO-c experimental tech-

niques, giving the event selection for the Dalitz plot analy-
sis, the general fit method and methods to parametrize the
signal efficiency and background distribution across the
Dalitz plot. The formalism we use for the amplitude pa-
rametrization in this analysis is described in Sec. III. In
Sec. IV we compare our results with the best previous
measurements by E791 [6] and try to improve the isobar
model in order to get a better description of our data.
Finally, we apply a quasi-model-independent partial
wave analysis, following Ref. [7] and measure the partial
waves contributing to this decay in Sec. V. Systematic
studies and cross-checks are considered in Sec. VI. We
discuss results and outstanding issues of this analysis in
Sec. VII and summarize our results in Sec. VIII. In the
appendix we discuss the kinematic variables and angular
distributions used in this analysis.

II. DETECTOR AND EXPERIMENTAL
TECHNIQUE

A. Detector

CLEO-c is a general purpose detector which includes a
tracking system for measuring momenta and specific ion-
ization of charged particles, a ring imaging Cherenkov
detector to aid particle identification, and a CsI calorimeter
for detection of electromagnetic showers. These compo-
nents are immersed in a magnetic field of 1 T, provided by
a superconducting solenoid, and surrounded by a muon
detector. The CLEO-c detector is described in detail else-
where [13].

B. Event reconstruction

We reconstruct the Dþ ! K��þ�þ decay using three
tracks measured in the tracking system. Charged tracks
satisfy standard goodness of fit quality requirements [14].
Pion and kaon candidates are required to have specific
ionization dE=dx in the main drift chamber within 4 stan-
dard deviations of the expected value at the measured
momentum.
In order to select Dþ ! K��þ�þ decays, we use two

kinematic variables

�E ¼ ED � Ebeam; (1)

mBC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam � P2D

q
; (2)

where Ebeam is the beam energy and ED and PD are the
energy and the magnitude, respectively, of the momentum
of the reconstructedDþ candidate. ThemBC and j�Ej two-
dimensional distribution and the projections for data are
shown in Fig. 1. The resolutions in �E and mBC are rep-
resented as �ð�EÞ¼6MeV and �ðmBCÞ¼1:5MeV=c2,
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respectively; fits with a Gaussian function to the �E and
mBC peaks evaluate the resolutions to be 5:539�
0:014 MeV and 1:410� 0:013 MeV=c2, respectively. We
require the events to fall in the ‘‘signal box’’ that is the
overlap region of the�E andmBC signal regions defined as
j�Ej< 2�ð�EÞ and jmBC �mDj< 2�ðmBCÞ, respec-
tively. In the case of multiple D-meson candidates per
event we select the one with the smallest j�Ej value.

The K��þ�þ final state has two identical �þ mesons.
To account for this symmetry we analyze events on the
Dalitz plot by choosing x ¼ m2ðK��þÞlow and y ¼
m2ðK��þÞhigh as the independent ðx; yÞ variables. This

choice folds all of the data onto the top half of the kine-
matically allowed region, as is shown in Fig. 2(a). The third
variable z ¼ m2ð�þ�þÞ is dependent on x and y through
energy and momentum conservation. The invariant mass
resolutions, propagated from the track error matrices, are
shown in Fig. 3 and in 95% of cases are better than
5 MeV=c2. We use a kinematic fit to all 3-track candidates

which enforces a common vertex and Dþ mass [1] con-
straint. We require that all events pass the kinematic fit
successfully but do not restrict their �2. The kinematic-fit-
corrected 4-momenta of all 3 particles are used to calculate
invariant masses for further Dalitz plot analysis. Within its
finite accuracy, the kinematic fit improves the K��þ�þ
invariant mass resolution by 2 orders of magnitude.
Proportional improvement is expected for all two-body
invariant mass resolutions.
After all requirements, we select 140 793 events for the

Dalitz plot analysis. The signal fraction in this sample fsig
is estimated to be ð98:917� 0:013Þ% from the fit to the
mBC distribution, shown in Fig. 1(b). In this fit the signal
and background shapes are described by the double-
Gaussian and ARGUS [15] functions, respectively, with
all parameters free. This value of fsig is consistent with one

obtained from the fit to�E distribution, shown in Fig. 1(c).
In most fits to the Dalitz plot we use the fixed value of the
signal fraction. Figure 2 shows the Dalitz plot data and two

FIG. 2. (a) Dalitz plot for data and their projections on (b) m2ðK�Þ (two entries per event) and (c) m2ð��Þ variables.

FIG. 1 (color online). Event selection. (a) The mBC and j�Ej two-dimensional distribution for data and the projections on (b) mBC

and (c) �E. The mBC and �E signal regions, defined in the text, are shown as the bands in the figures. In (a), the ‘‘signal box’’ is
indicated as the crossing area of the two bands while the ‘‘sideband box,’’ defined in the text, is indicated as the shaded rectangle. Each
projection is made with the events in the signal region of the other kinematic variable; the fit curve, described in the text, is also shown.
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projections onto them2ðK�Þ axes [two entries per event for
m2ðK�Þlow and m2ðK�Þhigh, respectively] and m2ð��Þ.
Besides the clear K�ð892Þ signal, no other narrow features
are obvious. The strong left-right asymmetry of the
K�ð892Þ population density on the Dalitz plot is evidence
of the interference between P and Swaves. There are broad
structures, including a peak at m2ðK�Þ around
1:3 GeV2=c4, a dip at m2ðK�Þ around 2:25 GeV2=c4, a
dip at m2ð��Þ around 1 GeV2=c4, and a peak at m2ð��Þ
around 1:6 GeV2=c4, that do not obviously correspond
with known resonances or their reflections from other

axes. These structures also do not correspond to a flat phase
space distribution for nonresonant decays, since our effi-
ciency is essentially flat across the Dalitz plot, and the
background is very low. Thus, we are compelled to con-
sider K� strong interaction dynamics to explain the Dalitz
plot.

C. Fit method

In order to describe the event density distribution on the
Dalitz plot we use a probability density function (p.d.f.)
P ðx; yÞ, which depends on the event sample being fit:

P ðx; yÞ ¼
8><
>:
N ""ðx; yÞ for efficiency;
N BBðx; yÞ for background;
fsigN SjMðx; yÞj2"ðx; yÞ þ ð1� fsigÞN BBðx; yÞ for signal with background;

(3)

where the "ðx; yÞ and Bðx; yÞ are the functions representing
the shape of the efficiency and background, respectively,
across the Dalitz plot. The signal p.d.f. is proportional to
the efficiency-corrected matrix element squared
jMðx; yÞj2, defined in Sec. III, whose fraction fsig is in-
troduced earlier. The background term has a relative (1�
fsig) fraction. All p.d.f. components are normalized sepa-
rately using the normalization integrals over the Dalitz plot
area 1=N " ¼

R
"ðx; yÞdxdy, 1=N B ¼ R

Bðx; yÞdxdy,
and 1=N S ¼

R jMðx; yÞj2"ðx; yÞdxdy, which provides
the overall p.d.f. normalization

R
P ðx; yÞdxdy ¼ 1. The

p.d.f. free parameters are optimized with an maximum
likelihood fit that minimizes the sum over N events:

L ¼ �2
XN
n¼1

logP ðxn; ynÞ: (4)

To estimate the fit quality we use Pearson’s statistics for
adaptive bins, similar to our previous analysis [16].

D. Efficiency parametrization

To determine the efficiency we use a signal Monte Carlo
(MC) [17] simulation where one of the charged D mesons
decays in the signal mode uniformly in phase space, while
the otherDmeson decays in all knownmodes with relevant
branching fractions. These underlying events are input to
the CLEO-c detector simulation and processed with the
regular reconstruction package. The MC-generated events
are required to pass the same selection requirements as data
selected in the signal box, as shown in Fig. 1(a). In each
event we consider only the signal mode side to prevent
nonuniformity of the efficiency due to the resonance sub-
structure of the other side D decay currently implemented
in our generic simulation. The efficiency of the K�� final
state selection for the Dalitz plot analysis is estimated to be
ð51:11� 0:07Þ% where the error is only statistical. This
number also accounts for a correction factor, 0.984, due to
the nonuniform population of the data on the Dalitz plot,

fcorr ¼ �"Data
�"MC

¼
PN
n¼1 "ðxn; ynÞ=NR

"ðx; yÞdxdy=R dxdy ; (5)

FIG. 3. Invariant mass resolutions before the kinematic fit for (a) mðK�Þhigh, (b) mðK�Þlow, and (c) mð��Þ.
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where �"Data and �"MC are the average efficiencies for data
and uniformly generated MC samples, the function "ðx; yÞ
is an efficiency over Dalitz plot defined later by Eqs. (6)
and (7), the sum runs over all N events in the data sample,
and the integrals are taken over the area of the Dalitz plot.

To parametrize the efficiency "ðx; yÞ, we use a symmet-
ric third-order polynomial function centered on the arbi-
trary point ðxc; ycÞ ¼ ð1:5; 1:5Þ ðGeV=c2Þ2 on the Dalitz
plot. With x̂ � x� xc and ŷ � y� yc, the efficiency is
the product of the polynomial function:

"ðx; yÞ ¼ TðvÞ½1þE1ðx̂þ ŷÞ þE2ðx̂2 þ ŷ2Þ þE3ðx̂3 þ ŷ3Þ
þExyx̂ ŷþExynðx̂2ŷþ x̂ŷ2Þ�; (6)

and sinelike threshold factors for each Dalitz plot variable
v ( � x, y or z):

TðvÞ¼
�
sinðEth;vjv�vmaxjÞ for 0<Eth;vjv�vmaxj<�=2;
1 forEth;vjv�vmaxj��=2;

(7)

where all polynomial coefficientsE1,E2, E3,Exy, Exyn, and

Eth;v are the fit parameters. Each variable v has two thresh-

olds vmin and vmax. We expect low efficiency in the regions
v � vmax only, where one of three particles is produced
with zero momentum in the D-meson rest frame and thus
has a small momentum in the laboratory frame. Figure 4
and Table I show results of the fit to the entire signal MC
sample of Dþ ! K��þ�þ events selected on the Dalitz
plot. The polynomial function with threshold factors well
describes the efficiency shape. If we consider subsamples
of our signal MC, such as Dþ versus D�, we find that the
variation of the efficiency parameters is small compared to
their statistical uncertainties. In fits to data we use this
efficiency shape with fixed parameters, and variations con-
strained by the errors from our fit to the signal MC are
allowed as systematic checks.

E. Background parametrization

A shape for the background on the Dalitz plot is esti-
mated using data events from a mBC sideband region,
shown by the hatched box in Fig. 1(a). This box is shifted
in �E from the signal region to have the same K��þ�þ
invariant mass range as candidates in the signal box. We
consider only events from the low-mass mBC sideband as
the high-mass sideband has a significant contribution from
signal events due to a ‘‘tail’’ caused by initial state radia-
tion. This tail is clearly seen in the mBC distribution shown
in Fig. 1(b).
The background is a small contribution that has little

effect on our fits. Nevertheless, we study the background
composition using generic MC simulation for all known
modes and find the following. The pileup of events at
m2ðK�Þhigh � 2:6 GeV2=c4 is caused by the misrecon-

structed D decays from D0 �D0 and DþD� pairs and the
combinatorial background from the eþe� ! q �q (q ¼ u, d
and s) continuum; their contributions have the relative
fractions of 62%, 13% and 25%, respectively, in this

FIG. 4. For the efficiency shape: (a) Dalitz plot of the signal MC generated uniformly in phase space and its projections on
(b) m2ðK�Þ (two entries per event) and (c) m2ð��Þ variables. The solid histogram is a projection of the function described in the text
which parametrizes the efficiency. Binned results are shown, but the efficiency shape is determined with an unbinned maximum
likelihood fit.

TABLE I. Fit parameters for the efficiency from the signal MC
sample.

Parameter Value

E1 �0:0153� 0:0090
E2 �0:030� 0:011
E3 0:162� 0:020
Exy �0:053� 0:019
Exyn 0:673� 0:055
Eth;x � Eth;y 4:25� 0:23
Eth;z 2:907� 0:075
Pearson �2=� 649=573
Probability (%) 1.5

Events on DP 477978
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area. The dominant misreconstructed D decays are D0 !
K��þ�0, a1ð1260ÞþK�, and Dþ ! K��þ�þ, where
one of the final state pions is misreconstructed and replaced
with a �þ meson from the other D decay. The shape of the
background is well reproduced in our simulation for events
selected from either the signal or sideband box.

To parametrize the background shape on the Dalitz plot
we employ a function similar to that used for the efficiency,
shown in Eqs. (6) and (7). Figure 5 and Table II show
results of the fit with the background polynomial function
to our sideband sample. In cross-checks with subsamples
we find the variation of the shape parameters is small
compared to their statistical uncertainties. We use the
nominal background shape with fixed parameters in fits
to data and allow the parameters to vary constrained by
their errors as a systematic check.

III. DECAYAMPLITUDE PARAMETRIZATION

A. Matrix element

In this analysis we follow the formalism of E791 [7]
with only minor variations. In the formulas below for the
Dalitz plot variables, we also use Mandelstam notations

s ¼ m2ðK��þ
1 Þ, t ¼ m2ðK��þ

2 Þ, and u ¼ m2ð�þ
1 �

þ
2 Þ. We

choose two of them s and t as independent, and the third u
is dependent, constrained by the equation sþ tþ u ¼
m2
D þm2

K þ 2m2
�. Then, the matrix element has an explicit

Bose-symmetric form for pion permutations

M ðs; tÞ ¼ Aðs; tÞ þ Aðt; sÞ þ AI¼2
L¼0ðuðs; tÞÞ: (8)

Below we discuss the amplitudes contributing to the matrix
element.

B. Partial K� amplitudes

Each K� amplitude is defined using a sum over the
decay orbital momentum L of two-body partial waves

Aðs; tÞ ¼ XLmax

L¼0

�Lðs; tÞF L
DðqðsÞÞALðsÞ; (9)

with parameters as described below. In this analysis we
consider the sum up to the maximal orbital momentum
Lmax ¼ 2.
We assume theDþ ! K��þ�þ decay goes via a quasi-

two-body intermediate state d! Rc containing the reso-
nance R and particle c, followed by the decay of the
resonance to the final stable particles a and b, R! ab.
This is shown schematically in Fig. 6. The�Lðs; tÞ term in
Eq. (9) represents the angular distribution, which we use in
the invariant forms [18]

�L¼0ðm2
ab; m

2
acÞ ¼ 1; (10)

�L¼1ðm2
ab; m

2
acÞ ¼ m2

bc �m2
ac þ ðm2

d �m2
cÞðm2

a �m2
bÞ

m2
ab

;

(11)

FIG. 5. (a) Dalitz plot of data in the sideband box and projections on (b) m2ðK�Þ (two entries per event) and (c) m2ð��Þ variables.
The solid histogram shows the projection of the fit function used to parametrize the background shape described in the text.

TABLE II. Fit parameters for the background shape from the
fit to the sideband region.

Parameter Nominal value

B1 0:63� 0:22
B2 0:95� 0:39
B3 0:41� 0:54
Bxy �0:20� 0:62
Bxyn �1:2� 1:3
Bth;x � Bth;y 1:31� 0:13
Bth;z 11:2� 6:5
Pearson �2=� 129=97
Probability (%) 1.6

Events on DP 1554

G. BONVICINI et al. PHYSICAL REVIEW D 78, 052001 (2008)

052001-6



�L¼2ðm2
ab; m

2
acÞ ¼ ½�L¼1�2 � 1

3

�
m2
ab � 2m2

d � 2m2
c

þ ðm2
d �m2

cÞ2
m2
ab

��
m2
ab � 2m2

a � 2m2
b

þ ðm2
a �m2

bÞ2
m2
ab

�
; (12)

where md, ma, mb, and mc are the masses of decaying and
product particles and mab, mac, and mbc are the relevant
invariant masses. In the appendix we show that these
angular distributions are equivalent to those applied in
the E791 analysis [7] up to constant coefficients.

The form factors F L
DðqÞ in Eq. (9) and F L

RðqÞ in
Eqs. (20) and (22) are defined using the Blatt-Weisskopf
form [19]

L ¼ 0: F 0
VðqÞ ¼ 1; (13)

L ¼ 1: F 1
VðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2V
1þ q2

s
; (14)

L ¼ 2: F 2
VðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 3q2V þ q4V
9þ 3q2 þ q4

s
; (15)

where the index V stands for the D or R decay vertex, q ¼
rVP, P is the magnitude of the momentum of the decay
products in the decaying particle’s rest frame, and rV is the
effective radius for theD orR vertex, respectively. For both
D and R decays, qV ¼ rVPV , where PV is the magnitude of
momentum of the decay products calculated at mab ¼ mR,
the pole mass of R. The form factors are normalized by the
condition F L

VðqVÞ ¼ 1.
The values of radial parameters are discussed in Sec. IV.

Expressions for the decay products’ momentum for both
vertices can be found in the appendix. The mass depen-
dences of F L

DðqðsÞÞ form factors for K� resonances are
shown in Table III.

Another Gaussian form factor shape of the scalar reso-
nance,

F 0
VðqÞ ¼ e�ðq2�q2V Þ=12; (16)

is applied in the E791 [7] analysis. This shape is suggested
by Tornquist [20] and has a steep dependence on momen-
tum. A reanalysis of the E791 data [10] found that this form
factor is not required by the data. We use only the Gaussian
form factors F 0

D and F 0
R from Eq. (16) for the scalar

components � and K�
0ð1430Þ, when comparing results

with E791 model C [6]. We use the unit form factor from
Eq. (13) for scalar resonances in all other models and with
the binned partial waves discussed below.
The partial waves ALðsÞ in Eq. (9) are the angular

momentum L-dependent functions of a single variable z,
which is either s or t. In the Dþ ! K��þ�þ decay the S,
P and D waves (L ¼ 0, 1, or 2, respectively) are repre-
sented by the sum of functions WR for individual inter-
mediate states

A 0ðzÞ ¼ cNR þW� þWK�
0ð1430Þ þWS;binned; (17)

A 1ðzÞ ¼ WK�ð892Þ þWK�ð1410Þ þWK�ð1680Þ þWP;binned;

(18)

A 2ðzÞ ¼ WK�
2
ð1430Þ þWD;binned: (19)

The contribution of nonresonant decays is represented by
cNR ¼ aNRe

i�NR , a complex constant with two fit parame-
ters for magnitude aNR and phase �NR. The WL;binned are

the binned amplitudes as discussed below.

WR ¼ cRW RF L
RðrRPÞ (20)

is the shape of an individual resonanceW R [see Eqs. (21)–
(24)] multiplied by the form factor in the resonance R
decay vertex F L

RðrRPÞ and the coupling constant cR ¼
aRe

i�R . The resonance R production magnitudes aR and
phases �R are parameters of the fit to the Dalitz plot.

C. Resonance shapes

For intermediate K� resonances we use the standard
Breit-Wigner function

W RðmÞ ¼ 1

m2
R �m2 � imR�ðmÞ

; (21)

where m2 ¼ s and the mass-dependent width has the usual
form

�ðmÞ ¼ �R
mR

m

�
P

PR

�
2Lþ1½F L

RðrRPÞ�2: (22)

For K�
0ð1430Þ we have tested both the Breit-Wigner

function [Eq. (21)] and the Flatté parametrization

W RðmÞ ¼ 1

m2
R �m2 � i

P
ab

g2Rab�abðmÞ
; (23)

where gRab is a coupling constant of resonance R to the
final state ab and �abðmÞ ¼ 2P=m is a phase space factor.
We test the Flatté parametrization because the K�

0ð1430Þ

FIG. 6. Three-body decay d! Rc! abc in the resonance R
rest frame.
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mass is close to the K� and K�0 thresholds, which could
significantly distort the resonance shape [10].

For a low invariant mass K� S wave we tested the Breit-
Wigner function, following E791, and the complex pole
proposed in Ref. [11]

W RðmÞ ¼ 1

sR �m2
; (24)

where sR is a pole position in the complex s ¼ m2 plane.
This function represents the first term of the Laurent series
in the expansion of the chiral perturbation theory complex
amplitude for the scalar wave. This approach is common,
and a survey of pole positions extracted from different
experiments can also be found in Ref. [9]. This complex
pole is equivalent to a Breit-Wigner function with constant
width.

D. Isospin-two �þ�þ S wave amplitude

The isospin-two �þ�þ S wave amplitude in Eq. (8) is a
sum of two components

AI¼2
L¼0ðuÞ ¼ c��W I¼2

S þWI¼2
S;binned; (25)

where c�� ¼ a��e
i��� is a complex coupling constant and

WI¼2
S;binned is discussed in Sec. III E. The first term of this sum

is parametrized by a unitary form [21]

W I¼2
S ðmÞ ¼ �2

0ðmÞe2i	20ðmÞ � 1

2i
; (26)

where m is a �þ�þ invariant mass, �2
0ðmÞ is an inelastic-

ity, and 	2
0ðmÞ is a phase of the �þ�þ wave with total

spin 0 and isospin two. The phase 	2
0ðmÞ is assumed to be

proportional to the decay momentum at threshold and
sculpted by a polynomial function at higher mass range

	2
0ðmÞ ¼

�a ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=4�m2

�

p
1þ bm2 þ cm4 þ dm6

; (27)

with parameters a ¼ ð55:21� 3:18Þ deg=GeV, b ¼
ð0:853� 0:254Þ GeV�2, c ¼ ð�0:959� 0:247Þ GeV�4,
and d ¼ ð0:314� 0:070Þ GeV�6, obtained in Ref. [21]
from a fit to the data of the scattering experiments [12].
We use this function with fixed parameters. The inelasticity
�2
0ðmÞ in the mass range of m<mmin � mð�þ�þÞ �

1:5 GeV=c2 is expected to be near unity. Then �2
0ðmÞ

TABLE III. Bins for the K� S, P, andD waves and Blatt-Weisskopf form factors for K�ð892Þ and K�ð1680Þ from Eq. (14), K�
2ð1430Þ

from Eq. (15), and K�
0ð1430Þ from Eq. (16), calculated in the D-meson decay vertex.

Bin m2
K� ðGeV=c2Þ2 mK� ðGeV=c2Þ Blatt-W. form factors F L

DðqÞ for Gaussian FF K�
0ð1430Þ

# Bin range Bin range Center K�ð892Þ K�ð1680Þ K�
2ð1430Þ

1 0.4–0.5 0.632–0.707 0.671 0.888 0.250 0.305 0.347

2 0.5–0.6 0.707–0.775 0.742 0.918 0.259 0.324 0.380

3 0.6–0.7 0.775–0.837 0.806 0.948 0.267 0.345 0.415

4 0.7–0.8 0.837–0.894 0.866 0.982 0.277 0.368 0.451

5 0.8–0.9 0.894–0.949 0.922 1.017 0.287 0.394 0.489

6 0.9–1.0 0.949–1.000 0.975 1.055 0.297 0.421 0.528

7 1.0–1.1 1.000–1.049 1.025 1.096 0.309 0.452 0.570

8 1.1–1.2 1.049–1.095 1.072 1.140 0.321 0.485 0.612

9 1.2–1.3 1.095–1.140 1.118 1.188 0.335 0.523 0.656

10 1.3–1.4 1.140–1.183 1.162 1.240 0.349 0.564 0.700

11 1.4–1.5 1.183–1.225 1.204 1.296 0.365 0.609 0.746

12 1.5–1.6 1.225–1.265 1.245 1.358 0.383 0.659 0.792

13 1.6–1.7 1.265–1.304 1.285 1.425 0.402 0.715 0.839

14 1.7–1.8 1.304–1.342 1.323 1.499 0.423 0.776 0.885

15 1.8–1.9 1.342–1.378 1.360 1.581 0.446 0.844 0.932

16 1.9–2.0 1.378–1.414 1.396 1.672 0.471 0.918 0.978

17 2.0–2.1 1.414–1.449 1.432 1.773 0.500 0.999 1.023

18 2.1–2.2 1.449–1.483 1.466 1.886 0.532 1.085 1.067

19 2.2–2.3 1.483–1.517 1.500 2.013 0.568 1.178 1.109

20 2.3–2.4 1.517–1.549 1.533 2.157 0.608 1.275 1.150

21 2.4–2.5 1.549–1.581 1.565 2.320 0.654 1.374 1.189

22 2.5–2.6 1.581–1.612 1.597 2.506 0.707 1.472 1.226

23 2.6–2.7 1.612–1.643 1.628 2.719 0.766 1.568 1.259

24 2.7–2.8 1.643–1.673 1.658 2.962 0.835 1.657 1.290

25 2.8–2.9 1.673–1.703 1.688 3.240 0.913 1.737 1.318

26 2.9–3.0 1.703–1.732 1.718 3.554 1.002 1.805 1.342

mK�;min ¼ mK� þm�þ ¼ 0:633 GeV=c2

mK�;max ¼ mDþ �m�þ ¼ 1:730 GeV=c2
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decreases due to the �þ�þ ! �þ�þ rescattering at a
higher mass range. In our fits we use a smooth approxima-
tion for this threshold behavior

�2
0ðmÞ¼

8><
>:
1; m	mmin;
1���

2 ½1�cosð� m�mmin

mmax�mmin
Þ�; mmin<m<mmax;

1���; m�mmax;

(28)

with fit parameters mmin, mmax, and ��.

E. Binned amplitude

The complex term WL;binned in Eqs. (17)–(19) and (25),

where L ¼ 0, 1, or 2, is intended to provide a completely
model-free parametrization of the partial wave. It can be
used alone or in combination with other terms. In the latter
case it represents a correction to the complex amplitude of
the isobar model. We use this term in the form of an
s-dependent complex number

WL;binnedðsÞ ¼ aLðsÞei�LðsÞ; (29)

TABLE IV. The Breit-Wigner resonance parameters used or measured in the isobar model; CLEO-c vs E791. The fixed parameters
used in the E791 experiment are taken from PDG 2000 [22] with their uncertainties shown in square brackets. The measured values are
shown with two uncertainties: statistical and systematic. The values shown in parentheses (with statistical error only) were obtained in
cross-checks when these parameters are allowed to float.

Parameter (MeV=c2) E791 [PDG 2000] CLEO-c PDG 2006 [1]

Model C (if float) Model I2 (if float)

mK�ð892Þ 896:1½�0:27� 896ð894:8� 0:5Þ 895:7� 0:2� 0:3 896:00� 0:25
�K�ð892Þ 50:7½�0:6� 50:3ð45:5� 0:4Þ 45:3� 0:5� 0:6 50:3� 0:6
mK�ð1430Þ 1459� 7� 12 1463:0� 0:7� 2:4 1466:6� 0:7� 3:4 1414� 6
�K�ð1430Þ 175� 12� 12 163:8� 2:7� 3:1 174:2� 1:9� 3:2 290� 21
mK�

2
ð1430Þ 1432:4½�1:3� 1432:4ð1436� 11Þ 1432:4ð1427� 7Þ 1432:4� 1:3

�K�
2
ð1430Þ 109½�5� 109ð132� 21Þ 109ð120� 13Þ 109� 5

mK�ð1680Þ 1717½�27� 1717ð1782� 41Þ 1717ð1679� 59Þ 1717� 27
�K�ð1680Þ 322½�110� 322ð565� 131Þ 322ð446� 119Þ 322� 110
mK�ð1410Þ 1414½�15� 1414 1414 1414� 15
�K�ð1410Þ 232½�21� 232 232 232� 21
m� 797� 19� 43 809� 1� 13 Complex pole, K�

0ð800Þ is not
�� 410� 43� 87 470� 9� 15 see Table VI established

FIG. 7 (color online). Simulation of the expected contribution to the Dþ ! K��þ�þ Dalitz plot from various intermediate states.
(a) Low-mass K� S wave (�), (b) K�ð892Þ�, (c) K�

0ð1430Þ�, (d) K�
2ð1430Þ�, (e) K�ð1680Þ�, and (f) Kð��ÞI¼2 with I ¼ 2 �þ�þ S

wave.
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with functions aLðsÞ and �LðsÞ defined by an interpolation
between the bins for the magnitude aLk and phase �Lk,
where kðsÞ ¼ 1; 2; . . . ; NL is an s-dependent index of these
bins. For all K� waves we define NL ¼ 26 uniform bins in
s � m2

K� in the range ½0:4; 3:0� ðGeV=c2Þ2, as shown in
Table III. Similar, for an I ¼ 2 �þ�þ S wave we define
NI¼2
L¼0 ¼ 18 uniform bins in u � m2

�� [s in Eq. (29) is

replaced with u] in the range ½0:1; 1:9� ðGeV=c2Þ2. This
binning scheme covers the kinematically allowed range of
the K� ½0:633; 1:730� GeV=c2 and �þ�þ
½0:279; 1:376� GeV=c2 invariant mass spectrum in the
Dþ ! K��þ�þ decay. We interpolate linearly between
bin centers in our fitting function.

F. Fit fraction

We estimate a contribution of each component in the
matrix element using a standard definition of the fit fraction

FF R ¼
R jARðx; yÞj2dxdyR jMðx; yÞj2dxdy ; (30)

where ARðx; yÞ is an amplitude contribution from the R
component to the total matrix elementMðx; yÞ from Eq. (8)
and the integrals are taken over the area of the Dalitz plot.

G. Expected contributions

A priori, all known K� resonances in the mass range
from the production threshold up to 1:73 GeV=c2, such as
K�ð892Þ, K�ð1410Þ, K�

0ð1430Þ, K�
2ð1430Þ, K�ð1680Þ, and

even higher mass resonances, might contribute to the am-
plitude of the Dþ ! K��þ�þ decay. Table IV shows
parameters of K� resonances which have been considered
in this analysis. One would also foresee an I ¼ 2 �þ�þ S
wave final state interaction. Simulations of some of the
expected contributions to the Dalitz plot are shown in
Fig. 7. In contrast to the data [Fig. 2(a)], the K�ð892Þ
population density in Fig. 7(b) is symmetric without inter-
ference with an S wave.

IV. FITS TO DATA USING THE ISOBAR MODEL

A. Comparison with E791 model C

First we compare our results, obtained in the framework
of the isobar model, with E791 models A, B, and C from
Ref. [6]. In particular, the most complete model C contains
�K�ð892Þ�þ, �K�

0ð1430Þ�þ, �K�
2ð1430Þ�þ, �K�ð1680Þ�þ,

��þ, and nonresonant (NR) contributions. Following
E791 we allow a scalar K� amplitude, the ‘‘�,’’ as a
Breit-Wigner resonance with mass-dependent width. We
set cK�ð892Þ ¼ 1 in Eqs. (18) and (20), and all other magni-

tudes and phases are defined with respect to K�ð892Þ.
Gaussian form factors F 0

DðrDPcÞ and F 0
RðrRPÞ from

Eq. (16) are used for K�
0ð1430Þ and �. For all K� reso-

nances with nonzero spin, the radii in the Blatt-Weisskopf

[19] form factors rD ¼ 5 GeV�1 and rR ¼ 1:5 GeV�1 are
fixed to the values used by E791. On the Dalitz plot, the
p.d.f. for this model looks indistinguishable from statistics
shown in Fig. 2(a). The Dalitz plot projections with p.d.f.
components are shown in Fig. 8. Fit fractions and phases,
obtained in our fit, are compared with E791 [6] in Table V
and are statistically consistent. Magnitudes are not com-
parable because of a different choice for normalization.
The values obtained for resonance parameters are com-
pared in Table IV. In particular, we get dominant contribu-
tions from S wave components; the NR, K�

0ð1430Þ�, and
�� fit fractions are � 9%, 10%, and 33%, respectively.
The total sum of all fit fractions is 65.5%, indicating
substantial constructive interference. Apparently,
model C gives a poor fit quality �2=� ¼ 531=391. A large
discrepancy between the fit and the data is seen in Fig. 8 for
the m2ð�þ�þÞ projection in the range of
½1:4; 1:9� ðGeV=c2Þ2. That motivates us to explore alter-
native models of the decay amplitude.

B. Variations of model C

The Gaussian form factors, given by Eq. (16) for scalar
resonances F 0

RðrRPÞ and F 0
DðrDPcÞ, behave similarly to

the L ¼ 4 Blatt-Weisskopf form factor. This behavior is
not preferred by either our or the E791 data; see Ref. [10]
for details. With our data we find that results are not very
dependent on the assumed resonance decay vertex form
factor F 0

RðrRPÞ. However, the D-meson decay vertex form
factor F 0

DðrDPÞ changes the S wave dependence on s
significantly. In particular, this Gaussian form factor (see
Table III) suppresses the contribution of K� at low mass.
To agree with the data when fitting with this factorized
form factor, the magnitude of the complex function (S
wave) increases at low K� mass which gives an illusion
of resonance behavior. For all models other than model C
below we use unit form factors from Eq. (13) for S wave
contributions.
For the K�

0ð1430Þ resonance we measure mK�
0
ð1430Þ ¼

1463:0� 0:7� 2:4 MeV=c2 and �K�
0
ð1430Þ ¼ 163:8�

2:7� 3:1 MeV=c2, which are consistent with E791 results
but inconsistent with current PDG [1] values, as demon-
strated in Table IV. Similar behavior is reported in Ref. [23]
from the FOCUS Collaboration. In Ref. [10] Bugg surmi-
ses that the K�

0ð1430Þ resonance parameters might change

due to the opening of the K�0 channel. In order to accom-
modate this effect, we test the Flatté parametrization of
Eq. (23), which depends on a floating mass mK�

0ð1430Þ and
three coupling constants gK�, gK�, and gK�0 . We find that

our data are consistent with gK� ¼ 0, and this coupling is

dropped from further consideration. The resulting values of
the other parameters are shown in Table VI. We do not find
any significant difference between Breit-Wigner and Flatté
parametrizations in the shape of the K�

0ð1430Þ complex

amplitude or in the fit quality.
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FIG. 8. Projections of the fit to the Dalitz plot with model C on (a) m2ðK�Þ (two entries per event) and (b) m2ð��Þ variables.
Residuals between data and the total p.d.f. are shown by dots with statistical error bars on the top insets along with minor contributions
from the K�ð1680Þ and K�

2ð1430Þ resonances, plotted with factor �4.

TABLE V. Comparison of CLEO-c results with E791 using the isobar fit, model C. Shown are the fitted magnitudes, a in arbitrary
units, the phases, � in degrees, defined relative to the K�ð892Þ�þ amplitude, and the FF. Also indicated are the fitted masses m and
widths � of the spin-zero resonances. Magnitudes a are not comparable between the two experiments because of a different choice for
normalization.

Mode Parameter E791 CLEO-c

NR a 1:03� 0:30� 0:16 7:4� 0:1� 0:6
�ð
Þ �11� 14� 8 �18:4� 0:5� 8:0
FF (%) 13:0� 5:8� 4:4 8:9� 0:3� 1:4

�K�ð892Þ�þ a 1 (fixed) 1 (fixed)

�ð
Þ 0 (fixed) 0 (fixed)

FF (%) 12:3� 1:0� 0:9 11:2� 0:2� 2:0
�K�
0ð1430Þ�þ a 1:01� 0:10� 0:08 3:00� 0:06� 0:14

�ð
Þ 48� 7� 10 49:7� 0:5� 2:9
FF (%) 12:5� 1:4� 0:5 10:4� 0:6� 0:5

m ðMeV=c2Þ 1459� 7� 12 1463:0� 0:7� 2:4
� ðMeV=c2Þ 175� 12� 12 163:8� 2:7� 3:1

�K�
2ð1430Þ�þ a 0:20� 0:05� 0:04 0:962� 0:026� 0:050

�ð
Þ �54� 8� 7 �29:9� 2:5� 2:8
FF (%) 0:5� 0:1� 0:2 0:38� 0:02� 0:03

�K�ð1680Þ�þ a 0:45� 0:16� 0:02 6:5� 0:1� 1:5
�ð
Þ 28� 13� 15 29:0� 0:7� 4:6
FF (%) 2:5� 0:7� 0:3 1:28� 0:04� 0:28

��þ a 1:97� 0:35� 0:11 5:01� 0:04� 0:27
�ð
Þ �173� 8� 18 �163:7� 0:4� 5:8
FF (%) 47:8� 12:1� 5:3 33:2� 0:4� 2:4

m ðMeV=c2Þ 797� 19� 43 809� 1� 13
� ðMeV=c2Þ 410� 43� 87 470� 9� 15

Form factor r� ðGeV�1Þ 1:6� 1:3 1.5 (fixed)

rD ðGeV�1Þ 5:0� 0:5 5 (fixed)

Other R! K� rR ðGeV�1Þ 1.5 (fixed) 1.5 (fixed)P
FF (%) 88.6 65.5

Goodness �2=� 46=63 531=391
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TABLE VI. Alternative parameters obtained in the fits with the isobar model.

Mode Amplitude Parameter (MeV=c2) Model C Model I2

�K�
0ð1430Þ�þ Breit-Wigner mK�

0
ð1430Þ 1463:0� 0:7� 2:4 1466:6� 0:7� 3:4

�K�
0
ð1430Þ 163:8� 2:7� 3:1 174:2� 1:9� 3:2

Flatté mK�
0
ð1430Þ 1462:5� 3:9 1471:2� 0:8
gK� 532:9� 8:5 546:8� 4:2
gK� 0 0

gK�0 197� 106 230� 32
��þ Breit-Wigner m� 809� 1� 13 888� 2

�� 470� 9� 15 550� 12
Complex pole <m� 769:9� 6:3 706:0� 1:8� 22:8

=m� �221:2� 8:4 �319:4� 2:2� 20:2

TABLE VII. Fit results for model I2, with a Breit-Wigner function or with a complex pole for the �, and QMIPWA. The FF are
shown for a single K� wave and need to be doubled as indicated by the ‘‘2�’’ symbol in row titles.

Mode Parameter Model I2 (B-W for �) Model I2 QMIPWA

�K�ð892Þ�þ a 1-fixed 1-fixed 1-fixed

�ð
Þ 0-fixed 0-fixed 0-fixed

FF (%) 2� 5:15� 0:24 5:27� 0:08� 0:15 4:94� 0:23
m ðMeV=c2Þ 895:4� 0:2 895:7� 0:2� 0:3 895.7-fixed

� ðMeV=c2Þ 44:5� 0:7 45:3� 0:5� 0:6 45.3-fixed
�K�ð1680Þ�þ a 4:45� 0:23 3:38� 0:16� 0:78 2:88� 0:84

�ð
Þ 43:3� 3:6 68:2� 1:6� 13 113� 14

FF (%) 2� 0:238� 0:024 0:144� 0:013� 0:12 0:098� 0:059
�K�
2ð1430Þ�þ a 0:866� 0:030 0:915� 0:025� 0:04 0:794� 0:073

�ð
Þ �17:4� 3:5 �17:4� 2:3� 2:0 14:8� 9:0
FF (%) 2� 0:124� 0:011 0:145� 0:009� 0:03 0:102� 0:020

�K�
0ð1430Þ�þ a 3:97� 0:15 3:74� 0:02� 0:06 3.74-fixed

�ð
Þ 45:1� 0:9 51:1� 0:3� 1:6 51.1-fixed

FF (%) 2� 7:53� 0:65 7:05� 0:14� 0:55 6:65� 0:31

m ðMeV=c2Þ 1461:1� 1:0 1466:6� 0:7� 3:4 1466.6-fixed

� ðMeV=c2Þ 177:9� 3:1 174:2� 1:9� 3:2 174.2-fixed

��þ a 5:69� 0:17 10:80� 0:05� 0:35 0

�ð
Þ �149:9� 1:2 148:4� 0:3� 1:6 0

FF (%) 2� 8:5� 0:5 21:6� 0:3� 3:2 0

Pole <m0 ðMeV=c2Þ 706:0� 1:8� 22:8
=m0 ðMeV=c2Þ �319:4� 2:2� 20:2

Breit-Wigner m ðMeV=c2Þ 888:0� 1:9
� ðMeV=c2Þ 550:4� 11:8

NR a 17:1� 0:4 23:3� 0:1� 1:6 0

�ð
Þ 1:9� 1:7 29:7� 0:2� 3:0 0

FF (%) 38:0� 1:9 73:8� 0:8� 9:6 0

Binned K��þ S wave a 0 0 See

�ð
Þ 0 0 Table VIII

FF (%) 2� 0 0 41:9� 1:9
I ¼ 2 �þ�þ S wave a 30:3� 2:7 25:5� 0:3� 2:9 33:1� 2:6

�ð
Þ 86:3� 3:3 75:4� 0:6� 10 66:2� 3:5

FF (%) 13:4� 2:3 9:8� 0:2� 2:0 15:5� 2:8
Equation (28) �� 1 1 1

mmin ðMeV=c2Þ 1265� 8 1256� 5� 4 1256.3-fixed

mmax ðMeV=c2Þ 1529� 31 1498� 13� 30 1498.2-fixed

Form factor rD ðGeV�1Þ 5-fixed 5-fixed 5-fixed

rSwave ðGeV�1Þ 0-fixed 0-fixed 0-fixed

Other R! K� rR ðGeV�1Þ 1.5-fixed 1.5-fixed 1.5-fixedP
FFið%Þ 94.4 152.0 122.8

Goodness �2=� 426=385 416=385 359=347
Probability (%) 7.4% 13.2% 31.5%
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In model C we also measure the � resonance Breit-
Wigner parameters m� ¼ 809� 1� 13 MeV=c2 and
�� ¼ 470� 9� 15 MeV=c2. In Ref. [11] Oller empha-
sizes that the Breit-Wigner resonance with a mass-
dependent width is not the best choice for the K� low-
mass phase parametrization. Following his prescription,
we replace the Breit-Wigner function by the complex
pole from Eq. (24) with the initial pole position at s� ¼
ð710� i310Þ2 MeV2=c4. We allow the pole position to
float and obtain its optimal location, as shown in Table VI.

We also test the K�ð892Þ parameters, as shown in
Table IV. The K�ð892Þ mass is consistent with the PDG
[1] value, while the width is about 5 MeV=c2 smaller. In
further analysis we allow the K�ð892Þ mass and width to
float.

Inclusion of a K�ð1410Þ component in the fit does not
result in any significant contribution.

C. Model I2

Tuning of the isobar model for K� waves only does not
improve significantly the probability of consistency be-
tween the data and the model, which is still small. The
large discrepancy in them2ð�þ�þÞ spectrum persists even
if we use the model-independent parametrization for the
K� S wave considered below. We solve this problem by
including in the matrix element [Eq. (8)] a contribution
from the I ¼ 2 �þ�þ S wave, using Eq. (26), which leads
to a model called model I2. The threshold of the �þ�þ !
�þ�þ rescattering process is located at the upper edge of
the m2ð�þ�þÞ kinematic limit in our decay. The edge of
the kinematic border does not allow us to resolve correla-
tions between the �� andmmax parameters in Eq. (28). We

fix the value of �� ¼ 1, while floating the mmin and mmax

parameters. In model I2, compared to model C, the unit
form factors F 0

D ¼ F 0
R ¼ 1 are used for the scalar com-

ponents, the complex pole amplitude from Eq. (24) is used
for the low-mass K� S wave, and the K�ð892Þ parameters
are allowed to vary in the fit; other conditions stay the same
as in model C.
Model I2 gives the best analytical description of our

data. The obtained fit parameters are presented in
Table VII. The total p.d.f. and separate components are
shown in the Dalitz plot projections in Fig. 9. The large
discrepancy in the m2ð�þ�þÞ spectrum is eliminated,
improving the probability of consistency between the
model and data to 13%.

D. Variations of model I2

We did not find any significant contribution from
K�ð1410Þ by including it in the fit. This resonance is
excluded from further consideration.
We also test the alternative descriptions for theK�

0ð1430Þ
parameters as shown Table VI. We do not find any signifi-
cant difference between Breit-Wigner and Flatté parame-
trizations in the shape of the K�

0ð1430Þ complex amplitude

or in the fit quality. We therefore use the Breit-Wigner
function in model I2 with the mass and width of K�

0ð1430Þ
allowed to float.
The test of alternative descriptions for the low-mass K�

S wave is presented in Tables VI and VII. The pole
amplitude slightly improves the fit quality (��2 ¼ �10)
compared to the Breit-Wigner resonance with mass-
dependent width. This substitution leads to a significant
redistribution of the NR and � components of the scalar

FIG. 9. Projections of the fit to the Dalitz plot with model I2 on (a) m2ðK�Þ (two entries per event) and (b) m2ð��Þ variables.
Residuals between data and the total p.d.f. are shown by dots with statistical error bars on the top insets along with minor contributions
from the K�ð1680Þ and K�

2ð1430Þ resonances, plotted with factor �10.
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wave, though their sum results in very small variation of
the complex function. In model I2 we use the pole ampli-
tude for the K� low-mass S wave.

V. QUASI-MODEL-INDEPENDENT PARTIALWAVE
ANALYSIS

A. QMIPWA for K� S wave

The biggest issue of any Dalitz plot analysis is its model
dependence. An attempt to mitigate the model dependence
for the decay under study is described in [7]. Here we
reproduce this analysis using a slightly modified technique,
which we call the quasi-model-independent partial wave
analysis (QMIPWA). We apply this technique as an exten-
sion of our model I2.

In QMIPWA we modify the parameters of model I2 as
follows. The NR and �� components in model I2 are
replaced by the binned S wave amplitude [Eq. (29)]. The
26 binned S wave magnitudes and phases of m2

K� are
floating fit parameters. We keep the K�

0ð1430Þ� contribu-

tion in its Breit-Wigner form, because it has a sharp
structure, that cannot be well reproduced by a binned
amplitude. The K�

0ð1430Þ parameters are fixed to their

values from model I2 in order to remove correlations

between the Breit-Wigner function and the binned S
wave amplitude. The K� Pwave in Eq. (18) is represented
by the K�ð892Þ and K�ð1680Þ Breit-Wigner functions,
where the cK�ð1680Þ parameters are allowed to float in the

fit. As usual cK�ð892Þ ¼ 1, and all other magnitudes and

phases are defined with respect to K�ð892Þ. The K�ð1410Þ
is excluded as mentioned previously. The K� D wave in
Eq. (19) is represented by the K�

2ð1430Þ Breit-Wigner
function with its parameters cK�

2
ð1430Þ allowed to float in

the fit. The I ¼ 2 �þ�þ S wave is represented by the
unitary amplitude from Eq. (26) fixing the mmin and mmax

parameters to their optimal values from model I2. The a��
and ��� parameters are allowed to float in the fit.
The results of the QMIPWA fit are shown in Table VII

for resonance parameters and Table VIII for the K� S
wave. Figure 10 shows the Dalitz plot projections of this
fit. The measured K� S wave and their comparison with
model I2 components are displayed in Fig. 11. Both the
magnitude and phase are different from those of model I2.
Table VIII (right-hand side) also shows the result of a

similar fit for a total binned S wave. For this fit the
K�

0ð1430Þ resonance is accounted for in the binned S
wave, and all other parameters are fixed to their values
from the nominal QMIPWA fit.

TABLE VIII. QMIPWA: Results for K� S wave. Figure 11 shows the binned K� S wave without K�
0ð1430Þ by the dots with error

bars and the total K� S wave by the solid curve.

Bin # m2
K� ðGeV=c2Þ2 Bin range Binned K� S wave w/o K�

0ð1430Þ Total K� S wave

Magnitude (a.u.) Phase (
) Magnitude (a.u.) Phase (
)

1 0.4–0.5 20:23� 0:80� 0:51 �71:8� 4:9� 4:1 19:29� 0:56 �66:0� 3:2
2 0.5–0.6 20:90� 0:68� 0:54 �61:1� 4:6� 2:3 20:38� 0:51 �54:3� 2:8
3 0.6–0.7 20:58� 0:63� 0:69 �48:8� 4:0� 3:2 20:35� 0:45 �40:9� 2:2
4 0.7–0.8 20:62� 0:64� 0:51 �47:0� 2:4� 0:7 20:52� 0:59 �39:7� 0:9
5 0.8–0.9 20:95� 0:74� 1:32 �44:1� 3:6� 3:5 20:84� 0:49 �36:0� 1:4
6 0.9–1.0 19:97� 0:63� 1:14 �38:4� 4:0� 6:4 19:97� 0:36 �28:7� 2:7
7 1.0–1.1 19:36� 0:58� 0:96 �26:2� 3:5� 4:8 19:97� 0:34 �15:7� 2:6
8 1.1–1.2 17:81� 0:53� 0:96 �18:6� 3:0� 6:1 18:85� 0:30 �6:9� 2:0
9 1.2–1.3 17:70� 0:49� 0:90 �13:7� 2:6� 5:1 19:05� 0:27 �1:2� 1:6
10 1.3–1.4 17:72� 0:47� 1:05 �8:5� 2:5� 5:8 19:47� 0:25 4:8� 1:4
11 1.4–1.5 17:13� 0:45� 1:05 �3:2� 2:4� 4:7 19:36� 0:23 11:6� 1:3
12 1.5–1.6 17:16� 0:45� 1:04 0:5� 2:3� 5:6 19:80� 0:22 17:1� 1:3
13 1.6–1.7 17:09� 0:46� 1:14 5:4� 2:3� 4:0 20:35� 0:22 24:3� 1:3
14 1.7–1.8 16:94� 0:47� 1:06 7:5� 2:3� 4:6 20:61� 0:24 30:1� 1:3
15 1.8–1.9 16:41� 0:48� 1:05 9:5� 2:4� 3:7 20:38� 0:27 38:0� 1:3
16 1.9–2.0 15:91� 0:51� 0:75 12:3� 2:7� 3:2 19:86� 0:34 49:1� 1:4
17 2.0–2.1 15:97� 0:56� 1:11 16:9� 2:9� 3:1 19:07� 0:40 63:4� 1:4
18 2.1–2.2 15:72� 0:61� 1:11 15:7� 2:5� 2:2 14:20� 0:40 76:6� 1:9
19 2.2–2.3 16:54� 0:63� 1:17 17:3� 2:1� 2:1 9:29� 0:39 75:2� 2:6
20 2.3–2.4 16:64� 0:71� 1:42 20:1� 2:1� 3:4 7:10� 0:43 57:5� 3:1
21 2.4–2.5 15:91� 0:86� 1:61 19:8� 2:3� 2:0 6:75� 0:43 33:5� 3:2
22 2.5–2.6 17:25� 1:03� 1:83 21:5� 2:4� 2:0 9:46� 0:51 26:0� 2:5
23 2.6–2.7 17:24� 1:21� 2:38 24:1� 2:6� 2:9 10:74� 0:55 26:7� 2:6
24 2.7–2.8 17:59� 1:34� 2:28 29:0� 2:8� 1:6 12:04� 0:64 31:8� 2:5
25 2.8–2.9 16:51� 1:65� 2:56 32:7� 3:5� 3:5 11:79� 0:79 36:0� 3:3
26 2.9–3.0 14:07� 3:28� 3:32 35:6� 6:0� 3:8 9:75� 2:50 38:6� 6:1
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B. Cross-check for binned I ¼ 2 �þ�þ S wave

In this approach we also check how much the I ¼ 2
�þ�þ Swave might be different from its analytic approxi-
mation in model I2. The analytic expression, given in
Eq. (26), is replaced by the binned wave from Eq. (29).
We fix all 20 fit parameters to their values in model I2.

Then, we fix to zero the magnitude of the analytic I ¼ 2
�þ�þ S wave, a�� ¼ 0, and add a binned I ¼ 2 �þ�þ S
wave; the magnitude and phase in each of the 18 bins of
m2
�þ�þ are allowed to float. Results of this fit are shown in

Table IX. The measured I ¼ 2 �þ�þ S wave is compared

FIG. 11. The magnitude and phase of the K� S wave in
model I2 and QMIPWA. The dots with error bars for statistical
uncertainties and the solid curve show the binned K� S wave
without K�

0ð1430Þ and the total K� S wave from Table VIII,

respectively. Other curves show the S wave components of
model I2 with parameters from Table VII.

FIG. 10. Projections of the fit to the Dalitz plot with QMIPWA on (a) m2ðK�Þ (two entries per event) and (b) m2ð��Þ variables.
Residuals between data and the total p.d.f. are shown by dots with statistical error bars on the top inset along with minor contributions
from the K�ð1680Þ and K�

2ð1430Þ resonances, plotted with factor �10.

TABLE IX. QMIPWA: Results for �þ�þ S wave, which are
also shown by dots with error bars in Fig. 12. Variation of the �2

and number of degrees of freedom �� is shown with respect to
model I2.

Bin m2
�� ðGeV=c2Þ2 I ¼ 2 �þ�þ S wave

# Bin range Magnitude (a.u.) Phase (
)

1 0.1–0.2 3:62� 0:44 �113:9� 7:0
2 0.2–0.3 4:31� 0:37 �115:8� 4:7
3 0.3–0.4 4:51� 0:33 �120:7� 3:6
4 0.4–0.5 6:17� 0:33 �116:8� 2:4
5 0.5–0.6 6:84� 0:34 �118:9� 2:1
6 0.6–0.7 8:13� 0:35 �121:8� 1:8
7 0.7–0.8 7:77� 0:35 �121:7� 1:9
8 0.8–0.9 8:65� 0:35 �125:5� 1:7
9 0.9–1.0 8:95� 0:37 �126:3� 1:6
10 1.0–1.1 9:61� 0:42 �127:9� 1:5
11 1.1–1.2 11:69� 0:55 �127:9� 1:3
12 1.2–1.3 10:04� 0:93 �132:0� 1:5
13 1.3–1.4 12:43� 1:01 �131:0� 1:2
14 1.4–1.5 12:92� 0:98 �131:1� 1:3
15 1.5–1.6 9:51� 0:98 �131:4� 1:8
16 1.6–1.7 11:56� 1:00 �134:7� 1:8
17 1.7–1.8 11:75� 1:10 �142:5� 2:1
18 1.8–1.9 10:52� 2:02 �156:1� 5:2
FF(%) 9:8� 0:4
��2=�� ð390� 416Þ=ð�36þ 20Þ
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to the model I2 analytic function in Fig. 12. The change of
the �2 in this fit compared to model I2, ��2 ¼
390� 416 ¼ �26, does not show a significant improve-
ment for the change�� ¼ �36þ 20 ¼ �16 in degrees of
freedom due to fixing 20 of the original parameters and
introducing 36 new parameters. The data do not prefer the
binned amplitude to the analytic model for the I ¼ 2
�þ�þ S wave.

C. Cross-checks for binned K� P and D waves

To check how much the P and D waves might be differ-
ent from their model parametrization we use the same
binned technique. All of the fit parameters are fixed to
their optimal values from model I2. The P wave binned
amplitude substitutes for the smooth K�ð1680Þ resonance
only. The sharp shape of the K�ð892Þ resonance is ac-
counted for by a Breit-Wigner function. The D wave
binned amplitude substitutes for the K�

2ð1430Þ contribu-
tion, even though it is not particularly smooth. The magni-
tude and phase in 26 bins of m2

K� are allowed to float for
the P or D wave in two separate fits, respectively. The
resolution for theDwave is worse, and we use only 18 bins

FIG. 12. The magnitude and phase of the I ¼ 2 �þ�þ S wave
in model I2 and QMIPWA. The dots with error bars for statistical
uncertainties represent results from Table IX. Other curves show
the I ¼ 2 �þ�þ S wave of model I2 and QMIPWA with
parameters from Table VII.

TABLE X. Results for K� P and D binned waves using model I2, which is also shown by dots with error bars in Figs. 13 and 14,
respectively. Variation of the �2 and number of degrees of freedom �� is shown with respect to model I2. The D wave is used only in
the range ½0:9; 2:7� ðGeV=c2Þ2 as explained in the text.

Bin # m2
K� ðGeV=c2Þ2 Binned P wave for K�ð1680Þ Binned D wave for K�

2ð1430Þ
Bin range Magnitude (a.u.) Phase (
) Magnitude (a.u.) Phase (
)

1 0.4–0.5 1:96� 1:26 41:0� 28:0 � � � � � �
2 0.5–0.6 2:90� 1:12 199:2� 11:2 � � � � � �
3 0.6–0.7 0:67� 0:93 50:1� 15:8 � � � � � �
4 0.7–0.8 0:81� 0:36 46:4� 18:4 � � � � � �
5 0.8–0.9 0:60� 0:35 102:3� 33:7 � � � � � �
6 0.9–1.0 0:58� 1:36 73:2� 25:7 0:71� 0:17 �61:8� 23:6
7 1.0–1.1 1:87� 0:77 79:5� 7:01 0:31� 0:14 �5:0� 69:6
8 1.1–1.2 0:09� 0:42 51:7� 22:4 0:66� 0:16 �15:6� 27:2

9 1.2–1.3 1:12� 0:38 81:3� 10:6 1:14� 0:19 �50:0� 12:9
10 1.3–1.4 1:49� 0:33 74:4� 8:79 1:09� 0:19 �28:7� 13:1
11 1.4–1.5 0:81� 0:33 83:9� 13:3 0:97� 0:19 �9:9� 14:2

12 1.5–1.6 1:25� 0:33 80:8� 10:6 1:30� 0:21 �15:5� 14:0
13 1.6–1.7 1:30� 0:34 73:3� 9:79 1:45� 0:24 11:6� 13:5
14 1.7–1.8 1:77� 0:36 77:7� 8:34 2:18� 0:26 �16:3� 10:2

15 1.8–1.9 1:16� 0:40 88:1� 11:1 3:28� 0:28 24:4� 7:83
16 1.9–2.0 1:79� 0:45 90:9� 9:91 5:77� 0:38 31:9� 5:45
17 2.0–2.1 1:86� 0:42 102:1� 11:2 4:77� 0:52 70:2� 5:90
18 2.1–2.2 2:42� 0:45 104:3� 12:2 4:45� 0:70 100:2� 7:41

19 2.2–2.3 2:58� 0:52 115:7� 12:6 4:69� 0:97 127:8� 8:52
20 2.3–2.4 1:66� 0:55 119:6� 16:6 3:79� 1:13 116:8� 16:3
21 2.4–2.5 3:76� 0:60 108:8� 11:4 0:18� 1:42 �3:3� 84:7

22 2.5–2.6 4:19� 0:75 113:6� 13:7 4:86� 1:72 135:8� 33:2
23 2.6–2.7 6:71� 0:98 105:0� 16:9 1:54� 2:58 184:8� 78:5
24 2.7–2.8 3:35� 1:59 142:4� 29:4 � � � � � �
25 2.8–2.9 7:03� 2:49 183:2� 22:5 � � � � � �
26 2.9–3.0 32:66� 17:9 232:2� 11:6 � � � � � �
FF(%), 2� 0:20� 0:03 0:15� 0:01
��2=�� ð373� 416Þ=ð�52þ 20Þ ð400� 416Þ=ð�36þ 20Þ
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in them2
K� range ½0:9; 2:7� ðGeV=c2Þ2. Results of these fits

are shown in Table X. The measured P andD binned waves
and their comparison with the model I2 components are
displayed in Figs. 13 and 14, respectively.

The relative fraction of the P and especially the D wave
is much smaller than the S wave. This explains the poor
resolution for these binned amplitudes. We find that our
binned P and D waves are consistent with their substituted
components in model I2. This cross-check adds some con-
fidence to this quasi-model-independent technique.

VI. CROSS-CHECKS AND SYSTEMATIC
UNCERTAINTIES

A. Systematic uncertainties

In order to estimate systematic uncertainties of the fit
parameters, we apply numerous variations to the fitting
procedure and examine the change of the fit parameters.
Because of the numerous variations, a quadratic sum of the
resulting small changes due to the variations would lead to
a systematic error that is too conservative. Instead, we treat
all of the resulting changes from the variations as a fre-
quency distribution and calculate the mean and rms of the
distribution. The total systematic uncertainty is obtained as
a quadratic sum of the difference between the obtained
mean and the default value of that parameter, and the rms.
We consider the six divisions of our sample: splitting

events evenly between earlier and later data sets; Dþ and
D� decays; tight [1�ð�EÞ � 1�ðmBCÞ] and loose
[3�ð�EÞ � 3�ðmBCÞ] signal box cuts. Other systematic
variations common to all of the models (model C,
model I2, and QMIPWA), are as follows:
(i) Float fsig. We find that it is always consistent with its

nominal value of 0.9892.
(ii) Drop the background term and set fsig ¼ 1.
(iii) Float the efficiency coefficients in a simultaneous fit

to data and MC samples. In this case variations of the
efficiency parameters are constrained by the MC
sample.

(iv) Improve the precision of the calculation of the nor-
malization integrals from Eq. (3) by an order of
magnitude.

We repeated the fits with the radii for the Blatt-Weisskopf
[19] form factors a factor of 2 larger and smaller than their
nominal values and found negligible change in the central
result.
Depending on the model we apply additional systematic

variations, which are also included in systematic uncer-
tainties. In model C and model I2, discussed in Sec. IV, we
consider variation of the resonance parameters as follows:
(i) Float parameters of the K�ð892Þ and K�

0ð1430Þ reso-
nances. The mass and width are shown in Table IV.

(ii) Float parameters of the K�
2ð1430Þ or K�ð1680Þ reso-

nances. The mass and width are shown in Table IV.
(iii) Add a K�ð1410Þ contribution. We find that it is not

significant: FFK�ð1410Þ < 0:1% at 90% C.L.

(iv) In model C we test the event sample selected without
a kinematic fit with appropriate coefficients for effi-
ciency and background shapes. We find that the

FIG. 14. The magnitude and phase of the K� D wave in
model I2 and QMIPWA. The dots with error bars for statistical
uncertainties represent results from Table X. Other curves show
the D wave components of model I2 and QMIPWA with pa-
rameters from Table VII.

FIG. 13. The magnitude and phase of the K� P wave in
model I2 and QMIPWA. The dots with error bars for statistical
uncertainties represent results from Table X. Other curves show
the P wave components of model I2 and QMIPWA with pa-
rameters from Table VII.
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resulting variation is negligible, and this study is not
performed for the other fit models.

(v) In QMIPWAwe use the binned K��þ S wave as a
histogram without linear interpolation.

None of these variations reveal an obviously dominant
source of systematic uncertainty.

B. Additional cross-checks

Common cross-checks listed below bring us to models
that are different enough that we do not include these
results in the total systematic uncertainty.

(i) Remove the K�
2ð1430Þ resonance contribution. We

find a significant degradation of the fit quality. For
example, ��2 ¼ 370 in model C.

(ii) Remove the K�ð1680Þ resonance contribution. We
find a significant degradation of the fit quality. For
example, ��2 ¼ 250 in model C.

Based on these fits we conclude that the K�
2ð1430Þ and

K�ð1680Þ resonances cannot be removed. Their contribu-
tions are small (FF< 1%) but significant, and the fit qual-
ity is very poor without these resonances. We apply a
similar backward check for model I2 and QMIPWA:

(i) We remove the I ¼ 2 �þ�þ S wave contribution
and get a poor quality fit.

VII. DISCUSSION

A. K�
0ð1430Þ and K�ð892Þ parameters

The K�
0ð1430Þ parameters, which we obtain in fits with

the isobar models, listed in Table IVas well as in Tables V,
VI, and VII, are consistent with each other and are signifi-
cantly different from the PDG [1] values which are domi-
nated by the LASS measurement. Our data prefer a
K�

0ð1430Þ resonance that is 50 MeV=c2 heavier and about

2 times narrower. Our result is consistent with E791 [6] and
FOCUS [23] measurements. Possible explanations include
that the K�

0ð1430Þ resonance parameters depend on its

production mechanism which are different in K� scatter-
ing and D-meson decays or that the K�

0ð1430Þ parameters

are strongly model-dependent. In particular, they may
depend on interference with other S wave contributions.

In all of our fits, as seen in Tables IV and VII, the
K�ð892Þ parameters are consistent with each other. The
measured masses are consistent with the nominal value [1],
but the widths are about 5 MeV=c2 narrower. The K�ð892Þ
width in the PDG is an average value over about 20 experi-
mental measurements. Our measurement does not contra-
dict any single result included in PDG. The largest
difference is about 3 standard deviations from the LASS
value. We also tested the K�ð892Þ width model depen-
dence. The largest variation is expected from applying
Blatt-Weisskopf form factors. A variation of the radial
parameters from zero to 4 times their nominal values
causes a variation in the width of 0:7 MeV=c2, which
cannot explain the large difference with the PDG average.

Recent results from FOCUS [24] and Belle [25] also
indicate a K�ð892Þ width smaller than the PDG value.

B. Partial waves

The factorized Gaussian form factors used in model C
for theK� Swave components may cause an enhancement
of the complex function magnitude at low K� mass, as
mentioned in Sec. IVB. However, the form factor is a real
function and does not change the phase of the complex S
wave. In model I2 and QMIPWAwe measure the total K�
S wave amplitude without using a form factor. It means
that the measured S wave absorbs the form factor. The
measured S wave magnitude is essentially constant up to
1:4 GeV=c2, as demonstrated in Fig. 11. The phase of the
complex S wave amplitude shows smooth variation from
�80
 at K� threshold to 40
 at 1:4 GeV=c2. At higher
mass the amplitude is distorted by a contribution from the
K�

0ð1430Þ resonance. Our data require a dominant contri-

bution from the K� S wave, which at low mass is not well
described as a regular resonance structure.
In QMIPWA the S wave is measured in a model-

independent way, while the P and D waves are parame-
trized by Breit-Wigner resonances. In cross-checks we add
more freedom to the P and D waves by replacing the
K�ð1680Þ and K�

2ð1430Þ, respectively, Breit-Wigner shapes
with the binned amplitudes, as illustrated in Figs. 13 and
14. We did not find improvement in the fit quality or any
significant deviation of the binned wave from the analytic
function of the isobar model. The systematic uncertainties
described above are larger than variations caused by the
possible model dependence of the P and D waves.
In model I2 and QMIPWAwe find that the I ¼ 2 �þ�þ

S wave amplitude is not consistent with a constant term as
seen in Fig. 12. Its behavior is well modeled by the analytic
function [Eq. (26)]; the binned wave also describes the
behavior consistently.

C. Comparison of fit models

Note that in model C, model I2, and QMIPWA
(Tables IV, V, VI, and VII) the magnitudes and phases
for the resonance contributions K�ð892Þ (by construction),
K�

0ð1430Þ, K�
2ð1430Þ, and K�ð1680Þ are consistent. On the

other hand, the fit fractions for the resonances differ sig-
nificantly among the models. The differences in fit frac-
tions arise from our models of the K� S wave and the
I ¼ 2 �þ�þ S wave when it is included. Indeed, in
model C the K� S wave amplitude is represented by the
NR term and a broad Breit-Wigner resonance for the �.
They have small magnitudes, and they interfere construc-
tively. This leads to small fit fractions, and the sum of all fit
fractions is less than 100%. In model I2 the K� S wave
amplitude is represented by the NR term and the complex
pole for the �. The I ¼ 2 �þ�þ Swave is also included in
this model. These amplitudes are large, and they interfere
destructively. This leads to large fit fractions, and the sum
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of all fit fractions is greater than 100%. Both models
describe the total K� S wave with complex functions
that qualitatively show very similar behavior. However,
the fit fractions, especially for the components of the K�
S wave, strongly depend on the assumed composition of
this amplitude.

In contrast the QMIPWA represents the K� S wave
amplitude as a single function. We make no assumptions
about the composition of theK� Swave in this case. It also
includes the I ¼ 2�þ�þ Swave, which plays a key role in
improving the fit quality. We feel this approach is the most
reliable presentation of results for the fit fractions for
resonance and S wave contributions to the Dþ !
K��þ�þ decay.

VIII. SUMMARY

We describe a partial wave analysis of the Dþ !
K��þ�þ events on the Dalitz plot. We use the CLEO-c
data set of 572 pb�1 of eþe� collisions accumulated at the
 ð3770Þ, which corresponds to a sample of 1:6� 106

DþD� pairs produced in the process eþe� !  ð3770Þ !
DþD�. We select 140 793 candidate events for the Dalitz
plot with a small background of 1.1%. We compare our
results with the best previous measurements from E791 [6]
using the isobar model. Our results agree with the E791
measurement, as shown in Table V for their best model.
The fit quality can be improved if we add the I ¼ 2 �þ�þ
S wave contribution, as presented in Table VII.

We apply a model-independent approach, developed in
Ref. [7], to measure the magnitude and phase of the K� S
wave in the invariant mass range from threshold to the
maximum value in this decay. In contrast to E791, we have
measured the K� S wave without factorization of the form
factor for scalar resonances. Our results on the K� S wave
phase and magnitude measurement are presented in
Table VIII and in Fig. 11. The accuracy of the K� S
wave measurement is improved, compared to the only
previous measurement [7]. We find that the total observed
S wave magnitude in the Dþ ! K��þ�þ decay is essen-
tially constant from K� production threshold to
1:4 GeV=c2. The phase shows smooth variation from
�80
 to 40
 in the same range. At higher invariant mass
mK� > 1:4 GeV=c2, the S wave behavior is dominated by
the K�

0ð1430Þ resonance. We find that the P wave contri-

bution is dominated by K�ð892Þ and K�ð1680Þ Breit-
Wigner resonances, and theDwave has only a contribution
from K�

2ð1430Þ. Using binning techniques, we find no
significant deviation of the P and D waves from the isobar
model, as demonstrated in Figs. 13 and 14.

In the model-independent approach for the I ¼ 2 �þ�þ
S wave we obtain the binned amplitude parameters, listed
in Table IX and shown in Fig. 12, which are consistent with
the analytic form of this wave. We find that the I ¼ 2
�þ�þ S wave has a nonuniform variation in the amplitude
across the mð�þ�þÞ kinematic range with a fit fraction of

10%–15%. As expected, the measured amplitude behavior
and the fit fraction of the K� S wave changes slightly with
the addition of the I ¼ 2 �þ�þ S wave. The addition of
the I ¼ 2 �þ�þ S wave to either the isobar model or the
model-independent partial wave approach is the key piece
that gives good agreement with the data in both cases.

ACKNOWLEDGMENTS

We gratefully acknowledge the effort of the CESR staff
in providing us with excellent luminosity and running
conditions. D. C.-H. and A. R. thank the A. P. Sloan
Foundation. This work was supported by the National
Science Foundation, the U.S. Department of Energy, the
Natural Sciences and Engineering Research Council of
Canada, and the U.K. Science and Technology Facilities
Council.

APPENDIX: KINEMATIC VARIABLES AND
ANGULAR DISTRIBUTIONS

Following previous CLEO analyses (see, for example,
Ref. [18]) we use the angular distributions [Eqs. (10)–(12)]
obtained from a covariant-tensor formalism. The E791
form [7] was applied to the orbital momentum partial
wave decomposition using the term ð�2PaPcÞLP Lðcos
Þ
instead of�Lðs; tÞ in Eq. (9). Here P Lðcos
Þ is a Legendre
polynomial, Pa, Pc, and 
 are the momenta and the angle
between particles a and c in the resonance R rest frame,
respectively. In this section we show that both approaches
are equivalent up to constant coefficients. As a by-product
we also obtain expressions for the decay momenta used in
the Blatt-Weisskopf form factors [Eqs. (13)–(16)].
The kinematic variables in the decay under study, sche-

matically shown in Fig. 6, can be expressed in terms of
invariant variables (masses and invariant masses) in the
decaying particle d (Dþ meson) or resonance R rest
frames. The energy and momentum of particle a in the
resonance R or (ab) rest frame can be obtained from the 4-

momentum balance equation pb ¼ pR � pa, where pR ¼
ðmab; ~0Þ and pa ¼ ðEa;PaÞ. Then, p2

b ¼ m2
b ¼ m2

ab þ
m2
a � 2mabEa, giving the energy

Ea ¼ m2
ab þm2

a �m2
b

2mab

(A1)

and relevant momentum squared

P 2
a ¼ E2

a �m2
a ¼ 1

4

�
m2
ab � 2m2

a � 2m2
b þ

ðm2
a �m2

bÞ2
m2
ab

�
:

(A2)

The energy and momentum of the particle c in the reso-
nance R rest frame can be obtained from the particle d
invariant mass squared m2

d ¼ ðpc þ pRÞ2. In the resonance
rest frame pc ¼ ðEc;PcÞ and pR ¼ ðmab; ~0Þ, and therefore
m2
d ¼ m2

c þm2
ab þ 2mabEc, from which we find its energy
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Ec ¼ m2
d �m2

ab �m2
c

2mab

(A3)

and the associated momentum squared

P 2
c ¼ E2

c �m2
c ¼ 1

4

�
m2
ab � 2m2

d � 2m2
c þ ðm2

d �m2
cÞ2

m2
ab

�
:

(A4)

The energy and momentum of the same particle c in the
D meson rest frame, denoted here by the asterisk, have
different expressions:

E�
c ¼ m2

d �m2
ab þm2

c

2md

; P�2c ¼ E�2
c �m2

c: (A5)

The angular distributions in the E791 [7] analysis are
defined by the Legendre polynomials P Lðcos
Þ:

P 0ðxÞ ¼ 1; P 1ðxÞ ¼ x;

P 2ðxÞ ¼ 3x2 � 1

2
; P 3ðxÞ ¼ 5x3 � 3x

2
; . . . ;

(A6)

where 
 is the angle between particles a and c in the
resonance R rest frame. This cos
 can be expressed
through the known energies and momenta of particles a
and c and their measured invariant mass squared m2

ac ¼
ðpa þ pcÞ2 ¼ m2

a þm2
c þ 2EaEc � 2PaPc cos
, so

cos
 ¼ m2
a þm2

c þ 2EaEc �m2
ac

2PaPc
: (A7)

Substituting Ea and Ec from Eqs. (A1)–(A3) in the
numerator of Eq. (A7) we get

cos
 ¼ 1

4PaPc

�
m2
bc �m2

ac þ ðm2
d �m2

cÞðm2
a �m2

bÞ
m2
ab

�
:

(A8)

Note that these angular distributions are equivalent to
formulas used in Eqs. (10)–(12) up to constant factors.
Indeed, comparing the expressions for
ð�2PaPcÞLP Lðcos
Þ from Ref. [7] with �L we get

ð�2PaPcÞ0P 0ðcos
Þ ¼ 1 ¼ �L¼0; (A9)

ð�2PaPcÞ1P 1ðcos
Þ ¼ �2PaPc cos
 ¼ 1
2�L¼1; (A10)

ð�2PaPcÞ2P 2ðcos
Þ ¼ 4ðPaPcÞ2 3cos
2
� 1

2
¼ 3

8
�L¼2:

(A11)
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