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We derive an analytical description of neutrino oscillations in matter based on the Magnus exponential

representation of the time evolution operator. Our approach is valid in a wide range of the neutrino

energies and properly accounts for the modifications that the respective probability transitions suffer when

neutrinos originated in different sources traverse the Earth. The present approximation considerably

improves over other perturbative treatments existing in the current literature. Furthermore, the analytical

expressions derived inside the Magnus framework are remarkably simple, which facilitates their practical

use. When applied to the calculation of the day-night asymmetry in the solar neutrino flux our result

reproduces the numerical calculation with an accuracy better than 1% for the first-order approximation.

When the approximation is extended to the second order, the accuracy of the method is further improved

by almost 1 order of magnitude, and it is still better than 5% even for neutrino energies as large as

100 MeV. In the GeV regime characteristic of atmospheric and accelerator neutrinos this accuracy is

complemented by a good reproduction of the position of the maxima in the flavor transition probabilities.

DOI: 10.1103/PhysRevD.78.045024 PACS numbers: 14.60.Pq, 26.65.+t

I. INTRODUCTION

Neutrino physics has experienced a spectacular progress
in the last decade. Many experiments with neutrinos from
different natural and artificial sources have provided con-
vincing evidence on the existence of neutrino oscillations,
a remarkable quantum interference phenomenon taking
place at macroscopic distance. Experimental results can
be satisfactorily accommodated within a scheme where at
least two neutrinos are massive and there exist a leptonic
mixing analogous to the one in the quark sector. From the
present data set, two neutrino mass-squared differences
and two mixing angles have been determined [1]: ð�m2

21 �
m2

2 �m2
1 � 8:0� 10�5 eV2; �12 � 35�Þ driving solar and

reactor neutrino oscillations and ðj�m2
32j � 2:5�

10�3 eV2; �23 � 45�Þ which drives atmospheric and long
baseline neutrino oscillations. The third angle �13 and the
CP-violating phase remain undetermined. The determina-
tion of these parameters, as well as the determination of the
neutrino mass hierarchy, will be the main goals of the next
generation of experiments. We are thus entering into a new
stage characterized by high precision measurements. In
turn, the interpretation of the forthcoming results will
require more careful theoretical descriptions of neutrino
oscillations that incorporate subleading processes.

A subject of particular interest within this context, refers
to the matter effects on the flavor transformations for
neutrinos propagating through the Earth. The problem
has been investigated by direct numerical integration of
the equation that governs flavor evolution in a medium.

Yet, analytic calculations have been implemented to sim-
plify the numerical computations greatly and also to gain a
better understanding of the underlying physics. Many of
these studies have been carried out under the assumption of
one or several layers of constant density. Extensions for a
varying density have been developed on the basis of the
perturbation theory for oscillations, both in the low-energy
[2–4] and high-energy regime [5–8]. For low energy neu-
trinos the perturbative solutions were found in the basis of
the mass eigenstates, while in the high-energy limit the
method was formulated in the flavor basis. In this work, we
present a novel analytic description of the effect based on
the Magnus exponential expansion of the time-
displacement operator Uðt; t0Þ, which makes possible a
unified treatment of the problem and gives us precise
simple formulas for both energy ranges.
The evolution of the flavor amplitudes of a neutrino

system may be conveniently described in terms of the
operator U, which satisfies the Schrödinger-like equation
[9]

i@
dU
dt

ðt; t0Þ ¼ HðtÞUðt; t0Þ; (1)

with the initial conditionUðt0; t0Þ ¼ I. Later we shall give
the explicit form for the matrix HðtÞ in the Mikheev-
Smirnov-Wolfenstein (MSW) theory. The Magnus expan-
sion [10] supplies a method for finding a true exponential
solution of Eq. (1) of the form U ¼ expð�Þ (i.e., without
time ordering). The operator� satisfies its own differential
equation which in turn is solved through a series expan-
sion: � ¼ P1

n¼1 �n, where �n is of order @�n. The first
two terms are explicitly given by
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�1 ¼ � i

@

Z t

t0

dt0Hðt0Þ;

�2 ¼ � 1

2@2

Z t

t0

dt0
Z t0

t0

dt00½Hðt0Þ; Hðt00Þ�:
(2)

Because of the anti-Hermitian character of every operator
�n, truncating the series for� at any order gives a unitary
approximation to U. This is briefly what we shall need to
know about the Magnus expansion for its present applica-
tion; further details about the formalism and recursive
procedures for building up the successive terms can be
found in the specific literature [11–13].

Here, we use the first- and second-order Magnus ap-
proximation to seek solutions to the problem of 2� oscil-
lations in a medium with an arbitrary density profile, which
is symmetric with respect to the middle point of the neu-
trino trajectory. The method is based on a formalism that
was developed several years ago in order to incorporate
nonadiabatic effects in the flavor transitions of neutrinos
that propagate trough a matter-enhanced oscillation region
[14]. The main idea is to follow the time development of
the system in the adiabatic basis of the instantaneous
energy eigenstates and to incorporate the corrections to
adiabaticity through the Magnus expansion. In [15] the
Magnus approximation was used to deal with the same
problem but in the base of the (nonevolving) mass eigen-
state. When applied to the calculation of the day-night
asymmetry for solar neutrinos the method renders a simple
formula for the regeneration factor, which has a better
agreement with numerical calculations than those derived
by using perturbation theory. The approach we are present-
ing now is not only more accurate than the one developed
in [15] but is also valid in a much wider energy interval,
allowing for a unified description of the Earth effect on the
oscillations of both low- and high-energy neutrinos.

The paper is organized as follows. In the next section we
describe the basic ingredients of the formalism and derive
the formula for the flavor transition probability in a me-
dium with varying density. In Sec. III we present two
applications of physical interest. In the first one it is shown
how the regeneration phenomenon of solar neutrinos tra-
versing the Earth can be conveniently accounted for by our
present approach. In the second application, we examine
the influence of the terrestrial matter on the probabilities
for �e $ ��;� transitions. Section IV contains the

conclusions.

II. FORMALISM

Typically, the quantity of interest is the probability P�e

of observing an electron neutrino at a distance L ’ tf � t0
from a source (" ¼ c ¼ 1). If j�ðtfÞi represents the neu-

trino state at time tf, then P�e
¼ jh�ej�ðtfÞij2 ¼

jh�ejUðtf; t0Þj�ðt0Þij2, where j�ðt0Þi denotes a certain ini-

tial state. We consider oscillations between two neutrino

flavors, say �e and �a. In the relativistic limit and after
discarding an overall phase, the Hamiltonian of the system
in the flavor basis fj�ei; j�aig can be written as

HðtÞ ¼ �0

2

� cos2� sin2�
sin2� cos2�

� �
þ VðtÞ

2

1 0
0 �1

� �
; (3)

where � is the mixing angle in vacuum and we have defined
�0 � �m2=2E, with E the neutrino energy and �m2 the
squared mass difference. The effect of the medium is
accounted for by means of V, the difference of the potential
energies Ve and Va. In normal matter, to lowest order in the

Fermi constant GF, we have VðtÞ ¼ VeðtÞ � VaðtÞ ¼ffiffiffi
2

p
GFneðtÞ, where ne is the number density of electrons

along the neutrino path.
The evolution operator in the flavor basis can be ex-

pressed as Uðtf; t0Þ ¼ UmðtfÞUAðtf; t0ÞUy
mðt0Þ, in terms

of the corresponding operator UAðt; t0Þ in the adiabatic
basis of the (instantaneous) eigenstates fj�1mðtÞi; j�2mðtÞig
of HðtÞ. Here,

UmðtÞ ¼ cos�mðtÞ sin�mðtÞ
� sin�mðtÞ cos�mðtÞ

� �
(4)

is the orthogonal transformation that, at each time, diago-
nalizes the matrix in Eq. (3). The mixing angle in matter
�mðtÞ is given by

sin2�mðtÞ ¼ �0 sin2�

�mðtÞ ; (5)

where

�mðtÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"ðtÞ � cos2�Þ2 þ sin22�

q
(6)

stands for the difference between the energy eigenvalues
and we have introduced the nondimensional quantity
"ðtÞ ¼ VðtÞ=�0 ¼ 2EVðtÞ=�m2.
If VðtÞ is symmetric with respect to the middle point of

the neutrino trajectory �t ¼ ðtf þ t0Þ=2, then �mðtfÞ ¼
�mðt0Þ � �0m and

U ðtf; t0Þ ¼ Umðt0ÞUAðtf; t0ÞUy
mðt0Þ: (7)

This is the situation for the Earth, in which case �0m is the
angle evaluated at the surface. In what follows, we restrict
ourselves to such a case and find an analytical expression

forUðtf; t0Þ in terms ofUAðtf; t0Þ calculated by means of

the first-order Magnus approximation. We follow the pro-
cedure presented in Ref. [14] adapted to the present situ-
ation. To make the work self contained we repeat here
some of the steps presented there.
The evolution operator in the adiabatic basis is a 2� 2

matrix that obeys Eq. (1), with the Hamiltonian

HAðtÞ ¼ HDðtÞ � iUy
mðtÞ _UmðtÞ; (8)

where HDðtÞ ¼ � 1
2 �mðtÞ�z is a diagonal matrix whose
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elements are the eigenvalues of Eq. (3) and Uy
mðtÞ _UmðtÞ ¼

i _�mðtÞ�y. Here, dot means differentiation with respect to

time and �z and �y are Pauli matrices.

Neglecting the second term in Eq. (8) corresponds to
solving the problem in the adiabatic approximation. In any
case, the time dependence generated by HDðtÞ can be
integrated exactly by a change of the representation, which
is readily accomplished by means of the unitary trans-

formation UAðt; t0Þ ¼ P ðt; t0ÞUA
P ðt; t0Þ, where

P ðt; t0Þ ¼ exp

�
�i

Z t

t0

dt0HDðt0Þ
�

¼ e�ði=2Þ�t0!t 0
0 ei=2�t0!t

 !
; (9)

with

�x!y ¼
Z y

x
dt0�mðt0Þ: (10)

In the new picture the evolution operator obeys

i
dUA

P

dt
¼ HA

P ðtÞUA
P ; (11)

where

HA
P ðtÞ ¼ i _�mðtÞ 0 �e�i�t0!t

ei�t0!t 0

 !
: (12)

Thus, we have removed not only the diagonal part, but the
remainder of the Hamiltonian gets a simple structure which
facilitates the algebraic manipulations that follows.

In general, it is not possible to solve (11) exactly and one
has to rest on some approximation in order to determine

UA
P . We employ here, with this purpose, the Magnus

expansion and writeUA
P ¼ e�. Without loss of generality

one can take detUA
P ¼ 1 and, therefore, to any order the

Magnus operator has to be of the form� ¼ �i ~�: ~�, where
the components of vector ~� are the Pauli matrices and �x,
�y, and �z are real coefficients whose specific forms de-

pend on the order of the approximation used to determine

� in terms of HA
P . Consequently, we have

UA
P ¼ cos�I þ sin�

�
�; (13)

where I is the identity matrix and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
x;þ�2

y þ �2
z

q
.

From Eqs. (9) and (13) it can be shown that UA is of
the general form

UA ¼ UA
11 UA

12

�UA
12

� UA
11

�

 !
; (14)

with the condition jUA
11 j2 þ jUA

12 j2 ¼ 1. The evolution
operator in the flavor basis has the same matrix structure as
it is easily checked by substituting (14) into Eq. (7).
Subsequently, we put � ffi �1 þ�2 and find �1;2 by

means of the formulas given in Eq. (2) evaluated with the
Hamiltonian of Eq. (12). Proceeding in this manner, and
after some algebraic manipulations, we arrive at

UAðtf; t0Þ ffi
ðcos�� i sin�

�ð2Þ
� Þei��t!tf i sin�

�ð1Þ
�

i sin�
�ð1Þ
� ðcos�þ i sin�

�ð2Þ
� Þe�i��t!tf

0
@

1
A; (15)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
ð1Þ þ �2

ð2Þ
q

. Nonadiabatic effects on the evo-
lution of the flavor amplitudes are incorporated through the
quantities �ð1Þ and �ð2Þ, which come from the first- and the
second-order Magnus approximations, respectively. They
are given by

�ð1Þ ¼ 2
Z tf

�t
dt0

d�m
dt0

sin��t!t0 ; (16)

�ð2Þ ¼
Z tf

t0

dt0
Z t0

t0

dt0
d�m
dt0

d�m
dt00

sin�t0!t00 : (17)

The above expression for �ð1Þ was obtained by taking into
account that VðtÞ ¼ Vð2�t� tÞ for a potential that is sym-
metric with respect to the middle point of the neutrino
trajectory. In this case, _�mðtÞ ¼ � _�mð2�t� tÞ andRtf
t0 dt

0 _�mðt0Þ sin��t!t0 ¼ 2
Rtf
�t dt0 _�mðt0Þ sin��t!t0 , whileRtf

t0 dt
0 _�mðt0Þ cos��t!t0 ¼ 0. By integrating by parts,

Eq. (16) can be rewritten as

�ð1Þ ¼ 2�mðtfÞ sin��t!tf � 2
Z tf

�t
dt0�mðt0Þ�mðt0Þ cos��t!t0 :

(18)

We see that UA, as approximated by Eq. (15), has the
form of the general matrix given in Eq. (14). This guaran-

tee that the unitary conditionUA�1 ¼ UAy is verified to
second order. As mentioned in the introduction, this is an
important quality of the Magnus expansion that remains
true at every order. In addition, the off-diagonal elements

of matrix (15) are purely imaginary, i.e., UA
12

� ¼ �UA
12 ,

but in general this will not be verified when contributions
of higher order are included. The same considerations
apply to matrix U.
Suppose that j�ðt0Þi ¼ 	j�ei þ 
j�ai, with 	 and 


non-negative (real) numbers satisfying 	2 þ 
2 ¼ 1
then, taking into account the relations between the U‘‘0

(‘, ‘0 ¼ e, a) just indicated, we find
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P�e
¼ 	2 þ ð
2 � 	2ÞðImUeaÞ2 þ 2	
ðImUeeÞ

� ðImUeaÞ; (19)

with

ImUee ¼ cos2�0m ImUA
11 þ sin2�0m ImUA

12 ;

ImUea ¼ � sin2�0m ImUA
11 þ cos2�0m ImUA

12 ;
(20)

where, according to Eq. (15),

ImUA
11 ¼ cos� sin��t!tf � sin�

�ð2Þ
�

cos��t!tf ;

ImUA
12 ¼ sin�

�ð1Þ
�

:

(21)

As we see, to this order, only the imaginary parts of the
matrix elements of the evolution operator are relevant to
the calculation of P�e

. The result for the lowest-order

Magnus approximation is obtained by putting �ð2Þ ¼ 0 in

the previous expressions for the imaginary parts of UA
11

and UA
12 .

Formula (19), with the imaginary parts of Uee and Uea

given by Eqs. (20) and (21), represents our main result. It
provides an elegant and systematic description of neutrino
oscillations in a medium with a symmetric, but otherwise
arbitrary, density profile, which is valid for a wide range of
energies. In order to illustrate its usefulness, in the next
section we will apply it to two situations of physical
interest where the 2� oscillations are suitable to account
for the leading process: (i) the regeneration effect of solar
neutrinos when they go through the Earth, and (ii) the
oscillations of high-energy neutrinos in the Earth.

III. APPLICATIONS

A. Day-night neutrino asymmetry

The relevant quantity in connection with the solar neu-
trinos is the probability for a neutrino born as a �e in the
interior of the Sun, to remain as a �e at the Earth. The
oscillation parameters controlling the leading effects are
� ¼ �12 and �m

2 ¼ �m2
12 [16]. If the phase information is

lost, as will typically happen for neutrinos traveling a long
distance to the detection point, then according to the large
mixing angle MSW solution the averaged survival proba-
bility for the electron neutrinos can be written as [17]

�Pð�e ! �eÞ ¼ sin2�þ cos2�cos2�0	 � cos2�0	freg;
(22)

where �0	 denotes the matter mixing angle at the produc-
tion point in the interior or the Sun. The regeneration factor
freg ¼ P2e � sin2� represents the terrestrial matter effects

expressed as the difference between the probability for �2

to become �e after traversing the Earth P2e � Pð�2 !
�eÞ ¼ jh�ejUðtf; t0Þj�2ij2 and the same probability in vac-

uum jh�ej�2ij2 ¼ sin2�.

We will determine freg by calculating P2e in terms of

Eq. (19), with j�ðt0Þi ¼ j�2i ¼ sin�j�ei þ cos�j��i.
Accordingly, we get

P2e ¼ sin2�þ cos2�ðImUe�Þ2 þ sin2� ImUee ImUe�;

(23)

and from this result

freg ¼ cos2~�0m cos2�0mðImUA
12 Þ2

þ sin2~�0m sin2�0mðImUA
11 Þ2

� sinð2~�0m þ 2�0mÞðImUA
12 ÞðImUA

12 Þ: (24)

Here, ~�0m ¼ �0m � � is the rotation angle that relates the
basis of the mass eigenstates fj�1; i; j�2igwith the adiabatic
one, evaluated on the surface of the Earth. For a constant

potential � ¼ 0 and, taking into account that sin2~�m ¼
" sin2�m, we recover the exact expression for the regen-
eration factor in a uniform medium

freg ¼ "0sin
22�0msin

2

�
�m

2
ðtf � t0Þ

�
: (25)

On the other hand, for the large mixing angle parameters
of the solar neutrinos " 
 1 within the Earth. In this limit,

2�mðtÞ ¼ 2�þ sin2�"ðtÞ þOð"2Þ; (26)

as can be shown by using Eq. (5) and

d�m
d"

¼ sin22�m
2 sin2�

: (27)

Substituting Eq. (26) into Eq. (18) we find � ¼
�I þOð"Þ, where

I ¼ sin2�
Z tf

�t
dt0Vðt0Þ cos��t!t0 : (28)

In this way, neglecting quantities ofOð"Þ and higher every-
where, except in the adiabatic face ��t!t0 , we arrive at

freg ¼ 1

2
sin2I sin2� sin��t!t þ sin2I cos2�; (29)

which coincides with the expression for freg that was

derived in Ref. [15] by applying the Magnus approxima-
tion to solve the equation for the evolution operator in the
basis of the mass eigenstates. As pointed out there, by
keeping the lowest terms of the expansion in I, Eq. (29)
reduces to the result obtained by means of the perturbation
theory.
In order to compare our results with those corresponding

to the first- and second-order in the "-perturbative expan-
sion, we consider a simplified model for the electron
density inside the Earth, the so-called mantle-core-mantle
[18]. In this model the electron density is approximated by
a step function and the radius of the core and the thickness
of the mantle are assumed to be half of the Earth’s radius
R�:
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neðrÞ ¼ NA

�
5:95 cm�3; r � R�=2
2:48 cm�3; R�=2< r � R�:

(30)

Following Ref. [4], we introduce the function

�ðEÞ ¼ 1
�fregðEÞ

½fðapprÞreg ðEÞ � fðexactÞreg ðEÞ�; (31)

where fðapprÞreg is given by a certain (approximated) analyti-

cal expression, fðexactÞreg is obtained from the exact (numeri-

cal) solution, and �fregðEÞ ¼ 1=2"0sin
2� is the average

regeneration factor evaluated at the surface layer.
Essentially, �ðEÞ represents the relative error of the ap-
proximated expression.

In Fig. 1 we show �ðEÞ as a function of the energy for
neutrinos that cross the Earth through its center. For the
‘‘solar’’ oscillation parameters we take �m2

21 ¼
8� 10�5 eV2 and tan2�12 ¼ 0:4. As shown there, �ðEÞ
for the different Magnus approximations is always smaller
than those corresponding to the perturbative calculations.
As already pointed out in Ref. [15], although the error
associated with Eq. (29) increases with energy, it remains
smaller than 2% for E & 14 eV. The lowest-order adia-
batic result derived by doing �ð2Þ ¼ 0 in Eq. (24) works

even better, reducing the relative error to less than 0.5%
within the same energy interval. When the calculations in

this basis are carried out up to the second order, the
accuracy improves notably and the error is reduced by
almost an order of magnitude as compared to the one for
the first-order formula and remains less the 5% for energies
up to 100 MeV. The last interval comprises the energy
values that are typical for neutrinos originated in super-
novae explosions. It should be noticed that our treatment
works comparatively well in the whole range of energies,
whenever the two neutrino approximation remains valid,
which requires E 
 �m2

31=ð2V sin�13 cos�13 sin�12Þ. In

order to illustrate this point, in Fig. 2 we plot �ðEÞ for
energies as large as 10 GeV, both for the first- and second-
order calculations corresponding to the adiabatic Magnus
expansion and the perturbative approach.

B. High-energy neutrinos

In this subsection we apply the present formalism to the
oscillations of high-energy (E * 1 GeV) neutrinos that go
across a material medium with a symmetric density profile.
If we assume that �13 is not very small, then the quantity
�m2

21=2E can be safely discarded in the equation governing
the flavor evolution of a 3�-system [5]. In this case, the
mixing angle �12 does not play any role and the problem
reduces to an effective one of two states j�ei and j�ai ¼
sin�23j��i þ cos�23j��i, where the matter oscillations are

driven by the parameters �m2 ¼ �m2
31 and � ¼ �31.
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FIG. 1 (color online). The relative error � [Eq. (31)] as a function of the energy for a neutrino crossing the center of the Earth. The
lower panels correspond to the envelopes of j�j, i.e., to the maximum error to be expected at a given energy. The oscillation parameters
are �m2

21 ¼ 8� 10�5 eV2 and tan2�12 ¼ 0:4 and the density profile has been approximated by the core-mantle-core model [18]. (a)

and (b) correspond to first and second order of the perturbative approach, respectively, (c) corresponds to Eq. (29), and (d) and
(e) correspond to the first- and second-order Magnus calculation in the adiabatic basis, respectively.
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We focus hereafter in the transition probabilities
Pð�� ! �eÞ ¼ sin2�23Pð�a ! �eÞ and Pð�� ! �eÞ ¼
cos2�23Pð�a ! �eÞ. Now, j�ðt0Þi ¼ j�ai and according to
Eq. (19), with 	 ¼ 0 and 
 ¼ 1 we have

Pð�a ! �eÞ ¼ ðImUaeÞ2
¼ ðcos2�0m ImUA

12 � sin2�0m ImUA
11 Þ2; (32)

where ImUA
11 and ImUA

12 are determined from Eq. (21).
Suppose that V � �0; then, " � 1 and we can imple-

ment a perturbative expansion in 1=" for a varying poten-
tial. Accordingly,

2�m ffi �� 1

"
sin2� (33)

and

�ð1Þ ffi �0 sin2�
Z tf

�t
dt0 cos��t!t0 þO

�
1

"

�
: (34)

Using the last two equations and keeping at most terms of
Oð1Þ in 1=" (except in the phase ��t!t0), Eq. (32) becomes

Pð�a ! �eÞ ¼
�
sin

�
�0 sin2�

Z tf

�t
dt0 cos��t!t0

��
2

(35)

in the first-order Magnus approximation (�ð2Þ ¼ 0). It is
pertinent to note that the perturbative result presented in

Ref. [5] Pð�a ! �eÞ ¼ �2
0sin

22�½Rtf
�t dt0 cos��t!t0 �2 fol-

lows immediately from Eq. (35) when the sine function
is replaced by its linear approximation.

The expression in Eq. (35) corresponds to the result
derived by working directly in the flavor basis, following
an approach similar to the one we used in [15]. This
requires the factorization of the evolution operator as
Uðt; t0Þ ¼ P yðt; t0ÞUP ðt; t0Þ, where P is the same diago-
nal matrix given in Eq. (9), and the determination of
UP ðt; t0Þ in terms of the lowest-order Magnus approxima-
tion UP ðt; t0Þ ffi exp½�i

R
t
t0
dt0HP ðt0Þ�, with the

Hamiltonian

HP ðtÞ ¼ P ðt; t0Þ½HðtÞ �HDðtÞ�P yðt; t0Þ

ffi �0

2
sin2�

0 ei�t0!t

e�i�t0!t 0

 !
: (36)

In the above equation,HD is again a diagonal matrix whose
elements are the eigenvalues of Eq. (3) and the second line
has been obtained by using �mðtÞ ffi 1

2 ½VðtÞ � �0 cos2��.
Proceeding in this way, the matrix representation for
Uðtf; t0Þ becomes

U ðtf; t0Þ ¼ cos�ð1Þe
i��t!tf i sin�ð1Þ

i sin�ð1Þ cos�ð1Þe
�i��t!tf

 !
; (37)

with �ð1Þ calculated according to Eq. (34). From the last

expression we see that ImUae ¼ sin�ð1Þ and formula (35)

follows immediately when this result is substituted into
Pð�a ! �eÞ ¼ ðImUaeÞ2.
In Fig. 3 we plot Pð�a ! �eÞ as a function of E, for the

same model of the Earth’s density profile used in the
previous section. We show the numerical calculation to-
gether with the analytical approximations corresponding to
the Magnus expansion and to the perturbation theory at
first order in 1=". From the figures, it becomes clear that
the formula derived by means of the Magnus expansion
implemented in the adiabatic basis gives a better approxi-
mation than the perturbative method. Moreover, they never
give probabilities higher than one, a pathology presented
by the perturbative expressions as can be seen in the left
panel of Fig. 3. This behavior remains true also for the
formula given in Eq. (35), but in this case the approxima-
tion breaks down numerically for energies E �
ð5–10Þ GeV, that corresponds to the resonance condition
V � �0, for �m

2
31 ¼ 2:5� 10�3 eV2. The same limitation

applies to the perturbative result quoted above.
If the mixing angle �13 were vanishingly small or zero,

then the problem is also described in terms of an effective
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FIG. 2. The relative error � [Eq. (31)] as a function of the energy (up to 10 GeV) for a neutrino crossing the center of the Earth. The
oscillation parameters are �m2

21 ¼ 8� 10�5 eV2 and tan2�12 ¼ 0:4 and the density profile has been approximated by the core-mantle-

core model. Curves plotted in the left panel correspond to first and second order of the perturbative approach and the ones in the right
panel correspond to the first- and second-order Magnus calculation in the adiabatic basis. Note the different y-axis scales used in the
graphics.

A. D. SUPANITSKY, J. C. D’OLIVO, AND G. MEDINA-TANCO PHYSICAL REVIEW D 78, 045024 (2008)

045024-6



two-state system fj�ei; j�big, with j�bi ¼ cos�23j��i �
sin�23j��i. In this case, the transition probabilities are
Pð�� ! �eÞ ¼ cos2�23Pð�b ! �eÞ and Pð�� ! �eÞ ¼
sin2�23Pð�b ! �eÞ, where Pð�b ! �eÞ can be computed
by the same expression given in Eq. (32), but with the
oscillation parameters �m2 ¼ �m2

21 and � ¼ �12. From the
curves plotted in Fig. 4, it is again evident that the analyti-
cal expression derived by means of the adiabatic Magnus
expansion gives the best approximation to the exact (nu-
merical) result.

IV. CONCLUSIONS

We have shown that the Magnus expansion for the
evolution operator implemented in the basis of the instan-
taneous energy eigenvalues provides an elegant and, at the
same time, efficient formalism to describe neutrino oscil-
lations in a medium with an arbitrarily varying density

profile. This approach incorporates in a simple way the
Earth matter effects on the transition probabilities for
neutrinos with a wide interval of energies, making possible
a systematic description of such effects in the case of solar
and atmospheric neutrinos. In both cases, the results are
considerably more accurate than those derived by different
perturbative calculations in the low and high-energy re-
gimes. The same formalism can be applied without addi-
tional difficulties to the study of other situations of physical
interest, like supernova neutrinos or long baseline experi-
ments with accelerator neutrinos.
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FIG. 4. Pð�b ! �eÞ as a function of the energy for a neutrino crossing the Earth passing by its center (left panel) and for a trajectory
of Nadir angle � ffi 26� ( cos� ¼ 0:9) (right panel). The oscillation parameters are �m2

21 ¼ 8� 10�5 eV2, tan2�12 ¼ 0:4, and �13 ¼
0. (a) corresponds to the perturbative approach, (b) to Eq. (35), (c) and (d) correspond to the Magnus approximation implemented in
the adiabatic basis for the first- and second-order respectively, and (e) numerical calculation.
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FIG. 3. Pð�a ! �eÞ as a function of the energy for a neutrino crossing the Earth passing by its center (left panel) and for a trajectory
of Nadir angle � ffi 26� ( cos� ¼ 0:9) (right panel). The oscillation parameters are �m2

31 ¼ 2:5� 10�3 eV2 and �13 ¼ 10�.
(a) corresponds to the perturbative approach (see Ref. [5]), (b) to Eq. (35), (c) and (d) correspond to the Magnus approximation
implemented in the adiabatic basis for the first- and second-order, respectively, and (e) numerical calculation. Our approximation
reproduces very well both the value and the position of the maxima of the numerical calculation.

PERTURBATIVE EXPONENTIAL EXPANSION AND MATTER . . . PHYSICAL REVIEW D 78, 045024 (2008)

045024-7



[1] T. Schwetz, AIP Conf. Proc. 981, 8 (2008).
[2] A. N. Ioannisian and A.Y. Smirnov, Phys. Rev. Lett. 93,

241801 (2004).
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