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We discuss a realization of the nonrelativistic conformal group (the Schrödinger group) as the

symmetry of a spacetime. We write down a toy model in which this geometry is a solution to field

equations. We discuss various issues related to nonrelativistic holography. In particular, we argue that free

fermions and fermions at unitarity correspond to the same bulk theory with different choices for the near-

boundary asymptotics corresponding to the source and the expectation value of one operator. We describe

an extended version of nonrelativistic general coordinate invariance which is realized holographically.
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I. INTRODUCTION

The anti–de Sitter/conformal field theory (AdS/CFT)
correspondence [1–3] establishes the equivalence between
a conformal field theory in flat space and a string theory in
a higher-dimensional curved space. The best known ex-
ample is the equivalence betweenN ¼ 4 supersymmetric
Yang-Mills theory and type IIB string theory in AdS5 � S5

space. The strong coupling limit of the field theory corre-
sponds to the supergravity limit in which the string theory
can be solved. In the recent literature, the N ¼ 4 super-
symmetric Yang-Mills theory at infinite ’t Hooft coupling
is frequently used as a prototype to illustrate features of
strongly coupled gauge theories.

There exists, in nonrelativistic physics, another proto-
type of strong coupling: fermions at unitarity [4–6]. This is
the system of fermions interacting through a short-ranged
potential which is fine-tuned to support a zero-energy
bound state. The system is scale invariant in the limit of
zero-range potential. Since its experimental realizations
using trapped cold atoms at the Feshbach resonance [7–
12], this system has attracted enormous interest.

One may wonder if there exists a gravity dual of fermi-
ons at unitarity. If such a gravity dual exists, it would
extend the notion of holography to nonrelativistic physics,
and could potentially bring new intuition to this important
strongly coupled system. Similarities between the N ¼ 4
super–Yang-Mills theory and unitarity fermions indeed
exist, the most important of which is scale invariance.
The have been some speculations on the possible relevance
of the universal AdS/CFT value of the viscosity/entropy
density ratio [13] for unitarity fermions [14–16]. Despite
these discussions, no serious attempt to construct a gravity
dual of unitarity fermions has been made to date.

In this paper, we do not claim to have found the gravity
dual of the unitary Fermi gas. However, we take the
possible first step toward such a duality. We will construct
a geometry whose symmetry coincides with the
Schrödinger symmetry [17,18], which is the symmetry
group of fermions at unitarity [19]. In doing so, we keep

in mind that one of the main evidences for gauge/gravity
duality is the coincidence between the conformal symme-
try of the N ¼ 4 field theory and the symmetry of the
AdS5 space. On the basis of this geometric realization of
the Schrödinger symmetry, we will be able to discuss a
nonrelativistic version of the AdS/CFT dictionary—the
operator-state correspondence, the relation between di-
mensions of operators and masses of fields, etc.
The structure of this paper is as follows. In Sec. II we

give a short introduction to fermions at unitarity, emphasiz-
ing the field-theoretical aspects of the latter. We also
review the Schrödinger algebra. In Sec. III we describe
how Schrödinger symmetry can be embedded into a con-
formal symmetry in a higher dimension. We consider
operator-field mapping in Sec. V. In Sec. VI we show
how the conservation laws for mass, energy and momen-
tum are realized holographically. We conclude with
Sec. VII.
In this paper d always refers to the number of spatial

dimensions in the nonrelativistic theory, so d ¼ 3 corre-
sponds to the real world.

II. REVIEW OF FERMIONS AT UNITARITYAND
SCHRÖDINGER SYMMETRY

In this section we collect various known facts about
fermions at unitarity and the Schrödinger symmetry. The
goal is not to present an exhaustive treatment, but only to
have a minimal amount of materials needed for later dis-
cussions. Further details can be found in [20]. We are
mostly interested in vacuum correlation functions (zero
temperature and zero chemical potential), but not in the
thermodynamics of the system at nonzero chemical poten-
tial. The reasons are twofold: i) the chemical potential
breaks the Schrödinger symmetry and ii) even at zero
chemical potential there are nontrivial questions, such as
the spectrum of primary operators (see below). We will
comment on how chemical potential can be taken into
account in Sec. VII.
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Oneway to arrive at the theory of unitarity fermions is to
start from noninteracting fermions,

L ¼ i y@t � jr j2
2m

; (1)

add a source � coupled to the ‘‘dimer’’ field  # " [21],

L ¼ i y@t � jr j2
2m

þ�� # " þ� y
"  

y
# ; (2)

and then promote the source � to a dynamic field. There is
no kinetic term for � in the bare Lagrangian, but it will be
generated by a fermion loop. Depending on the regulari-
zation scheme, one may need to add to (2) a counterterm
c�1
0 ��� to cancel the UV divergence in the one-loop �
self-energy (such a term is needed in momentum cutoff
regularization but not in dimensional regularization.) The
theory defined by the Lagrangian (2) is UV complete in
spatial dimension 2< d< 4, including the physically most
relevant case of d ¼ 3. This system is called ‘‘fermions at
unitarity,’’ which refers to the fact that the s-wave scatter-
ing cross section between two fermions saturates the uni-
tarity bound.

Another description of fermions at unitarity is in terms
of the Lagrangian

L ¼ i y@t � jr j2
2m

� c0 
y
#  

y
"  " #; (3)

where c0 is an interaction constant. The interaction is
irrelevant in spatial dimensions d > 2, and is marginal at
d ¼ 2. At d ¼ 2þ � there is a nontrivial fixed point at a
finite and negative value of c0 of order � [22]. The situation
is similar to the nonlinear sigma model in 2þ �
dimensions.

In the quantum-mechanical language, unitarity fermions
are defined as a system with the free Hamiltonian

H ¼ X
i

p2
i

2m
; (4)

but with a nontrivial Hilbert space, defined to contain those
wave functions  ðx1;x2; . . . ; y1; y2; . . .Þ (where xi are co-
ordinates of spin-up particles and yj are those of spin-down

particles) which satisfy the following boundary conditions
when a spin-up and a spin-down particle approach each
other:

 ðx1;x2; . . . ; y1; y2; . . .Þ ! C

jxi � yjj þOðjxi � yjjÞ; (5)

where C depends only on coordinates other than xi and yj.

This boundary condition can be achieved by letting the
fermions interact through some pairwise potential (say, a
square-well potential) that has one bound state at threshold.
In the limit of zero range of the potential r0 ! 0, keeping
the zero-energy bound state, the two-body wave function

satisfies the boundary condition (5) and the physics is
universal.
Both free fermions and fermions at unitarity have the

Schrödinger symmetry—the symmetry group of the
Schrödinger equation in free space, which is the nonrela-
tivistic version of conformal symmetry [19]. The genera-
tors of the Schrödinger algebra include temporal
translation H, spatial translations Pi, rotations Mij,
Galilean boosts Ki, dilatation D (where time and space
dilate with different factors: t! e2�t, x ! e�x), one spe-
cial conformal transformation C [which takes t! t=ð1þ
�tÞ, x ! x=ð1þ �tÞ], and the mass operator M. The non-
zero commutators are

½Mij;Mkl� ¼ ið�ikMjl þ �jlMik � �ilMjk � �jkMilÞ;
½Mij; Pk� ¼ ið�ikPj � �jkPiÞ;
½Mij; Kk� ¼ ið�ikKj � �jkKiÞ;
½D;Pi� ¼ �iPi; ½D;Ki� ¼ iKi;

½Pi; Kj� ¼ �i�ijM; ½D;H� ¼ �2iH;

½D;C� ¼ 2iC; ½H;C� ¼ iD:

(6)

The theory of unitarity fermions is also symmetric under an
SU(2) group of spin rotations.
The theory of unitarity fermions is an example of non-

relativistic conformal field theories (NRCFTs). Many con-
cepts of relativistic CFT, such as scaling dimensions and
primary operators, have counterparts in nonrelativistic
CFTs. A local operatorO is said to have scaling dimension
� if ½D;Oð0Þ� ¼ �i�Oð0Þ. Primary operators satisfy
½Ki;Oð0Þ� ¼ ½C;Oð0Þ� ¼ 0. To solve the theory of unitar-
ity fermions at zero temperature and chemical potential is,
in particular, to find the spectrum of all primary operators.
In the theory of unitarity fermions, there is a quantum-

mechanical interpretation of the dimensions of primary
operators [20,23,24]. A primary operator with dimension
� and charges N" and N# with respect to the spin-up and

spin-down particle numbers (the total particle numbers is
N ¼ N" þ N#) corresponds to a solution of the zero-energy
Schrödinger equation:�X

i

@2

@x2i
þX

j

@2

@y2j

�
 ðx1;x2; . . . ;xN" ; y1; y2; . . . ; yN# Þ ¼ 0;

(7)

which satisfies the boundary condition (5) and with a
scaling behavior

 ðx1;x2; . . . ; y1; y2; . . .Þ ¼ R� ð�kÞ; (8)

where R is an overall scale of the relative distances be-
tween xi, yj, and �k are dimensionless variables that are

defined through the ratios of the relative distances.
Equations (7) and (8) define, for givenN" andN#, a discrete
set of possible values for �. For example, in three spatial
dimensions, forN" ¼ N# ¼ 1, there are two possible values
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for �: 0 and�1. ForN" ¼ 2,N# ¼ 1, the lowest value for �
is� �0:22728. Each value of � corresponds to an operator
with dimension �, which is related to � by

� ¼ �þ dN

2
: (9)

It has also been established that each primary operator
corresponds to a eigenstate of the Hamiltonian of unitarity
fermion in an isotropic harmonic potential of frequency !
[20,23,24]. The scaling dimension of the operator simply
coincides with the energy of the state:

E ¼ �@!: (10)

The first nontrivial operator is the dimer  # ". It has
dimension � ¼ d in the free theory, and � ¼ 2 in the
theory of fermions at unitarity. This corresponds to the
fact that the lowest energy state of two fermions with
opposite spins in a harmonic potential is d@! in the case
of free fermions and 2@! for unitarity fermions.

III. EMBEDDING THE SCHRÖDINGER GROUP
INTO A CONFORMAL GROUP

To realize geometrically the Schrödinger symmetry, we
first embed the Schrödinger group in d spatial dimensions
SchðdÞ (d ¼ 3 for the most interesting case of the unitarity
Fermi gas) into the relativistic conformal algebra in dþ 2
spacetime dimensions Oðdþ 2; 2Þ. The next step will
be to realize the Schrödinger group as a symmetry of a
dþ 3-dimensional spacetime background. That the
Schrödinger algebra can be embedded into the relativistic
conformal algebra can be seen from the following.
Consider the massless Klein-Gordon equation in ððdþ
1Þ þ 1Þ-dimensional Minkowski spacetime,

h� � �@2t �þ Xdþ1

i¼1

@2i � ¼ 0: (11)

This equation is conformally invariant. Defining the light-
cone coordinates,

x� ¼ x0 � xdþ1ffiffiffi
2

p ; (12)

the Klein-Gordon equation becomes�
�2

@

@x�
@

@xþ
þXd

i¼1

@2i

�
� ¼ 0: (13)

If we make an identification @=@x� ¼ �im, then the
equation has the form of the Schrödinger equation in free
space, with the light-cone coordinate xþ playing the role of
time, �

2im
@

@xþ
þ @i@i

�
� ¼ 0: (14)

This equation has the Schrödinger symmetry SchðdÞ. Since

the original Klein-Gordon equation has conformal symme-
try, this means that SchðdÞ is a subgroup of Oðdþ 2; 2Þ.
Let us now discuss the embedding explicitly. The con-

formal algebra is

½ ~M��; ~M��� ¼ ið	�� ~M�� þ 	�� ~M�� � 	�� ~M��

� 	�� ~M��Þ;
½ ~M��; ~P�� ¼ ið	�� ~P� � 	�� ~P�Þ;

½ ~D; ~P�� ¼ �i ~P�; ½ ~D; ~K�� ¼ i ~K�;

½ ~P�; ~K�� ¼ �2ið	�� ~Dþ ~M��Þ;

(15)

where Greek indices run 0; . . . ; dþ 1, and all other com-
mutators are equal to 0. The tilde signs denote relativistic
operators; we reserve untilded symbols for the nonrelativ-
istic generators. We identify the light-cone momentum
~Pþ ¼ ð ~P0 þ ~Pdþ1Þ= ffiffiffi

2
p

with the mass operator M in the
nonrelativistic theory. We now select all operators in the
conformal algebra that commute with ~Pþ. Clearly these
operators form a closed algebra, and it is easy to check that
it is the Schrödinger algebra in d spatial dimensions. The
identification is as follows:

M ¼ ~Pþ; H ¼ ~P�; Pi ¼ ~Pi; Mij ¼ ~Mij;

Ki ¼ ~Miþ; D ¼ ~Dþ ~Mþ�; C ¼ ~Kþ

2
: (16)

From Eqs. (15) and (16) one finds the commutators be-
tween the untilded operators to be exactly the Schrödinger
algebra, Eqs. (6).

IV. GEOMETRIC REALIZATION OF THE
SCHRÖDINGER SYMMETRY

To realize the Schrödinger symmetry geometrically, we
will take the AdS metric, which is invariant under the
whole conformal group, and then deform it to reduce the
symmetry down to the Schrödinger group. The AdS space,
in Poincaré coordinates, is

ds2 ¼ 	��dx
�dx� þ dz2

z2
: (17)

The generators of the conformal group correspond to the
following infinitesimal coordinate transformations that
leave the metric unchanged:

P�: x� ! x� þ a�;

D: x� ! ð1� aÞx�; z! ð1� aÞz;
K�: x� ! x� þ a�ðz2 þ x � xÞ � 2x�ða � xÞ

(18)

(here x � x � 	��x
�x�).

We will now deform the metric so to reduce the sym-
metry to the Schrödinger group. In particular, we want the
metric to be invariant under D ¼ ~Dþ ~Mþ�, which is a
linear combination of a boost along the xdþ1 direction
~Mþ� and the scale transformation ~D, but not separately
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under ~Mþ� or ~D. The following metric satisfies this con-
dition:

ds2 ¼ � 2ðdxþÞ2
z4

þ�2dxþdx� þ dxidxi þ dz2

z2
: (19)

It is straightforward to verify that the metric (19) exhibits a
full Schrödinger symmetry. From Eqs. (16) and (18) one
finds that the generators of the Schrödinger algebra corre-
spond to the following isometries of the metric:

Pi: xi ! xi þ ai; H: xþ ! xþ þ a; M: x� ! x� þ a;

Ki: xi ! xi � aixþ; x� ! x� � aixi;

D: xi ! ð1� aÞxi; z! ð1� aÞz; xþ ! ð1� aÞ2xþ; x� ! x�;

C: z! ð1� axþÞz; xi ! ð1� axþÞxi; xþ ! ð1� axþÞxþ; x� ! x� � a

2
ðxixi þ z2Þ:

(20)

We thus hypothesize that the gravity dual of the unitarity
Fermi gas is a theory living on the background metric (19).
Currently we have very little idea of what this theory is. We
shall now discuss several issues related to this proposal.

(i) The mass M in the Schrödinger algebra is mapped
onto the light-cone momentum Pþ 	 @=@x�. In
nonrelativistic theories the mass spectrum is nor-
mally discrete: for example, in the case of fermions
at unitarity the mass of any operator is a multiple of
the mass of the elementary fermion. It is possible
that the light-cone coordinate x� is compactified,
which would naturally give rise to the discreteness
of the mass spectrum.

(ii) In AdS/CFT correspondence the number of colorNc
of the field theory controls the magnitude of quan-
tum effects in the string theory side: in the large Nc
limit the string theory side becomes a classical
theory. The usual unitarity Fermi gas does not
have this large parameter N; hence the dual theory
probably has unsuppressed quantum effects.
However, there exists an extension of the unitarity
Fermi gas with Spð2NÞ symmetry [22,25]. The
gravity dual of this theory may be a classical theory
in the limit of large N, although with an infinite
number of fields, similar to the conjectured dual of
the critical OðNÞ vector model in 2þ 1 dimensions
[26].

(iii) We can write down a toy model in which the metric
(19) is a solution to field equations. Consider the
theory of gravity coupled to a massive vector field
with a negative cosmological constant,

S ¼
Z
ddþ2xdz

ffiffiffiffiffiffiffi�gp �
R� 2�� 1

4
H��H

��

�m2

2
C�C

�

�
; (21)

where H�� ¼ @�C� � @�C�. One can check that

Eq. (19), together with

C� ¼ 1; (22)

is a solution to the coupled Einstein and Proca

equations for the following choice of � and m2:

� ¼ �1
2ðdþ 1Þðdþ 2Þ; m2 ¼ 2ðdþ 2Þ:

(23)

(iv) Although the gþþ metric component has z�4 sin-
gularity at z ¼ 0, the metric has a plane-wave form
and all scalar curvatures are finite. For example, the
most singular component of the Ricci tensor, Rþþ,
has a z�4 singularity, as the Cþiþi and Cþzþz com-
ponents of the Weyl tensor. However, since gþþ ¼
0, any scalar constructed from the curvature tensor
is regular.

(v) In terms of a dual field theory, the field A� with mass

in Eq. (23) corresponds to a vector operatorO� with
dimension �, which can be found from the general
formula

ð�� 1Þ½�þ 1þ ðdþ 2Þ� ¼ 2ðdþ 2Þ; (24)

from which� ¼ dþ 3. We thus can think about the
quantum field theory as an irrelevant deformation of
the original CFT, with the action

S ¼ SCFT þ J
Z
ddþ2xOþ: (25)

V. OPERATOR-FIELD CORRESPONDENCE

Let us now discuss the relationship between the dimen-
sion of operators and masses of fields in this putative
nonrelativistic AdS/CFT correspondence. Consider an op-
eratorO dual to a massive scalar field� with massm0. We
shall assume that it couples minimally to gravity,

S ¼ �
Z
ddþ3x

ffiffiffiffiffiffiffi�gp ðg��@���@��þm2
0�

��Þ: (26)

Assuming the light-cone coordinate x� is periodic, let us
concentrate only on the Kaluza-Klein mode with Pþ ¼ M.
The action now becomes
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S ¼
Z
ddþ3xdz

1

zdþ3
ð2iMz2��@t�� z2@i�

�@i�

�m2���Þ; (27)

where the ‘‘nonrelativistic bulk mass’’ m2 is related to the
original mass m2

0 by m
2 ¼ m2

0 þ 2M2. Contributions to m2

can arise from interaction terms between C� and �, for

example jC�@��j2, jC�C�@�@��j2, etc. We therefore

will treat m2 as an independent parameter.
The field equation for � is

@2z�� dþ 1

z
@z�þ

�
2M!� ~k2 �m2

z2

�
� ¼ 0: (28)

The two independent solutions are

�� ¼ zd=2þ1K��ðpzÞ; p ¼ ð ~k2 � 2M!Þ1=2;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðdþ 2Þ2

4

s
:

(29)

As in usual AdS/CFT correspondence, one choice of��
corresponds to turning a source for O in the boundary
theory, and another choice corresponds to a condensate
of O. One can distinguish two cases:

(i) When � 
 1, �þ is non-normalizable and �� is
renormalizable. Therefore �þ corresponds to the
source and �� to the condensate. The correlation
function of O is

hOOi 	 ð ~k2 � 2M!Þ2�; (30)

which translates into the scaling dimension

� ¼ dþ 2

2
þ �: (31)

(ii) When 0< �< 1 both asymptotics are normaliz-
able, and there is an ambiguity in the choice of the
source and condensate boundary conditions. These
two choices should correspond to two different non-
relativistic CFTs. In one choice the operator O has
dimension � ¼ ðdþ 2Þ=2þ �, and in the other
choice � ¼ ðdþ 2Þ=2� �. It is similar to the situ-
ation discussed in [27].

The smallest dimension of an operator one can get is
� ¼ ðdþ 2Þ=2� � when �! 1. Therefore, there is a
lower bound on operator dimensions,

�>
d

2
: (32)

This bound is very natural if one remember that operator
dimensions correspond to eigenvalues of the Hamiltonian
in an external harmonic potential. For a system of particles
in a harmonic potential, one can separate the center-of-
mass motion from the relative motion. Equation (32)
means that the total energy should be larger than the
zero-point energy of the center-of-mass motion.

The fact that there are pairs of nonrelativistic conformal
field theories with two different values of the dimensions of
O is a welcome feature of the construction. In fact, free
fermions and fermions at unitarity can be considered as
such a pair. In the theory with free fermions the operator
 # " has dimension d, and for unitarity fermions, this

operator has dimension 2. The two numbers are symmetric
with respect to ðdþ 2Þ=2:

d ¼ dþ 2

2
þ d� 2

2
; 2 ¼ dþ 2

2
� d� 2

2
: (33)

Therefore, free fermions and fermions at unitarity should
correspond to the same theory, but with different interpre-
tations for the asymptotics of the field dual to the operator
 # ".
A similar situation exists in the case of Fermi gas at

unitarity with two different masses for spin-up and spin-
down fermions [28]. In a certain interval of the mass ratios
(between approximately 8.6 and 13.6), there exist two
different scale-invariant theories which differ from each
other, in our language, by the dimension of a three-body
p-wave operator. At the upper end of the interval (mass
ratio 13.6) the dimension of this operator tends to 5=2 in
both theories; at the lower end it has dimension 3=2 in the
theory with three-body resonance and 7=2 in the theory
without three-body resonance.

VI. TURNING ON SOURCES

Let us now try to turn on sources coupled to conserved
currents in the boundary theory. That would correspond to
turning on non-normalizable modes. For the fields that
enter the model action (21), the general behavior of the
non-normalizable part of the metric and the field C� near

z ¼ 0 is

ds2 ¼ � 2e�2�

z4
ðdxþ � Bidx

iÞ2 � 2e��

z2
ðdxþ � Bidx

iÞ

� ðdx� � A0dx
þ � Aidx

iÞ þ gijdx
idxj þ dz2

z2

þOðz0Þ;
C� ¼ 1: (34)

We have chosen the gauge g�z ¼ 0. The non-normalizable

metric fluctuations are parametrized by the functions A0,
Ai, �, and Bi of xþ � t and xi. These functions are
interpreted as background fields, on which the boundary
theory exists. Following the general philosophy of AdS/
CFT correspondence, we assume that the partition function
of the high-dimensional theory with the boundary condi-
tion (34) is equal to the partition function of an NRCFT in
the background fields,

Z ¼ Z½A0; Ai;�; Bi; gij�: (35)

This partition function should be invariant with respect to a
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group of gauge transformations acting on the background
fields, which we will derive.

The gauge condition g�z ¼ 0 does not completely fix

the metric: there is a residual gauge symmetry parame-
trized by arbitrary functions of t and xi (but not of z):

t! t0 ¼ tþ 
tðt;xÞ; x� ! x�0 ¼ x� þ 
�ðt;xÞ;
xi ! xi0 ¼ xi þ 
iðt;xÞ; (36)

and another set of infinitesimal transformations character-
ized by a function !ðt;xÞ,
z! z0 ¼ z�!ðt;xÞz; x� ! x�0 ¼ x� þ 1

2g
��@�!:

(37)

Consider first (36). Under these residual gauge trans-
formations, the fields entering the metric (34) change in the
following way:

�A0¼ _
��A0
_
t�Ai _


i�
�@�A0;

�Ai¼@i

��A0@i


t�e�gij _

j�
�@�Ai�Aj@i


j;

��¼ _
t�Bi _

i�
�@��;

�Bi¼@i

tþBið _
t�Bj _


jÞ�
�@�Bi�Bj@i

j;

�gij¼�ðBigjkþBjgikÞ _
k�
�@�gij�gkj@i

k�gik@j


k;

(38)

where 
�@� �¼ 
t@t þ 
i@i. The residual gauge symme-

try implies that the partition function of the boundary
theory should be invariant under such transformations,

�Z ¼ 0: (39)

Can one formulate NRCFTs on background fields with
this symmetry? In fact, it can be done explicitly in the
theory of free nonrelativistic particles. One introduces the
interaction to the background fields in the following man-
ner:

S ¼
Z
dtdx

ffiffiffi
g

p
e��

�
i

2
e�ð yDt �Dt 

y Þ

� gij

2m
Di 

yDj � Bi

2m
ðDt 

yDi 
y þDi 

yDt Þ

� B2

2m
Dt 

yDt 

�
; (40)

where gij is the inverse matrix of gij, g � detjgijj, Bi �
gijBi, B

2 � BiBi, and D� � @� � imA� . One can

verify directly that the action (40) is invariant under the
transformations (38), if  transforms as

� ¼ im
� � 
�@� : (41)

In fact, this invariance is an extension of the general
coordinate invariance previously discussed in [29]. The
invariance found in [29] corresponds to restricting � ¼
Bi ¼ 
t ¼ 0 in all formulas.

To linear order in external field, the action is

S ¼ S½0� þ
Z
dtdx

�
A0�þ Aij

i þ��þ Bij
i
�

þ 1

2
hij�

ij

�
; (42)

and from Eq. (40) one reads out the physical meaning of
the operators coupled to the external sources:
(i) hij is coupled to the stress tensor �ij,

(ii) A� is coupled to the mass current (�, j),

(iii) (�, Bi) are coupled to the energy current (�, j�).

The invariance of the partition function with respect to the
gauge transformations (38) leads to an infinite set of
Takahashi-Ward identities for the correlation functions.
The simplest ones are for the one-point functions. The
fact that the group of invariance includes gauge transfor-
mation of A�: �A� ¼ @�


� guarantees the conservation

of mass. The fact that the linear parts in the transformation

laws for� and Bi look like a gauge transformation, �� ¼
_
t þ � � � and �Bi ¼ @i


t þ � � � leads to energy conserva-
tion in the absence of external fields:

@t

�
@ lnZ

@�

�
þ @i

�
@ lnZ

@Bi

���������A�¼�¼Bi¼hij¼0
¼ 0: (43)

Energy is not conserved in a general background (which is
natural, since the background fields exert external forces
on the system). Similarly, momentum conservation @tj

i þ
@j�

ij ¼ 0 (and the fact that momentum density coincides

with mass current) is related to terms linear in 
i in �Ai and

�gij: �Ai ¼ � _
i þ � � � , �gij ¼ �@i
j � @j

i þ � � � .

Let us now turn to the transformations (37), under which

�� ¼ 2!; �gij ¼ �2!gij: (44)

The invariance of the partition function with respect to this
transformation implies

2� ¼ �i
i; (45)

which is the familiar relationship between energy and
pressure,

E ¼ d

2
PV; (46)

valid for free gas as well as for Fermi gas at unitarity. The
action (40) is not invariant under (44), but it can be made so
by replacing the ‘‘minimal coupling’’ by a ‘‘conformal
coupling’’ to external fields. Therefore, the proposed hol-
ography is consistent with conservation laws and the uni-
versal thermodynamic relation between energy and
pressure.
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VII. CONCLUSION

The main goal of the paper is to construct a geometry
with the symmetry of the Schrödinger group. The existence
of such a geometrical realization makes it possible to
discuss the possibility of a dual description of Fermi gas
at unitarity at a concrete level. It remains to be seen if
holography is a notion as useful in nonrelativistic physics
as it is for relativistic quantum field theories. At the very
least, one should expect holography to provide toy models
with Schrödinger symmetry.

In this paper we have considered only the properties of
the vacuum correlation functions. In order to construct the
gravity dual of the finite-density ground state, about which
a lot is known both experimentally and theoretically, one
should turn on a background A0 in the metric (34).
Superfluidity of the system should be encoded in the con-
densation of the scalar field  " # (whose dimension is 2 in

the case of unitarity fermions, cf. [30,31]). It would be
interesting to find black-hole metrics which realize non-
relativistic hydrodynamics and superfluid hydrodynamics.
We defer this problem to future work.
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