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We study the formation of monopoles and strings in a model where SUð3Þ is spontaneously broken to

Uð2Þ ¼ ½SUð2Þ �Uð1Þ�=Z2, and then to Uð1Þ. The first symmetry breaking generates monopoles with

both SUð2Þ and Uð1Þ charges since the vacuum manifold is CP2. To study the formation of these

monopoles, we explicitly describe an algorithm to detect topologically nontrivial mappings on CP2. The

second symmetry breaking creates Z2 strings linking either monopole-monopole pairs or monopole-

antimonopole pairs. When the strings pull the monopoles together they may create stable monopoles of

charge 2 or else annihilate. We determine the length distribution of strings and the fraction of monopoles

that will survive after the second symmetry breaking. Possible implications for topological defects

produced from the spontaneous breaking of even larger symmetry groups, as in grand unified models,

are discussed.
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Topological defects are formed in a vast array of labo-
ratory systems and may also have formed during a cosmo-
logical phase transition [1]. The statistical properties at
formation of the simplest of defects have been studied
quite extensively in the context of cosmology [2] and
more recently in a variety of different condensed-matter
systems. Experiments have been performed to observe the
spontaneous formation of defects in nematic liquid crystals
[3–5], in superfluid 3He [6,7] and in superconductors [8,9].
In most particle physics applications, the vacuum manifold
can be quite complex, and hybrid topological defects may
be formed. These may consist of monopoles connected by
strings or walls that are bounded by strings (see for ex-
ample [10,11]).

In this paper we study the formation of non-Abelian
monopoles that subsequently get connected by strings
due to a second non-Abelian symmetry breaking. More
specifically, we study monopoles formed in the symmetry
breaking

SUð3Þ ! Uð2Þ � ½SUð2Þ �Uð1Þ�=Z2: (1)

The fundamental monopoles carry both SUð2Þ and Uð1Þ
charge and may be labeled by a pair of charges, ð1;�1Þ,
where the first entry (with no sign) is the SUð2Þ charge, and
the second entry is the Uð1Þ charge. After the monopoles
are formed, we consider the further symmetry breaking

SUð2Þ ! Z2: (2)

Now all the monopoles will get connected by strings.
However, the SUð2Þ charge is a Z2 charge, and so there
are two types of monopole states connected by strings
(Fig. 1). The first of these is a monopole-antimonopole
bound state i.e. a bound state of ð1;þ1Þ and ð1;�1Þ. The
confining strings will then eventually bring the monopole
and antimonopole together and lead to their annihilation.

The second possibility is that the string confines a mono-
pole to a monopole i.e. two ð1;þ1Þ or two ð1;�1Þ objects.
In this case, the confining string will bring together the two
monopoles to form a charge 2 object, ð0;�2Þ, that carries
no net SUð2Þ charge but carries twice the basic Uð1Þ
charge. One of our aims is to determine the relative number
densities of the two types of objects subsequent to the
second symmetry-breaking stage.
In the context of grand unification theories (GUTs),

fundamental magnetic monopoles also carry non-Abelian
charges. For example, in the minimal GUT model with
SUð5Þ symmetry, the fundamental monopoles carry SUð3Þ
color, SUð2Þ weak, and Uð1Þ hypercharge quantum num-
bers. The formation of magnetic monopoles in the grand
unified context occurs due to the nontrivial topology of a
very large vacuum manifold and our toy SUð3Þ model may
be expected to capture some of the complications.

FIG. 1. Two types of confined monopoles in the SUð3Þ model.
The picture on the left represents a monopole and an antimono-
pole connected by a string. The picture on the right shows two
monopoles with the same Uð1Þ charge connected by a string.
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One motivation for considering the formation of strings
that connect non-Abelian monopoles is that the physics of
confinement is not fully understood, and it is possible that
non-Abelian magnetic fields also get confined due to quan-
tum or plasma effects [12–15]. A second related motivation
comes from the Langacker-Pi proposal to solve the cosmic
monopole overabundance problem [16]. The scenario as-
sumes that electromagnetic gauge symmetry is spontane-
ously broken for a period in the early universe. As a result,
magnetic monopoles carrying electromagnetic flux will get
confined by strings and annihilate effectively. Later the
electromagnetic symmetry is restored to be consistent
with present observations. The breaking of SUð2Þ in our
toy model performs a similar function for this non-Abelian
model as does the Langacker-Pi mechanism for the
Abelian case, although it does not involve symmetry res-
toration at low energy. Monopoles again get connected by
strings but here they can either annihilate or form charge 2
states. The corresponding scenario in GUTs is more com-
plicated since the monopoles get connected by several
different kinds of strings [12–15], as we discuss in Sec. IV.

We start in Sec. I by describing the field theoretic model
under consideration, focusing on the topological aspects.
In Sec. II we describe our numerical implementation to
study defect formation in the model and the results in
Sec. III. We conclude in Sec. IV by discussing defect
formation in an SUð5Þ GUT model.

I. MODEL

Our model contains an SUð3Þ adjoint field, �, whose
vacuum expectation value (VEV) implements the symme-
try breaking in Eq. (1). Two more SUð3Þ adjoint fields, �1

and �2, acquire VEVs to break the SUð2Þ subgroup of
Uð2Þ to Z2 as in Eq. (2). The Lagrangian for the model is

L ¼ 1

4
tr½ðD��Þ2� þ 1

4

X2
i¼1

tr½ðD��iÞ2�

� 1

8
trðX��X��Þ � Vð�;�1;�2Þ; (3)

where D�� ¼ @��� ig½X�;��, X�� is the field strength
for the SUð3Þ gauge field X�, and the potential, V, is

assumed to have a form that is suitable to give the fields
the desired VEVs.

The first stage of symmetry breaking is achieved by the
VEV

� ¼ �ð0Þ � �T8 � �ffiffiffi
3

p
1 0 0
0 1 0
0 0 �2

0
@

1
A; (4)

where � is the energy scale at which the first symmetry
breaking occurs and will be set to unity since its value has
no effect on the topological structures we are considering.

(We could also take � ¼ g�ð0Þgy for any global g 2
SUð3Þ.) The vacuum manifold at this stage is

SUð3Þ=Uð2Þ ffi CP2: (5)

Points on CP2 are labeled by three complex numbers
ðz1; z2; z3Þ, identified under a (complex) rescaling

ZT � ðz1; z2; z3Þ ffi �ðz1; z2; z3Þ; � 2 C; � � 0:

(6)

It will be convenient for us to label the points, following
[17], by a point on an octant of a two-sphere given by �� and
��, and two phases, � and �:

ZT ¼ ðsin �� cos ��ei�; sin �� sin ��ei�; cos ��Þ; (7)

with 0 � ��, �� � 	=2 and 0 � �, � � 2	.
The relation between the field � and a point on CP2 is

� ¼ 1ffiffiffi
3

p
�
1� 3

ZZy

ZyZ

�
: (8)

To see this relation, note that ZT ¼ ð0; 0; 1Þ leads to � ¼
�ð0Þ as in Eq. (4). Any other VEV of � can be obtained

from �ð0Þ by an SUð3Þ rotation (call it g) as g�ð0Þgy, and
this is equivalent to rotating Z to gZ. Hence there is a 1–1
mapping between points on CP2 (as labeled by Z) and the
space of VEVs of �.
The second homotopy group of CP2 is known to be the

set of integers Z. A topologically nontrivial configuration
can be constructed explicitly by taking �� ¼ 0. The points
on the �� ¼ 0 submanifold are

ZT ¼ ðsin ��ei�; 0; cos ��Þ (9)

and these describe a CP1 subspace of CP2. The points on a
two-sphere in physical space, labeled by ð�;�Þ, can be
mapped onto this CP1 using

�� ¼ �=2; �� ¼ 0; � ¼ �; � ¼ 0: (10)

Equivalently,

� ¼ 1

2
ffiffiffi
3

p
3 cos�� 1 0 �3 sin�ei�

0 2 0
�3 sin�e�i� 0 �3 cos�� 1

0
B@

1
CA: (11)

This map represents a simple example of a monopole.
An expression for the topological charge of a monopole

can be derived by first constructing the 1-form ‘‘gauge
potential’’

A ¼ 1

2i

ZydZ� dZyZ
ZyZ

: (12)

Note that under the ‘‘gauge transformation’’ Z! Zei
,
which is a special case of (6), A transforms as A! Aþ
d
. The corresponding field strength 2-form is

F ¼ dA ¼ 1

i

�
dZy ^ dZ
ZyZ

� dZyZ ^ ZydZ
ðZyZÞ2

�
: (13)

Since this 2-form is exact, its integral over a closed two-
surface is a topological invariant—and moreover is zero
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unless the surface contains in its interior a point or points
where Z ¼ 0 (so that A is undefined). So the expression for
the topological charge in a volume V with closed boundary
@V is

Q ¼ 1

2	

Z
@V
F ¼ 1

4	

Z
@V
d2Si�ijkFjk: (14)

There is another way to obtain the expression for the
topological charge. We start with the expression known for
the ’t-Hooft-Polyakov monopole in SUð2Þ and extend it to
SUð3Þ:

Q ¼ 1

8	

Z
@V
d2Sifabc�

ijkna@jn
b@kn

c; (15)

where

na ¼ ZyTaZ
ZyZ

; (16)

with a; b; c ¼ 1; . . . ; 8. Here the Ta are the generators of
SUð3Þ, normalized by trðTaTbÞ ¼ 2�ab, the fabc are struc-
ture constants defined by ½Ta; Tb� ¼ 2ifabcT

c, and the
integration is over the two sphere at infinity. Also note
that the vector na satisfies nana ¼ 4=3. In Appendix Awe
show that the two forms for the topological charge are
equivalent.

It is simple to check that Q ¼ 1 for the monopole
configuration in Eqs. (10) and (11). The formula in
Eq. (14) will be useful to locate monopoles in our numeri-
cal work described in Sec. II.

The second stage of symmetry breaking is more in-
volved. The fields �j now also acquire VEVs, which are

required to lie in the unbroken SUð2Þ subgroup, and hence
commute with�. Their magnitudes trð�2

j Þ are fixed by the
potential, and they are also required to be mutually or-
thogonal in the sense that trð�1�2Þ ¼ 0. Given a value of
� at some spatial point P, we need to identify this un-
broken subgroup. The standard procedure is to work out
commutators of� with SUð3Þ generators and to find linear
combinations of the generators that commute. In practice,
it is easier to first rotate �, say by an SUð3Þ rotation R, to
the reference direction, �ð0Þ. We discuss how to choose R
below. Then the generators of the unbroken SUð2Þ sit in the
2� 2 upper left corner while the generator T8 of the

unbroken Uð1Þ is in the direction of �ð0Þ itself. With

respect to �ð0Þ, the VEVs of �1 and �2 can be written in

terms of two orthonormal 3-vectors, a and b, as �ð0Þ
1 ¼

a � T and �ð0Þ
2 ¼ b � T where

Ti ¼ 
i 0
0 0

� �
; i ¼ 1; 2; 3; (17)

and 
i are the Pauli spin matrices. Once �ð0Þ
1 and �ð0Þ

2 are
constructed, we can rotate all the fields back to the original
point using Ry.

The VEVs of�1 and�2 break SUð2Þ down to Z2, which
is the center of SUð2Þ, f1;�12g, i.e. the identity element of
SUð3Þ and �12 � diagð�1;�1; 1Þ. A string passes
through a spatial contour if �1 and �2 are such that, on
going around the contour, these fields are transformed by
the element �12 and not by the identity element. The
strings are of the Z2 variety and there is no distinction
between a string and an antistring. Also, there is no known
integral formula that can be used to evaluate the winding
around the contour.

II. NUMERICAL IMPLEMENTATION

To simulate the formation of the monopole-string net-
work, a 3-dimensional cubic lattice is chosen. Each cubic
cell is further divided into 24 tetrahedral subcells, obtained
by connecting the center of the cube to the 8 corners and
the centers of the 6 faces (see Fig. 2).
The next step is to assign random points of CP2 at each

point on the lattice, including the centers of the cubic cells
and their faces. Now, the unique SUð3Þ-invariant metric on
CP2 is the Fubini-Study metric

ds2 ¼ dZydZ
ZyZ

� dZyZZydZ
ðZyZÞ2 ; (18)

or, in terms of the parameter choice of (7),

ds2 ¼ d ��2 þ sin2 ��d ��2 þ sin2 ��cos2 ��ð1� sin2 ��cos2 ��Þd�2

� 2sin4 ��cos2 ��sin2 ��d�d�

þ sin2 ��sin2 ��ð1� sin2 ��sin2 ��Þd�2: (19)

Hence the SUð3Þ-invariant measure on CP2 isffiffiffi
g

p
d ��d ��d�d� ¼ sin3 �� cos �� sin �� cos ��d ��d ��d�d�:

(20)

Thus the assignment is done by drawing 0 � sin4 �� � 1,
0 � sin2 �� � 1, 0 � � � 2	 and 0 � � � 2	 from uni-
form distributions, and then constructing Z as in Eq. (7).
The four vertices of a spatial tetrahedron then get mapped
on to a tetrahedron in CP2 which we will denote by
ðZ1; Z2; Z3; Z4Þ. To find out if this tetrahedron in CP2 is

FIG. 2. Each cell of the cubic lattice is subdivided into 24
tetrahedra. Only one cubic cell and representative tetrahedron
are shown.
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topologically nontrivial (i.e. incontractable) we use a dis-
crete version of the charge formula in Eq. (14)

Q ¼ 1

2	

X
fijkg

�fijkg; (21)

where the sum is over the four triangular faces of the
tetrahedron (with positive orientation), and for each face,

�fijkg ¼ argðZy
i ZkZ

y
k ZjZ

y
j ZiÞ; (22)

where we require �fijkg to lie within the range ½�	;	�. We

can explicitly check that small changes in the Zi do not
affect Q, thus showing that even the discrete formula is
topological.

One can also check that Eq. (21) agrees with Eq. (14).
The charge Q is the integral of F=2	 over a large sphere,
which can be broken up into the sum of the four separate
contributions from the individual faces of the tetrahedron.
Each of these can be expressed as the integral of the 1-form
A=2	 around the perimeter. In discretized form, the inte-

gral of A along the 1–2 link becomes argðZy
2Z1Þ [see

Eq. (12)] and so the magnetic flux through the triangular
plaquette f123g, is found by summing the contributions
from the three edges,

I
dx �A ¼ argðZy

2Z1Þ þ argðZy
3Z2Þ þ argðZy

1Z3Þ þ 2	n;

(23)

where n is an integer and the extra term, 2	n, in Eq. (23) is
included because each of the phases is ambiguous up to
�2	. This can also be seen as a gauge ambiguity: a gauge
transformation may change the value of n. It has a geo-
metric interpretation as well. For the special case of tri-
angles on a CP1 subspace of CP2 (isometric to a sphere of
radius 1=2), we have shown that the flux through a triangle,
found using Eq. (14), is equal to twice the area of the
triangle. Thus the ambiguity in the flux in Eq. (23) is
equivalent to the ambiguity in choosing between the two
complementary spherical triangles with this boundary. We
choose the one with the smaller area, so that

I
dx �A ¼ �f123g: (24)

Thus Eq. (21) is the discretized version of Eq. (14).
We conjecture that for a general triangle in CP2, not

lying on a CP1 subspace, the flux through it may still be
equal to twice the area of the minimal surface with that
boundary. Choosing the minimal area may be seen as a
generalization to areas of the ‘‘geodesic rule’’ for lengths
[2]. The rule in general is to choose the minimal value of
the integral in Eq. (23).

Next we turn to the formation of strings that connect the
monopoles. For this we need to consider a triangular face
of a tetrahedron and determine if a string passes through it.

Each vertex of a triangular plaquette has already been
assigned a point on CP2, equivalently a VEV of �. It is
convenient to label the subgroup that leaves�i invariant as
SUð2Þi �Uð1Þi=Z2. Now we also assign VEVs of �1 and
�2, making sure that these lie in the unbroken SUð2Þ sector
of SUð3Þ at Zi, namely SUð2Þi, and that they are orthogo-
nal: trð�1�2Þ ¼ 0. The precise scheme is as follows.
(i) The scheme is based on the construction, for each

pair of points on CP2, say Zi and Zj, of an SUð3Þ
transformation, Rji, that transforms Zi to some rep-

resentative of the point Zj and moreover does so

along a geodesic in CP2, i.e. RjiZi ffi Zj. In fact

the left-hand side is equal Zj times the phase factor

that makes the scalar product with Zy
i real (see

Appendix B). In other words, we find

RjiZi ¼ Zj
Zy
j Zi

jZy
j Zij

: (25)

The geodesic condition will be achieved if Rji can be

written as

Rji ¼ expðiMsÞ; (26)

where M is a suitably chosen normalized combina-
tion of the generators Ta and s is the geodesic
distance between Zi and Zj, given by

s ¼ cos�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZy

i ZjÞðZy
j ZiÞ

ðZy
i ZiÞðZy

j ZjÞ

vuuut �
: (27)

A more explicit construction of Rji is described in

Appendix B.
Similarly, for each Zi, we define an SUð3Þ trans-
formation Ri0 such that Zi ¼ Ri0Z0, where Z0 is
the reference point ð0; 0; 1Þ. [With our choice of
representative in (7), no phase factor is needed
here.] The matrix R described in the previous sec-

tion, above Eq. (17), will be one of the Ry
i0.

(ii) To each vertex of the triangular face is associated a
point on CP2 (say Zi) and two uniformly distributed
orthonormal 3-vectors, ai and bi where i labels the
vertex of the triangle (see Fig. 3). If we wish, we can
construct�i from Zi using Eq. (8). The two remain-
ing fields �1;2 may be found from a and b. We first

define

Ai0 ¼ a � T; Bi0 ¼ b � T; (28)

which are SUð3Þ matrices lying in the SUð2Þ0 sub-
group, with generators T given by Eq. (17). Then
the fields are given by �1 ¼ �1A and �2 ¼ �2B,
where �1;2 are the magnitudes of these fields, and

the normalized SUð3Þ matrices A and B may be
found by using the transformation Ri0:
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Ai ¼ Ri0Ai0R
y
i0; Bi ¼ Ri0Bi0R

y
i0: (29)

Note that by construction Ai and Bi belong to
SUð2Þi and hence commute with �i.

(iii) Now we want to compare the symmetry-breaking
fields at neighboring vertices. To do this we trans-
port them using the geodesic transformations Rji.

Transforming Ai and Bi by parallel transport along
a geodesic from Zi to Zj, we obtain

Aji ¼ RjiAiR
y
ji; Bji ¼ RjiBiR

y
ji: (30)

Next we compare these transported matrices with
the corresponding matrices Aj, Bj defined at the

vertex Zj. We seek a transformation Sji 2 SUð2Þj
such that

Aj ¼ SjiAjiS
y
ji; Bj ¼ SjiBjiS

y
ji: (31)

In Appendix C we describe our construction of Sji
in detail.

(iv) The net rotation of the pair Ai, Bi as we circum-
navigate the triangular face from Zi to Zj to Zk and

back to Zi is

Sfijkg � SikRikSkjRkjSjiRji: (32)

Note that since this combined transformation leaves
invariant all the fields �i, Ai, Bi, it must belong to
the unbroken Uð1Þi.

(v) To determine whether or not a string passes through
the fijkg face, we have to compare Sfijkg with the

transformation RikRkjRji without the intervening S

factors. Since this transformation leaves �i invari-
ant, it belongs to SUð2Þi �Uð1Þi=Z2. Moreover, in
view of Eq. (22), we know that

RikRkjRjiZi ¼ Zie
i�fijkg : (33)

Consequently, we know that the Uð1Þi factor in this
product must be

expð�1
2i�fijkg

ffiffiffi
3

p
T8
i Þ: (34)

Now let us return to Sfijkg. Since, for example, the

transformation Sji 2 SUð2Þj leaves Zj unaltered, it
is clear that, regardless of the choice of the S factors,
the effect of Sfijkg on Zi must be exactly the same as

that of the product in Eq. (33). Consequently, the
combination

Wfijkg ¼ Sfijkg expð12i�fijkg
ffiffiffi
3

p
T8
i Þ (35)

must leave Zi invariant, and also not contribute a
phase to Zi, and hence it belongs to SUð2Þi. But we
know that Wfijkg also belongs to Uð1Þi, since it

consists of two factors each of which is an element
of Uð1Þi. So Wfijkg must in fact be one of the two

central elements that are common to both SUð2Þi
and Uð1Þi. If Wfijkg ¼ 1, the winding is trivial and

there is no string through the triangular face. If,
however, Wfijkg ¼ �12, then there is a string

through the triangular plaquette.
It can be shown (see Appendix D) that if the mono-
pole charge (21) within the tetrahedron is nonzero,
then there must be an odd number of faces with
strings passing through, while if it is zero there must
be an even number. This follows from the fact that
each edge, say ðijÞ appears, with opposite orienta-
tion in two faces, and the relevant factors in say Sfijkg
and Sfjilg are inverses of each other: ðSjiRjiÞy ¼
SijRij.

To get a better physical sense for this algorithm, it is
useful to consider monopole and string formation in the
simpler symmetry-breaking pattern

SUð2Þ ! Uð1Þ ! 1: (36)

This example is discussed in Appendix E. We should also
add that the natural language for our discussion is in terms
of fiber bundles since what we have in our model is an
S3=Z2 fiber over a CP

2 base manifold. The topology of the
base manifold, CP2, gives rise to monopoles while the
topology of the fiber, S3=Z2, gives rise to strings that
may end on monopoles.

III. RESULTS

The simulations were done on a cubic lattice of side 12
i.e. in 24� 123 tetrahedral cells and was repeated 10 times
to gain statistics. The probability of having a monopole or
antimonopole in a cell is 0.17. If N is the total number of
string segments, then the relative numbers of segments in
closed loops, string segments connecting like charge
monopoles, and string segments connecting oppositely

FIG. 3. The algorithm to find strings requires parallel transport
of the variables at vertex i along a geodesic on CP2 to the vertex
j. Then the transported variables are rotated to the assigned
variables at j, by using an SUð2Þ geodesic transformation.
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charged monopoles, are given by

Nloops

N
¼ 0:4%;

N��
N

¼ 4:2%;
Nþ�
N

¼ 95:4%:

(37)

This shows that roughly 4% of SUð3Þ monopoles will end
up in the doubly charged state and survive annihilation due
to strings.

The length distribution ofþ� strings is shown in Fig. 4.
Denoting the number density of these strings, i.e. number
of segments divided by the volume (123), by nþ�, the least-
squares linear fit is

nþ�ðlÞ ¼ ð0:46� 0:08Þe�ð0:31�0:03Þl: (38)

The corresponding distribution of þþ and �� strings is
shown in Fig. 5 and the fit is

n��ðlÞ ¼ ð0:02� 0:01Þe�ð0:23�0:07Þl: (39)

IV. DISCUSSION

We have studied the formation of monopoles connected
by strings in an SUð3Þ model and the results for the
distribution of monopoles and strings are summarized in
Sec. III. Here we discuss qualitatively how a similar analy-
sis in realistic grand unified models would proceed. Our
experience with SUð3Þ helps us understand and appreciate
the difficulties that are likely to be encountered. As an
example, consider the minimal grand unified model based
on a SUð5Þ symmetry group. The symmetry-breaking pat-
tern is

SUð5Þ ! ½SUð3Þ � SUð2Þ �Uð1Þ�=Z3 � Z2 (40)

and, if the non-Abelian magnetic charges are confined, the
relevant symmetry breakings are

SUð3Þ ! Z3; SUð2Þ ! Z2: (41)

The fundamental magnetic monopoles carry SUð3Þ and
SUð2Þ charges in addition to the topological Uð1Þ charge.
Therefore each monopole will get connected to a Z3 string
and another Z2 string. Then isolated clusters of monopoles
come in two varieties, similar to known baryons and me-
sons, as shown in Fig. 6. However, a likely outcome at
formation seems to be that, in addition to some isolated
baryonic and mesonic clusters, the monopole-string net-
work percolates and we essentially obtain one giant struc-
ture, such as depicted in Fig. 7.
It seems hard to explicitly confirm if the network perco-

lates, say by numerical simulation. For example, the vac-
uum manifold at the first stage of symmetry breaking is 12
dimensional and it also does not fall into a straightforward
category like CPn. Determining the distribution of strings
is also more complicated since the SUð3Þ breaking leads to
Z3 strings. These problems do not seem insurmountable
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FIG. 4 (color online). Logarithm of average number density of
strings connecting monopoles and antimonopoles versus string
length.
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FIG. 5 (color online). Logarithm of average number density of
monopole-monopole (þþ) and antimonopole-antimonopole
(��) connections versus string length.

FIG. 6 (color online). A cluster of 6 monopoles can form a
singlet of SUð3Þ and SUð2Þ, as in ordinary baryons. A bound
state of a monopole and antimonopole is also possible, as in
ordinary mesons. The SUð3Þ charge on a monopole is shown in
shades of gray (or in color) and the SUð2Þ charge as a �. We
have not shown the Uð1Þ charge. Z3 strings are shown as solid
lines; Z2 strings as dashed lines.
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but are hard enough that we have not attempted to solve
them at the present time.

If very few baryonic clusters form and instead an infinite
monopole-string network forms, our experience with string
networks [18–21] suggests that the network energy density
scales with time and never comes to dominate the universe.
Processes such as monopole-antimonopole annihilation
and meson formation could dissipate the energy of the
network at a rate that is determined by the Hubble expan-
sion. However, this scenario ignores the process of baryon
formation from the network. Depending on the rate of this
process, we could still have a monopole overabundance
problem coming from the production of baryonic clusters.
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APPENDIX A: TOPOLOGICAL CHARGE

We wish to show that the two expressions for the topo-
logical charge, Eqs. (14) and (15), are equivalent.

The demonstration follows by using the SUð3Þ identity
fabcT

a
ijT

b
klT

c
mn ¼ 2ið�in�kj�ml � �il�kn�mjÞ (A1)

where Ta are SUð3Þ generators normalized such that
trðTaTbÞ ¼ 2�ab, and fabc are the structure constants de-

fined by ½Ta; Tb� ¼ 2ifabcT
c. The above identity is a gen-

eralization of the better known identity for the SUð2Þ
generators 
a:

�abc

a
ij


b
kl


c
mn ¼ 2ið�in�kj�ml � �il�kn�mjÞ: (A2)

Now, if we choose ZyZ ¼ 1, Eq. (15) can be written

Q ¼ 1

8	
fabcT

a
ijT

b
klT

c
mn

Z
d2Sp�pqrðz	i zjÞ@qðz	kzlÞ@rðz	mznÞ:

Using (A1) this becomes

Q ¼ i

4	
ð�in�kj�ml � �il�kn�mjÞ

Z
d2Sp�pqrðz	i zjÞ

� ð@qz	kzl þ z	k@qzlÞð@rz	kzm þ z	m@rznÞ: (A3)

The contractions lead to factors such as ZyZ ¼ 1 or else
similar factors with derivatives, such as Zy@qZ, @qZyZ, or
@qZ

y@rZ. Of the eight terms in (A3), four cancel in pairs,

and the other four are equal in pairs, yielding finally

Q ¼ 1

2	i

Z
d2Sp�pqrð@qZy@rZ� @qZ

yZZy@rZÞ; (A4)

which, using Eq. (13), is precisely Eq. (14).

APPENDIX B: SUð3Þ GEODESIC MATRIX

Here we will construct the SUð3Þ matrix Rji such that

RjiZi ffi Zj: (B1)

There can be many such rotation matrices but we will be
interested only in the geodesic rotation such that

Rji ¼ expðiMsÞ; (B2)

whereM is a linear combination of SUð3Þ generators and s
is the geodesic distance between Zi and Zj as given in

Eq. (27).
The procedure we will adopt is to first consider the

special case when Zi ¼ Z0 ¼ ð0; 0; 1ÞT . In this case, we
can find Rj0 and the correspondingM. Then we extend the

result to include the case when Zi is arbitrary.

1. Zi ¼ Z0 case

Now

ZT0 ¼ ð0; 0; 1Þ: (B3)

Let us denote

ZTj ¼ ðz1; z2; z3Þ; (B4)

where z1, z2, z3 are complex numbers and we assume

Zy
j Zj ¼ 1.

We wish a matrix M such that

Zj ¼ expðiMsÞZ0: (B5)

The matrixM is a linear combination of SUð3Þ generators.
However, the generators of the unbroken SUð2Þ �Uð1Þ

FIG. 7 (color online). Drawing of an infinite monopole-string
network that could result from SUð5Þ grand unified symmetry
breaking. The three different shades of circles represent the
SUð3Þ color charge and the plus-minus symbols within the
circles the SUð2Þ charge. The Uð1Þ (hypercharge) charge has
not been shown. The isolated clusters of monopoles have to
occur in SUð3Þ and SUð2Þ singlets.
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subgroup need not be included since they have no effect on
Z0. So we need only consider M of the form

M ¼
0 0 �iv
0 0 �iw
iv	 iw	 0

0
@

1
A; (B6)

where v, w are complex numbers. M is normalized using
trðM2Þ ¼ 2 and so jvj2 þ jwj2 ¼ 1.

We want to find v, w in terms of z1, z2, z3. By the
standard procedure of diagonalizing M or by using the
formula M3 ¼ M, one finds

Rj0 ¼ eiMs

¼
jvj2 cossþ jwj2 �vw	ð1� cossÞ v sins
�v	wð1� cossÞ jvj2 þ jwj2 coss w sins

�v	 sins �w	 sins coss

0
B@

1
CA:

(B7)

Now we can relate v, w to z1, z2, z3. We have

Zj ¼
z1
z2
z3

0
@

1
A ¼ Rj0Z0 ¼

v sins
w sins
coss

0
@

1
A (B8)

and so, in terms of the parametrization (7),

s ¼ ��; v ¼ cos ��ei�; w ¼ sin ��ei�: (B9)

Note that, from Eq. (27), the distance between Z0 and Zj is

s. This shows that the matrix expðiMsÞ is indeed the SUð3Þ
transformation (labeled by s) that traces a geodesic from
Z0 to Zj. Note also that because in our convention (7) the

third component of Zj is real, there is no need for an extra

phase factor here.
It can also be verified by explicit substitution that one

may write Rj0 in terms of Z0 and Zj as

Rj0 ¼ 1� ðZ0 þ ZjÞðZy
0 þ Zy

j Þ
1þ Zy

j Z0

þ 2ZjZ
y
0 : (B10)

Next, we relax the condition Zi ¼ Z0.

2. General Zi case

We would like to find Rji such that

RjiZi ffi Zj; (B11)

where Rji ¼ expðiMsÞ and s is the geodesic distance be-

tween arbitrary points Zi and Zj in CP2.

We already know how to construct the matrix Ri0 as in
Eq. (B7) that rotates from Z0 to Zi. Next find the point

Z �j ¼ Ry
i0Zj (B12)

where the bar on the subscript j in Z �j denotes that the point

is obtained by rotating Zj. It is important to note that the

third component of Z �j may not be real. In fact, since scalar

products are unchanged by SUð3Þ transformations, the

third components is Zy
0Z �j ¼ Zy

i Zj.

Next we find R �j0 such that

R �j0Z0 ffi Z �j: (B13)

where to use the result in Eq. (B7) or (B10) requires
removing the phase factor, i.e.,

R �j0Z0 ¼ Z �j

Zy
j Zi

jZy
j Zij

: (B14)

Then it is straightforward to check that

RjiZi ¼ Zj
Zy
j Zi

jZy
j Zij

ffi Zj; (B15)

where

Rji ¼ Ri0R �j0R
y
i0: (B16)

Note that the rotation Rji is the shortest such rotation since

R �j0 is the shortest rotation from Z0 to Z �j. The Ri0 trans-

formations in Eq. (B16) translate the geodesic path from Z0

to Z �j such that it now goes from Zi to Zj.

It is also possible to write an explicit formula analogous
to (B10) for Rji. In fact, we have simply to replace Z0 in

that formula by Zi and Zj by ZjðZy
j Zi=jZy

j ZijÞ.

APPENDIX C: CONSTRUCTION OF THE
MATRIX S

The matrix Sji is an SUð2Þ geodesic rotation that trans-

forms ðAji; BjiÞ to ðAj; BjÞ at the point Zj on CP2 [see

Fig. 3 and Eq. (31)]. These are the well-known Euler
rotations e.g. see Sec. 4.5 in [22].

First we apply the rotations Ry
j0 to parallel transport all

quantities from Zj to Z0 where we know that the unbroken

SUð2Þ lies in the 1–2 block of the generators. Quantities at

Z0 will carry a (0) superscript e.g. ðAð0Þ
ji ; B

ð0Þ
ji Þ and

ðAð0Þ
j ; B

ð0Þ
j Þ. Then we perform an SUð2Þ rotation Sð0Þji that

rotates ðAð0Þ
ji ; B

ð0Þ
ji Þ to ðAð0Þ

j ; B
ð0Þ
j Þ. There are two such rota-

tions, each of which can be written as

Sð0Þji ¼ ein���=2 0
0 1

 !
(C1)

where� denotes the three Pauli spin matrices, and  , � and
� are the Euler angles. The angle of rotation,�, is given up
to a two-fold ambiguity,

cos
�

2
� � cos

�þ  

2
cos

�

2
; (C2)

and

n ¼ e

sinð�=2Þ ; (C3)
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with

e1 ¼ cos
��  

2
sin
�

2
; e2 ¼ sin

��  

2
sin
�

2
;

e3 ¼ sin
�þ  

2
cos

�

2
:

(C4)

The Euler angles �,  and � can be written in terms of

the vector triads at Z0, ðað0Þji ;bð0Þ
ji ; c

ð0Þ
ji Þ and ðað0Þj ;bð0Þ

j ; c
ð0Þ
j Þ

where c ¼ a� b:

cos� ¼ cð0Þij � cð0Þj ; cos ¼ að0Þj � � ;
sin ¼ ðað0Þj � � Þ � cð0Þj ; cos� ¼ að0Þji � � ;

sin� ¼ ðað0Þji � � Þ � cð0Þji ;
(C5)

where � is a unit vector along the ‘‘line of nodes’’

� � cð0Þji � cð0Þj
jcð0Þji � cð0Þj j : (C6)

Finally, the matrix Sð0Þji can be parallel transported back

to Zj to obtain

Sji ¼ Rj0S
ð0Þ
ji R

y
j0: (C7)

The two-fold ambiguity in the rotation corresponds to
two possible angles of rotation, by � or by �� 2	. We
choose the rotation that is smaller i.e. j�j � 	.

APPENDIX D: CONSISTENCY OF MONOPOLE
AND STRING NUMBERS

The topology of the symmetry-breaking scheme de-
scribed by Eqs. (1) followed by (2) requires that a cell
with a nonzero monopole number has an odd number of
strings through its faces, while one with zero charge has an
even number. Here we demonstrate that the formalism
described above respects this condition.

For this purpose it is convenient to rotate all the relevant
quantities to the base point Z0. In particular, we consider,
in place of (35) the quantity

Wð0Þ
fijkg ¼ Ry

i0WfijkgRi0 ¼ Sð0Þfijkg expð12i�fijkg
ffiffiffi
3

p
T8
0Þ; (D1)

where

Sð0Þfijkg ¼ Ry
i0SfijkgRi0: (D2)

Clearly, Wð0Þ
fijkg must be one of the two central elements of

SUð2Þ0, and consequently Sð0Þfijkg 2 Uð1Þ0 since the other

two factors in (D1) are in that subgroup.

Now consider the product of the Wð0Þ’s from all four
faces, say

Wð0Þ ¼ Wð0Þ
f123gW

ð0Þ
f142gW

ð0Þ
f134gW

ð0Þ
f243g: (D3)

The order of the four factors is arbitrary but has been
chosen for later convenience. This product is evidently
again one of the two central elements of SUð2Þ0; which
one determines whether the number of strings entering the
cell is even or odd.

Since T8
0 commutes with all the Sð0Þfijkg, when we substi-

tute from (D1) into (D3), we can move all the exponential

factors to the right, and so write Wð0Þ as a product

Wð0Þ ¼ Sð0Þ expði	Q ffiffiffi
3

p
T8
0Þ; (D4)

where we have used Eq. (21), and

Sð0Þ ¼ Sð0Þf123gS
ð0Þ
f142gS

ð0Þ
f134gS

ð0Þ
f243g: (D5)

Moreover, using Eq. (32), we see that each factor here may
be written as a product of three factors coming from the
edges of the triangle, each transported to Z0:

Sð0Þfijkg ¼ Uð0Þ
ik U

ð0Þ
kj U

ð0Þ
ji ; (D6)

where, for example,

Uð0Þ
ji ¼ Ry

j0SjiRjiRi0: (D7)

The key now is to compare the transformations Uð0Þ
ji and

Uð0Þ
ij . By construction, SjiRji transforms �i, �1i, �2i into

�j, �1j, �2j, whereas SijRij performs the inverse trans-

formation. Moreover, the prescription for choosing be-
tween the two possible transformations is the same in
each case. These two products are therefore inverses.
Thus we learn that

Uð0Þy
ji ¼ Uð0Þ

ij : (D8)

Now when we substitute (D6) into (D5) we find

Sð0Þ ¼ Uð0Þ
13U

ð0Þ
32U

ð0Þ
21 :U

ð0Þ
12U

ð0Þ
24U

ð0Þ
41 :U

ð0Þ
14U

ð0Þ
43U

ð0Þ
31 :U

ð0Þ
23U

ð0Þ
34U

ð0Þ
42 :

(D9)

These factors are six pairs of mutual inverses, although
since they do not necessarily commute, it is not immedi-
ately obvious that they cancel. It is clear, however, that two
pairs cancel at once, leaving us with

Sð0Þ ¼ Uð0Þ
13U

ð0Þ
32 :U

ð0Þ
24 :U

ð0Þ
43U

ð0Þ
31 :U

ð0Þ
23U

ð0Þ
34U

ð0Þ
42 : (D10)

But now recall that the product of the last three factors is

Sð0Þf243g 2 Uð1Þ0. Consequently, this product commutes with

all the Uð0Þ’s, so we may move these three factors together
to any desired position in the product. Placing them after
the first two we find

Sð0Þ ¼ Uð0Þ
13U

ð0Þ
32 :U

ð0Þ
23U

ð0Þ
34U

ð0Þ
42 :U

ð0Þ
24 :U

ð0Þ
43U

ð0Þ
31 : (D11)
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But now it is clear that we can cancel these pairs succes-
sively, so that finally we obtain

Sð0Þ ¼ 1: (D12)

So this factor may be cancelled from the right side of
Eq. (D4), which then becomes

Wð0Þ ¼ expði	Q ffiffiffi
3

p
T8
0Þ: (D13)

This shows, as required, that the number of strings is odd or
even according as Q ¼ 1 or 0.

APPENDIX E: SUð2Þ MONOPOLES AND STRINGS

Here we discuss monopoles connected by strings in the
model

SUð2Þ ! Uð1Þ ! 1: (E1)

The first symmetry breaking is achieved by giving a VEV
to an SUð2Þ adjoint, equivalent to choosing a unit 3-vector
(call it v). The vacuum manifold is SUð2Þ=Uð1Þ ffi S2. The
second symmetry breaking is achieved by giving a VEV to
a second SUð2Þ adjoint, call it a, which is orthogonal to v.
At this stage the vacuum manifold is S1. Therefore, mono-
poles are formed in the first symmetry breaking and these
get connected by strings in the second symmetry breaking.

To simulate monopole formation, we assign unit vectors
v, equivalently points on S2, to the points on our spatial
lattice [23,24]. A tetrahedral cell gets mapped to a tetrahe-
dron in S2 and some of these mappings will be incontract-
able, implying the existence of a monopole within the
tetrahedral cell.

The formation of strings that connect the monopoles is
more involved but easy to picture, as in Fig. 8. Since a is
orthogonal to v, we can view it as picking a direction on the
tangent plane of the S2. To determine if there is a string
passing through a triangular plaquette of the spatial lattice,
we have to parallel transport a between the vertices of the
triangle using rotations R and then rotate the transported
vectors at the vertices using S. This is explained in Fig. 8.

The scheme for SUð3Þ is just a generalization of the
scheme for the SUð2Þ model. The complications are tech-
nical in that, instead of the tangent plane, our ‘‘vectors’’ at
every vertex lie on an S3=Z2 fiber and the geodesics and
rotations are harder to determine in practice.
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