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Non-Abelian plasma instabilities play a crucial role in the nonequilibrium dynamics of a weakly

coupled quark-gluon plasma, and they importantly modify the standard perturbative bottom-up thermal-

ization scenario in heavy-ion collisions. Using the auxiliary-field formulation of the hard-loop effective

theory, we study numerically the real-time evolution of instabilities in an anisotropic collisionless Yang-

Mills plasma undergoing longitudinal free-streaming expansion. In this first real-time lattice simulation

we consider the most unstable modes, long-wavelength coherent color fields that are constant in transverse

directions and which therefore are effectively 1þ 1 dimensional in space-time, except for the auxiliary

fields which also depend on discretized momentum rapidity and transverse velocity components. We

reproduce the semianalytical results obtained previously for the Abelian regime, and we determine the

nonlinear effects which occur when the instabilities have grown such that non-Abelian interactions

become important.
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I. INTRODUCTION

The experimental results obtained at the Relativistic
Heavy Ion Collider (RHIC) [1] and their good agreement
with hydrodynamical simulations with extremely early
thermalization and a low shear viscosity [2–4] close to a
conjectured lower quantum theoretical bound [5] are now
widely interpreted as evidence that the hypothetical quark-
gluon matter produced at RHIC is strongly interacting and
very far from a perturbatively accessible regime. Indeed,
perturbative approaches like that of the original bottom-up
thermalization scenario [6–8] do not seem to be able to
come close to explaining the fast apparent thermalization.
However, as pointed out first by Ref. [9], the original
bottom-up scenario is qualitatively changed by the inevi-
table presence of non-Abelian (chromo-Weibel) plasma
instabilities [10–12] in a weakly coupled quark-gluon
plasma with momentum-space anisotropy, although how
the bottom-up scenario will have to be modified is still an
open theoretical question, even at asymptotically weak
coupling and in the first stage of the bottom-up scenario
[13–17]. Non-Abelian plasma instabilities have moreover
been argued to importantly modify weak-coupling results
on the shear viscosity to anomalously low values [18].
Even if the quark-gluon matter produced at the RHIC
may be too close to the deconfinement phase transition
for any extrapolations of weak-coupling results, it is
clearly necessary to better understand the latter and how
they differ from other approaches. Finally, it may be the
case that the higher energies to be reached at upcoming
heavy-ion collider experiments at the CERN Large Hadron

Collider (LHC) open the window to the specific collective
phenomena of a weakly coupled quark-gluon plasma, such
as non-Abelian plasma instabilities.
In this paper we shall discuss only the theoretically clean

situation at asymptotically weak coupling and the dynami-
cal evolution of non-Abelian plasma instabilities in a col-
lisionless plasma with long-wavelength color fields. Any
amount of momentum anisotropy in the distribution of the
(high-momentum) plasma particles leads to chromomag-
netic instabilities, which in the weak-field situation are
straightforward generalizations of the Abelian Weibel in-
stabilities [19] and whose dispersion laws have been
worked out for specific cases of a stationary anisotropic
plasma in Refs. [20–23]. In an Abelian plasma, the Weibel
instabilities grow exponentially until they are large enough
to modify the distribution of the hard particles and give rise
to their fast isotropization. In a weakly coupled non-
Abelian plasma, the situation is more complicated because
the long-wavelength color fields have nonlinear self-
interactions before they reach the size where fast isotrop-
ization occurs. The first numerical simulations [24] of non-
Abelian plasma instabilities using the systematic frame-
work of the hard-loop effective theory [25–28] have con-
centrated on the most unstable modes which are constant in
the directions transverse to the direction of momentum
anisotropy. It was found that such configurations experi-
ence a certain amount of Abelianization over domains of
finite size when they enter the nonlinear regime, which
allows them to continue an exponential growth out of the
hard-loop regime, confirming essentially the conjecture of
Ref. [29] formed from numerical studies of a toy model
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which showed virtually complete Abelianization. In space-
time, the corresponding evolution equations are 1þ 1
dimensional, and in the hard-loop effective theory are
coupled to auxiliary fields that depend on the three-
dimensional velocity of the hard particles, so that in con-
ventional plasma physics these simulations would be
termed 1Dþ 3V. Fully 3þ 1-dimensional simulations
(3Dþ 3V) later showed, however, that more generic field
configurations in a plasma with fixed (moderate)
momentum-space anisotropy do not continue to grow ex-
ponentially in the strong-field regime, but enter a linear-
growth phase [30,31] by the formation of a cascade which
pumps the growing energy in the infrared modes into
higher-momentum modes [15,32]. The recent simulations
of Ref. [33], however, found a continued exponential
growth of initially small perturbations in the case of very
strong momentum anisotropy. A very strong anisotropy (if
not the requirement of initially small fluctuations [17]) is of
particular interest for heavy-ion collision where in a weak-
coupling situation the longitudinal expansion makes lon-
gitudinal momenta of quarks and gluons much smaller than
their transverse momenta.

Recently, in Ref. [34] the hard-loop effective theory for
stationary anisotropic plasmas was extended to the case of
a boost-invariant, longitudinally expanding distribution of
plasma particles, the hard-expanding-loop (HEL) effective
theory. The essentially Abelian weak-field regime was
worked out semianalytically with the result that the coun-
terplay of increasing anisotropy and decreasing plasma
density lets Weibel instabilities grow exponentially in the
square root of proper time, with more and more modes
becoming unstable as time goes on, but each one experi-
encing a certain delay before growth kicks in. A similar
behavior was previously found in numerical studies of
initially small rapidity fluctuations in the so-called color-
glass-condensate framework [35,36]. By matching the
mass scales involved with the parameters of the saturation
scenario [37], the conclusion was drawn that LHC energies
will be needed to allow for conditions where strong quark-
gluon-plasma instabilities can develop from small initial
rapidity fluctuations, leaving open, however, the issue of
strong initial gauge fields.

In the present paper we begin the study of the evolution
of genuinely non-Abelian plasma instabilities in a longi-
tudinally expanding plasma by a lattice discretization of
the HEL theory and 1Dþ 3V simulations. The latter have
been found to give an upper limit of the full 3þ
1-dimensional evolution of more generic field configura-
tions. The results of [33] for strong anisotropy suggest that
this upper limit may well be reached by 3þ 1-dimensional
plasma instabilities that start out as small rapidity fluctua-
tions (though not for those that are initially nonperturba-
tively large). The 3Dþ 3V (as well as 2Dþ 3V [38]) real-
time lattice simulations of the HEL theory, which will be
needed to address also initially strong rapidity fluctuations,
will be the subject of follow-up work.

II. HARD-LOOP EFFECTIVE FIELD EQUATIONS
FOR AN ANISOTROPICALLY EXPANDING

NON-ABELIAN PLASMA

For an ultrarelativistic plasma, a sufficiently small
(gauge) coupling g introduces a hierarchy of scales, sepa-
rating the hard momenta jpj ¼ p0 of plasma constituents
from the ‘‘soft’’ scale�g

ffiffiffi
f

p jpj, where f is the typical hard
particle occupation number (which may be different from
order one in strongly nonequilibrium situations). The soft
scale is associated with various screening phenomena and
the various branches of plasmon propagation. Ultrasoft
scales �g2fjpj are responsible for the damping of quasi-
particles and, in or close to thermal equilibrium, for the
nonperturbative screening of chromomagnetostatic fields.
In an anisotropic plasma, the perturbatively accessible

soft scale is also responsible for plasma instabilities, which
constitute the dominant nonequilibrium effects at weak
coupling: the associated rates are parametrically larger
than any of the scattering processes, even though the latter
are enhanced in a non-Abelian plasma.1 As long as the
amplitude of the gauge fields A � ffiffiffi

f
p jpj, the evolution of

the plasma instabilities is essentially Abelian and can be
studied by a perturbative linear response analysis. For a
stationary anisotropic plasma, the evolution is simply
exponential in time. When the amplitude becomes non-
perturbatively large, A *

ffiffiffi
f

p jpj, non-Abelian self-
interactions of the gauge fields become important to lead-
ing order and require numerical evaluation, which as long
as A � jpj=g can be carried out consistently within the
hard-loop effective field theory framework.2 In the latter,
the hard particles are integrated out to produce a nonlocal
and highly nonlinear effective action which can be written
in terms of a compact integral representation [43–45]. This
was initially obtained for the case of thermal equilibrium
and has a straightforward generalization to the case of
stationary momentum-space anisotropy [26,28]. It is of
particular importance to numerical lattice studies that the
corresponding effective field equations can be made local
at the expense of introducing a continuous set of auxiliary
fields [46] which arise naturally when solving gauge-
covariant Boltzmann-Vlasov equations [25,47–49]. In the
hard-loop approximation, these auxiliary fields depend on
the velocity vector of the hard particles whose hard mo-
mentum scale is integrated out.
In Ref. [34] this approach was extended to the case of a

nonstationary plasma with a free-streaming expanding dis-

1As we shall see below, for strongly anisotropic plasmas the
relevant soft-scale parameters also depend importantly on the
anisotropy parameter(s) hidden in f.

2For numerical simulations which take into account the back-
reaction of the soft fields on the hard particles that come into
play when A� jpj=g using a Boltzmann-Vlasov treatment, see
Refs. [39–41]; for numerical simulations which include back-
reaction using a statistical classical field theory treatment, see
Refs. [35,36,42].
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tribution of hard particles, which we first review, filling in
some details left out in Ref. [34], before proceeding with
numerical real-time lattice calculations. The latter allows
us to follow the time evolution of plasma instabilities with
initially small fields into the regime where non-Abelian
self-interactions become important. The key difference
from previous hard-loop simulations of non-Abelian
plasma instabilities [24,30,31,33] is in the time depen-
dence of the (soft-scale) parameters which determine the
growth rate of a given unstable mode and also which modes
are unstable.

A. Gauge-covariant Boltzmann-Vlasov equations in a
nonstationary plasma

Assuming a color neutral background distribution func-
tion f0ðp;x; tÞ which satisfies

v � @f0ðp;x; tÞ ¼ 0; v� ¼ p�=p0; (1)

the gauge-covariant Boltzmann-Vlasov equations for col-
ored perturbations �fa of an approximately collisionless
plasma have the form

v �D�faðp;x; tÞ ¼ gv�F
��
a @ðpÞ� f0ðp;x; tÞ; (2)

and have to be solved self-consistently with the non-
Abelian Maxwell equations

D�F
��
a ¼ j�a ¼ gtR

Z d3p

ð2�Þ3
p�

2p0
�faðp;x; tÞ: (3)

Here tR is a suitably normalized group factor, while the
total number of degrees of freedom of the hard particles is
taken care of by the normalization of the distribution
function f0.

In a stationary (but possibly anisotropic) plasma, f0 only
depends on momenta, and (1) is satisfied trivially. Here we
shall consider the generalization to a plasma which ex-
pands longitudinally, which should be a good approxima-
tion for the initial stage of a parton gas produced in a
heavy-ion collision as long as the transverse dimension
of the system is sufficiently large. Assuming, furthermore,
boost invariance in rapidity [50] and isotropy in the trans-
verse directions, the unperturbed distribution function f0,
being a Lorentz scalar, has the form [51,52]

f0ðp; xÞ ¼ f0ðp?; pz; z; tÞ ¼ f0ðp?; p0z; �Þ (4)

where the transformed longitudinal momentum is

p0z ¼ �ðpz � �p0Þ; � ¼ z=t;

� ¼ t=�; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
;

(5)

with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ ðpzÞ2

q
for ultrarelativistic (massless)

particles.

B. Comoving coordinates

It is convenient to switch to comoving coordinates

t ¼ � cosh�; � ¼ tanh�;

z ¼ � sinh�; � ¼ cosh�;
(6)

i.e. a coordinate system with metric ds2 ¼ d�2 � dx2
? �

�2d�2. We introduce the notation ~x	 ¼ ðx�; xi; x�Þ ¼
ð�; x1; x2; �Þ with indices from the beginning of the
Greek alphabet for these new coordinates. Note that in
the latter the indices i; j; . . . are restricted to the two
transverse spatial coordinates.
In what follows we shall not deal with space-time co-

variant derivatives and Christoffel symbols, but write
everything in terms of explicit derivatives. In particular,

the gauge-covariant derivative always means3 ~D	 ¼ ~@	 �
ig½ ~A	; ��. Being a two-form (where indices are naturally

down), the field strength retains its usual form: ~F	� ¼
~@	 ~A� � ~@� ~A	 � ig½ ~A	; ~A��. The (non-Abelian) Maxwell

equations do involve additional terms, but they can be
written compactly as

1

�
~D	ð� ~F	�Þ � 1

�
~D	½�g	�ð�Þg��ð�Þ ~F��� ¼ ~j�: (7)

In addition to space-time rapidity �, we also introduce
momentum-space rapidity y for the massless particles
according to

p� ¼ p?ðcoshy; cos
; sin
; sinhyÞ: (8)

In comoving coordinates (with tildes), we then have

~p � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ �2ð~p�Þ2

q
¼ cosh�p0 � sinh�pz

¼ p? coshðy� �Þ; (9)

~p� ¼ �~p�=�
2 ¼ ðcosh�pz � sinh�p0Þ=�

¼ p0z=� ¼ p? sinhðy� �Þ=�: (10)

Instead of the lightlike vector v� ¼ p�=p0 containing a
unit 3-vector that was used in Eqs. (1) and (2), we shall
define the new quantity

~V 	 ¼ ~p	

p?
¼

�
coshðy� �Þ; cos
; sin
;

1

�
sinhðy� �Þ

�
;

(11)

which is normalized so that it has a unit 2-vector in the
transverse plane.

3Recall that A� ¼ ð
; ~AÞ with 4-index up. Thus ~A	 ¼
ðA�;�Ax;�Ay; A�Þ.
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C. Longitudinally expanding, free-streaming
background solution

Equation (1), involving space-time derivatives at fixed
p? and pz, can be rewritten as

ð~p � ~@Þf0jy;p? ¼ 0: (12)

Because

~p �@� ~p�ð~xÞjy;p? ¼ �p2
? sinhðy� �Þ coshðy� �Þ

¼ �~p�@� ~p�ð~xÞjy;p? (13)

this can be solved by f0ðp;x; tÞ ¼ f0ðp?; ~p�ðxÞÞ ¼
f0ðp?;�p0zðxÞ�ðxÞÞ.

In the following we shall use4

f0ðp; xÞ ¼ fiso

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ

�
p0z�
�iso

�
2

s �
¼ fisoð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ ~p2

�=�
2
iso

q
Þ

(14)

which corresponds to local isotropy on the hypersurface
� ¼ �iso, and increasingly oblate momentum-space anisot-
ropy at � > �iso (but prolate anisotropy for � < �iso). Since
a plasma description does not make sense at arbitrarily
small times and time evolution will have to start at a
nonzero proper time �0, the time �iso may be entirely
fictitious in the sense of pertaining to the preplasma
(glasma [36,53]) phase. This will in fact be the case in
the numerical simulations below, where we shall start al-
ready with oblate anisotropy by choosing �iso < �0.

In a comoving frame, the energy density and pressure
components of the hard particle background can be deter-

mined by evaluating T	�
part: ¼ ð2�Þ�3

R
d2p?dy~p	 ~p�f0,

which yields

E part:ð�Þ ¼ T��
part: ¼ 1

2

�
1

��2
þ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ���2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 � 1

p
�
Eiso; (15)

Ppart:
T ð�Þ ¼ 1

2
Tii
part:

¼ 1

4ð ��2 � 1Þ
�
1þ ��2 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��2 � 1
p arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ���2

p �
Eiso;

(16)

Ppart:
L ð�Þ ¼ �T�

part:�

¼ 1

2ð ��2 � 1Þ
�
� 1

��2
þ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ���2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 � 1

p
�
Eiso;

(17)

where Eiso ¼ Epart:ð�isoÞ, �� � �=�iso, assuming �� � 1. For

�� � 1 we have

P
part:
T ! �

8
Eiso ��

�1; P
part:
L ! �

4
Eiso ��

�3: (18)

The energy density follows from Epart: � 2P
part:
T þ P

part:
L .

The particle distribution function (14) has the same form
as the one used in Refs. [20,21,24,31], but the anisotropy
parameter � therein5 is now space-time dependent accord-
ing to

�ð�Þ ¼ ð�=�isoÞ2 � 1; (19)

and the normalization factor Nð�Þ of Refs. [21,24,31] is
unity.
The behavior �� �2 at large � is a consequence of

having a free-streaming background distribution. In a
more realistic collisional plasma, � will have to grow
slower than this. In the first stage of the original bottom-
up scenario [13], ignoring plasma instabilities, one would

have had �� �2=3. In Ref. [14] it was argued that plasma

instabilities reduce the exponent to �� �1=2, whereas

Ref. [17] recently presented arguments in favor of ��
�1=4. All these scenarios have � � 1, so below we shall
concentrate on the case �iso < �0 and thus high anisotropy
for all � > �0, but in the idealized case of a collisionless
free-streaming expansion.

D. HEL effective field equations

Transforming the gauge-covariant Vlasov equation to
comoving coordinates, one can write

~V � ~D�fajp� ¼ g ~V	 ~Fa
	�

~@�ðpÞf0ðp?; ~p�Þ; (20)

where the derivative on the left-hand side has to be taken at
fixed p� as opposed to fixed ~p	. On the right-hand side the
derivative with respect to momenta is at fixed x, but the
transformation from x to ~x does not depend on momenta
anyway. However, in the following it will be important to

write the right-hand side in terms of ~@�ðpÞf0ðp?; ~p�Þ with
index up so that this factor depends only on p? and ~p� and

not additionally on �. This means, in particular, that p �
@ð~@�ðpÞf0Þjp ¼ ~p � ~@ð~@�ðpÞf0Þjp ¼ 0.

Equation (20) can then be solved in terms of an auxiliary
field ~W�ð~x;
; yÞ which satisfies

~V � ~D ~W�j
;y ¼ ~V	 ~F�	 (21)

and

�fðx;pÞ ¼ �g ~W�ð~x;
; yÞ~@�ðpÞf0ðp?; ~p�Þ: (22)

The field ~W�ð~x;
; yÞ is indeed analogous to the

auxiliary field W�ðx; vÞ of the (static-background) hard-
loop
formalism [28] because, for a given space-time point, it

4Notice that it would be straightforward to relax the assump-
tion of momentum-space isotropy in the transverse directions.

5The anisotropy parameter � used in Ref. [17] is related to �
by �� ��2.
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only depends on the 3-velocity of the hard particles,
v ¼ ðcos
; sin
; sinhyÞ= coshy, and not on their energy
p0. Notice that only with index down is its equation of
motion (21) formally the same as in the static situation.

Expressed in terms of the auxiliary field ~W, the induced
current in comoving coordinates reads

~j 	½A� ¼ �g2tR
2

Z d3p

ð2�Þ3
1

p0
~p	

@f0ðp?; ~p�Þ
@~p�

~W�ð~x;
; yÞ

¼ þg2tR
Z d2p?dp�

ð2�Þ3
1

2�p� ~p
	
@f0ðp?; ~p�Þ

@~p�

~W�

¼ �g2tR
Z 1

0

p?dp?
8�2

Z 2�

0

d


2�

Z 1

�1
dy~p	 @f0

@~p�

~W�

(23)

where for each ð
; yÞ (i.e., fixed v) the scale p? (related to
energy by p0 ¼ p? coshy) can be integrated out.

With a distribution function that is even in p? and ~p� as

in (14), covariant current conservation can be verified
without having to integrate partially with respect to p.
(This proves to be helpful for the lattice discretization
below, where all integrals will be replaced by discrete
sums.) The current j� in ordinary coordinates is given by
Eq. (23) by dropping the tilde on ~j	 and ~p	 only. Starting
from the first line of (23), we can then useD � p ¼ p �D ¼
~p � ~D and ðp � @Þ@f0=@~p�jp ¼ 0, and finally (21) (with ~V

replaced by ~p	). Changing the integration variables to ~p
like in the second line of (23), we obtain

D � j ¼ g2tR
Z d2p?dp�

ð2�Þ3
1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ p2

�=�
2

q
	

�
@f0
@pi

~Fi
� ~p

� þ @f0
@p�

~F�� ~p
�

�
:

This vanishes already by symmetry when @f0=@p
i and

@f0=@p� are odd functions in pi and p�, respectively.

Specializing to the background distribution function
(14), we have

~@ �
ðpÞf0 ¼ f00 ~@

�
ðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ ~p2

�=�
2
iso

q

¼
ð0;� cos
;� sin
;� �

�2
iso

sinhðy� �ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

�2
iso

sinh2ðy� �Þ
r ; (24)

and we get

~j	 ¼ �m2
D

1

2

Z 2�

0

d


2�

Z 1

�1
dy ~V	

	
�
1þ �2

�2iso
sinh2ðy� �Þ

��2
W ð~x;
; yÞ; (25)

where

W ¼ ~ViWi � 1

�2iso
~V�

~W�; ~Vi ¼ ðcos
; sin
Þ;
~V� ¼ �� sinhðy� �Þ; (26)

and

m2
D ¼ �g2tR

Z 1

0

dpp2

ð2�Þ2 f
0
isoðpÞ: (27)

The mass parameter mD equals the Debye mass at the
(possibly fictitious because of preplasma) time �iso.
Because ~V � ~D commutes with the coefficients of ~Wi and

~W� appearing in the definition of W [in particular, ½ ~V �
~D; ~V�� ¼ 0, cf. (13)], we do not need to evolve the com-

ponents ~W� separately, but only the combination W ,

which is governed by

~V � ~DW ¼
�
~Vi ~Fi� þ �2

�2iso
~V� ~F��

�
~V�

þ ~Vi ~V� ~Fi�

�
1� �2

�2iso

�
: (28)

For � ¼ �iso only F	� (the electric field components in the
comoving frame6) appear on the right-hand side, whereas
for � ¼ �iso magnetic fields come into play, opening the
door for magnetic instabilities.
This single equation for W together with the Yang-

Mills equations and the algebraic relation between j and
W close our equations of motion. To solve them, we adopt
the comoving temporal gauge A� ¼ 0 and introduce ca-
nonical conjugate field momenta for the remaining gauge
fields according to

�i ¼ �@�Ai ¼ ��@�A
i ¼ ��i (29)

and

�� ¼ 1

�
@�A�: (30)

Notice that transverse (comoving) electric field compo-
nents differ from �i by a factor of �:

Ei ¼ ��1�i: (31)

In contrast to most of the literature on the color-glass-
condensate framework, we shall reserve the symbol E for
the electric field and denote the canonical conjugate field
momenta by �.
In terms of fields and conjugate momenta, the Yang-

Mills equations take the form

�@��
� ¼ j� �DiF

i
�; (32)

��1@��i ¼ ji �DjF
ji �D�F

�i: (33)

6From here on we shall drop the tilde on the quantities in the
comoving frame, which will be used exclusively in what follows.
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E. 1Dþ 3V equations

A linear response analysis (appropriate for small gauge
field amplitudes) shows that the most unstable modes of an
anisotropic plasma are those whose wave vectors are ori-
ented along the direction of anisotropy.

We therefore begin by considering only initial condi-
tions and thus solutions which are constant in the trans-
verse directions (i.e., neglecting transverse dynamics),
@iA

	 � 0. Hence, Di ¼ �ig½Ai; �� and the Yang-Mills
equations reduce to that of a 1þ 1-dimensional theory
with Ai acting as adjoint scalars.

We then have

1

�
@��i ¼ ji þ g2i½Aj; i½Aj; Ai�� þ 1

�2
D2

�A
i; (34)

�@��
� ¼ j� þ ig½Ai; D�A

i�; (35)

as dynamical Yang-Mills equations, and

�j� ¼ D��
� � ig½Ai;�i� (36)

as the Gauss law constraint.
The current j	 is a linear functional of W , given by

Eq. (25) as before, but the equation of motion for W ,
Eq. (28), reduces to

@�W ð�;�;
;yÞ¼ tanhðy��Þ
�

D�

��
1� �2

�2iso

�
viAi�W

�

� ig

coshðy��Þ½v
iAi;W �

þ1

�
vi�i��2 sinhðy��Þ

�2iso
��: (37)

All fields here depend on the two remaining space-time
variables �, �, and the auxiliary adjoint-scalar field W
additionally depends on the momentum-space variables 
,
y which parametrize the 3-velocity in the colored fluctua-
tions �fa; cf. Eq. (22).

In the present paper we shall restrict our attention to this
dimensionally reduced situation, which in conventional
plasma literature would be referred to as 1Dþ 3V. The
study of 2Dþ 3V and 3Dþ 3V is postponed to future
publications.

III. LATTICE DISCRETIZATION AND
NUMERICAL RESULTS

A. Methods

For a numerical evaluation of Eqs. (34)–(37) together
with Eq. (25), we discretize proper time starting with finite
�0 > 0 and time step 
. The space-time rapidity coordinate
� is made periodic and discrete with N� points and (di-

mensionless) spacing a covering a rapidity interval
ð�N�a=2; N�a=2Þ. The (matrix-valued) fields Ax, Ay,

and W 
;y are defined on the sites of the one-dimensional

rapidity lattice, while the conjugate momenta�x,�y, and

�� are defined on the temporal links. The gauge field A� is

replaced by the spatial link variable U ¼ expigaA�.

The integration over the momentum-space variables 

and y in Eq. (25) has to be discretized such that covariant
current conservation is preserved manifestly. When ex-
pressed in terms of 
 and y integrals, the integrand in
(24) is either odd in y� � or multiplied by sin
 or cos
.
In order that discretization of y and 
 respect manifest
covariant current conservation, we thus need to respect
reflection invariance in 
 and y� �. The angular variable
is made discrete with uniform spacing 2�=N
, but for �y �
y� � we shall consider two possibilities. In method Awe
shall discretize the interval��y 
 �y 
 �y uniformly with

spacing 2�y=ðNy þ 1Þ, and in method B we make the

substitution �y ¼ atanhx and discretize the range �1þ
�x 
 x 
 1��x with uniform spacing �x ¼ 1=Nx.
Because of the � dependence of the shifted variable �y,
the lattice equation of motion for the auxiliary fieldsW 
; �y

that live on the �y boundary has to be completed by bound-
ary conditions for W in the �y variable. For the W fields
we do not impose periodicity, but instead take the
Neumann condition @W =@ �y ¼ 0 at the �y boundary.
In Fig. 1 we show the evolution of the conjugate mo-

mentum �x / cosð��Þ in the case that the gauge group is
taken to be Abelian U(1). The system is initialized with a
single Abelian U(1) mode with only �x initialized with
rapidity wave number � ¼ 16�=5 ¼ 10:053 . . . in order to
facilitate comparisons with semianalytic results obtained

FIG. 1 (color online). Proper-time evolution of the canonical
field momentum �xð� ¼ 0Þ of a single Abelian mode with
rapidity wave number � ¼ 10:053. The solid line is the semi-
analytic result of Ref. [34] and the dot-dashed lines are the
results obtained from our 1þ 1 numerical solutions using two
different methods (A and B) for discretizing the shifted
momentum-space rapidity �y ¼ y� �. The inset shows relative
error of the two methods. The run was made using �iso ¼ 0:1,
�0 ¼ 1:0, mD ¼ 10, a ¼ 0:0025, 
 ¼ 0:001, N� ¼ 250, N
 ¼
8, and Ny ¼ 1000 (method A), Nx ¼ 1000 (method B).
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in an earlier work [34] where, for the Abelian case, the
equations of motion for the W field have been solved in
terms of integro-differential equations. Figure 1 compares
a semianalytic result obtained from the latter with results
obtained using the two different methods of discretization
described above and detailed in Appendixes A and B. As
can be seen from this figure both numerical discretizations
reliably reproduce the Abelian semianalytic result. In the
inset we compare the relative error defined as the differ-
ence of the time evolution obtained from method A or B
with the semianalytic result over the sum (relative percent-
age error). As can be seen from this inset, method B seems
to perform better at late times, so unless otherwise indi-
cated, all final results presented will be using method B.
However, in practice, we have made runs comparing the
predictions of methods A and B in all cases and find that
there is very little difference between the results obtained
with the two methods.

B. Single-mode results

In Fig. 2 we show results of a simulation of a single SU
(2) mode with rapidity wave number � ¼ 10:053 (same
mode as Fig. 1 but now also with the color direction
rotating with period 2�=� in space-time rapidity �). In
Fig. 2(a) we show the proper-time evolution of the mag-
netic, electric, and total field energy densities in units
where �0 ¼ 1 and, following Ref. [36], scaled with a factor
of �. Because the energy in the hard particles is dropping
proportionally to ��1, this corresponds to giving the vari-
ous soft energy densities in terms of the hard energy
density (times a parametrically small number �g2 since
the hard energy density is assumed to be much larger than
the soft ones in order that the hard-loop approximation be
applicable.)

The various components of the (soft) field energy den-
sity are defined by

E ¼ ET þ EL ¼ EBT
þ EET

þ EBL
þ EEL

¼ tr½��2F2
�i þ ��2�2

i þ F2
xy þ ð��Þ2�: (38)

Because of the expansion of the system, the total energy
density E is not conserved, even when the induced current
(25) is identically zero. In this case the time dependence is
governed by the fact that the Hamiltonian density [36]
H ¼ �E satisfies

d

d�
H ¼ @

@�
H ¼ EL � ET; (39)

and therefore

d

d�
Ejj�0 ¼ � 2

�
ETjj�0: (40)

In the presence of a plasma of hard particles and thus
nonvanishing induced current j, we define the net energy
gain rate by

REnergy Gain � dE
d�

þ 2

�
ET; (41)

which in the plots showing the energy densities is included
as the dotted line marked ‘‘Gain Rate.’’ The latter gives the
rate of energy transfer from the free-streaming hard parti-
cles into the collective chromofields. As can be seen from
Fig. 2, for SU(2) the single-mode evolution is quite com-
plicated with all field components being dynamically gen-
erated; however, at late times transverse chromoelectric
and chromomagnetic fields exponentially dominate.
In Fig. 2(b) we plot the longitudinal and transverse field

pressures generated during the system’s dynamical evolu-
tion. These are obtained from [36]

PL ¼ ET � EL; PT ¼ EL; (42)

where as before ET is the sum of the energy density coming
from transverse electric and magnetic fields and EL is the

FIG. 2 (color online). Results from a run with a single non-
Abelian mode with � ¼ 10:053. In the top panel (a) we show the
proper-time dependence of the chromofield energy densities. In
the lower panel (b) we show the longitudinal and transverse
pressures along with our numerical Gauss law violation. The run
was made using �iso ¼ 0:1, �0 ¼ 1:0, mD ¼ 10, a ¼ 0:0025,

 ¼ 0:001, N� ¼ 500, Nx ¼ 100, and N
 ¼ 100.
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sum of the energy density coming from longitudinal elec-
tric and magnetic fields. As shown in Fig. 2(b) the system
generates both longitudinal and transverse pressures. At
short times (�=�0 � 5–6) for this single-mode evolution we
find that the longitudinal pressure becomes momentarily
negative; however, at late times the effect of the chromo-
field instability is to generate exponentially large longitu-
dinal field pressure, whereas the longitudinal pressure
of the (free-streaming) particles drops according to

�P
part:
L � ��2.
Also shown in Fig. 2(b) is our measure of violation of

Gauss law which is determined by evaluating the � com-
ponent of the equations of motion as detailed in Eqs. (36)
and (A13). As can be seen from this figure, although our
violation of the Gauss law constraint grows with time, it is
numerically under control and always orders of magnitude
below the field energy density. The amount of violation can
be systematically reduced by taking finer lattices in � and
velocity space. We have found that our results for the time
evolution of the energy densities, pressures, etc. remain the
same as our numerical Gauss law violation is reduced
further, giving us confidence in our algorithm. As a general
rule we always terminate our runs when the Gauss law
violation becomes of order 1.

For comparison, in Fig. 3 we show the evolution of the
field energy densities in the case of pure Yang-Mills evo-
lution. This is obtained by decoupling the free-streaming
particle currents by setting j	 to zero in the field equations
of motion. From Fig. 3(a) we see that in the case of pure
Yang-Mills evolution the field energy density decreases
over the entire time interval shown. The ‘‘Gain Rate’’
control variable is approximately zero and shows the level
of discretization errors. In addition we see that although
both longitudinal and transverse pressures are generated

they are of much smaller magnitude than those generated
when the free-streaming particle currents are coupled into
the Yang-Mills equations. Therefore, we have demon-
strated that coupling in the particle currents generates
qualitatively different field dynamics.

C. Initial non-Abelian noise and partial Abelianization

In Fig. 4 we show results obtained from an SU(2) non-
Abelian run in which the initial condition is taken to be a
random superposition of discrete transverse electric field
modes (both �x and �y) with an ultraviolet cutoff �� ¼
20 in space-time rapidity wave number �. The amplitude
for each mode is chosen from a Gaussian probability
distribution centered at zero with standard deviation � ¼
0:03. As can be seen from Fig. 4(a) the system very quickly
generates chromomagnetic fields, whereas during the early
times energy is equally distributed between transverse
chromoelectric and chromomagnetic fields. Longitudinal
field energies which vanish initially grow exponentially
with a rate about twice that of the transverse fields, but
almost saturate when the nonlinear regime is reached.
During the initial growth phase as well as in the deep
nonlinear regime, the energy density is exponentially
dominated by transverse chromomagnetic fields. This
again translates into the generation of exponentially large
longitudinal pressure as shown in Fig. 4(b).
In Fig. 4(c) we plot various measures of the

Abelianization and (color) correlations of the chromo-
fields. Following Refs. [29,31] we define a measure of
the ‘‘Abelianness’’ of the field configurations through

�C½j� ¼
Z L�

0

d�

L�

ftrðði½jx; jy�Þ2Þg1=2
trðj2x þ j2yÞ

: (43)

FIG. 3 (color online). Results from a run with a single non-Abelian mode with rapidity wave number � ¼ 10:053 in which we have
decoupled the hard particle currents (j ¼ 0) so that we are simply solving the Yang-Mills equations in the expanding metric. In the left
panel (a) we show the proper-time dependence of the chromofield energy densities. In the right panel (b) we show the longitudinal and
transverse pressures. Gauss law is obeyed exactly by our algorithm in this case. The run was made using �iso ¼ 0:1, �0 ¼ 1:0, mD ¼
10, a ¼ 0:0025, 
 ¼ 0:001, and N� ¼ 500.
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If the field configurations are Abelian (aligned in one color
direction) then this quantity vanishes because of the com-
mutator in the numerator.

In order to further study the color correlations of the
chromofields in spatial rapidity, �, we define

�Að�Þ ¼ N2
c � 1

2Nc

Z L�

0

d�

L�

	 trfði½jið�þ �Þ;Uð�þ �;�Þjjð�Þ�Þ2g
trfj2kð�þ �Þgtrfj2l ð�Þg

; (44)

whereUð�0; �Þ is the adjoint-representation parallel trans-
port from � to �0. When colors are completely uncorre-
lated over a distance �, this quantity equals unity; if they
point in the same direction, this quantity vanishes.
Following Refs. [29,31] we define the ‘‘Abelianization
correlation length’’ �A as the smallest distance where �A

is larger than 1=2,

�A½j� ¼ min
�Að�Þ�1=2

ð�Þ: (45)

This we compare with a general correlation length,
which does not focus on color, defined through the
gauge-invariant function

�ð�Þ ¼
RL�

0 d�trfjið�þ �ÞUð�þ �;�Þjið�ÞgRL�

0 d�trfjlð�Þjlð�Þg
: (46)

This function now vanishes when fields are uncorrelated
over a distance �, and it is normalized such that �ð0Þ ¼ 1.
We thus define the general correlation length through

�½j� ¼ min
�ð�Þ
1=2

ð�Þ: (47)

Figure 4(c) shows that the system becomes Abelianized
with large color correlation length, �A½j�, when the fields
have grown such that nonlinear self-interactions become
important. �A occasionally even shoots up to the size of the
space-time rapidity lattice (2.5 in this case) before settling
to oscillations around rapidities �0:3. (The indication of
some late-time growth of �A is presumably spurious, since
it is accompanied by the onset of a rapid growth of the
Gauss law violation control parameter.) Although we show
the output of only one run here, the behavior shown is
generic for all random seeds we have studied.

D. Color-glass-condensate-inspired initial conditions

In Fig. 5 we show results obtained by using initial seed
fields which reflect the spectral properties obtained by
Fukushima, Gelis, and McLerran (FGM) within the
color-glass-condensate (CGC) framework [54]. We use
again a random superposition of modes, but now involving
already initially both chromoelectric and chromomagnetic
transverse fields with a spectrum7

FIG. 4 (color online). Results from a non-Abelian run initial-
ized with a random superposition of discrete electric modes
(cutoff white noise). In the top panel (a) we show the proper-
time dependence of the chromofield energy densities and the
energy gain rate (41) times an extra factor of �0. In the middle
panel (b) we show the longitudinal and transverse pressures
along with our numerical Gauss law violation. In the bottom
panel (c) we show the correlations �A½j�, �½j�, and �C½j�. The run
was made using �iso ¼ 0:1, �0 ¼ 1:0, mD ¼ 10, � ¼ 0:03,
�� ¼ 20, a ¼ 0:0025, 
 ¼ 0:000 25, N� ¼ 1000, Nx ¼ 100,

and N
 ¼ 100.

7The spectrum of fluctuation derived in Ref. [54] of course
also has modes which are not constant in the transverse coor-
dinates, but in our present framework we have to restrict our-
selves to modes which are effectively 1þ 1 dimensional.
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j �ið�Þj�¼�0 ¼ �
ffiffiffi
�

p
; j Aið�Þj�¼�0 ¼ �=

ffiffiffi
�

p
; (48)

for all space-time rapidity wave numbers � 
 �� that are

allowed by the periodic boundary conditions of our finite �
lattice, excluding, however, � ¼ 0. The phases of each
color component of these modes is taken at random, and
we have used a small value � ¼ 0:05, corresponding to
initially weak fields. In accordance with Ref. [54], the
longitudinal magnetic field is set to zero initially through
A�j�¼�0 ¼ 0, but the non-Abelian Gauss law leads to non-

vanishing longitudinal chromoelectric fields even though
j� � 0 initially.
With A� ¼ 0 initially, the Gauss law constraint in the

1þ 1-dimensional setting gives

@��
� ¼ ig½Ai;�i�: (49)

Having populated the transverse field modes according to
Eq. (48), we solve the lattice version of Eq. (49) to deter-
mine the longitudinal electric field Ei ¼ �i=�.
However, in contrast to the simpler initial conditions

used above, this presents a problem with the periodicity
of our � lattice, since the solution thus obtained does not
share the periodicity of all other fields, leading to a Gauss
law violation at the boundary in the form of a mismatch of
��. This initially small violation, however, quickly grows
and cannot be tolerated. We have solved this problem by
singling out the lowest lying mode of Ax and calculating its
contribution to the mismatch of ��. By elementary linear
algebra we determine how to rescale the color components
of this one mode such that the mismatch is eliminated, but
this rescaling is only accepted when the total amplitude of
this mode does not get modified by more than 50%. If this
is not the case, a different set of random numbers for the
phases of all transverse color fields is generated and the
procedure repeated until a configuration is found where the
amplitude of the lowest lying mode of Ax is not too far
from the starting point (48).
The results shown in Fig. 5 are qualitatively similar to

those obtained with an initial condition which is a random
superposition of purely electric modes. As can be seen
from Fig. 5(a), at early times there is equal partitioning
between chromoelectric and chromomagnetic fields which
both initially decrease and then begin to grow exponen-
tially with transverse chromomagnetic fields dominating
for nearly the entire run. At �=�0 � 13 there is a non-
Abelian ‘‘bounce’’ when the longitudinal field components
become on the same order of magnitude as the transverse
ones; however, beyond this point in time the transverse
field components again dominate. In Fig. 5(b) we see that
the field pressures which are generated are also similar to
those obtained with a random discrete Fourier spectrum
with the system generating an exponentially large longitu-
dinal pressure due to the chromo-Weibel instability. In
Fig. 5(c) the behavior of the Abelianization measure,
�C½j�, and correlation lengths are again similar to the ran-
dom discrete Fourier spectrum initial conditions, showing
an Abelianization of the fields and large color correlation
length at late times. This demonstrates that the qualitative

FIG. 5 (color online). Results from non-Abelian run initialized
with FGM initial conditions. In the top panel (a) we show the
proper-time dependence of the chromofield energy densities and
the energy gain rate (41) times an extra factor of �0. In the
middle panel (b) we show the longitudinal and transverse pres-
sures along with our numerical Gauss law violation. In the
bottom panel (c) we show the correlations �A½j�, �½j�, and
�C½j�. The run was made using �iso ¼ 0:1, �0 ¼ 1:0, mD ¼ 10,
� ¼ 0:05, �� ¼ 20, a ¼ 0:005, 
 ¼ 0:0005, N� ¼ 500, Nx ¼
200, and N
 ¼ 200.
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features of the time evolution of the instability induced
fields are independent of the details of the initial
condition.8

In Figs. 6 and 7 we show results obtained using FGM
initial conditions with a smaller Debye mass corresponding
to the estimates of the ‘‘gluon liberation factor’’ c obtained
from the color-glass-condensate picture [55,56] (see
Appendix C for details). In Fig. 6 we show the results
obtained from an Abelian run in which all fields were
constrained to initially point in the same direction in color
space, and in Fig. 7 we show the results of a non-Abelian
SU(2) run. As can be seen from both figures the primary
effect of lowering mD is to slow down the growth of the
chromofields; however, besides this ‘‘stretching’’ of the
time axis there is little qualitative difference between the
largermD run (Fig. 5) and this case, Fig. 7. We still observe
domination by transverse chromofields, which now have
larger color correlation length, and generate exponentially
large longitudinal pressure.

In Fig. 8 we compare six different non-Abelian SU(2)
runs with FGM initial conditions in which we have taken
different values for the spectral cutoff in rapidity wave
number, ��, imposed on the FGM initial condition. As
can be seen from this figure for fixed initial energy density
the effect of increasing �� is to delay the onset of expo-
nential growth of the chromofields. This is to be expected
since for fixed energy density the occupation number of the
lowest � modes must be decreased as �� is increased, and

higher modes have a larger delay, as already found in the
Abelian case studied in Ref. [34]. In fact, the amplitude of
the low-momentummodes must be decreased rapidly since
the high-momentum modes dominate the energy density.
In Fig. 8(b) we show a fit to the ‘‘time to return,’’ �R, of the

FIG. 6 (color online). Field energy density results from an
Abelian run initialized with FGM initial conditions. Transverse
fields and Gauss law violation are zero to within machine
precision. The field pressure is purely longitudinal and coincides
with the total field energy density. The run was made using
�iso ¼ 0:1, �0 ¼ 1:0, mD ¼ 3:585, � ¼ 0:017 32, �� ¼ 20, a ¼
0:01, 
 ¼ 0:001, N� ¼ 500, Nx ¼ 100, and N
 ¼ 4.

FIG. 7 (color online). Results from a non-Abelian run initial-
ized with FGM initial conditions. In the top panel (a) we show
the proper-time dependence of the chromofield energy densities
and the energy gain rate (41) times an extra factor of �0. In the
middle panel (b) we show the longitudinal and transverse pres-
sures along with our numerical Gauss law violation. In the
bottom panel (c) we show the correlations �A½j�, �½j�, and
�C½j�. The run was made using �iso ¼ 0:1, �0 ¼ 1:0, mD ¼
3:585, � ¼ 0:01, �� ¼ 20, a ¼ 0:01, 
 ¼ 0:001, N� ¼ 500,

Nx ¼ 200, and N
 ¼ 100.

8Of course, by this we mean any reasonable initial condition.
Choosing, for example, an initial condition which only had very
high frequency modes would greatly delay the onset of
instability-driven growth of the fields.
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scaled energy density ��30E, i.e. the time it takes the

instability to compensate for the initial decay of the soft
fields caused by the system’s expansion. Fitting this time
(in units of �0) by a power-law að��Þb, we find a ¼
13:46� 0:01 and b ¼ 0:26� 0:01. The exponent b is
consistent with being 1=4. The coefficient a depends on
the Debye mass and decreases as mD increases.

In Fig. 9 we compare the rapidity (�) spectrum obtained
by Fourier transforming the trace of the conjugate field
momenta, trð�2Þ ¼ trð�2

i þ �2ð��Þ2Þ, in order to gain
more understanding of the momentum-space dynamics of
the fields in our simulations. In Fig. 9(a) we show the
spectrum resulting from analysis of the induced current

from the Abelian run shown in Fig. 6. In Fig. 9(b) we show
the spectrum resulting from analysis of the induced current
from the non-Abelian run shown in Fig. 7. The lowest (bold
green) line indicates the starting spectrum, the middle
(bold blue) line indicates the ‘‘non-Abelian point’’ at
which all field components become approximately equal
in magnitude, and the uppermost (bold red) line shows the
final spectrum obtained in our simulations. As can be seen
from this figure there is a stark qualitative difference
between the Abelian and non-Abelian spectra, with the
former maintaining the spectral cutoff imposed on the
initial condition and the latter ‘‘cascading’’ energy to
higher and higher momentum modes starting already at

FIG. 8 (color online). The left panel (a) shows the total field energy density results from a non-Abelian run initialized with FGM
initial conditions and different UV cutoffs, �� 2 f5; 7; 10; 20; 50; 100g, imposed on the initial spectrum. The right panel (b) shows the
‘‘time to return’’ �R=�0, defined as the point at which the field energy density has returned to its initial value, as a function of the FGM
spectral cutoff �� on a log-log plot. The blue line (right panel) shows a fit to a power law �R ¼ a�0ð��Þb. Runs were made using
�iso ¼ 0:1, �0 ¼ 1:0, mD ¼ 3:585, � ¼ 0:06, a ¼ 0:005, 
 ¼ 0:0025, N� ¼ 1000, Ny ¼ 800, and N
 ¼ 50. For this figure discre-

tization method A was used.

FIG. 9 (color online). Fourier spectrum of the color-traced conjugate field momenta, trð�2Þ, obtained from Abelian (left panel) and
non-Abelian (right panel) runs with FGM initial conditions. The lowest (bold green) line indicates the starting spectrum and the
uppermost (bold red) line indicates the final spectrum. In the right panel the bold blue line indicates the ‘‘non-Abelian point’’ at
�=�0 � 55 when all field components become approximately the same order of magnitude. The Abelian and non-Abelian spectra were
obtained by analyzing the currents produced during the runs shown in Figs. 6 and 7, respectively.
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very early times. This is similar to earlier results for the
spectra induced by instability growth [15]. Surprisingly, in
Fig. 9(b) one sees that at the ‘‘non-Abelian point’’ indi-
cated by the bold blue line the low frequency modes have
generated a quasithermal (Boltzmann) distribution up to
�� 80. In fact, the development of the quasithermal dis-
tribution begins at very early times, and one can associate a
temperature with the system by fitting the low-� spectra
with exponential fits from rather early times. Similar spec-
tra are generated when one measures trðA2Þ, which also
allows one to define a kind of magnetic temperature from
that observable as well.

IV. DISCUSSION, CONCLUSIONS, AND OUTLOOK

In this paper we have performed the first numerical
study of non-Abelian plasma instabilities in a nonstation-
ary, longitudinally expanding system within the framework
of discretized hard-loop theory,9 extending the semianalyt-
ical results of [34] for the weak-field, Abelian regime. We
have worked out the case of the most unstable modes
which are constant modes in the transverse direction, mak-
ing the dynamics 1þ 1 dimensional in configuration space
(while momentum space remains three dimensional).
Starting with only small rapidity fluctuations, we found
that the exponential (in

ffiffiffi
�

p
[34]) growth in the Abelian

(weak-field) phase is only mildly weakened when nonline-
arities through non-Abelian self-interactions of the collec-
tive fields set in, and this is associated with a significant
degree of Abelianization in finite domains in the nonlinear
regime. This is quite similar to what was observed in the
1Dþ 3V simulations in a stationary anisotropic plasma
[24], and it remains to be seen what full 3Dþ 3V simula-
tions will give. However, it is quite plausible that the 1Dþ
3V results already capture the behavior of the more generic
3Dþ 3V simulations, because it was recently observed
[33] that for extreme anisotropies a saturation of the growth
as was found in Refs. [30,31] at moderate anisotropies will
occur only at correspondingly extreme values of the fields,
if at all. Indeed, our simulations start out with strong
anisotropy of the particle distribution, which rapidly grows
with increasing time according to Eq. (19).

In our simulations we have found that in the non-
Abelian case the growing unstable modes tend towards a
quasithermal spectrum [Fig. 9(b)] and they produce mainly
longitudinal field pressure, which grows exponentially,
thereby realizing a bottom-up isotropization scenario in
which the soft modes make up for the strongly decaying
longitudinal particle pressure, which goes like 1=�3. The
transverse particle pressure, which according to the CGC
picture is approximately thermal by itself, is decaying like

1=�. In the hard-expanding-loop theory which we have
considered, we can of course only trust the beginning of
this scenario, since the backreaction of the collective fields
on the hard particle background is neglected, and it is in
fact the reservoir of energy in the hard particle background
that is feeding the growth of the soft modes, which has to
stop before the energy in the latter becomes comparable
with the former.
In Fig. 10(a) we have reproduced the results of Fig. 7(b)

for the field pressures obtained by choosing dimensionful
parameters motivated by the CGC scenario as described in
Appendix C and compared also with the particle pressures
that follow from this matching. Notice that all quantities
are multiplied by � so that the decaying transverse particle

FIG. 10 (color online). The top panel (a) shows a comparison
of particle and field pressures generated during a typical run
which uses CGC-inspired ‘‘FGM’’ initial conditions. Simulation
parameters are the same as shown in Fig. 7 and the field
pressures are the same as in panel (b) of that figure. The particle
pressures are obtained by evaluating the expressions given in
Eqs. (16) and (17). In order to fix the initial energy densities, we
use the scheme detailed in Appendix C assuming 	s ¼ 0:3,
which gives Eð�0Þ ’ 0:3Q4

s . In the lower panel (b) we show
the growth rates for the field pressures in units of ��1

0 .

9Closely related instabilities have been found before numeri-
cally in the color-glass condensate framework in Refs. [35,36],
where the role of plasma particles is played by high-momentum
modes of the Yang-Mills field.
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pressure is represented by an approximately horizontal
line.

The time scale �0 ’ Q�1
s can be roughly identified with

1–1.5 and 3 GeV for RHIC and LHC experiments, respec-
tively, where the plasma lifetimes are probably less than
5 fm=c ’ 25–35�0 for RHIC, and probably much larger
than 7 fm=c ’ 100�0 for the LHC [57]. Defining an effec-
tive growth rate of the longitudinal pressure by

�L ¼ @

@�
lnð��30PL;fieldÞ; (50)

we find for the example provided in Fig. 10 a maximal
value of about �L � 0:2��1

0 in the weak-field regime for

� * 20�0, and about 0:1��1
0 in the strong-field (non-

Abelian) regime � * 70�0. This corresponds to minimum
characteristic time scales of

min��1
L �

�
0:7� 1 fm=c ðRHICÞ
0:3 fm=c ðLHCÞ (51)

in the weak-field regime, and twice that in the strong-field
regime. This agrees roughly with the preisotropization
values obtained in Ref. [42] from classical-statistical lat-
tice gauge theory.10

However, at least for the case of initially small rapidity
fluctuations which we have considered here, there is a
delay of the onset of plasma instabilities caused by the
expansion which appears uncomfortably large for RHIC
energies, even if one chooses smaller spectral cutoffs in the
initial fluctuations which somewhat reduce this delay
(cf. Fig. 8).

Still, for the LHC our results suggest that plasma insta-
bilities like those studied here will be an important phe-
nomenon, in particular if LHC energies make contact to a
more weakly coupled quark-gluon plasma as suggested for
instance by the analysis of Ref. [58]. The comparison of
particle and field pressure in Fig. 10(a) indicates upper
limits for an isotropization point, which are, however,
strongly dependent on the initial strength of the rapidity
fluctuations. Larger seed fields will correspondingly lower
this point. However, experience from simulations of non-
Abelian plasma instabilities in the stationary anisotropic
case [30,31,33] lets us expect that full 3Dþ 3V studies (or
at least 2Dþ 3V ones [38]) are required to analyze truly
strong initial fields. This will be the subject of follow-up
work.
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APPENDIX A: LATTICE DISCRETIZATION
METHOD A

The one-dimensional situation studied herein assumes
that fields vary only in the � direction. We then have
transverse adjoint-scalar fields Ai with i ¼ 1, 2 and auxil-
iary fields W 
; �y which all are defined on the sites s of a

periodic spatial rapidity lattice with (dimensionless) lattice
spacing a. The conjugate momenta�i live on the temporal
links, while the conjugate momentum �� of the gauge
field A�, which appears only in the form of a parallel

transporter Usþð1=2Þ ¼ expðigaA�;sÞ, will be treated as lo-

cated on the timelike plaquette on top of the link between
site s and sþ 1.
Apart fromU, all of these fields are represented byNc 	

Nc traceless Hermitian matrices which for SU(2) reduce to
the 2	 2 Pauli matrices. Although we are going to make
explicit all occurrences of the coupling g, in practice we
have taken g ¼ 1 through a rescaling of the fields.
Covariant derivatives are defined in three versions: left

and right covariant,

DR
�A

	
s � A	

s �Us�ð1=2ÞA	
s�1U

y
s�ð1=2Þ

a
;

DL
�A

	
s � Uy

sþð1=2ÞA
	
sþ1Usþð1=2Þ � A	

s

a
;

(A1)

and symmetric,

DS
� � ðDL

� þDR
�Þ=2: (A2)

The second order is given by

D2
� � ðDL

� �DR
�Þ=a (A3)

and is automatically symmetric.
In method A, the auxiliary field W ð�; �;
; yÞ of the

continuum theory is modeled by a large number of fields
W s;
; �y with �y ¼ y� � discretized with N �y points in the

interval ð���y;��yÞ and N
 points for 0 
 
< 2�.

Additionally, we can absorb all or part of the denominator
appearing in Eq. (25) for the induced current by writing

�W s;
; �yð�Þ ¼ f�1ð�; �yÞW s;
; �yð�Þ (A4)

with

10The higher growth rate of the transverse field pressure, which
is due to non-Abelian self-interactions of the chromofields (it
vanishes in the Abelian case), is what Ref. [42] would call a
‘‘secondary’’ instability.
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fð�; �yÞ ¼
�
1þ �2

�2iso
sinh2ð �yÞ

�
�
; (A5)

with � a number between 0 and 2. This does not produce
extra terms in the equation of motion for W because

�
@� þ tanhð �yÞ

�
@�

�
f ¼ 0: (A6)

The induced current (25) is obtained from the auxiliary
fields (which at � ¼ �0 ¼ 1 are taken to vanish) according
to

j	s ð�Þ ¼ �m2
D��y

N
N �y

X



X
�y

V	f��2 �W s;
; �yð�Þ; (A7)

with V	 defined in (11).
The equations of motion of the various fields are then

solved numerically by a leapfrog procedure. The first step
is to calculate the conjugate momenta from

�i;s

�
�þ 


2

�
¼ �i;s

�
�� 


2

�

þ 


�
�jis þ 1

�
D2

�A
i
s þ �g2i½Aj

s; i½Aj
s; Ai

s��
�
�
;

��
s

�
�þ 


2

�
¼ ��

s

�
�� 


2

�

þ 


�
��

2
ðj�s þUy

sþð1=2Þj
�
sþ1Usþð1=2ÞÞ

þ ig

�
½Ai

s;D
L
�A

i
s�
�
�
: (A8)

The second step is to update the fields according to

Ai
sð�þ 
Þ ¼ Ai

sð�Þ þ 


�
�þ 


2

��1
�i;s

�
�þ 


2

�
; (A9)

Usþð1=2Þð�þ 
Þ ¼ exp

�
ig
a

�
�þ 


2

�
��

s

�
�þ 


2

��
	Usþð1=2Þð�Þ; (A10)

and the auxiliary fields �W according to

�W s;
; �yð�þ 
Þ ¼ �W s;
; �yð�� 
Þ þ 2


�
fð�; �yÞ�1C� g

A
coshð �yÞ þ

tanhð �yÞ
�

	
��

1� �2

�2iso

�
fð�; �yÞ�1B� ðDS

� � @ �yÞ �W s;
; �yð�Þ
��

(A11)

with

A � i½viAi
sð�Þ; �W s;
; �yð�Þ�;

B � viDS
�A

i
sð�Þ;

C �
��

�þ 


2

��1
vi�i;s

�
�þ 


2

�
þ

�
�� 


2

��1
vi�i;s

�
�� 


2

��
=2

� sinhð �yÞ
4�2iso

��
�þ 


2

�
2
�
�

�
s

�
�þ 


2

�
þUs�ð1=2Þ�

�
s�1

�
�þ 


2

�
Uy

s�ð1=2Þ

�

þ
�
�� 


2

�
2
�
�

�
s

�
�� 


2

�
þUs�ð1=2Þ�

�
s�1

�
�� 


2

�
Uy

s�ð1=2Þ

��
:

(A12)

The Gauss law constraint is checked by evaluating

1

N�

X
s

tr

�
1

�
DS

��
�
s

�
�þ 


2

�

� ig

�
½Ai

sð�Þ;�i;s

�
�þ 


2

��
� j�ð�Þ

�
2
; (A13)

and then taking a square root to obtain the results reported
in the main body of the text.

APPENDIX B: LATTICE DISCRETIZATION
METHOD B

In method B, the shifted momentum-space rapidity �y ¼
y� � is not discretized with uniform spacing in �y, but in a
velocitylike variable x, �1< x< 1, defined by

�y � atanhðxÞ; d �y ¼ 1

1� x2
dx: (B1)

Compared to method A, this has the effect of giving more
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lattice points around �y ¼ 0, where the �W functions are typically sharply peaked.
With sinh2ð �yÞ ¼ x2=ð1� x2Þ and cosh2ð �yÞ ¼ 1=ð1� x2Þ, this leads to

�W s;
;xð�þ 
Þ ¼ �W s;
;xð�� 
Þ þ 2


�
fð�; xÞ�1C� gð1� x2Þ1=2A

þ x

�

��
1� �2

�2iso

�
fð�; xÞ�1B� ðDS

� � ð1� x2Þ@xÞ �W s;
;xð�Þ
��

(B2)

with (choosing now � ¼ 2)

fð�; xÞ � ð1� x2Þ�2

�
1þ

�
�2

�2iso
� 1

�
x2
�
2
; (B3)

and

A � i½viAi
sð�Þ; �W s;
;xð�Þ�;

B � viDS
�A

i
sð�Þ;

C � vi

2�

�
�i;s

�
�� 


2

�
þ�i;s

�
�þ 


2

��
� �2x

4�2isoð1� x2Þ1=2
�
��

s

�
�� 


2

�
þUs�ð1=2Þ�

�
s�1

�
�� 


2

�
Uy

s�ð1=2Þ þ��
s

�
�þ 


2

�

þUs�ð1=2Þ�
�
s�1

�
�þ 


2

�
Uy

s�ð1=2Þ

�
: (B4)

The currents are then given by

j� ¼ �m2
D

Z 2�

0
d


Z 1

�1
dxð1� x2Þ�ð3=2Þ �W ;

ji ¼ �m2
D

Z 2�

0
d


Z 1

�1
dxvið1� x2Þ�1 �W ;

j� ¼ �m2
D

Z 2�

0
d


Z 1

�1
dxxð1� x2Þ�ð3=2Þ �W ;

(B5)

where the integrations over x and 
 are replaced by uni-
formly spaced discrete sums.

All other lattice equations of motion are as in method A.

APPENDIX C:MATCHINGTOCGC PARAMETERS

For fixing the dimensionful parameters of our numerical
simulation in a way that makes contact with heavy-ion
physics, we proceed as in Ref. [34] and refer to the
color-glass-condensate framework [37,59] and take as the
starting time for the plasma phase �0 ’ Q�1

s , where Qs is
the so-called saturation scale.

In order to determine the only other dimensionful pa-
rameter in our HEL effective field equations, the Debye
mass mD at the (fictitious because of preplasma) time tiso,
we assume a squashed Bose-Einstein distribution function
for the hard particle distribution function (14) through

fisoðpÞ ¼ N ð2NgÞ=ðep=T � 1Þ where Ng ¼ N2
c � 1 is the

number of gluons and N a normalization that is adjusted
such that at � ¼ �0 the hard-gluon density of CGC esti-
mates is matched. Since the expansion is, by assumption,
purely longitudinal, T is a constant transverse temperature,
and it has indeed been found in CGC calculations that the
gluon distribution is approximately thermal in the trans-

verse directions, with T ¼ Qs=d and d�1 ’ 0:47 according
to Ref. [37]. The normalization N can then be fixed by
following Ref. [60], where the initial hard-gluon density is

nð�0Þ ¼ c
NgQ

3
s

4�2Nc	sðQs�0Þ
: (C1)

Here c is the gluon liberation factor, for which different
estimates can be extracted from the literature.
According to Ref. [60], the numerical CGC simulations

of Refs. [61,62] correspond to c ’ 0:5, while an approxi-
mate analytical calculation by Kovchegov [55] gave c ¼
2 ln2 � 1:386. We adopted this higher value for the nu-
merical simulations in Figs. 6–9, which is the more opti-
mistic one from the point of view of plasma instabilities
and which is actually not far from the most recent numeri-
cal result c ’ 1:1 by Lappi [56].
With �iso remaining a free parameter which determines

how anisotropic the gluon distribution is at �0, the normal-
ization N is now fixed by

nð�0Þ �0�iso
¼ nð�isoÞ ¼ 2�ð3Þ

�2
N NgT

3: (C2)

For a purely gluonic plasma, the isotropic Debye mass is
given by

m2
Dð�isoÞ ¼ N

4�	sNcT
2

3
; (C3)

which together leads to

m2
Dð�isoÞ�20ðQs�0Þ�1 ¼ �cd

6�ð3Þ
�0
�iso

� 1:285
�0
�iso

; (C4)

when c ¼ 2 ln2 and Nc ¼ 3. We adopt this value for our
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simulations where Nc ¼ 2, since in previous studies of the
stationary anisotropic situation little difference was found
between the SU(2) and the SU(3) cases provided mD was
the same [31]. With our choice of an initial anisotropy
given by �0=�iso ¼ 10, equating �0 ¼ Q�1

s and using units
where �0 ¼ 1, the above result corresponds to the value
mD ¼ 3:585 employed in Figs. 6–9.

The lower value c ’ 0:5 for the gluon liberation factor
corresponds to a smaller Debye mass, which turns out to be

rather expensive in computer time, because one has then to
go to much larger values of � to obtain comparable effects
and one cannot increase the time steps much without losing
accuracy. However, in order to see the effect of this lower
value of c (which now seems disfavored [56]), it should
suffice to simply rescale the � values of Figs. 6–9 such that
the weak-field Abelian regime matches the semianalytical
results presented in Fig. 1 of Ref. [34], where c ¼ 0:5 was
employed.
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