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We study the future evolution of quintessence/phantom-dominated epoch in modified FðRÞ gravity
which unifies the early-time inflation with late-time acceleration and which is consistent with observa-

tional tests. Using the reconstruction technique it is demonstrated that there are models where any known

(big rip, II, III, or IV type) singularity may classically occur. From another side, in Einstein frame (scalar-

tensor description) only IV type singularity occurs. Near the singularity the classical description breaks

up, and it is demonstrated that quantum effects act against the singularity and may prevent its appearance.

The realistic FðRÞ gravity which is future singularity free is proposed. We point out that additional

modification of any FðRÞ gravity by the terms relevant at the early universe is possible, in such a way that

future singularity does not occur even classically.
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I. INTRODUCTION

The current interest in modified FðRÞ gravity is caused
by its success as the gravitational alternative for dark
energy (for a review, see [1]). The number of studies of
dark energy aspects of FðRÞ gravity [2–4] clarified its
structure and possible cosmological applications. It has
been demonstrated [2] that there appears the possibility
of unifying the description of the inflation and late-time
cosmic acceleration within the same theory which has a
standard Newtonian regime in the Solar System. Hence,
the whole universe expansion history may be obtained as
the cosmological solution from some modified FðRÞ grav-
ity. Recently, the class of viable (nonlinear, analytical)
FðRÞ gravities was suggested in Ref. [5]. Such theories
and their extensions [6,7] do pass the local tests and
successfully describe the (almost) �CDM epoch.
Generalizations of these theories proposed in Refs. [8–
10] keep all their nice viability properties but may simul-
taneously describe the inflation, so that whole universe
expansion history—inflation, radiation/matter dominance,
dark energy epoch—follows from the same viable FðRÞ
gravity consistent with Solar System tests.

The observational data indicate that the current dark
universe has the effective equation of state parameter w
being very close to�1. Whenw ¼ �1 the Universe passes
through the �CDM epoch. If w is slightly less than �1
then we live in a phantom-dominated universe, and if w is
slightly more than�1 the quintessence dark epoch occurs.
In all these cases, part of (or all) the energy conditions are

violated. It is known that the dark energy universe with the
effective phantom phase ends up in the future, finite-time
singularity [11]. From another point, the effective quintes-
sence universe may end up in a more general (soft) singu-
larity. This is also true for the modified FðRÞ gravity model
[1] which leads to a dark universe with the corresponding
(phantom/quintessence) effective w. One can always make
the effective phantom phase transient, just by changing the
classical structure of FðRÞ gravity by the terms which are
relevant at the very early universe (see the corresponding
investigation in [12]). Recently, the appearance of future
singularity in the specific example of FðRÞ gravity was
reobtained in Refs. [13,14].
In the present work we investigate the future evolution

of modified gravity which unifies the inflation with late-
time acceleration. Using the classification of finite-time
future singularities proposed in Ref. [15], we describe
how all types of finite-time singularities may occur in
modified gravity. Comparing Jordan and Einstein frames
we show that the transition of the singularity type occurs:
whatever type future singularity appears in the Jordan
frame [the original FðRÞ gravity], in the Einstein frame
(scalar-tensor description) it shows up as a type IV singu-
larity. The classical mechanics analogy for future singu-
larity is given. As classical description breaks up near to
singularity, the quantum effects should be taken into ac-
count while approaching a future singularity. It is demon-
strated how quantum effects prevent the future singularity
in modified gravity. The realistic model of nonlinear FðRÞ
gravity which unifies the inflation with late-time cosmic
acceleration without future singularity and which is con-
sistent with local tests is proposed. The early-time modifi-
cation of the gravitational theory may be always proposed
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in such a way that future singularity does not occur while
local tests are not violated.

II. GENERAL STRUCTUREOFFðRÞGRAVITYAND
TRACE EQUATION

Let us start from the general (Jordan frame) action of
FðRÞ gravity (for a review, see [1]) with matter:

SFðRÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
FðRÞ
2�2

þLm

�
: (1)

The standard field equations are given by

1

2
g��FðRÞ � R��F

0ðRÞ � g��hF0ðRÞ þ r�r�F
0ðRÞ

¼ ��2

2
TðmÞ��: (2)

Here FðRÞ is a proper function of the scalar curvatureR and
Lm is the matter Lagrangian. In (2), TðmÞ�� is the matter

energy-momentum tensor. By separating FðRÞ into the
Einstein-Hilbert part and modified part as

FðRÞ ¼ Rþ fðRÞ; (3)

the trace part of the equation of motion (2) has the follow-
ing Klein-Gordon equationlike form:

3hf0ðRÞ ¼ dVeff

df0ðRÞ � Rþ 2fðRÞ � Rf0ðRÞ � �2T: (4)

The above trace equation can be interpreted as an equation
of motion for the nontrivial ‘‘scalaron’’ f0ðRÞ with the
effective potential Veff . This means that the curvature itself
propagates. The above trace equation is very convenient
for studying the possible instabilities and Solar System
tests [7]. Note also that the potential which appears in the
trace equation is rather formal; it has no direct physical
meaning, like energy density or pressure.

By introducing the auxiliary field A, one rewrites the
action (1) of the FðRÞ gravity in the following form:

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p fF0ðAÞðR� AÞ þ FðAÞ þLmg: (5)

By the variation over A, one obtains A ¼ R. Substituting
A ¼ R into the action (5), one can reproduce the action in
(1). Furthermore, we rescale the metric in the following
way (conformal transformation):

g�� ! e�g��; � ¼ � lnF0ðAÞ: (6)

Hence, the Einstein frame action is obtained:

SE¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R�3

2
g��@��@���Vð�ÞþLA

m

�
;

Vð�Þ¼ e�Gðe��Þ�e2�fðGðe��ÞÞ¼ A

F0ðAÞ�
FðAÞ
F0ðAÞ2 : (7)

Here Gðe��Þ is given by solving the equation � ¼
� lnð1þ f0ðAÞÞ ¼ lnF0ðAÞ as A ¼ gðe��Þ.

In the Hu-Sawicki model [5], when the curvature is
large, fðRÞ behaves as

fðRÞ � �2�þ �

Rn : (8)

Here �, �, and n are positive constants. Then the potential
V is given by

V ¼ 2�þOðA�nÞ: (9)

Therefore, the curvature infinity (R ¼ A ! 1) surely cor-
responds to the finite value of the potential.
We may consider the case that fðRÞ behaves as

fðRÞ � fnR
n; (10)

with positive n and fn being a constant. The potential is
found to be

V ¼ n� 2

fnA
n�2

: (11)

Then if 2> n> 0, V becomes infinite when curvature R ¼
A goes to infinity. Therefore, in this case the singularity
could not be realized easily. In the model proposed in [9],
fðRÞ behaves as (10). Therefore, this case is qualitatively
similar to the above behavior.
In the model [8],

fðRÞ ¼ � ðR� R0Þ2nþ1 þ R2nþ1
0

f0 þ f1fðR� R0Þ2nþ1 þ R2nþ1
0 g

¼ � 1

f1
þ f0=f1

f0 þ f1fðR� R0Þ2nþ1 þ R2nþ1
0 g ; (12)

when R is large, fðRÞ behaves as

fðRÞ � � 1

f1
þ f0

f21R
2nþ1

; (13)

which is almost the same with (8), and we obtain the
expression of V, which is also similar to (9),

V ¼ 1

f1
þOðA�nÞ: (14)

In the case of Eq. (13), 1=f1 corresponds to the effective
cosmological constant in the inflation epoch and therefore
it is very large. Then, since V becomes positively large, the
singularity could not be easily generated. Hence, from the
general structure of FðRÞ gravity in the Einstein frame one
may deduce its behavior at large curvature.
We may include the effect of the matter with a constant

equation of state (EoS) parameter w. Since the matter

density behaves as � ¼ �0a
�3ð1þwÞ (�0 > 0) and � has

mass dimension 4, by the scale transformation (6), � is
transformed as

~� ¼ e�2�� ¼ �0e
�2�~a�3ð1þwÞe3ð1þwÞ�=2

¼ �0~a
�3ð1þwÞe�ð1�3wÞ�=2: (15)
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Here ~a is the scale factor in the Einstein frame, which is

given by ~a ¼ e�=2a. Note that the coordinates effectively

transform as x� ! x�0 ¼ e�=2 under the scale transforma-
tion, general mass dimension n quantity Q transforms as

Q ! Q0 ¼ e�n�=2Q. Since the energy density depends on
the scalar field �, in the Einstein frame, the potential could
be shifted as

V ! ~V � V þ C�0~a
�3ð1þwÞe�ð1�3wÞ�=2

¼ V þ �0~a
�3ð1þwÞðF0ðAÞÞ1�3w: (16)

For the model (8), we find F0ðAÞ ! 1 then the matter
correction does not give a strong effect and the singularity
could be easily realized. On the other hand, in the model
(10), since F0ðRÞ � nfnR

n�1, the potential ~V blows up as
~V � Rð1�3wÞðn�1Þ if w< 1=3 and n > 1. Then the singular-
ity could be prevented if we include the matter.

III. FINITE-TIME SINGULARITIES IN FðRÞ
GRAVITY

In this section, we investigate FðRÞ gravity models
which generate several known types of finite-time
singularities.

A. Big rip type singularity

As the first example, we consider the case of the big rip
singularity, where H behaves as

H ¼ h0
t0 � t

: (17)

Here h0 and t0 are positive constants andH diverges at t ¼
t0. In order to find the FðRÞ gravity which generates the big
rip type singularity, we use the method of the reconstruc-
tion, that is, we construct the FðRÞ model realizing any
given cosmology using the techniques of Ref. [16]. The
general FðRÞ gravity action with general matter is given as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p fFðRÞ þLmatterg: (18)

The action (18) can be rewritten by using proper functions
Pð�Þ and Qð�Þ of a scalar field �:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p fPð�ÞRþQð�Þ þLmatterg: (19)

Since the scalar field� has no kinetic term, one may regard
� as an auxiliary scalar field. By the variation over �, we
obtain

0 ¼ P0ð�ÞRþQ0ð�Þ; (20)

which could be solved with respect to � as � ¼ �ðRÞ. By
substituting � ¼ �ðRÞ into the action (19), we obtain the
action of FðRÞ gravity where

FðRÞ ¼ Pð�ðRÞÞRþQð�ðRÞÞ: (21)

By the variation of the action (19) with respect to g��, the

equation of motion follows:

0 ¼ �1
2g��fPð�ÞRþQð�Þg � R��Pð�Þ þ r�r�Pð�Þ

� g��r2Pð�Þ þ 1
2T��: (22)

In the Friedmann-Robertson-Walker (FRW) universe,
Eq. (22) has the following form:

0 ¼ �6H2Pð�Þ �Qð�Þ � 6H
dPð�ðtÞÞ

dt
þ �

0 ¼ ð4 _H þ 6H2ÞPð�Þ þQð�Þ þ 2
d2Pð�ðtÞÞ

dt

þ 4H
dPð�ðtÞÞ

dt
þ p:

(23)

By combining the two equations in (23) and deletingQð�Þ,
we obtain

0 ¼ 2
d2Pð�ðtÞÞ

dt2
� 2H

dPð�ðtÞÞ
dt

þ 4 _HPð�Þ þ pþ �:

(24)

Since one can redefine � properly as � ¼ �ð’Þ, we may
choose� to be a time coordinate:� ¼ t. Then assuming �,
p could be given by the corresponding sum of matter with a
constant EoS parameters wi and writing the scale factor

aðtÞ as a ¼ a0e
gðtÞ (a0: constant), we obtain the second

rank differential equation:

0 ¼ 2
d2Pð�Þ
d�2

� 2g0ð�Þ dPð�ÞÞ
d�

þ 4g00ð�ÞPð�Þ

þX
i

ð1þ wiÞ�i0a
�3ð1þwiÞ
0 e�3ð1þwiÞgð�Þ: (25)

If one can solve Eq. (25), with respect to Pð�Þ, one can also
find the form of Qð�Þ by using (23) as

Qð�Þ ¼ �6ðg0ð�ÞÞ2Pð�Þ � 6g0ð�Þ dPð�Þ
d�

þX
i

�i0a
�3ð1þwiÞ
0 e�3ð1þwiÞgð�Þ: (26)

Thus, it follows that any given cosmology can be realized
by some specific FðRÞ gravity.
In the case of (17), if we neglect the contribution from

the matter, the general solution of (25) is given by

Pð�Þ ¼ Pþðt0 ��Þ�þ þ P�ðt0 ��Þ�� ;

�� � �h0 þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 � 10h0 þ 1

q
2

;

(27)

when h0 > 5þ 2
ffiffiffi
6

p
or h0 < 5� 2

ffiffiffi
6

p
and
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Pð�Þ ¼ ðt0 ��Þ�ðh0þ1Þ=2

�
�
Â cos

�
ðt0 ��Þ ln�h20 þ 10h0 � 1

2

�

þ B̂ sin

�
ðt0 ��Þ ln�h20 þ 10h0 � 1

2

��
; (28)

when 5þ 2
ffiffiffi
6

p
> h0 > 5� 2

ffiffiffi
6

p
. Using (20), (21), and

(26), we find the form of FðRÞ when R is large as

FðRÞ / R1���=2; (29)

for the h0 > 5þ 2
ffiffiffi
6

p
or h0 < 5� 2

ffiffiffi
6

p
case and

FðRÞ / Rðh0þ1Þ=4 � ðoscillating partsÞ; (30)

for the 5þ 2
ffiffiffi
6

p
> h0 > 5� 2

ffiffiffi
6

p
case. Then V (7) behaves

as

V � R1þ��=2; (31)

for the h0 > 5þ 2
ffiffiffi
6

p
or h0 < 5� 2

ffiffiffi
6

p
case and

V � Rð3�h0Þ=4 � ðoscillating partsÞ; (32)

for the 5þ 2
ffiffiffi
6

p
> h0 > 5� 2

ffiffiffi
6

p
case. Hence, even if the

curvature tends to infinity, the potential V does not always
tend to infinity. Note also that the potential is often un-
bounded below.

B. More general singularities

Let us investigate a more general singularity

H � h0ðt0 � tÞ��: (33)

Here h0 and � are constants, h0 is assumed to be positive
and t < t0 as it should be for the expanding universe. Even
for noninteger �< 0, some derivative of H and therefore
the curvature becomes singular. Since the case � ¼ 1
corresponds to the big rip, whichwas investigated in the
last subsection, we assume � � 1. Furthermore since � ¼
0 corresponds to de Sitter space, which has no singularity,
it is assumed � � 0. When �> 1, the scalar curvature R
behaves as

R� 12H2 � 12h20ðt0 � tÞ�2�: (34)

On the other hand, when �< 1, the scalar curvature R
behaves as

R� 6 _H � 6h0�ðt0 � tÞ���1: (35)

If we write

Pð�Þ ¼ e�h0ðt0��Þ��þ1=2ð1��ÞSð�Þ; (36)

Equation (25) without matter contribution has the follow-
ing Schrödinger equationlike form:

0 ¼ d2Sð�Þ
d�2

þ
�
5�h0
2

ðt0 ��Þ���1 � h20
4
ðt0 ��Þ�2�

�
S:

(37)

When � ¼ t ! t0, in the case �> 1, one finds��������5�h0
2

ðt0 ��Þ���1

���������
��������h

2
0

4
ðt0 ��Þ�2�

��������: (38)

On the other hand, in the case �< 1, we find��������5�h0
2

ðt0 ��Þ���1

���������
��������h

2
0

4
ðt0 ��Þ�2�

��������: (39)

In any case, Eq. (37) reduces to the following form:

0 ¼ d2Sð�Þ
d�2

� V0ðt0 ��Þ��S; (40)

when � ¼ t ! t0. Here

V0 ¼ � 5�h0
2

; � ¼ �þ 1 when �< 1;

V0 ¼ h20
4
; � ¼ 2� when �> 1:

(41)

With further redefinition

y � ðt0 ��Þ1��=2; S ¼ yð�=4Þð1��=2Þ�1
’; (42)

Eq. (40) has the following form:

0 ¼ d2’

dy2
�

��
�2

16
� �

4

�
1

y2
þ 4V0

ð2� �Þ2
�
’: (43)

Note that y ! 0 when � ! t0 if 1� �=2> 0 but y ! 1
when � ! t0 if 1� �=2< 0. Then if 1� �=2> 0,
Eq. (43) reduces to the following form when � ! t0:

0 ¼ d2’

dy2
�

�
�2

16
� �

4

�
1

y2
’; (44)

whose general solution is given by

’ ¼ Ay�=4�1 þ By��=4: (45)

Here A and B are constants of the integration. On the other
hand, if 1� �=2< 0, Eq. (43) reduces to the following
form when � ! t0:

0 ¼ d2’

dy2
þ 4V0

ð�� 2Þ2 ’: (46)

When V0 > 0, the general solution of (46) is given by

y ¼ ~A cosð!yÞ þ ~B sinð!yÞ; ! � 2
ffiffiffiffiffiffi
V0

p
�� 2

: (47)

Here ~A and ~B are constants of the integration. On the other
hand, if V0 < 0, the general solution has the following
form:

y ¼ Âe!̂y þ B̂e�!̂y; !̂ � 2
ffiffiffiffiffiffiffiffiffiffi�V0

p
�� 2

: (48)

From the above analysis, one may get the asymptotic
solution for P when � ! t0.

SHIN’ICHI NOJIRI AND SERGEI D. ODINTSOV PHYSICAL REVIEW D 78, 046006 (2008)

046006-4



(i) �> 1 case.—From (41), � ¼ 2�> 2 and therefore
1� �=2 ¼ 1� �< 0, which corresponds to (46).
Since we also find V0 > 0, the solution is given by
(47). Then by combining (33), (36), (42), and (47),
we find the following asymptotic expression of
Pð�Þ:

Pð�Þ � eðh0=2ð��1ÞÞðt0��Þ��þ1ðt0 ��Þ�=2
� ð ~A cosð!ðt0 ��Þ��þ1Þ
þ ~B sinð!ðt0 ��Þ��þ1ÞÞ;

! � h0
2ð�� 1Þ :

(49)

When� ! t0, Pð�Þ tends to vanish very rapidly. By
using (20), (21), and (26), FðRÞ looks like (at large
R)

FðRÞ / eðh0=2ð��1ÞÞðR=12h0Þð��1Þ=2�
R�1=4

� ðoscillating partÞ; (50)

which gives

V � e�ðh0=2ð��1ÞÞðR=12h0Þð��1Þ=2�
R9=4

� ðoscillating partÞ: (51)

Near the curvature singularity R ! 1, the potential
becomes small exponentially.

(ii) 1>�> 0 case.—From (41), we find � ¼ �þ 1
and therefore 1� �=2 ¼ 1=2� �=2> 0, which
corresponds to (44). Since

�

4
� 1�

�
��

4

�
¼ �> 0; (52)

the second term in (45) dominates when � ! t0 if
B � 0. Then by combining (33), (36), (42), and
(45), we find the following asymptotic expression
of Pð�Þ:

Pð�Þ � Be�ðh0=2ð1��ÞÞðt0��Þ1��ðt0 ��Þð�þ1Þ=8:
(53)

Therefore,

FðRÞ � e�ðh0=2ð1��ÞÞð�6�h0RÞð��1Þ=ð�þ1Þ
R7=8: (54)

Equation (35) shows that when� ¼ t ! t0, R ! 1
in the case �>�1 but R ! 0 in the case �<�1.
Therefore we find the asymptotic behavior of the
potential when R ! 1 as

V � eðh0=2ð1��ÞÞð�6�h0RÞð��1Þ=ð�þ1Þ
R9=8 � R9=8; (55)

which diverges in the limit of R ! 1.
(iii) �< 0 case.—As in the 1>�> 0 case, one gets

� ¼ �þ 1 and therefore 1� �=2> 0 but since

�

4
� 1�

�
��

4

�
¼ �< 0; (56)

the first term in (45) dominates when � ! t0, if
A � 0. Hence, the asymptotic expression of Pð�Þ
follows:

Pð�Þ � Ae�ðh0=2ð1��ÞÞðt0��Þ1��ðt0 ��Þ�ð�2�6�þ1Þ=8:

(57)

Then FðRÞ is given by

FðRÞ � ð�6h0�RÞð�2þ2�þ9Þ=8ð�þ1Þ

� e�ðh0=2ð1��ÞÞð�6h0�RÞð��1Þ=ð�þ1Þ
: (58)

Note that �6h0�R> 0 when h0, R> 0. If 0<
�<�1, R ! 1 when � ¼ t ! t0 and therefore
we find

V � R2�ð�þ1Þ2=8�1=ð�þ1Þeðh0=2ð1��ÞÞð�6h0�RÞð��1Þ=ð�þ1Þ
;

(59)

which diverges when R ! 1. On the other hand, if
�<�1, R ! 0 when � ¼ t ! t0 and the poten-
tial has the following form:

V � R2�ð�þ1Þ2=8�1=ð�þ1Þ; (60)

which could vanish or diverge depending on the
value of �.

When �> 1 in (33), R behaves as in (34), and when
�< 1, the scalar curvature R behaves as in (35).
Conversely, when R behaves as

R� 6 _H � R0ð�þ 1Þðt0 � tÞ�	; (61)

if 	 > 2, which corresponds to � ¼ 	=2> 1, H behaves
as

H �
ffiffiffiffiffiffi
R0

12

s
ðt0 � tÞ�	=2; (62)

if 2> 	> 1, which corresponds to 1>� ¼ 	� 1> 0,H
is given by

H � R0

6ð	� 1Þ ðt0 � tÞ�	þ1; (63)

and if 	 < 1, which corresponds to � ¼ 	� 1< 0, one
obtains

H�H0 þ R0

6ð	� 1Þ ðt0 � tÞ�	þ1: (64)

Here H0 is an arbitrary constant, which is chosen to vanish
in (33). Then, since H ¼ _aðtÞ=aðtÞ, if 	 > 2, we find

aðtÞ / exp

��
2

	
� 1

� ffiffiffiffiffiffi
R0

12

s
ðt0 � tÞ�	=2þ1

�
; (65)

when 2>	> 1, aðtÞ behaves as

aðtÞ / exp

�
R0

6	ð	� 1Þ ðt0 � tÞ�	

�
; (66)
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and if 	 < 1,

aðtÞ / exp

�
H0tþ R0

6	ð	� 1Þ ðt0 � tÞ�	

�
: (67)

In any case, there appears a sudden future singularity [17]
at t ¼ t0.

Since the second term in (64) is smaller than the first
term, we may solve (25) asymptotically as follows:

P� P0

�
1þ 2h0

1� �
ðt0 ��Þ1��

�
; (68)

with a constant P0, which gives

FðRÞ � F0Rþ F1R
2�=ð�þ1Þ: (69)

Here F0 and F1 are constant. When 0>�>�1, we find
2�=ð�þ 1Þ< 0, which corresponds to (8) by identifying
n ¼ �2�=ð�þ 1Þ or � ¼ �n=ðnþ 2Þ, which could be
confirmed later in (98). On the other hand when �<�1,
we find 2�=ð�þ 1Þ> 2. As we saw in (29), the FðRÞ
generates the big rip singularity when R is large. Then
even if R is small, the FðRÞ generates a singularity where
higher derivatives H diverge.

Let us also investigate how an effective EoS parameter
weff for (64) behaves when t� t0. In the Einstein gravity,
the FRW equations are given by

3

�2
H2 ¼ �; � 1

�2
ð2 _Hþ 3H2Þ ¼ p: (70)

Since the EoS parameter is defined by w ¼ p=�, even for
the FðRÞ gravity, we may introduce the EoS parameter weff

by

weff ¼ �1� 2 _H

3H2
: (71)

Then if � ¼ 	=2> 1, it follows

weff ��1� 2�

3h0
ðt0 � tÞ�1þ� ! �1; (72)

when t ! t0. If 1>� ¼ 	� 1> 0, we find

weff �� 2�

3h0
ðt0 � tÞ�1þ� ! �1: (73)

Finally if � ¼ 	� 1< 0, one gets the expression (73)
when H0 ¼ 0. When H0 � 0, on the other hand, we obtain

weff ��1� 2�h0
3H2

0

ðt0 � tÞ�1��; (74)

whenH0 vanishes. Then if�1<�< 0, weff ! þ1 when
t ! t0. On the other hand, if �<�1, weff ! �1.

Equation (70) also shows that, even for FðRÞ gravity, we
may define the effective energy density �eff and the effec-
tive pressure peff by

�eff � 3

�2
H2; peff � � 1

�2
ð2 _H þ 3H2Þ: (75)

We now assume H behaves as (33). Then if �> 1, when
t ! t0, a� expðh0ðt0 � tÞ1��=ð�� 1ÞÞ ! 1, and
�eff ; jpeffj ! 1. If � ¼ 1, we find a� ðt0 � tÞh0 ! 1
and �eff ; jpeffj ! 1. If 0<�< 1, a goes to a constant
but �; jpj ! 1. If �1<�< 0, we find a and � vanishes
but jpeffj ! 1. When �< 0, instead of (33), as in (63),
one may assume

H �H0 þ h0ðt0 � tÞ��: (76)

Hence, �eff has a finite value 3H2
0=�

2 in the limit t ! t0
when�1<�< 0. If �<�1 but� is not any integer, a is
finite and �eff and peff vanishes if H0 ¼ 0 or �eff and peff

are finite if H0 � 0 but higher derivatives of H diverge.
In [15], there was suggested the classification of the

finite-time singularities in the following way:
(i) Type I (‘‘big rip’’): For t ! ts, a ! 1, � ! 1, and

jpj ! 1. This also includes the case of �, p being
finite at ts.

(ii) Type II (‘‘sudden’’): For t ! ts, a ! as, � ! �s,
and jpj ! 1

(iii) Type III: For t ! ts, a ! as, � ! 1, and jpj ! 1
(iv) Type IV: For t ! ts, a ! as, � ! 0, jpj ! 0, and

higher derivatives of H diverge. This also includes
the case when pð�Þ or both of them tend to some
finite values while higher derivatives of H diverge.

Here ts, as, and �s are constants with as � 0. We now
identify ts with t0. The type I corresponds to the �> 1 or
� ¼ 1 case, type II to the�1<�< 0 case, type III to the
0<�< 1 case, and type IV to the �<�1 case but � is
not any integer case. Thus, we have constructed FðRÞ
gravity examples which show any type of above finite-
time singularity. This is natural because it is known that
modified gravity may lead to the effective phantom/quin-
tessence phase [1] while the phantom/quintessence domi-
nated universe may end up with a finite-time singularity.
The reconstruction method also tells us that there ap-

pears a type I singularity for FðRÞ ¼ Rþ �Rn with n > 2
and a type III singularity for FðRÞ ¼ R� �R�n with
n > 0.

C. Classical mechanics analogy

Let us now consider the analogy with the classical
mechanics in the description of finite-time singularities in
modified gravity.
We start with the trace equation:

2FðRÞ � RF0ðRÞ � 3hF0ðRÞ ¼ ��2

2
T: (77)

By writing FðRÞ as FðRÞ ¼ Rþ fðRÞ, Eq. (77) could be
rewritten as

Rþ 2fðRÞ � Rf0ðRÞ � 3hf0ðRÞ ¼ ��2

2
T: (78)

When the curvature is large, we assume fðRÞ behaves as
(8). Then Eq. (78) reduces to
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Rþ 3�hðR�n�1Þ � 0: (79)

If


 � R�n�1; (80)

and the FRW metric with flat spatial part is chosen,
Eq. (79) has the following form:

€
þ 3H _
 ¼ 1

3�

�1=ðnþ1Þ: (81)

Note 
 ¼ 0 corresponds to the curvature singularity R !
1. Neglecting the second term in the left-hand side of (81),
the equation looks very similar to the equation of the
motion in the classical system with repulsive force

ð1=3�Þ
�1=ðnþ1Þ.
First we consider the classical equation of motion:

€x ¼ 1

3�
x�1=ðnþ1Þ: (82)

For Eq. (82), one gets an exact solution:

x ¼ Cðt0 � tÞ2ðnþ1Þ=ðnþ2Þ: (83)

Here C and t0 are constants. Note 2> 2ðnþ 1Þ=ðnþ 2Þ>
1. Then x vanishes in a finite time t ¼ t0, which corre-
sponds to the curvature singularity in (82).

We now investigate the asymptotic solution when the
curvature is large, that is, 
 is small. As there is a curvature
singularity, one may assume (33). Since

R� 12h20
ðt0 � tÞ2� � 6h0�

ðt0 � tÞ�þ1
; (84)

R diverges when �>�1 but � ¼ 0.
We now consider three cases: (1) � ¼ 1, (2) �> 1,

(3) 0<�< 1, and (4) 0>�>�1.
(i) In case (1) � ¼ 1, since

R� 12h20 þ 6h0
ðt0 � tÞ2 ; (85)

and therefore, from (80), we find


� ðt0 � tÞ2ðnþ1Þ; (86)

and the left-hand side of (81) behaves as

€
þ 3H _
� ðt0 � tÞ2n; (87)

but the right-hand side behaves as

1

3�

�1=ðnþ1Þ � ðt0 � tÞ�2; (88)

which is inconsistent since the powers of both sides
do not coincides with each other. Therefore, � � 1.

(ii) In case (2) �> 1, we find

R ¼ 12H2 þ 6 _H � 12H2 � ðt0 � tÞ�2�; (89)

and therefore


� ðt0 � tÞ2�ðnþ1Þ: (90)

In the left-hand side of (81), the second term domi-
nates and the left-hand side behaves as

€
þ 3H _
� 3H _
� ðt0 � tÞ�ð2nþ1Þ�1: (91)

On the other hand, the right-hand side behaves as

1

3�

�1=ðnþ1Þ � ðt0 � tÞ�2�: (92)

Then by comparing the powers of both sides, one
gets

�ð2nþ 1Þ � 1 ¼ �2�; (93)

which gives � ¼ 1=ð2nþ 3Þ but this conflicts with
the assumption �> 1.

(iii) In case (3) 0<�< 1 or case (4) 0>�>�1, we
find

R ¼ 12H2 þ 6 _H � _H � ðt0 � tÞ���1; (94)

and therefore


� ðt0 � tÞð�þ1Þðnþ1Þ: (95)

Then in the left-hand side of (81), the first term
dominates and the left-hand side behaves as

€
þ 3H _
� €
� ðt0 � tÞ�ðnþ1Þþn�1: (96)

On the other hand, the right-hand side behaves as

1

3�

�1=ðnþ1Þ � ðt0 � tÞ���1: (97)

Then by comparing the powers of the left-hand side
and the right-hand side, the consistency tells

�ðnþ 1Þ þ n� 1 ¼ ��� 1 or

� ¼ �n=ðnþ 2Þ: (98)

This conflicts with case (3) 0<�< 1 but is con-
sistent with case (4) 0>�>�1, which could
correspond to the case in [14] or to (55). In fact,
by substituting (98) into (95), we get


� ðt0 � tÞ2ðnþ1Þ=ðnþ2Þ; (99)

which corresponds to (83). Since 0>�>�1, this
singularity corresponds to type III in [15]. Then we
found the curvature singularity really appears in the
Hu-Sawicki model in finite time as pointed out in
[14].

We now briefly comment on what could happen near the
singularity in the Einstein frame (7). Since �� 0 and
therefore e� � 1 in the scale transformation (6), we may
identify the time coordinate in the Einstein frame and the
time coordinate in the original FðRÞ frame. Since (6) shows
also
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�� n�

Anþ1
¼ n�

Rnþ1
; (100)

by using (94) and (98), one obtains

�� n�

ð6h0Þnþ1
ðt0 � tÞ2ðnþ1Þ=ðnþ2Þ; (101)

and therefore

_�� 2nðnþ 1Þ�
ð6h0Þnþ1ðnþ 2Þ ðt0 � tÞn=ðnþ2Þ: (102)

On the other hand, the potential Vð�Þ in (7) has the
following form:

Vð�Þ � 2�� ðnþ 1Þ�
An � 2�� ðnþ 1Þ�

ð6h0Þn ðt0 � tÞ2n=ðnþ2Þ:

(103)

Then in the Einstein frame, the energy density �� and
pressure p� are given by

�� ¼ 3
2 _�

2 þ Vð�Þ; p� ¼ 3
2 _�

2 � Vð�Þ; (104)

and therefore the curvature in the Einstein frame RE ¼
�ð�2=2Þ, T ¼ ð�2=2Þð�� 3pÞ are finite even if t ! t0
since _�2 � V � 2�� ðt0 � tÞ2n=ðnþ2Þ vanishes. As the ex-
ponent 2n=ðnþ 2Þ is fractional in general, however, the
higher derivative of H could diverge. Then in the Einstein
frame, the finite-time singularity appears as a type IV
singularity. Thus, we discovered the possibility of a change
of a finite-time singularity nature with the change of frame
in modified gravity. This is not strange. Indeed, it was
shown some time ago [18] that the big rip singularity which
appears in scalar-tensor theory qualitatively changes its
form in the equivalent Jordan frame. Exactly in the time
when the scalar-tensor theory becomes singular, the mathe-
matically equivalent FðRÞ gravity (which is not completely
physically equivalent to scalar-tensor theory [19]) becomes
complex [18].

An important remark is in order. The general (Jordan
frame) action of FðRÞ gravity with matter in (1) can be
rewritten in the Einstein frame action (7). One should note
that the sign in front of the kinetic term in (7) is always
canonical, and therefore there never appears a phantom in
the transformed Einstein frame. Note that this transforma-
tion is exact one.

In the Einstein frame, the FRW equations have the
following form:

3

�2
H2 ¼ �� þ �; � 1

�2
ð3H2 þ 2 _HÞ ¼ p� þ p:

(105)

Here � and p express the contribution from the matter and
�� and p� are defined by (104). If we neglect the contri-
bution from the matter, the EoS parameter is given by w ¼
p�=�� and therefore w>�1 if we assume Vð�Þ> 0,

which corresponds to the fact that � cannot be phantom
in the Einstein frame.
When the Hubble rate H is given by

H � h0ðt0 � tÞ��; (106)

the effective EoS parameter looks like

weff � �1� 2 _H

3H2
��1� 2�

3h0
ðt0 � tÞ��1: (107)

Since we are considering the period t < t0 and the Universe
is expanding, we assume h0 > 0. Then weff can be greater
than �1 when �< 0, which corresponds to type II (0>
�>�1) or type IV (�<�1). Since the EoS parameter is
greater than �1 in the Einstein frame, type I (big rip type
� � 1) and III (1>�> 0) singularities are not allowed
(the phantom absence) but there can occur a type II or IV
singularity.
Even if there is no singularity in the Einstein frame,

there could appear a finite-time singularity in the Jordan
frame. We may consider the following action in the
Einstein frame (7), where the potential is given by

Vð�Þ ¼ V0e
�

ffiffiffiffiffiffiffiffiffi
3=2h0

p
: (108)

Here V0 and h0 are positive constants. Then by assuming
the FRW universe in the Einstein frame

ds2E ¼ �dt2E þ aEðtEÞ2
X

i¼1;2;3

ðdxiÞ2; (109)

one obtains a solution:

H ¼ h0
tE

ðaEðtEÞ / th0E Þ; � ¼
ffiffiffiffiffiffiffiffi
2h0
3

s
ln
tE
tE0

: (110)

Then there is no singularity although a becomes infinite in
the limit of tE ! þ1. Since the metric tensor gE�� in the

Einstein frame is related with the tensor gJ�� in the Jordan

frame by gE�� ¼ e��gJ��, the metric in the Jordan frame

is given by

ds2J ¼ e��

�
�dt2E þ aEðtEÞ2

X
i¼1;2;3

ðdxiÞ2
�
: (111)

Since the FRW universe in the Jordan frame is given by

ds2J ¼ �dt2J þ aJðtJÞ2
X

i¼1;2;3

ðdxiÞ2; (112)

by comparing (111) with (112), the time coordinate tJ in
the Jordan frame is given by

tJ � tJ0 ¼ �
Z

dtEe
��ðtEÞ=2 ¼ � tE0

1� h0
6

�
tE
tE0

�
1�ðh0=6Þ

:

(113)

One can now choose the sign� so that the directions of the
time in the Einstein frame and the Jordan frame could not

be changed. If 1� h0
6 < 0, i.e., h0 > 6, the limit t ! 1
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corresponds to tJ ! tJ0. Then we find

aJðtJÞ ¼ e��=2aEðtEÞ / t
h0�ðh0=6Þ
E

/ ðtJ0 � tJÞh0�ðh0=6Þ=1�ðh0=6Þ: (114)

Hence, if h0 > 6, aJðtJÞ diverges at tJ ! tJ0, that is there
appears a finite singularity even if there is no singularity in
the Einstein frame.

D. Quantum effects near finite-time singularity

Near the future singularity at t ¼ t0, the curvature be-
comes large in general. As a result, near the singularity the
quantum fields/quantum gravity effects become very im-
portant again. All classical considerations are not valid; all
speculations about future cosmic doomsday cannot restrict
the classical theory structure because quantum effects can
stop (or shift) the future singularity [20]. Moreover, the
quantum corrections usually contain the curvature powers,
which become important near the singularity. Hence, any
claim about the appearance of the effective phantom/quin-
tessence phase in modified gravity which subsequently
enters the future singularity is not justified without the
quantum effects’ account near to singularity. One may
include the massless quantum effects by taking into ac-
count the conformal anomaly contribution as a backreac-
tion near the singularity [20]. The conformal anomaly TA

has the following well-known form:

TA ¼ b

�
Fþ 2

3
hR

�
þ b0Gþ b00hR; (115)

where F is the square of the 4dWeyl tensor andG is Gauss-
Bonnet invariant, which are given by

F ¼ 1
3R

2 � 2R��R
�� þ R����R

����;

G ¼ R2 � 4R��R
�� þ R����R

����:
(116)

In general, with N scalar, N1=2 spinor, N1 vector fields,

N2ð¼ 0 or 1Þ gravitons, and NHD higher derivative confor-
mal scalars, b and b0 are given by

b ¼ N þ 6N1=2 þ 12N1 þ 611N2 � 8NHD

120ð4�Þ2 ;

b0 ¼ �N þ 11N1=2 þ 62N1 þ 1411N2 � 28NHD

360ð4�Þ2 :

(117)

As is seen b > 0 and b0 < 0 for the usual matter except the
higher derivative conformal scalars. Notice that b00 can be
shifted by the finite renormalization of the local counter-
term R2, so b00 can be an arbitrary coefficient.

By including the trace anomaly, Eq. (78) is modified as

Rþ 2fðRÞ � Rf0ðRÞ � 3hf0ðRÞ ¼ ��2

2
ðT þ TAÞ:

(118)

For the FRW universe, we find

F ¼ 0; G ¼ 24ð _HH2 þH4Þ: (119)

We now assume H behaves as (33) and neglect the con-
tribution from matter by putting T ¼ 0. Then in case of the
Hu-Sawicki model, we assume fðRÞ behaves as (8) and
(118) becomes

Rþ 3h

�
�n

Rnþ1

�
¼ ��2

2
TA: (120)

First we consider the case that 2b=3þ b00 ¼ 0 and there-
fore TA ¼ G. If �1<�< 0, R behaves as ðt0 � tÞ���1

and G behaves as G� 24 _HH2 � ðt0 � tÞ�3��1. Since
�3�� 1>��� 1 when �< 0, TA can be neglected

compared with R. Here, hð�n=Rnþ1Þ � ðt0 �
tÞð�þ1Þðnþ1Þ�2. Then by comparing the right-hand side
with the left-hand side in (120), one reobtains (98).
Therefore, the curvature singularity appears in finite time
and the quantum correction does not prevent the singularity
when 2b=3þ b00 ¼ 0. We may, however, consider the case
2b=3þ b00 � 0. In this case, TA behaves as

TA �
�
2

3
bþ b00

�
hR� ðt0 � tÞ���3: (121)

Since R� ðt0 � tÞ���1 and hð�n=Rnþ1Þ � ðt0 �
tÞð�þ1Þðnþ1Þ�2, the terms in the left-hand side of (120) are
always less singular than TA since

� �� 1; ð�þ 1Þðnþ 1Þ � 2>��� 3: (122)

This indicates that Eq. (120) does not allow the singular
solution and the curvature singularity does not appear.
Therefore, in the case 2b=3þ b00 � 0, the quantum effects
prevent the singularity appearance.
In the above analysis, the hR term acts against the

singularity. The hR term is generated by a local term R2,
which shows that if one modifies FðRÞ or fðRÞ by adding
the R2 term as

FðRÞ ! FðRÞ þ 	R2; (123)

with a constant 	, the curvature singularity could not be
generated. Note also that near to singularity, quantum
gravity effects become dominant. Then, that which is
quantum gravity which is not constructed yet should define
the Universe behavior near to singularity.
Actually, this observation was made some time ago in

Ref. [12] where it was shown that in the presence of the R2

term (or higher powers of curvature) as well as negative
power curvature terms the effective phantom phase is
transient and future singularity never occurs. This suggests
the scenario to avoid the future singularity by the modifi-
cation of the early-time relevant part of FðRÞ theory, for
instance, by powers of curvature. Of course, such modifi-
cation should not destroy the inflationary phase and its exit
as well as perturbations structure. It is also important that
by construction such modification does not violate the
local tests viability of modified gravity.
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IV. REALISTIC MODELWITHOUT FUTURE
SINGULARITY

It has been shown that if fðRÞ behaves as (8) for large
curvature there could occur the curvature singularity in a
finite time. In the Hu-Sawicki model, the behavior of fðRÞ
in (8) generates the late-time acceleration.

Note, however, the late-time acceleration occurs if fðR0Þ
becomes almost constant in the present universe:

fðR0Þ ¼ �2 ~R0; f0ðR0Þ � 0: (124)

Here R0 is the current curvature of the Universe and we
assume R0 > ~R0. Almost constant fðRÞ plays the role of
the effective small cosmological constant:�l ��fðR0Þ ¼
2 ~R0, which could generate the accelerating expansion in
the present universe.

In the Hu-Sawicki model [5] the following condition is
also satisfied:

lim
R!0

fðRÞ ¼ 0: (125)

The condition shows that there occurs a flat spacetime
solution, where R ¼ 0.

Then we need not to require the behavior (8) when the
curvature is really large R � R0. For example, if fðRÞ
behaves as

fðRÞ ¼ �ð1� �ÞR� 2��I þOðR�1Þ; (126)

we find

FðRÞ ¼ �ðR� 2�IÞ þOðR�1Þ: (127)

In (126), � is a positive constant. Equation (127) tells us
that the effective gravitational coupling �eff is given by
�2
eff ¼ ��2 and the effective cosmological constant, which

could generate the inflation, is given by �I. For (127), the
potential V in (7) is given by

V � 2�I

�
: (128)

Then if �I is large enough, the curvature singularity could
not be easily realized. Hence, if FðRÞ goes to the Einstein
action (the gravitational constant could be changed) with
the large cosmological constant, the value of the potential
for largeR becomes the order of the cosmological constant.
Then if the cosmological constant is large enough, the
value of the potential becomes large and the value cannot
be easily realized.

An example satisfying the conditions (124)–(126) could
be given by (compare with general viable construction
[10])

fðRÞ ¼ fIðRÞ þ fLðRÞ;
fIðRÞ ¼ �ð1� �ÞR� 2��I þ 2��I

� eð1��ÞR=2��I�ð1þ
Þð1��Þ2R2=8�2�2
I ;

fLðRÞ ¼ �2�R2e�c�2R2
:

(129)

Here c, �, and 
 are positive constants satisfying the
conditions �I � 1=� and c� 1. When the curvature has
the order of 1=�, fIðRÞ behaves as fIðRÞ ¼ R�OðR=�IÞ
and therefore fIðRÞ could be neglected compared with
fLðRÞ � R. Then since

f0ðRÞ � f0LðRÞ ¼ �4�Rð1� c�2R2Þe�c�2R2
; (130)

compared with (124), we find

R0 � 1ffiffiffi
c

p
�
; ~R0 � 1

c�
e�1: (131)

Since about 70% of the energy density in the Universe is
dark energy, we find ~R0 � 0:7R0. Then one has

c� ð0:7Þ2e�2 � 0:07: (132)

We should note that the model (129) unifies the late
acceleration and the inflation in the early universe like
models in [8,9] and the future singularity does not appear.
We now check that the model (129) could satisfy the

constraints on the correction to the Newton law. It is
convenient to work in the Einstein frame (7). The potential
Vð�Þ in (7) gives a mass m� for the scalar field �:

m2
� � 1

2

d2Vð�Þ
d�2

¼ 1

2

�
A

F0ðAÞ �
4FðAÞ
ðF0ðAÞÞ2 þ

1

F00ðAÞ
�
: (133)

In order that the correction to the Newton law could be
small, the mass m� should be large enough. The Newton
law has been checked on the Earth and in the Solar System.
In air on the Earth, the scalar curvature could be given by
A ¼ R� 10�50 eV2. On the other hand, in the Solar
System, we find A ¼ R� 10�61 eV2. Since R0 �
10�66 eV2, one may assume �I � R � 1=�. Then

fIðRÞ � �
ð1� �Þ2R2

4��I

; (134)

and therefore

jfIðRÞj; jfLðRÞj � R; jf0IðRÞj; jf0LðRÞj � 1:

(135)

Note that f00I ðRÞ is negative and if �I � ð1015–18GeVÞ2 ¼
1048–54 eV2, we have

f00I ðRÞ � ð1048–54 eV2Þ�1: (136)

We also find

f00LðRÞ � � 8ffiffiffi
c

p
R0

�
R

R0

�
4
e�R2=R2

0 ; (137)

which is negative. Then in the air of the earth, we find

f00LðRÞ � ð101032 eVÞ�1; (138)

which is extremely small and in the Solar System,

f00LðRÞ � ð101010 eVÞ�1; (139)

which is also extremely small. Then the mass of scalar field
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� could be given by

m2
� �� 1

2F00ðRÞ � � 1

2f00I ðRÞ
� 1048–54 eV2 ¼ ð1015–18 GeVÞ2; (140)

which is very large and the correction to the Newton law is
beyond observational capacities. Hence, the viable modi-
fied gravity which unifies the inflation with late-time ac-
celeration and which belongs to a general class of Ref. [10]
is free of future singularity.

As it was shown in the arguments around (10) and (11)
or (123), instead of (126), if we add the term Rn (0< n 	

2), the curvature singularity could be avoided in the same
way as in [12].
Equation (11) shows that there could be finite future

singularity. We also find that the big rip singularity could
be realized in FðRÞ � Rn (n > 2) theory as shown in (29).
This could be confirmed by the trace equation (4). We now
assume (10) with n > 2 and therefore FðRÞ � fnR

n with
n > 2 when the curvature is large. Then the trace equa-
tion (4) is reduced in the following form:

� 3n

�
d2

dt2
þ 3H

d

dt

�
Rn�1 � ð2� nÞRn: (141)

The explicit solution of (141) is given by a big rip solution:

H ¼ hðnÞ�
t0 � t

; hðnÞ� ¼ 3n2 � 4nþ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3n2 � 4nþ 2Þ2 þ 8ðn� 2Þðn� 1Þnð2n� 1Þp
4ðn� 2Þ : (142)

Since 3n2 � 4nþ 2 ¼ 3ðn� 2Þ2 þ 8ðn� 2Þ þ 4, hðnÞþ is
surely real and positive. Then there could appear a finite
future big rip singularity in FðRÞ � Rn (n > 2) theory.
However, considering several such terms with different
powers of curvature may often lead to a stable de Sitter
solution which prevents the evolution to singularity.

V. DISCUSSION

In summary, we studied the future evolution in the
models of FðRÞ gravity consistent with local tests and
unifying the universe expansion history. Working in both
(Einstein and Jordan) frames we demonstrated how big rip
or type II, III, and IV future singularities appear. Using the
reconstruction method [16] it is shown which models may
lead to any specific type of future singularity. It is remark-
able that whatever type singularity may occur in the Jordan
frame, in the corresponding Einstein frame the only IV
type singularity appears. It is also interesting that as in the
scalar-tensor theory, the appearing singularity does not
lead to the violation of local tests when modified gravity
is consistent with them. Nevertheless, some indications to
possible future singularity may be expected to be found in
the current observational bounds [9,21].

Even if the FðRÞ gravity under investigation develops
the future singularity, there is always a way to modify its
structure by terms relevant at the early universe. Such
terms, like in the model in [12], prevent the development

of the singularity. The explicit example of realistic FðRÞ
gravity which does not lead to future singularity even
classically is proposed. From another point, the classical
description breaks down near to singularity. The account of
quantum effects becomes necessary in this situation.
Taking into account the quantum effects of conformal
fields, we show that such quantum effects naturally act
against the singularity appearance. Of course, in order to
understand how realistic our quantum description is of
future singularity, one should take into account quantum
gravity.
As a final remark, let us note that other modified grav-

ities (Gauss-Bonnet gravity, string-inspired gravity, theory
with inhomogeneous equation of state) [1] also naturally
describe the quintessence/phantom-dominated universe
which may evolve to future singularity. It would be of
interest to study the structure of future singularities in
such models too.
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