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We show that in the framework of the teleparallel equivalent of general relativity the gravitational

energy-momentum of plane-fronted gravitational waves contained in an arbitrary three-dimensional

volume V may be easily obtained and is non-negative in the frame of static observers.
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I. INTRODUCTION

The observation of gravitational waves is presently one
of the main challenges of gravitational physics. Significant
efforts are being undertaken to construct the necessary
apparatus for the detection of the waves [1,2]. On the
theoretical side there is no general agreement regarding
the description of the energy-momentum carried by gravi-
tational waves. The reason is that there is no generally
accepted definition for the gravitational energy-
momentum. The use of noncovariant energy-momentum
pseudotensors totally obscures the analysis of the issue. In
the framework of pseudotensors one concludes that the
energy carried by a gravitational wave, considered as a
gravitational fluctuation of the spacetime, is not gauge
invariant, i.e., is coordinate dependent [3].

The energy-momentum of gravitational waves has been
investigated with the help of the Bel-Robinson tensor [4].
The idea is to consider a gravitoelectromagnetic stress-
energy tensor [5], whose properties are similar to the
Maxwell stress-energy tensor in electrodynamics.
Covariant approaches to the energy-momentum of gravi-
tational waves have been investigated [6,7]. However, it
must be noted that the Bel-Robinson tensor requires an
additional multiplicative factor with physical dimensions
to relate it to an acceptable energy-momentum tensor.

In this article we will show that in the spacetime of
plane-fronted gravitational waves, the energy-momentum
definition established in the teleparallel equivalent of gen-
eral relativity (TEGR) allows us to obtain the gravitational
energy-momentum enclosed in an arbitrary volume V of
the three-dimensional space in an easy way. Moreover, it is
straightforward to verify that the resulting expression is
non-negative for any V. The resulting expression for the
energy is naturally invariant under coordinate transforma-
tions of the three-dimensional space, and under time rep-
arametrizations. In this sense, it is gauge invariant.

Notation: spacetime indices �; �; . . . and SO(3,1) indi-
ces a; b; . . . run from 0 to 3. Time and space indices are
indicated according to � ¼ 0, i, a ¼ ð0Þ, (i). The tetrad
field is denoted ea�, and the torsion tensor reads Ta�� ¼
@�ea� � @�ea�. The flat, Minkowski spacetime metric

tensor raises and lowers tetrad indices and is fixed by
�ab ¼ ea�eb�g

�� ¼ ð�þþþÞ. The determinant of the

tetrad field is represented by e ¼ detðea�Þ.

II. THE ENERGY-MOMENTUM DEFINITION IN
THE LAGRANGIAN FRAMEWORK

We assume that the spacetime geometry is defined by the
tetrad field ea� only. In this case we note that the only

possible nontrivial definition for the torsion tensor is given
by Ta�� ¼ @�ea� � @�ea�. This torsion tensor is related to

the antisymmetric part of Cartan’s connection ��
�� ¼

ea�@�ea�, which is the connection of the Weitzenböck

spacetime. However, the tetrad field also yields the metric
tensor, which establishes the Riemannian geometry.
Therefore, in the framework of a geometrical theory based
only on the tetrad field one may use the concepts of both
Riemannian and Weitzenböck geometries. Ta�� is not co-

variant under local Lorentz transformations. The tetrad
fields are interpreted as reference frames adapted to pre-
ferred fields of observers in spacetime. This interpretation
is possible by identifying the eð0Þ

� components of the

frame with the four-velocities u� of the observers, eð0Þ
� ¼

u� [8]. Therefore, two different sets of tetrad fields that
yield the same metric tensor, and which are related by a
local Lorentz transformation, represent different frames in
the same spacetime.
The equivalence of the TEGR with Einstein’s general

relativity may be understood by means of an identity
between the scalar curvature RðeÞ constructed out of the
tetrad field and a combination of quadratic terms of the
torsion tensor,

eRðeÞ � �eð14TabcTabc þ 1
2T

abcTbac � TaTaÞ þ 2@�ðeT�Þ:
(1)

The formulation of Einstein’s general relativity in the
context of the teleparallel geometry is presented in review
articles [9–11] and in recent books [12,13].
The Lagrangian density of the TEGR is given by the

combination of the quadratic terms on the right-hand side
of Eq. (1),*wadih@unb.br
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L ¼ �keð14TabcTabc þ 1
2T

abcTbac � TaTaÞ � LM

� �ke�abcTabc � LM; (2)

where k ¼ c3=16�G, Ta ¼ Tb
ba, Tabc ¼ eb

�ec
�Ta�� and

�abc ¼ 1
4ðTabc þ Tbac � TcabÞ þ 1

2ð�acTb � �abTcÞ: (3)

LM stands for the Lagrangian density for the matter fields.
The field equations derived from (2) are equivalent to
Einstein’s equations. They read

ea�eb�@�ðe�b��Þ � e

�
�b�

aTb�� � 1

4
ea�Tbcd�

bcd

�

¼ 1

4k
eTa�; (4)

where �LM=�e
a� ¼ eTa�. It is possible to show that the

left-hand side of the equation above may be rewritten as
1
2 e½Ra�ðeÞ � 1

2 ea�RðeÞ�.
Equation (4) may be simplified as

@�ðe�a��Þ ¼ 1

4k
eea�ðt�� þ T��Þ; (5)

where T�� ¼ ea
�Ta� and t�� is defined by

t�� ¼ kð4�bc�Tbc
� � g���bcdTbcdÞ: (6)

In view of the antisymmetry property �a�� ¼ ��a��, it
follows that

@�½eea�ðt�� þ T��Þ� ¼ 0: (7)

The equation above yields the continuity (or balance)
equation,

d

dt

Z
V
d3xeea�ðt0� þ T0�Þ ¼ �

I
S
dSj½eea�ðtj� þ Tj�Þ�:

(8)

We identify t�� as the gravitational energy-momentum
tensor [14], and

Pa ¼
Z
V
d3xeea�ðt0� þ T0�Þ; (9)

as the total energy-momentum contained within a volume
V of the three-dimensional space. In view of (5), Eq. (9)
may be written as

Pa ¼ �
Z
V
d3x@j�

aj; (10)

where �aj ¼ �4ke�a0j. �aj is the momentum canoni-
cally conjugated to eaj [15]. The expression above is the

definition for the gravitational energy-momentum pre-
sented in Ref. [16], obtained in the framework of the
Hamiltonian vacuum field equations. We note that (7) is
a true energy-momentum conservation equation.

By transforming the SO(3,1) index a in Eq. (4) into a
spacetime index �, say, we find that the left-hand side of
(4) becomes the symmetric tensor density 1

2 eR��. For spin

0 and spin 1 fields the energy-momentum tensor for the
matter fields T�� is symmetric. For Dirac spinor fields, T��

is also symmetric provided the coupling of the spinor field
with the gravitational field is constructed out of the torsion-
free Levi-Civita connection o!�ab [17]. In the evaluation

of T�� one first obtains a tensor that is not symmetric.

However, it has been shown that the antisymmetric part of
T�� vanishes in view of the Dirac equation. This issue has

been discussed in detail in Ref. [17] and references therein.
As for the tensor t��, in general it is not symmetric. So far
it is not clear the meaning of the antisymmetric part of t��.
The emergence of a nontrivial total divergence is a

feature of theories with torsion. The integration of this
total divergence yields a surface integral. If we consider
the a ¼ ð0Þ component of Eq. (10) and adopt asymptotic
boundary conditions for the tetrad field we find [16] that
the resulting expression is precisely the surface integral at
infinity that defines the ADM energy [18]. This fact is a
strong indication (but no proof) that Eq. (10) does indeed
represent the gravitational energy-momentum.
The evaluation of definition (10) is carried out in the

configuration space. The definition is invariant under
(i) general coordinate transformations of the three-
dimensional space, (ii) time reparametrizations, and
(iii) global SO(3,1) transformations. The noninvariance
of Eq. (10) under the local SO(3,1) group reflects the frame
dependence of the definition. We have argued [8] that this
dependence is a natural feature of Pa, since in the TEGR
each set of tetrad fields is interpreted as a reference frame
in spacetime.
It is worthwhile to recall a simple physical situation in

which the frame dependence of the gravitational energy-
momentum takes place. For this purpose we consider a
black hole of mass m and an observer that is very distant
from the black hole. The black hole will appear to this

observer as a particle of mass m, with energy cPð0Þ ¼ mc2

(m is the rest mass of the black hole, i.e., the mass of the
black hole in the frame where the black hole is at rest). If,
however, the black hole is moving at velocity v with
respect to the observer, then its total gravitational energy

will be cPð0Þ ¼ �mc2, where � ¼ ð1� v2=c2Þ�1=2. This
example is a consequence of the special theory of relativity,
and demonstrates the frame dependence of the gravita-
tional energy-momentum. We note that the frame depen-
dence is not restricted to observers at spacelike infinity. It
holds for observers located everywhere in space.

III. THE ENERGY-MOMENTUM OF PLANE-
FRONTED GRAVITATIONALWAVES

Definition (10) for the gravitational energy-momentum
may be easily applied to plane-fronted gravitational waves.
We can show that these waves carry positive energy.
A plane-fronted gravitational wave is an exact solution

of Einstein’s equations. A wave that travels along the z
direction may be described by the line element [19]

ds2 ¼ dx2 þ dy2 þ 2dudvþHðx; y; uÞdu2; (11)
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where the function Hðx; y; uÞ satisfies�
@2

@x2
þ @2

@y2

�
Hðx; y; uÞ ¼ 0: (12)

Transforming the ðu; vÞ to ðt; zÞ coordinates, where
u ¼ 1ffiffiffi

2
p ðz� tÞ;

v ¼ 1ffiffiffi
2

p ðzþ tÞ;
we find

ds2 ¼
�
H

2
� 1

�
dt2 þ dx2 þ dy2 þ

�
H

2
þ 1

�
dz2 �Hdtdz:

(13)

The functionH is only required to satisfy (12). However, it
would be interesting to specify H such that it describes a
wave-packet [19]. The inverse metric tensor reads

g�� ¼
�1

2H � 1 0 0 �1
2H

0 1 0 0
0 0 1 0

�1
2H 0 0 �1

2H þ 1

0
BBB@

1
CCCA: (14)

We will choose the tetrad field that is adapted to static
observers in spacetime. Therefore the tetrad field must
satisfy eð0Þ

i ¼ 0. One suitable construction, adapted to

the symmetry of the gravitational field, is

ea� ¼
�A 0 0 �B
0 1 0 0
0 0 1 0
0 0 0 C

0
BBB@

1
CCCA; (15)

where

A ¼
�
�H

2
þ 1

�
1=2

; AB ¼ H

2
; AC ¼ 1: (16)

In (15) a and � label rows and columns, respectively. The
geometrical interpretation of (15) is best understood if we
consider the inverse components ea

�. We verify that

eð0Þ
� ¼ ð1=A; 0; 0; 0Þ; (17)

and

eð1Þ
� ¼ ð0; 1; 0; 0Þ; eð2Þ

� ¼ ð0; 0; 1; 0Þ;
eð3Þ

� ¼ ð�H=ð2AÞ; 0; 0; AÞ: (18)

Note that if H � 1 we have A ffi 1�H=4 and therefore
eð3Þ

i ¼ ð0; 0; AÞ ffi ð0; 0; 1�H=4Þ.
The frame is determined by fixing six conditions on ea�.

Equation (17) fixes the kinematic state of the frame, since
the three velocity conditions eð0Þ

i ¼ 0 ensure that the frame

is static. Three other conditions fix the spatial sector of the
frame. According to (18), eð1Þ

�, eð2Þ
� and eð3Þ

� are unit

vectors along the x, y, and z axis, respectively. Therefore
(18) fixes the orientation of the frame in spacetime: the
eð3Þ

� component is oriented along the direction of propa-

gation of the wave. Alternatively, the frame may be deter-

mined by fixing the six components of the acceleration
tensor �ab ¼ ��ba [8]. These are the inertial accelera-
tions (translational and rotational) that are necessary to
maintain the frame in a given inertial state in spacetime.
However, in the present case the characterization of the
frame by means of (17) and (18) seems to be more appro-
priate. Finally, it must be noted that by requiringH ¼ 0we
obtain ea

� ¼ �
�
a , and consequently Ta�� ¼ 0.

The nonvanishing components of T��� are

T001 ¼ 1
2@1A

2 T002 ¼ 1
2@2A

2

T003 ¼ 1
2@3A

2 � A@0B T013 ¼ �A@1B

T023 ¼ �A@2B T301 ¼ B@1A T302 ¼ B@2A

T303 ¼ B@3Aþ 1
2@0ð�B2 þ C2Þ

T313 ¼ 1
2@1ð�B2 þ C2Þ T323 ¼ 1

2@2ð�B2 þ C2Þ:
(19)

In the expressions above we have ð�B2 þ C2Þ ¼ g33.
In order to calculate the gravitational energy-momentum

we find it more convenient to transform expression (10)
into a surface integral,

Pa ¼ 4k
I
S
dSiðe�a0iÞ: (20)

The determinant e is simply e ¼ AC ¼ 1. After long but
straightforward calculations we obtain

dSiðe�ð0Þ0iÞ ¼ � 1

8ð�g00Þ1=2
½dydz@1H þ dzdx@2H�;

dSiðe�ð1Þ0iÞ ¼ 1

8ð�g00Þ ½dydz@0H þ dxdy@1H�;

dSiðe�ð2Þ0iÞ ¼ 1

8ð�g00Þ ½dzdx@0H þ dxdy@2H�;

dSiðe�ð3Þ0iÞ ¼ � 1

8ð�g00Þ1=2
½dydz@1H þ dzdx@2H�:

(21)

In the evaluation of �ð1Þ0i and �ð2Þ0i we have used the
relation @3g00 ¼ �@0g00, since the metric quantities in
(11) are functions of u.
We may now return to volume integrals. We have

I
S
dSiðe�ð0Þ0iÞ ¼

Z
V
d3x@iðe�ð0Þ0iÞ

¼ � 1

8

Z
V
d3x@i

�
1

ð�g00Þ1=2
@iH

�
: (22)

Taking into account that

@ið@iHÞ ¼
�
@2

@x2
þ @2

@y2

�
H ¼ 0;

we find

I
S
dSiðe�ð0Þ0iÞ ¼ 1

32

Z
V

ð@iHÞ2
ð�g00Þ3=2

:
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Therefore, we obtain

Pð0Þ ¼ Pð3Þ ¼ k

8

Z
V
d3x

ð@iHÞ2
ð�g00Þ3=2

� 0; (23)

assuming that ð�g00Þ> 0. Next we calculate Pð1Þ. In view of (21) we have

I
S
dSiðe�ð1Þ0iÞ ¼

Z
V
d3x@iðe�ð1Þ0iÞ ¼

Z
V
d3x

�
@1

�
1

8ð�g00Þ@0H
�
þ @3

�
1

8ð�g00Þ@1H
��

¼ 1

8

Z
V

�
1

ð�g00Þ@1@0H � 1

ð�g00Þ2
@0H@1

�
�H

2

�
þ 1

ð�g00Þ @3@1H� 1

ð�g00Þ2
@1H@3

�
�H

2

��
: (24)

Considering that @0H ¼ �@3H we see that the expression
above vanishes. The same result holds in the calculation of
Pð2Þ. Therefore, we conclude that

Pð1Þ ¼ Pð2Þ ¼ 0: (25)

Equations (23) and (25) imply

PaPb�ab ¼ 0: (26)

IV. FINAL REMARKS

Equation (26) is a feature of a plane electromagnetic
wave. If the similarity between plane gravitational and
electromagnetic waves holds, we may assert that the
plane-fronted gravitational wave transports the excitations
of a massless field. Moreover, in view of Eq. (23) we see
that the energy enclosed by an arbitrary volume V is non-
negative. Therefore, the energy carried by a plane-fronted
gravitational wave is positively defined and gauge invari-
ant, i.e., coordinate independent (in addition we note that
Eq. (26) is invariant under global SO(3,1) transformations

of the frame). Therefore, we conclude that the noncovar-
iant character of the energy carried by gravitational waves
[3] is restricted to the investigation in the context of
pseudotensors.
The analysis above shows that in the framework of the

TEGR definition (10) allows a satisfactory treatment of the
energy-momentum of plane-fronted waves. In fact the
application of Eq. (10) to any configuration of gravitational
field is conceptually simple. One has to specify the frame
adapted to a field of observers in spacetime endowed with
velocities u� ¼ eð0Þ

�. The orientation of the frame in the

three-dimensional space may be fixed according to the
symmetry of the gravitational field. This choice of the
tetrad field is not arbitrary. It is determined by the choice
of the reference frame adapted to a field of observers in
spacetime, exactly like in the special theory of relativity or
in the Newtonian limit of general relativity.
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