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We find a new family of AdS4 vacua in IIA string theory. The internal space is topologically either the

complex projective space CP3 or the ‘‘flag manifold’’ SUð3Þ=ðUð1Þ � Uð1ÞÞ, but the metric is in general

neither Einstein nor Kähler. All known moduli are stabilized by fluxes, without using quantum effects or

orientifold planes. The analysis is completely ten-dimensional and does not rely on assumptions about

Kaluza-Klein reduction.
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I. INTRODUCTION

The search for realistic string vacua usually proceeds in
steps, by mixing and matching different features of the
theory. For example, achieving a positive cosmological
constant � is not easy [1]. For that reason, one usually
starts with a vacuum with a vanishing or negative �, and
then attempts to modify it using ingredients that evade the
no-go argument in [1].

One popular construction of this kind [2] actually pro-
ceeds in three steps. It starts from a class of Minkowski
vacua [3–5]; it then gives mass to the only massless scalar
in those vacua, by using quantum corrections, and in the
process introducing a negative �; it finally makes � posi-
tive, and breaks supersymmetry, by using brane-antibrane
pairs. Even if this construction seems to produce very large
numbers of vacua with pleasing features, it should encour-
age us to look further and to ask whether there are different
families of vacua, or maybe different constructions, that
can later be made realistic. For example, the Minkowski
vacua from which [2] starts are obtained by compactifying
IIB on Calabi-Yau manifolds. One can ask if there are other
manifolds that give supersymmetric flux vacua; the answer
turns out to be remarkably simple [6,7], and to involve
interesting geometrical concepts. A case study, however,
shows [8] that finding concrete examples to the conditions
in [6] is slower than one would like.

Other than this geometrical simplicity, there is no rea-
son, however, not to start with � negative to begin with.
There are indeed several examples of supersymmetric
AdS4 with moduli stabilized. For example, [9] find a
simple IIA family with no moduli and in which possible
corrections are parametrically under control, using orienti-
fold planes and again Calabi-Yau manifolds. As later
shown in [10], from a purely ten-dimensional perspective
these vacua are found by using a low-energy approxima-
tion in which the orientifold sources are effectively
smeared. Although I think this approximation is correct,
there is no reason one should use orientifold planes at all to
find AdS4 vacua (whereas they are a prominent way of
evading the arguments in [1] for Minkowski vacua). It

should then be possible to find many vacua even without
them.
The oldest construction of AdS4 vacua in IIA is from

M theory via the so-called Freund-Rubin choice of fluxes
(for a review see [11]). The internal space M7 is, in this
case, an Einstein manifold. Some of those vacua can also
be reduced to (or directly found in) IIA. For example,
AdS4 � S7 in M theory can also be understood dually as
AdS4 � CP3 in IIA with F2 flux [12–14] (although some
subtlety about the amount of perturbative supersymmetry
arises because the reduction does not preserve all the
supercharges [15]). Another embarrassingly simple IIA
construction was found in [16,17]. The idea is to consider
metrics which are not Calabi-Yau, but whose deviations
from the Calabi-Yau condition is [in a sense to be reviewed
later, in terms of an internal ‘‘SU(3) structure’’] parame-
trized by a single real numberW1. These metrics are called
nearly Kähler. They are also Einstein, with the scalar
curvature being proportional to jW1j2. By a suitable choice
of the internal fluxes [i.e., by taking them to be singlets
under the internal SU(3) structure], all the supersymmetry
equations then reduce to easily solvable algebraic equa-
tions involving scalars.1 It turns out that a nearly Kähler
metric exists on CP3; it is different from the usual Fubini-
Study metric.
In this paper I will generalize both of these two con-

structions of vacua on AdS4 � CP3, in a way that in a
sense interpolates between the constructions in [12–
14,16,17]. These metrics are in general not Einstein and,
in particular, not nearly Kähler, nor Kähler. (Not surpris-
ingly to flux compactifications aficionados, the almost
complex structure is not integrable, because of the cosmo-
logical constant.) Nor are the fluxes simply singlets of the
internal SU(3) structure.
The way I found these vacua is by considering CP3 as a

twistor fibration (that has fiber S2) on S4, with a slightly
unusual choice of nonintegrable almost complex structure
that turns out to have vanishing c1. The metrics are ob-
tained by varying the relative factor between the metric on

1Nearly Kähler manifolds have also appeared in heterotic
string theory [18,19].
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the fiber and the one on the base; one can think of it as a
‘‘squashing parameter.’’ The construction can be repeated
with few changes for the twistor space SUð3Þ=ðUð1Þ �
Uð1ÞÞ of CP2, but we will focus mostly on CP3.

There are infinitely many of these vacua; because of flux
quantization, all the known moduli are stabilized. In a
sense, instead of starting with many geometrical moduli
and finding then a way of stabilizing them (as one does
with Calabi-Yau manifolds), we start with a space that has
very few moduli to begin with. Just as in [9], dilaton and
internal curvature can be made parametrically small.

Given that our computations are always purely ten di-
mensional, we have nothing to say in this paper about the
low-energy effective action describing excitations around
these vacua.2 It should not be difficult, however, if need be,
to compute these effective theories, perhaps using an alter-
native description of these metrics in terms of group cosets
[23].

These examples also illustrate a limitation inherent to
the usual approach of finding first an effective theory by
Kaluza-Klein (KK) reducing on a space, and finding then
vacua for this effective theory. While this looks physically
very reasonable, KK reducing on a general manifold is in
fact not easy, in general: so far, the only examples fully
understood are Calabi-Yau’s, parallelizable manifolds (like
the so-called ‘‘twisted tori,’’ used in Scherk-Schwarz con-
structions)3 or cosets. Proposals exist on how to understand
more general manifolds (see, for example, [27]), but they
are plagued by many geometrical issues [28], which so far
seem to be under control only in simple cases [20,29]
(although one can show that four- and ten-dimensional
supersymmetry are equivalent [30,31]). Given this state
of affairs, one might want to look for vacua first, and
only later for effective theories.

On a different note, it would be interesting to know the
conformal field theory duals to these vacua; as remarked in
[32], the Romans mass F0 should give rise to a Chern-
Simons theory, perhaps of the type discussed in [33].

After reviewing in Sec. II the conditions (2.2) and (2.6)
for supersymmetric vacua, and the geometrical informa-
tion we need in Sec. III, we will show the existence of the
new vacua in Sec. IV.

II. REVIEW OFANTI–DE SITTER VACUA IN
TYPE IIA

We will start by reviewing the conditions imposed by
supersymmetry on the internal geometry, and by special-

izing them to the case in which no sources (branes or
orientifold planes) are present.
This computation has been carried out in [34]; in [8],

Sec. 7 it has been rederived using the techniques of
SUð3Þ � SUð3Þ structures. Since the last presentation
seems smoother to me (no doubt because of personal
bias), I will use the notation in [8] (save for one minor
difference to be noted later). Rather than reviewing here
the machinery of generalized complex structures, I will cut
to the chase and describe the final result of that analysis in
terms of (hopefully) lighter mathematics.
We do need, however, the concept of an SU(3) structure.

This is just the type of structure that we are familiar with
from Calabi-Yau manifolds, but without the differential
equations. Namely, an SU(3) structure is a pair of forms
ðJ;�Þ such that
(i) J is a real two-form, � is a complex three-form and

decomposable (locally the wedge product of three
complex one-forms), and � then determines an al-
most complex structure I;

(ii) 4
3 J

3 ¼ i� ^ �� � 0 everywhere;
(iii) J ^� ¼ 0;
(iv) the tensor g ¼ JI (which is symmetric because of

the conditions above) is positive definite.
Notice that with respect to I, it is easy to see from the

above conditions that J is (1, 1) and � is (3, 0).
A Calabi-Yau manifold can be defined then as a mani-

fold on which

dJ ¼ 0 ¼ d� ðCalabi-YauÞ: (2.1)

In this paper we are not interested in Calabi-Yau manifolds,
however, and we will shortly see why.
The supersymmetry conditions in IIA for an AdS4 vac-

uum with SU(3) structure read4

dJ ¼ 2 ~mRe�; d� ¼ iðW�
2 ^ J � 4

3
~mJ2Þ;

H ¼ 2mRe�; gsF0 ¼ 5m;

gsF2 ¼ �W�
2 þ 1

3
~mJ; gsF4 ¼ 3

2mJ2;

gsF6 ¼ �1
2
~mJ3:

(2.2)

Here, m and ~m are two real numbers,W�
2 is a primitive (1,

1)-form (the strange notation comes from [35,36], primi-
tive means thatW�

2 ^ J2 ¼ 0), and gs is the constant string
coupling. Notice that the parameter m is related, but not
exactly equal, to the Romans mass F0. The cosmological
constant in four dimensions is given by

� ¼ �3ðm2 þ ~m2Þ: (2.3)

In (2.2) the Fi’s are the internal fluxes. There are also
‘‘external’’ fluxes that span the AdS4 directions as well as

2For the vacua in [16,17], some of which are a special case of
those presented here, an effective theory with N ¼ 2 super-
symmetry was recently proposed in [20]. For a similar N ¼ 1
analysis on SUð3Þ=Uð1Þ � Uð1Þ, see [21]; for another nearly
Kähler space, S3 � S3=Z3

2, see [22].
3These have been used to argue for AdS4 vacua, for example,

in [24–26].

4One of the results of [8] is that the warping factor has to be
constant. One can then eliminate it completely from the equa-
tions by using � ¼ 3A [see (7.9) in [8]] and by redefining the
parameters as mhere ¼ mtheree

�A and ~mhere ¼ ~mtheree
�A.
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some of the internal directions. These are determined by
the internal fluxes by ten-dimensional Hodge duality. For
example, there is also a flux extended along the AdS4
directions only

Fext
4 ¼ �10F6 ¼ vol4 �6 F6 ¼ 3 ~m

gs
vol4: (2.4)

For the same reason, there are also fluxes of the form vol4
wedge, an internal two-form, four-form, and six-form. We
will never mention again the external fluxes Fext

i ; we will
always use the internal Fint

i � Fi.
If one wants to attach a name to the geometrical part of

(2.2), one could say that they describe a ‘‘half-flat’’ mani-
fold (as also noticed in [10]), namely, one such that
dRe� ¼ 0 ¼ dJ2, although it is a very particular one,
and hence the name is probably not very useful. Notice
also that, even for more general solutions with SUð3Þ �
SUð3Þ structure, one still gets that all vacua are ‘‘general-
ized half-flat’’ manifolds, as explained in [8]. (We will see
at the end of this paper how that a more general analysis
should be relevant for the vacua in [9].)

In any case, the supersymmetry conditions have to be
supplemented by the Bianchi identities for the fluxes. If we
impose that there are no sources, these read

dFk ¼ H ^ Fk�2: (2.5)

In fact, we have already used the k ¼ 0 case, dF0 ¼ 0: this
is how it was derived in [8] that the warping A and the
dilaton � must be constant. One would also need, a priori,
to impose the equations of motion for the fluxes, d �6 Fk ¼
�H ^ �6Fkþ2 and d �H ¼ �g2

P
kFk ^ �Fkþ2. However,

both have been shown to be implied by the supersymmetry
equations, in [8,37,38], respectively [for all supersymmet-
ric vacua, and not only for the class of AdS SU(3) structure
vacua reviewed here]. So we can forget about them and
impose (2.5) alone. SinceRe� ^ J ¼ 0, the only nontrivial
case is k ¼ 2. We get

dW�
2 ¼ 2

3ð ~m2 � 15m2ÞRe�: (2.6)

Summing up, we have reviewed in this section the con-
ditions for an AdS4 vacuum with internal SU(3) structure:
they are given by Eqs. (2.2) and (2.6). It would be rather
easy to find solutions to (2.2) alone; the real problems come
when trying to solve (2.6) as well. We will now review a
family of SU(3) structures for which it is possible to
compute dW2, and then show in Sec. IV that some of
them support string vacua.

III. GEOMETRY OF TWISTOR SPACES

The twistor bundle on a manifold Mk of dimension k is
the bundle of all almost complex structures compatible
with a metric on Mk. The fiber is hence given by
SOðkÞ=Uðk=2Þ. For k ¼ 4, this is SOð4Þ=Uð2Þ ¼ CP1 ¼
S2. Hence the twistor bundle on a four-manifold is an S2

fibration, and its total space TwðM4Þ has dimension 6.

We will now review some aspects of this fibration: its
topology, complex structures, and metrics.

A. Topology

For the topology, we will first focus on the case in which
M4 ¼ S4. It can be shown then that the total space of the
twistor fibration is actually CP3:

(3.1)

One way to see this is to think of S4 as of the quaternionic
projective line HP1. Then the projection map can be given
as

CP 3 3 ðz1; z2; z3; z4Þ�
p ðz1 þ jz2; z3 þ jz4Þ 2 HP1:

(3.2)

CP3 has Betti numbers b0 ¼ b2 ¼ b4 ¼ b6 ¼ 1 and
b1 ¼ b3 ¼ b5 ¼ 0. In terms of the fibration , the two-cycle
is just the fiber. One might get confused, however, in trying
to identify the four-cycle. The twistor fibration cannot in
this case have a global section, because that would be a
globally defined almost complex structure on S4, and it is
known that none exists. So the base cannot be literally used
as a cycle.
The answer can be found by looking at the map p in

(3.2). Think of a hyperplaneCP2 � CP3 as the unionC2 [
CP1, where CP1 is the line at infinity of the projective
planeCP2. Then, the projection map p is one to one onC2,
but projects CP1 to a point. The result is a one-point
compactification of C2, which is topologically S4.
So far we have looked at TwðS4Þ ¼ CP3. Although we

will devote less attention to it, there is another manifold to
which the computations of Sec. IV apply, namely,
TwðCP2Þ. In that case, the fibration is

(3.3)

Another notation used for the total space so obtained is
Fð1; 2; 3Þ, often called ‘‘flag manifold.’’ It is the space of
complex planes and lines inC3 such that the line belongs to
the plane. (The line is the ‘‘pole’’ and the plane is the
‘‘flag.’’) In equations

Fð1;2;3Þ ¼
�
ðzi;~ziÞ 2CP2�CP2 such that

X3
i¼1

zi~zi ¼ 0

�
:

(3.4)

One can fiber this space over either of the two CP2 factors,
by the map that forgets either the zi or the ~zi. The fiber is a
CP1. Finally, one can use, for example, the Gysin exact
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sequence to compute that the Betti numbers are b0 ¼ b6,
b1 ¼ b3 ¼ b5 ¼ 0, and b2 ¼ b4 ¼ 2. Intuitively, the two
two-cycles are the CP1 in each of the CP2 in (3.4).

B. Almost complex structures

Having clarified somewhat the topology of this fibration,
we now look at what almost complex structures can be
defined on the total space TwðM4Þ, going back to a general
M4. Let the twistor fiber have coordinates �

i, i ¼ 1, 2, and
3, so that

Pð�iÞ2 ¼ 1. Since it is by definition the space of
almost complex structure compatible with a given metric,
we can ‘‘tautologically’’ write I4ð�iÞ, which means that
there is an almost complex structure I4 on the base M4 for
any choice of the coordinates �i on the fiber. This is by
definition a tensor on the total space of the fibration
TwðM4Þ. We cannot call it an almost complex structure
on TwðM4Þ, however, because it has rank four. To promote
it to rank six, we have to choose an action on vectors along
the fiber; since the fiber is S2, we can take the usual
Riemann complex structure I2 on it [explicitly, I2ð@�iÞ ¼
�ijk�j@�k]. So we can now combine the two in an almost
complex structure on TwðM4Þ. On a local basis of vectors,

~I ¼ I2 0
0 I4ð�Þ

� �
: (3.5)

Actually, we could have also combined them with a differ-
ent sign:

I ¼ �I2 0
0 I4ð�Þ

� �
: (3.6)

The difference between these two almost complex struc-
tures ~I and I on the total space was stressed in [39,40]. The
first, ~I, is the most popular one because it is integrable
(namely, it is a complex structure, and not just an ‘‘almost’’
complex structure) whenever [41] the anti–self-dual part of
the Weyl tensor W�

5 of M4 is zero—that is, when M4 is
self-dual. In contrast, I is never integrable. But it has a nice
feature of its own: its first Chern class is actually zero.

To highlight the difference, let us look at the particular
case once again. ~I is the usual complex structure forCP3; it
has c1 ¼ 4, and so, in particular, there is no globally
defined (3, 0)-form for it (let alone one in cohomology).
This complex structure does not look very promising for
us, because there is no�, but also because of another fact.
If one does have a (3, 0)-form for an almost complex
structure, the latter is integrable if and only if

ðd�Þ2;2 ¼ 0: (3.7)

Looking back at (2.2), we see that the almost complex
structure we are looking for is only integrable if W�

2 ¼ 0
and ~m ¼ 0. Looking at (2.6), we also conclude thatm ¼ 0,
and hence all fluxes are zero, the manifold is a Calabi-Yau
[see (2.1)], and the cosmological constant is zero [see

(2.3)]. So an integrable complex structure would take us
back to the usual Calabi-Yau compactifications.
So there are good reasons to focus on I instead, which

has c1 ¼ 0 [hence a globally defined (3, 0)-form � exists]
and which is not integrable.

C. SU(3) structure

To make progress, we need to complement the complex
structure and its associated� with a two-form J that forms
an SU(3) structure with it. This is always possible [because
� alone defines a Slð3;CÞ structure, and Slð3;CÞ is homo-
topically equivalent to Uð3Þ]. Explicitly, let us introduce a
holomorphic vielbein ea, a ¼ 1, 2, and 3, namely, a basis
of one-forms such that

Itea ¼ iea: (3.8)

(The transposition t is because I is acting on one-forms.)
More specifically, let us take e3 along the fiber, and e1;2 to
be a pullback of forms on the base. Hence we also have

~I te1;2 ¼ ie1;2; ~Ite3 ¼ �ie3: (3.9)

In the case in which M4 is self-dual (as defined above)
and Einstein, [42] showed that

d
e1

e2

e3

0
B@

1
CA ¼ ��

Trð�Þ
� �

^
e1

e2

e3

0
B@

1
CAþ 1

R

�e2 ^ �e3

�e3 ^ �e1

� �e1 ^ �e2

0
B@

1
CA:

(3.10)

Here, � is an anti-Hermitian 2� 2 matrix of one-forms
(�ij þ ��ji ¼ 0) that acts on e1;2, R is an overall length

scale, and � parametrizes the curvature of M4 relative to
the one of the fiber S2, as we will see more explicitly later.
The reason (3.10) is useful is that it allows us to check

explicitly the properties of J and � that we need. Let us
define the SU(3) structure and metric

J ¼ i

2
ei ^ �ei; � ¼ ie1 ^ e2 ^ e3; g6 ¼ ei �ei:

(3.11)

[The metric is actually determined by the SU(3) structure
ðJ;�Þ, since SUð3Þ � SOð6Þ.]
It is easy, then, to use (3.10) to compute

dJ ¼ � 1

R
ð�þ 2ÞRe�;

d� ¼ i

�
W�

2 ^ J þ 2

3R
ð�þ 2ÞJ2

�
;

W�
2 ¼ 2

3R
ið�� 1Þðe1 ^ �e1 þ e2 ^ �e2 � 2e3 ^ �e3Þ:

(3.12)

Notice thatW2 is (1, 1) and primitive with respect to J. One
can also compute5This is not to be confused with the form W�

2 in (2.2).
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dW�
2 ¼ 8

3R2
ð�� 1Þ2 Re�: (3.13)

These equations will become useful in the next section, to
solve (2.2) and (2.6).6

As a cross-check of (3.10), we can also define locally a

three-form ~� ¼ ie1 ^ e2 ^ �e3 for the complex structure
(3.5) [compare (3.9)], and a two-form ~J ¼ ði=2Þðe1 ^ �e1 þ
e2 ^ �e2 þ �e3 ^ e3Þ. One gets

d ~� ¼ 2 ~� ^ Tr� (3.14)

which implies that ðd ~�Þ2;2 ¼ 0, in agreement with our

earlier statement [see (3.7)] that ~I is integrable when M4

is self-dual. When � ¼ 2, one can also see that d~J ¼ 0,
which reproduces the fact thatCP3 admits a Kähler metric.
(We will see later again how the value � ¼ 2 is special.)

In fact, if on top of the assumptions already made onM4

to derive (3.10) (namely, thatM4 be self-dual and Einstein)
we also impose that it have positive scalar curvature, we
are left with only two nonsingular examples: S4 and CP2

(see, for example, [43]). Even if we do not need to restrict
to � ¼ 2 [we are not using the complex structure ~I, after
all, nor do we want TwðM4Þ to be Kähler], we will see in
Sec. IV that we still need�> 0, so that we will only be left
with CP3 and Fð1; 2; 3Þ.

D. Metric

Both almost complex structures I and ~I are compatible
with the same metric defined in (3.11). We end this section
by reviewing some features of this metric. We can take the
relevant computations from [44], Sec. 1.7 Let us define

g4 � e1 �e1 þ e2 �e2; g2 � e3 �e3: (3.15)

Then we have8

Ric 4 ¼ �ð6� �Þ
R2

g4; Ric2 ¼ �2 þ 4

R2
g2: (3.16)

We see that the metric g is Einstein if and only if

� ¼ 1 or � ¼ 2 ðEinsteinÞ: (3.17)

We will see that both these cases have already been used to
construct vacua (in [12–14,16,17], respectively).

IV. FINDING VACUA

We now have all the ingredients we need to solve the
supersymmetry equations (2.2) and Bianchi identities (2.6).
If we do, we will have found a IIA supergravity solution.
We will first do so and then worry about possible string
theory corrections.

A. Supergravity

We argued in Sec. III C that a good candidate for a flux
vacuum is the twistor space TwðM4Þ, when M4 is self-dual
and Einstein. Specifically, we proposed the almost com-
plex structure I given in (3.6); and we derived in (3.12) and
(3.13) some relevant geometrical quantities. The SU(3)
structure and the metric depend on a squashing parameter
�, and on the overall scale R.
First of all, by comparing dJ in (3.12) with (2.2), we get

~m ¼ � 1

2R
ð�þ 2Þ: (4.1)

Next, comparing dW�
2 in (3.13) with (2.6), we get, after

some manipulation,

m ¼ 1

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�� 2

5

�
ð2� �Þ

s
� 1

2R
m0ð�Þ; (4.2)

in particular,

2
5 � � � 2 (4.3)

as shown in Fig. 1.
Since � then has to be positive, we have (as commented

at the end of Sec. III C) that the only two manifolds on
which we can apply the methods of this paper are CP3 and
Fð1; 2; 3Þ. On each of these, however, we will find infinitely
many vacua.
At this point, as far as IIA supergravity is concerned, we

are done. We have satisfied the equations for dJ and d� in
(2.2), and the one for dW�

2 in (2.6), by taking the parame-

FIG. 1. This sketch shows the allowed interval for � in (4.3),
along with the three special cases already used for string vacua
before this paper. This is not a moduli space, because of flux
quantization, as discussed in Sec. IVB. In the two extrema [12–
14], the Romans mass vanishes [see (2.2) and (4.2)]; the solution
can hence be lifted to M theory. The resulting seven-dimensional
metric on S7 is Einstein in both cases. The metric at � ¼ 2
admits a Kähler structure, but supersymmetry uses another al-
most complex structure. The case � ¼ 1 was used in [16,17].

6While this paper was in preparation, the paper [22] worked
out many geometrical details about existing solutions on CP3.
With a little more work along those lines, one can actually use
their computations to the case with general �, and find (3.12) and
(3.13) in an alternative way. Their parameters are then mapped to
ours as � ¼ 2�2, R ¼ 2�.

7For R ¼ 1, �GPP ¼ ffiffiffiffiffiffiffiffiffi
�=2

p
.

8One could also derive these formulas directly from the
machinery of SU(3) structures, as, for example, in [45]; the
Ricci scalar is particularly easy to cross-check in this way.
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ters ~m and m to be given by (4.1) and (4.2). The fluxes are
then given in (2.2).

We also know from the general theory (as commented in
Sec. II) that the equations of motion will be automatically
satisfied. It is also not difficult to check them directly, by
using the expressions for the fluxes in (2.2) and (3.16).

Since we want, however, to find string theory vacua and
not just supergravity solutions, we have to now turn to flux
quantization effects and to possible stringy corrections.

B. Flux quantization

The fluxes in (2.2) cannot be quantized. H is actually
exact:

H ¼ d

�
m

~m
J

�
; (4.4)

so its periods are zero; as for the Fk, they are not closed,
because of (2.5), and hence their periods are not well
defined. Thanks to (4.4), however, we can define ‘‘page
charges’’

~F k � e�B^Fk; B ¼ m

~m
J þ B0; (4.5)

where B0 is closed. We will set B0 to zero in what follows,
since this choice will be enough for finding vacua. We can
then compute explicitly:

~F2 ¼ 4

gsR

ð�� 1Þ
ð�þ 2Þ ½��j4 þ 2j2�;

~F4 ¼ �2
m0

gsRð�þ 2Þ2 ½ð�
2 � 2�� 2Þj24 � 6�j2 ^ j4�;

~F6 ¼ 8

15gsR

ð1þ 2�Þð��2 þ 12�þ 4Þ
ð�þ 2Þ3 J3; (4.6)

where m0ð�Þ has been defined in (4.2) and

j4 ¼ i

2
ðe1 ^ �e1 þ e2 ^ �e2Þ; j2 ¼ i

2
e3 ^ �e3: (4.7)

We can now impose flux quantization. To some extent,
the proper understanding of what this means is still a work
in progress (see, for example, [46]). For example, which
fluxes are quantized depends on our choice of electric basis
of field strengths. The choice should cancel in the partition
function, but it does matter when trying to decide whether a
single given configuration is a solution or not. In the
present situation, the wisest course of action would seem
to just impose that the internal fluxes Fk be quantized

according to the formula chðxÞ
ffiffiffiffî
A

p
, where x is an element

of the K-theory group [47]. This formula gives rise to
several subtleties, such as F6 being actually half-integral
or integral depending on the value of F4. Working this out
carefully seems to be beyond the scope of the present
paper, since, as we will see, it does not affect the existence
of solutions. We will impose, schematically,

Z
Ca

~Fk ¼ nkð2�lsÞk�1 (4.8)

on all the internal Fk. To fix ideas, we can keep in mind the
‘‘naive’’ reduction of the half-quantization of [48] from
M theory. Last, notice that allowing a nonzero B0 [as in
(4.5)] rather than setting it to zero as we did, will allow us
even more freedom in the quantization, since it will alter

the formula in [47] to chðxÞeB0

ffiffiffiffî
A

p
.

On CP3 there are four equations to be imposed. In ~F2,
the relevant term is the second that integrates on the fiber.
In ~F4, it is the first term that we are interested in: as we
remarked in Sec. III A, even if the base is not a cycle, a
CP2 � CP3 projects to the base by collapsing the line at
infinity.
After imposing (4.8), from the equations for n4 and n0

one can derive

gs ¼n�3=4
0 n�1=4

4

m0ð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�þ2Þp �

125�2

6
ð1��Þð2�þ1Þ

�
1=4

;

R

2�ls
� r

¼n�1=4
0 n1=44

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�þ2Þp �

8�2

15
ð1��Þð2�þ1Þ

��1=4
:

(4.9)

We chose to derive gs and r from the equations for n0 and
n4 because the functions of � that they contain are both
positive and bounded within the allowed interval (4.3); this
will be useful shortly. In particular, we have n0 > 0 and
n4 > 0. (We will assume from now on that � is not one of
the special values 0, 1 or 2=5.)
We can then determine � by

n2ffiffiffiffiffiffiffiffiffiffi
n0n4

p ¼
ffiffiffiffiffiffi
24

5

s
�

m0ð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1

2�þ 1

s
(4.10)

and there is one � in the allowed interval (4.3) for any
integer n2, negative or positive. So we have now fixed the
three moduli gs, �, and r in terms of the (half) integers
n0;2;4. It would seem, however, that we are going to run into

trouble when we impose the quantization of F6.
Fortunately, the relevant equation is

n6 ¼
�
n2n4
n0

�
�2 � 12�� 4

8ð�� 1Þ2 : (4.11)

The fact that the function on the right-hand side is a
rational function with rational coefficients is what saves
us. Here is why. Let us first of all restrict our attention to �
rational. Before (4.11), one can choose any n0;2;4 and

determine gs, r, and �. Let us now give up a bit of that
freedom and choose n0;4 so that they cancel the square root
that will appear in the denominator of the function on the
right-hand side of (4.10). So far we have three particular
integers n00, n

0
2, and n04 of (4.9) and (4.10) with � rational
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and some gs and r. Let us now look at the right-hand side of
(4.11). It will read at this point ðn02n04=n00ÞðN1=N2Þ, for
some integers N1, N2 (since � is rational). It is now
sufficient to take n0;2;4 ¼ ðn00N2Þn00;2;4 [so that the solution

for� to (4.10) does not change; gs and rwill change, but so
be it], and n6 ¼ n2n4N1.

In the discussion so far, we have set B0 in (4.5) to zero.
Had we allowed it to be nonzero, we would have had one
more parameter to vary (since on CP3 there is one har-
monic two-form), which would have resulted in a system
of four equations for four unknowns. To find solutions to
this more general system one clearly does not have to work
as hard as we had to for B0 ¼ 0.9

Once one has found a particular solution fnk ¼ �nkg, one
can find infinitely many others by rescaling. While we are
at it, we can choose the rescaling so as to make r para-
metrically large and gs parametrically small:

fn0 ¼ N2 �n0; n2 ¼ N3 �n2; n4 ¼ N4 �n4; n6 ¼ N5 �n6g (4.12)

under which � remains invariant, gs � N�5=2, and r�
N1=2. (We should take N odd so that it preserves any
half-integrality.) Other choices of rescalings are of course
possible.

With this rescaling we have made sure that both ls and gs
corrections are under control, but one might worry about
the fact that we are introducing ever larger quanta of flux.
One might think that this would make large any corrections
to the action in which the flux appears with high powers,
for example. As remarked in [9], such corrections should
be functions of sk � ðgsFkÞ2, where the square is actually a
contraction of the indices, which involves k inverse met-
rics. Suppose, for example, that we are looking at the
behavior of sk under the rescaling (4.12), so that we can
forget about the dependence on �. The flux density (as
opposed to the integral) Fk goes like 1=ðgsRÞ, so sk goes

like ð1=rÞ2r�2k ¼ r�2ðkþ1Þ, taking into account the k in-
verse metrics. This means that sk is small when r is large,
and, in particular, that it gets smaller under (4.12).

The discussion for Fð1; 2; 3Þ is very similar. Some nu-
merical factors are different (essentially because of the
different metric on the base). More importantly, there is
an additional two-cycle (coming from a CP1 in the base)
and an additional four-cycle (coming from the restriction
of the fibration to that CP1). This might sound worrying,
because we are then imposing two more equations. But, in
fact, if we call ~n2 and ~n4 the two new integers, we can see
from (4.6), with some work, that ~n2=n2 and ~n4=n4 are
rational functions with rational coefficients. One can then
perform the rescaling (4.12) until ~n2;4 can be taken to be

integer.

C. Comments and possible extensions

Now that we have convinced ourselves that the super-
gravity vacua found in Sec. IVA survive the gauntlet of
flux quantization and possible stringy corrections, we can
ask whether they are in fact interesting physically.
The first feature that springs to mind is the fact that at

this point there are no known moduli left. There were only
two geometrical moduli in our metric, R and g, and they
have been stabilized along with the dilaton in Sec. IVB.
Often, additional moduli can come from potentials, but in
this case the Ramond-Ramond (RR) potentials are odd
forms and have no cycles to be integrated on; B0 can be
integrated on the two-cycle, but it is not a modulus, since,
for example, it shifts F2 ! F2 � B0F0, which does not
respect (4.8). It would have been suspicious anyway if
there had been moduli coming from potentials, since these
moduli are typically supersymmetry partners of geometri-
cal moduli, and one cannot stabilize a field and not its
partner without breaking supersymmetry.
Unfortunately, without having performed the whole KK

reduction, we cannot be sure yet that there are no other
moduli that we have not thought about. It is not even
enough to know the spectrum of the Laplacian, because
the internal fluxes mix with it (for an example, see [11],
Table 5).
It would be interesting at this point to know more about

the mass matrix around these vacua. For the subset found at
� ¼ 1 by [16,17], the effective theory for a subset of fields
is now known [20], and the masses are positive (not just
about the stability bound).
This would be interesting in view of a possible uplifting

of these vacua.10 If one wants to uplift an AdS vacuum
which has some masses over the stability bound but nega-
tive, the uplifting term in the potential is unlikely to make
them positive unless it has itself a minimum at the vacuum.
Hence having positive masses from the beginning appears
desirable.
The uplifting would hopefully also cure one unpleasant

feature of the vacua in this paper that we have not remarked
about so far. Namely, there is no separation of scales
between the four-dimensional cosmological constant and
the Kaluza-Klein scale. Indeed, from (2.3), and using (4.1)
and (4.2),

�R2 ¼ �3ðm2 þ ~m2ÞR2 ¼ 12

5
ð2�þ 1Þ (4.13)

whereas one would have liked this number to be small [it is
proportional to ðH=mKKÞ2, where H is the Hubble scale].
This is unlike the vacua in [9], where, in the notation of this

paper, R� n4=n0, gs � n�3=4
4 n�5=4

0 , and �R2 � g2sR
2 �

n�1
4 n�3

0 . The crucial difference appears to be the presence,

in their case, of orientifold sources; we will have some

9I thank Amir Kashani-Poor for discussions on this point.

10Notice that the no-go argument in [49] about de Sitter vacua
only applies to Calabi-Yau spaces.
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speculative comments about this at the end of this section.
In any case, as already mentioned, the position taken in this
paper is that this kind of question should be asked only
after the uplifting.

Another question we are not answering concerns the
gauge group of the effective theory. For example, the
metrics considered here for CP3 have isometries Spð2Þ,
but the fluxes might break some of them, and mix the
survivors with the vector in [20] (that comes from the RR
potential A3) in a semidirect product, similar to what
happens in Scherk-Schwarz reductions.11

It appears possible to answer all these questions with a
reasonable amount of work. In any case, the point of this
paper is less in the features of the vacua than in the
techniques utilized to obtain them that hopefully might
become of more general use.

Concretely, here is a more speculative possibility. So far
we have not introduced any RR source, because they
usually make the equations much more difficult to solve.
There is a brutal approximation that in many cases seems
to reproduce vacua that one has otherwise good control on:
it consists of replacing the source say for an O6 plane that
would look locally like

���ðx1Þ�ðx2Þ�ðx3Þdx1 ^ dx2 ^ dx3; (4.14)

with xi being the transverse coordinates, with a nonsingular
form. Acharya et al. [10] propose taking

� �

R3
Re� (4.15)

with the obvious motivation that it would then be compa-
rable to the existing terms in (2.6).12 One possible way to
think about it is to expand (4.14) in eigenforms of the
Laplacian and keep the lowest mode.
In any case, if one believes in this approximation, one

can try to combine it with the computations in this paper.
After adding (4.15) to the right-hand side of (2.6), one finds
that (4.1) gets modified to

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4R2

�
�� 2

5

�
ð2� �Þ þ g�

10R3

s
: (4.16)

As expected, the introduction of the O6 plane makes the
equations more forgiving: it becomes possible a priori to
have negative �, which would correspond to the twistor
space of a hyperbolic M4 (such as quotients of hyperbolic
four-space). It then also becomes possible to make � close
to �1=2, which would introduce a hierarchy of scales
between the four-dimensional cosmological constant and
the KK scale, as discussed above. However, we will not
further investigate this possibility here.
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