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We study monopole solutions of the quantum exact low-energy effective N ¼ 2 super Yang-Mills

theories of Seiberg and Witten. We find a first-order differential equation for the spatial dependence of the

moduli and show that it can be interpreted as an attractor equation. Numerically integrating this equation,

we try to address the question of what happens when one approaches the quantum core of the monopole

where the low-energy effective theory breaks down or, alternatively, where there are modified monopole

solutions that do not have a strongly coupled quantum core so that one may trust the solution not only

asymptotically.
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I. INTRODUCTION

In the paper [1], quantum-corrected Bogomol’nyi-
Prasad-Sommerfield (BPS) monopole solutions in N ¼
2 supersymmetric Yang-Mills theory were found. Using
the exact low-energy effective Hamiltonian derived from
the Seiberg-Witten solution of the effective action [2] it
was shown that as one moves towards the center of the
monopole, the moduli of the solution change in exactly
such a way as to keep the phase of the local central charge
constant. As was shown in [3,4], this result can be thought
of as a rigid, nongravitational counterpart of the attractor
mechanism [5,6] and as such it serves as a toy model for
the full gravitational attractor mechanism.

However, while the original attractor mechanism is
purely classical and perturbative quantum corrections
have only recently been considered [7–10], in the gauge
theory case the theory is fully quantum, both perturbative
and nonperturbative. One might therefore hope to learn
more about quantum corrections to the attractor mecha-
nism by studying this toy model.

There is also another motivation for further studying the
description of quantum-corrected monopoles given in [1].
As one approaches the center of the monopole the moduli
reaches the strong coupling region where the effective
action description ceases to be valid and one cannot trust
the solution anymore. In this paper we investigate possible
ways out of this dilemma. One possibility would be to
mimic the enhancon idea [11] so that one cuts off the
solution at some finite radius and replaces the center with
another weakly coupled solution. Another possible solu-
tion would be to use a duality transformation to change the
strongly coupled description in the core to a weakly
coupled dual description.

Indeed in this paper we argue that a scenario somewhat
analogous to the enhancon mechanism is possible to real-
ize. By appropriately choosing an integration constant of

the BPS equation (which is forced to be zero in the clas-
sical ’t Hooft-Polyakov solution), we are able to find a
natural cutoff point in the weak coupling region. At the
cutoff radius both electric and magnetic fields are zero and
there is no contribution to the mass of the monopole from
the inner boundary. The center gets replaced by a bubble of
Higgs vacuum. The similarity to the enhancon mechanism
is only partial however; in our scenario we see no sign of
symmetry enhancement. In fact, while the Abelian parts of
the gauge field goes to zero at the cut off radius, the non-
Abelian parts (W bosons) stay massive and nonzero. Also,
one might have hoped that the quantum corrections would
have made the geometry completely nonsingular (along the
lines of [12]) but the energy density will be discontinuous
indicating the presence of a shell-like singularity.
This paper is organized as follows. In Sec. II we review

the basic results of [1]. In Sec. III we derive a differential
equation for the spatial dependence of the moduli of the
solution and show how this equation is related to the
attractor mechanism. In Secs. IV and V we discuss the
general behavior of the various fields as well as the energy
density when one moves towards the center of the mono-
pole. In Sec. VI we then give numerical results for various
special cases and discuss the various scenarios that appear
and the possibility to enhance them to solutions valid
everywhere. Finally we conclude in Sec. VII. In the ap-
pendix various useful expansions around the strong cou-
pling singularity (the attractor point) u ¼ 1 are discussed.

II. REVIEW

The leading term of the low-energy effective action of
N ¼ 2 super Yang-Mills theory is determined by a hol-
omorphic function F ðW Þ of theN ¼ 2 gauge superfield
W

S F ¼ 1

2�
Im

Z
d4xd4�F ðWÞ: (1)

Reducing the N ¼ 2 action to N ¼ 1 formulation and
then to N ¼ 0 language we find for the bosonic part the
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action

S F ¼ � 1

4�
Im

Z
d4xF AB

�
1

2
ðBA

i þ iEA
i ÞðBB

i þ iEB
i Þ

þ r��
Ar� ��B þ 1

2
½�; ���A½�; ���B

�
;

where the magnetic and electric field are components of
the field strength tensor BA

i ¼ �ijkF
jkA and EA

i ¼ FA
0i, � is

the complex scalar, A ¼ 1; 2; 3 is the SUð2Þ group index,
and F A and F AB are the first and second derivative of the

prepotential F A ¼ @F
@�A , F ABð�Þ ¼ @F

@�A@�B .

We consider only static configurations and choose the
gauge r0�

A ¼ 0.
In order to have finite energy configurations the vacuum

expectation value for r ! 1 must approach the Higgs
vacuum, i.e. the potential must be zero and the scalar field
must commute with its conjugate ½�; ��� ¼ 0. We can write
the expectation value using a unit vector in the form

h�Ai ¼ aeA:

Then since F must be gauge invariant, it can depend only
on �2 ¼ �3

A¼1�
A�A and the derivative F A is simply

F A ¼ @F ð�Þ
@�

�A

�
¼ F 0 �

A

�
: (2)

The expectation value of the dual field �DA ¼ F A is

h�DAi ¼ F 0eA � aDeA:

The parameter a is not gauge invariant; under the Weyl
group it changes its sign a $ �a. Classically, a suitable
gauge invariant parameter to distinguish the various Higgs
vacua is u ¼ h12�2i.

It was shown in [1] that as long as the imaginary part of
F AB is positive it is possible to write the effective
Hamiltonian as a positive definite part plus a total deriva-
tive. Moreover, putting the positive definite part to zero one
gets a BPS equation for the general monopole which is the
same as for the classical theory

BA
j þ iEA

j þ ei�
ffiffiffi
2

p rj�
A ¼ 0; (3)

where ei� is a constant phase. When the BPS equation is
satisfied the whole contribution to the energy is from the
total derivative term and solutions satisfying this equation
are called BPS solutions.

We define the electric and magnetic quantum numbers
by integrals at spatial infinity as

nea ¼ �
Z

d ~� � ~�A�
A;

nmaD ¼ � 1

4�

Z
d ~� � ~BA�D

A ;

(4)

where ~�A is the momentum conjugate to the gauge field
~AA

~� A ¼ � 1

4�
RefF ABð ~BB þ i ~EBÞg: (5)

The contribution to the mass from the total derivative
term can be written as

Im ðei�ZÞ; (6)

for Z ¼ neaþ nmaD. This contribution to the energy will
have its maximum value if we choose the phase ei� to be
related to the central charge Z by

ei� ¼ i
�Z

jZj : (7)

Then the BPS bound for the total energy is

E � jZj: (8)

As has been shown by Seiberg and Witten in [2], the
vacuum expectation values aðuÞ and aDðuÞ depend on the
gauge invariant complex parameter u, which labels the
different vacua

aðuÞ ¼ 4

�q
EðqÞ; aDðuÞ ¼ �i

4

�q
½Eðq0Þ � Kðq0Þ�;

(9)

where q2 ¼ 2
1þu , q

02 ¼ 1� q2 and where EðqÞ and KðqÞ
are complete elliptic integrals of the first and second kind.
The complexified coupling constant in this case is

� ¼ @2

@a2
F ¼ @aD

@a
¼ i

Kðq0Þ
KðqÞ : (10)

This description of the low-energy dynamics is formally
valid in the complex u plane outside a region given by the

curve of marginal stability Im aDðuÞ
aðuÞ ¼ 0where the spectrum

of the theory changes: particles become unstable or may
disappear from the spectrum completely. In fact, the effec-
tive description should only be trusted in the region where
the degrees of freedom integrated out are heavy compared
to the degrees of freedom kept in the effective action. This
condition defines a much larger region where the effective
description can be trusted.
In order to find a numerical solution to the BPS equa-

tions it is necessary to make some simplifying assump-
tions. The ’t Hooft-Polyakov monopole [13,14] can be
found when we impose symmetry under the diagonal
SOð3Þ subgroup of the product of rotations and global
gauge transformations SOð3Þ � SOð3ÞG,1 i.e. invariance

under generators ~K ¼ ~J þ ~T where ~J generates rotations

and ~T gauge transformations. By imposing further a Z2

symmetry which consists of parity plus a sign change of �
we are left with the ansatz

1SOð3ÞG is the homomorphic image of the gauge group SUð2Þ.
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�A ¼ eA�ðrÞ; AA
i ¼ �Aije

j

�
1� LðrÞ

r

�
;

AA
0 ¼ eAbðrÞ;

(11)

where r ¼ ffiffiffiffiffiffiffiffi
xixi

p
is the usual distance from the origin and

eA ¼ xA=r is a unit radial vector. The electric and magnetic
fields are then

BA
i ¼ eie

A L
2 � 1

r2
þ P A

i

Lr

r
;

EA
i ¼ �eie

Abr � P A
i

bL

r
;

(12)

with the projector P A
i ¼ �A

i � eie
A. The components pro-

portional to eie
A and P A

i we will call Abelian and non-
Abelian respectively, since the Abelian part is related to the
Abelian Uð1Þ symmetry which survives symmetry
breaking.

Inserting in the BPS equations (3) one finds

ffiffiffi
2

p
ei��r ¼ 1� L2

r2
þ ibr;

ffiffiffi
2

p
ei�� ¼ � d

dr
lnLþ ib:

(13)

From these we can obtain the differential equation

d2

dr2
ðlnLÞ ¼ L2 � 1

r2
; (14)

which has the solution

L ¼ 	r

sinh½	ðrþ �Þ� ; (15)

with constants � and 	. The constant 	 is given by con-
sidering the r ! 1 limit: Taking the limit of the real part
of the second BPS equation (3) one sees that

ffiffiffi
2

p
Re

�
i
nm �aD þ ne �a

jnmaD þ neaj a
�
¼ � lim

r!1
d

dr
lnL; (16)

the right-hand side of this is

	 ¼ lim
r!1 � 1

r
þ 	 coth½	ðrþ �Þ�:

Altogether 	 depends only on u0 ¼ limr!1 (for given
quantum numbers)

	 ¼ ffiffiffi
2

p nma �a

jnmaD þ neaj Im
aD
a

: (17)

For the classical ’t Hooft-Polyakov monopole we require
the potentials AA

i to be finite at r ¼ 0 which implies the
condition L ! 1 for r ! 0. Then the parameter � must be
chosen to be zero. However we do not need to impose any
such requirement on the quantum-corrected monopole
since r ¼ 0 always lies in the region where the theory
becomes strongly coupled and we cannot trust the low-
energy description anymore. We therefore leave � arbi-

trary. This does not affect the r ! 1 behavior, so the
magnetic quantum number is just as in the classical case
nm ¼ 1.
Defining

X ¼ Reðei��Þ; XD ¼ Reðei��DÞ; (18)

it was shown in [1] that

nmXDðrÞ þ neXðrÞ ¼ 0; (19)

i.e. the local central charge Z ¼ nm�D þ ne� has a con-
stant phase

Re ½ei�ZðrÞ� ¼ 0: (20)

The same result was also derived from a string theory
perspective in [15–17]

The imaginary part of �D

� can be written using the central

charge Z and the field X as

Im
�D

�
ðrÞ ¼ 1

nmj�j2 jZðrÞjXðrÞ: (21)

Thus if Im �D

� ¼ 0 at a critical radius r0, this corresponds to

two possibilities: either jZðr0Þj ¼ 0 (a solution called Z
pole) or Xðr0Þ ¼ 0 (a solution called X pole).

III. MODULI SPACE DEPENDENCE

In this section we shall derive the spatial dependence of
the moduli. We know both the spatial dependence of the
scalar field and the dependence on the moduli. This will
enable us to find a differential equation for the moduli. As
was mentioned before, the prepotentialF can depend only
on �2 ¼ �3

A¼1�
A�A. Taking the derivatives we find that

the second derivative (the coupling) can be written as

F AB ¼ �D

�
P AB þ �eAeB; (22)

with � ¼ F 00 given by (10).
Inserting the radial ansatz in Eq. (5) and using the fact

that P AB and eie
B are orthogonal projection operators we

have

�iA ¼ � 1

4�
Re

�
P Ai

�
Lr

r
� i

bL

r

�
�D

�

þ �eieA

�
L2 � 1

r2
� ibr

��
:

The functions L, b are real, so we can write everything in
terms of real and imaginary parts and obtain

�iA ¼ � 1

4�

�
P Ai

�
Lr

r
Re

�D

�
þ bL

r
Im

�D

�

�

þ eAei

�
L2 � 1

r2
Re�þ br Im�

��
: (23)
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On the other hand we have from the BPS equation (3)

BA
i ¼ � ffiffiffi

2
p

Refei�ri�
Ag;

�iA ¼ � 1

4�
RefF ABðBB

i þ iEB
i Þg

¼ 1

4�

ffiffiffi
2

p
Refriðei��D

A Þg;

where we have used that F ABri�
B ¼ riF A ¼ ri�

D
A .

In terms of the definitions (18) we may now write

BA
i ¼ � ffiffiffi

2
p riðeAXÞ; (24)

�iA ¼ 1

4�

ffiffiffi
2

p riðeAXDÞ: (25)

Then multiplying Eq. (19) by
ffiffiffi
2

p
eA and letting ri operate

on it, we get

nm
ffiffiffi
2

p riðeAXDÞ þ ne
ffiffiffi
2

p riðeAXÞ ¼ 0;

which gives us another relation between the conjugate
momentum and the magnetic field

�iC ¼ ne
nm

1

4�
BA
i �AC: (26)

Comparing this with (23) (after inserting the radial ansatz)
we are left with

ne
nm

1

4�

�
eieA

L2 � 1

r2
þ P iA

Lr

r

�

¼ � 1

4�

�
P iA

�
Lr

r
Re

�D

�
þ bL

r
Im

�D

�

�

þ eAei

�
L2 � 1

r2
Re�þ br Im�

��
:

Splitting this in the real and imaginary parts we have the
following relations:

ne
nm

L2 � 1

r2
¼ �

�
L2 � 1

r2
Re�þ br Im�

�
; (27)

ne
nm

Lr

r
¼ �

�
Lr

r
Re

�D

�
þ bL

r
Im

�D

�

�
: (28)

Thus although we do not have the explicit dependence of b
on r or u we know that

b ¼ �
ne
nm

þ Re �D

�

Im �D

�

Lr

L
; br ¼ �L2 � 1

r2

ne
nm

þ Re�

Im�
:

(29)

When we insert this in the BPS equation (3) we find

ffiffiffi
2

p
ei��r ¼ 1� L2

r2
i

Im�

�
ne
nm

þ ��

�
:

But since �ðrÞ ¼ �ðuðrÞÞ, we can use the chain rule �r ¼

�uur and the dependence �ðuÞ in (9), which gives

�u ¼ q

�
KðqÞ:

Inserting everything in the BPS equation we get

ffiffiffi
2

p
ei�

ffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ u

s
KðqÞ
�

ur ¼ 1� L2

r2
i

Im�

�
ne
nm

þ ��

�
;

and we find the differential equation

ur ¼ �

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

p 1� L2

r2
e�i�

KðqÞ
i

Im�

�
ne
nm

þ ��

�
: (30)

This is a first-order differential equation for the depen-
dence of the moduli space parameter on the distance r to
the center of the monopole. At r ¼ 1 the moduli space
parameter u will take the vacuum value u0 of the theory.
Moving towards the center of the monopole the parameter
u will change according to the above differential equation.
The solutions have one integration constant—we will
choose it to be the parameter which labels the vacua, i.e.
the value of u at infinity uðr ! 1Þ ¼ u0. From u0 the
constants � and 	 [which figures in the function LðrÞ]
are determined.
The dependence of the solution uðrÞ on � is hidden only

in the function L and can be removed by changing the
parameter from r to X since from (13)

ffiffiffi
2

p dX

dr
¼ 1� L2

r2
:

This changes the differential equation to

uX ¼ �

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

2

s
e�i�

KðqÞ
i

Im�

�
ne
nm

þ ��

�
: (31)

So � does not affect the shape of the curve uðrÞ, only its
parametrization.

A. Spatial dependence

Since the shape of the uðrÞ curve can be separated from
its parametrization we begin by studying the parametriza-
tion given by XðrÞ. From (13) we find that the spatial
dependence is given by

X ¼ 1ffiffiffi
2

p
�
� 1

r
þ 	

tanhð	rþ 	�Þ
�
: (32)

We see from Fig. 1 that there are essentially three different
cases depending on whether � is positive, negative, or zero.

When � > 0, X changes monotonically from X ¼ 	=
ffiffiffi
2

p
at

r ¼ 1 to X ! �1 at r ¼ 0. For � ¼ 0, X also changes
monotonically but ends at X ¼ 0 for r ¼ 0. The � < 0 case

is quite different. For r ¼ 1 it starts at X ¼ 	=
ffiffiffi
2

p
and

decreases. For finite r there is a minimum and then X starts
to increase and goes to1 at r ¼ �� > 0. The maximum X
is at an r (see Fig. 1) which is a solution of the condition
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	r ¼ sinh½	ðrþ �Þ�: (33)

In the limit � ! 1 the r dependence of X is very simple:

X ¼ 1=
ffiffiffi
2

p ð	� 1=rÞ. As we will see later, in this limit all
non-Abelian parts of the fields are suppressed.

B. Attractor equation

Using X as a parameter and using the Seiberg-Witten
metric ds2 ¼ Im�d�d ��, the equation for u becomes

uX ¼ ie�i�

2nm
gu �u@ �u

�Z ¼ � 1

nm
gu �u@ �ujZj; (34)

where we also have used the local central charge ZðuÞ ¼
nm�DðuÞ þ ne�ðuÞ to rewrite the equation in a suggestive
form. In fact, since there is a one-to-one map between u
and Zwe may use Z as a coordinate instead of u. This leads
us to the equation

dZ

dX
¼ ie�i�

2nm
gu �u@uZ@ �u

�Z ¼ ie�i�

2nm
gZ

�Z; (35)

where gZ �Z is the Seiberg-Witten metric in Z coordinates
and, using the fact that the phase of Z is constant for each
solution, to the equation

djZj
dX

¼ 1

2nm
gu �u@ujZj@ �ujZj: (36)

This is an attractor equation as first discovered in [3] and it
can alternatively be derived taking the zero gravity limit of
the ordinary attractor equations. Using this form of the
equation and the fact that the Seiberg-Witten metric is

positive definite we see that djZj
dX > 0. This means that

when X is decreasing (which is the usual situation for
decreasing r), jZj will decrease and jZj ¼ 0 is an attractor
point.

C. General properties of the solutions

Using the above relations we may write

djZj
dr

¼ 1

2nm
gu �u@ujZj@ �ujZj dXdr ; (37)

as well as

arg
dZ

dX
¼ ��

2
� �: (38)

From (7) it is clear that the phase � and the phase of the
central charge sum up to �

2

� ¼ �

2
� argZ: (39)

From this we can see that the curve ZðrÞ is a straight line in
the Z plane going from Z0 ¼ Zð1Þ to Z ¼ 0. Since the
derivative dX

dr is in general positive, jZj will decrease when
we decrease r. However, if the sign of the derivative dX

dr

changes (which is the case for � < 0), the phase of the
derivative jumps by� and jZj starts to increase for decreas-
ing r, ending up at X ¼ 1 for r ¼ ��. This behavior, that
jZj ‘‘bounces’’ at some value of r and starts to increase,
leads us to call this class of solutions ‘‘bouncing
solutions.’’
The point at which the bouncing solution turns around is

given by (33). Whether the solution first hits Z ¼ 0 or the
curve of marginal stability distinguishes the X and Z poles.
As can be seen from Fig. 2, if� 2 ð� �

2 ;
�
2Þ the solution is a

Z pole; if � ¼ � �
2 it is both an X and a Z pole; otherwise it

is an X pole. It follows from the explicit form of X that the
X pole will reach the curve of marginal stability at a radius
r� given by a solution of

tanh½	ðr� þ �Þ� ¼ 	r�: (40)

-3

-2

-1

 0

 1

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

FIG. 2. Solutions, the curve of marginal stability and the
branch cut in the complex plane of the central charge.
Solutions with phase � 2 ð� �

2 ;
�
2Þ hit the curve of marginal

stability C at Z ¼ 0 and are Z poles. The others are X poles or XZ
poles (if � ¼ � �

2 ).

-2

-1

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

X

r

δ <0

δ =0

δ >0

FIG. 1. The dependence XðrÞ.
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Solutions which reach the curve of marginal stability at
r > 0 occur only for positive �. Thus we see that in the case
of X poles, the type of solution (bouncing or not) is given
uniquely by the choice of the sign of �.

We now turn to the Z poles. To simplify things we
concentrate on the case with quantum numbers nm ¼ 1,
ne ¼ 0 (here and for the rest of the paper). In this case the
central charge is given by the dual scalar field. Also the
solutions to the differential equation are symmetric with

respect to the real u axis, since du
dr ju ¼ du

drj �u.
The dual scalar field is zero at u ¼ 1 so the Z poles end

at this point in the u plane. We would like to see what value
the parameter r acquires at this point. At this point � ¼
4=� which corresponds to X ¼ 4=� cos�. In terms of r
this corresponds to the value rc, which solves

� 1

rc
þ 	 coth½	ðrc þ �Þ� ¼ ffiffiffi

2
p

cos�
4

�
: (41)

For X poles the factor cos� is negative and thus X becomes
zero before this point is reached. For Z poles (i.e. � 2
ð��=2; �=2Þ) the factor cos� is always positive and thus
u ¼ 1 is reached before X ¼ 0.

For positive cos� and � < 0 there are in principle two
possibilities: either the solution bounces back at some
point or it reaches u ¼ 1. This is governed by the value
of �: for a value of � greater than a certain �0 the solution
will reach Z ¼ 0 before it reaches the point of the bounce.
If � is smaller than �0 the solution will be a bouncing
solution. This particular value �0 < 0 solves the equation

8
ffiffiffi
2

p
�

	 cos�

	2 � 32
�2 cos

2�

¼ sinh

�
8

ffiffiffi
2

p
cos�

�

	

	2 � 32
�2 cos

2�
þ 	�0

�
: (42)

IV. ELECTRIC AND MAGNETIC FIELDS

As already mentioned the Abelian and non-Abelian
parts of the electric and magnetic fields are given by

Babel ¼ � ffiffiffi
2

p dX

dr
; Eabel ¼ Babel

Re�þ ne
nm

Im�
; (43)

Bnab ¼ � ffiffiffi
2

p X

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffi

2
p

r2
dX

dr

s
;

Enab ¼ Bnab

Re �D

� þ ne
nm

Im �D

�

:

(44)

In the classical case, for the ’t Hooft-Polyakov monopole,
the dual field is just a multiple of the scalar�D ¼ ��. So if
ne ¼ 0, the factors relating the Abelian and the non-
Abelian fields are equal. Furthermore, the coupling, and
thus the proportion between electric and magnetic fields, is

constant. In terms of the coupling constant g and the theta
angle the electric fields are related to the magnetic fields as

E ¼ �g2

8�2
B: (45)

Classically, the non-Abelian magnetic field is always
nonzero. In the quantum case the non-Abelian magnetic

field can become zero only if either X ¼ 0 or dX=dr ¼
1=ð ffiffiffi

2
p

r2Þ. The first case is the X pole and the other case

corresponds to the � ! 1 limit. Then X ¼ ð	� 1=rÞ= ffiffiffi
2

p
and the Abelian magnetic field is Babel ¼ �1=r2. The
Abelian electric field has a more complicated dependence,
due to the running coupling �. Thus we can identify the
� ! 1 as the Abelian limit, where there are only Abelian
fields [3].
The asymptotic behavior of the electric/magnetic fields

is the same for all types of solutions. The Abelian fields
behave for large r as 1=r2; the non-Abelian fields vanish
exponentially

Babel 	 � 1

r2
; Eabel 	 � 1

r2

Re�ðu0Þ þ ne
nm

Im�ðu0Þ ; (46)

Bnab 	 	

r
e�	ðrþ�Þ;

Enab 	 	

r
e�	ðrþ�Þ Re

�D

� ðu0Þ þ ne
nm

Im �D

� ðu0Þ
:

(47)

V. ENERGY DENSITY

The energy of a configuration is given by the
Hamiltonian

H ¼ 1

8�
Im

Z
d4xF ABðEA

i E
B
i þ BA

i B
B
i þ 2ri�

Ari
��BÞ;
(48)

so the energy density is

E ¼ 1

8�
ImF ABðEA

i E
B
i þ BA

i B
B
i þ 2ri�

Ari
��BÞ:

For a BPS solution we see that the electromagnetic field
and the Higgs field carry each one-half of the total energy.
We can use the BPS equation to substitute for the Higgs
field and consider twice the electromagnetic part of the
energy. In the radial ansatz the coupling F AB, the electric
and magnetic fields split in Abelian and non-Abelian com-
ponents. The energy density splits in an Abelian and a non-
Abelian part as well, with � being the Abelian coupling and
�D

� the non-Abelian coupling

E ¼ 1

4�
Im�ðB2

abel þ E2
abelÞ þ

1

2�
Im

�D

�
ðB2

nab þ E2
nabÞ:
(49)
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The Abelian and non-Abelian fields are given in Eq. (43)
and (44).

The ’t Hooft-Polyakov monopole is the classical case
with F ¼ 1

2 ��
A�A (and � ¼ 0). The Abelian and non-

Abelian coupling are the same,; furthermore this coupling
is fixed by its asymptotic value at infinity �ðu0Þ. Thus the
classical energy is

E cl ¼ Im�

4�
ðB2

abel þ E2
abel þ 2B2

nab þ 2E2
nabÞ: (50)

The Hamiltonian can bewritten as the term including the
BPS equationH 0 and a total derivative term, which can be
rewritten as a surface term

H¼H0 �
ffiffiffi
2

p
Im

�
e
i�Z

d3x

�
1

4�
riðBi

A�
A
DÞþrið�i

A�
AÞ
��

¼H0 �
ffiffiffi
2

p
Im

�
e
i�Z

S21
d2Si

�
1

4�
Bi
A�

A
D þ�i

A�
A

��

þ ffiffiffi
2

p
Im

�
e
i�Z

S2r0

d2Si

�
1

4�
Bi
A�

A
D þ�i

A�
A

��
:

According to the definition of the electric and magnetic
quantum numbers, the surface term at infinity is equal to
�ðnmaD þ neaÞ. We can use the relation between the
magnetic field and the conjugate momentum

4�nm�
A
i � neB

A
i ¼ 0;

to write the third term only in terms of the magnetic field

H ¼ H0 þ
ffiffiffi
2

p
Im½ei�ðnmaD þ neaÞ�

þ ffiffiffi
2

p
Im

�
e
i� Z

S2r0

d2SiB
i
A

1

4�

�
�A

D þ ne
nm

�A

��
:

According to our ansatz, the magnetic field splits in an
Abelian and a non-Abelian part BA

i ¼ eieAðL2 � 1Þ=r2 þ
ð�A

i � eieAÞL0=r and the scalar fields are pure Abelian
�A ¼ �eA. Multiplying these by d2Si ¼ d�r2ei only
the Abelian terms are left

H ¼ H0 þ
ffiffiffi
2

p
Im½ei�ðnmaD þ neaÞ�

þ ffiffiffi
2

p
Im

�
e
i� Z

S2r0

d�
L2 � 1

4�nm
ðnm�D þ ne�Þ

�

¼ H0 þ
ffiffiffi
2

p
Im½ei�ðnmaD þ neaÞ�

þ ffiffiffi
2

p
Im

�
e
i� 1

nm
ðL2 � 1Þðnm�D þ ne�Þ

���������r¼r0

:

The second term includes the asymptotic value of the
central charge Z0 ¼ Zðr ¼ 1Þ ¼ nmaD þ nea. The phase
� was chosen in terms of this central charge as

ei� ¼ i
�Z0

jZ0j ;

so that the second term is equal to
ffiffiffi
2

p jZ0j as it should be for

a BPS state. The third term represents the contribution
from the inner boundary. Since the phase of the central
charge is constant, we can rewrite the third term in much
the same way as the second term and we get for a BPS state
(H0 ¼ 0)

H ¼ ffiffiffi
2

p jZðr ¼ 1Þj þ ffiffiffi
2

p 1

nm
ðL2ðr0Þ � 1ÞjZðr0Þj:

The term L2 � 1 is up to a factor the reparametrization
term dX=dr. It is negative for � � 0 with L ! 1 for � ¼ 0
and r ! 0. For negative delta, however, it can change sign:
from negative (at large r) to positive (at small r). This
shows that the contribution from the inner shell lowers the
total energy of the configuration. For Z poles the energy of
the configuration is lowered for any r larger than the
critical value rcr, at which the point u ¼ 1 (and thus Z ¼
0) is reached. For X poles it is lowered for all r larger than
the value at which the curve of marginal stability is crossed
and the BPS equations do not necessarily have to hold any
more. For bouncing solutions the energy is lowered for r
larger than the bouncing point, however, it is increased for
smaller values and tends to infinity for r ! ��.
This behavior gives us a possibility to construct a com-

pletely weakly coupled monopole solution by utilizing the
properties of the bouncing solution. If we choose � in such
a way that the value of u for which the solution turnaround
is in the region where we may trust the low-energy effec-
tive description, we may cut off the solution there. The
discussion above shows that there is no contribution to the
energy from the inner boundary and we may glue in a
massless bubble of Higgs vacuum in the center. That is a
bubble where the Higgs field is constant radial with the
value it has at the cutoff point, while the gauge field is pure
gauge A ¼ g�1dg with g being the gauge transformation
that takes one from the Higgs field being constant and
pointing in, say, the z direction to the radial gauge where
the Higgs field points radially outwards. Although there is
no conserved charge carried by the non-Abelian fields, they
have nonzero energy density. This means that there is a
shell-like discontinuity at the cutoff radius.
The question of how to choose the parameter � does not

have a unique answer. We would like to choose it so that
the solution stays in the weak coupling region for all values
of r. Then a natural boundary is the Wilsonian core defined
by the W bosons and the monopoles having equal mass
there. Inside the monopoles will be lighter than the W
bosons and should thus be used as the degrees of freedom
of the effective action. Outside the W bosons are lighter
and the standard effective action can be used. Numerically
the boundary of this region has the topology of a circle and
lies outside the curve of marginal stability but touches it at
one point as in Fig. 3. There will of course be many other
boundaries where other solitons become lighter than theW
bosons but they will not interest us here.
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VI. EXAMPLES

In this section we will focus on the case with quantum
numbers nm ¼ 1, ne ¼ 0.
Solving the equation for the spatial dependence of the

moduli numerically we may investigate the behavior of
solutions for various choices of parameters. To illustrate
this, in Fig. 4 we give a graph which shows how the
magnetic and electrical charge of the dyon changes when
one approaches the core of the monopole for various values
of the phase of the central charge. One can see in the figure
that all solutions have unit magnetic charge but the electric
charge gets induced by the Witten effect and increases for
solutions with increasing j�j.
We would now like to investigate the behavior of the

solutions on the parameter � and, in particular, the behav-
ior of bouncing versus nonbouncing solutions. In Figs. 5–7,
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we therefore choose a typical Z pole and plot the fields for
two values of �. For � > �0 the solution will hit the strong
coupling singularity at u ¼ 1 at finite r and thus not be a
bouncing solution, while for � < �0 it will.

In all of these figures, the vertical line at larger r repre-
sents the point of the bounce while the inner vertical line
represents the r for which the nonbouncing solution hits
the strong coupling singularity u ¼ 1. Notice that all the
Abelian fields are zero at the bouncing point while the non-
Abelian fields do not seem to take any notice of the fact
that the absolute value of the moduli in fact starts to
increase again.

Finally, in Fig. 7 we display the energy density of the
same two choices for � for the Z pole. Notice that the
energy density of the Abelian components is zero at the
bouncing point while the energy density of the non-
Abelian fields is not.

VII. SUMMARYAND CONCLUSIONS

We have investigated properties of monopole solutions
of the full low-energy effective action of N ¼ 2 SUð2Þ
super Yang-Mills theory. We have shown that the solutions
of the quantum-corrected BPS equations are such that the
local central charge always has constant phase as one
approaches the center of the monopole. We further showed
that this equation can be rewritten in a form analogous to
the attractor equation and concluded that we are studying
the attractor mechanism with gravity turned off as was
previously concluded in [3,4].

The general solution of the BPS equation is then such
that it starts out far away from the center at weak coupling.
As one approaches the center the moduli, u changes toward
stronger coupling in such a way that the local central
charge of the theory has constant phase. The generic
solution will at some finite radius enter the strong coupling
region and may even hit the point where the monopoles
become massless. However, by choosing the integration
constants appropriately one may arrange things so that the
solution is cut off while the moduli is still in the weak
coupling region and the strongly coupled center gets re-
placed by the weakly coupled Higgs vacuum. Thus we
have managed to find a solution to the quantum-corrected

BPS equation which is everywhere weakly coupled such
that the effective action description can be trusted.
The integration constant � could in principle be consid-

ered as a new moduli for quantum BPS monopoles. This
would mean a very drastic modification to the theory of
monopoles as we know it. To get rid of this potential
moduli one would need a mechanism to fix it. We have
not found such a mechanism that would uniquely fix � in
each case but we now discuss various more or less natural
choices. The first natural choice is � ! 1 which is also
considered in [3]. This means that all non-Abelian fields
are turned off. In this scenario, since all non-Abelian fields
are turned off, the monopoles look more like Dirac mono-
poles than ’t Hooft-Polyakov monopoles.
The second natural choice is to choose � such that the

solution is a bouncing solution that is cut off at the
Wilsonian core. This is the choice we have advocated in
this article. It has the advantage that the solution lies
entirely in the weakly coupled region. However, there is
no argument why we must choose exactly the Wilsonian
core and not, for instance, a point which lies slightly out-
side the Wilsonian core. Therefore, in this scenario a
mechanism to fix � uniquely is missing.
A third natural choice of �would be to try to choose it so

that the solution hits the strong coupling singularity at r ¼
0. It is interesting to observe that this is not always pos-
sible. While for an X pole if we choose � ¼ 0 we hit the
curve of marginal stability (at X ¼ 0) when r ¼ 0; for a Z
pole, any choice of �will give a solution that hits the strong
coupling singularity u ¼ 1 for r > 0.
Another interesting question to ask is if in the gravita-

tional attractor mechanism there exists the equivalent of
our bouncing solutions. In [3] it seemed that one is forced
to take � ! 1 for the comparison with the gravitational
case to work. However, this is possibly a consequence of
the fact that the gravitational side of the problem was being
purely classical.
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APPENDIX: EXPANSIONS AROUND u ¼ 1

The scalar field� and its dual�D are written in terms of
elliptic integrals. The arguments of these go respectively to
0 and 1 for u ¼ 1. The elliptic integral KðqÞ diverges for
q ! 1, so we must use expansions.

The general formulas for expansions of the elliptic in-
tegrals around k ¼ 0 and k ¼ 1 respectively are for k ! 0

KðkÞ ¼ �

2

�
1þ

�
1

2

�
2
k2 þ � � � þ

�ð2n� 1Þ!!
2nn!

�
2
k2n þ � � �

�
;

(A1)

EðkÞ ¼�

2

�
1� 1

22
k2 ��� ��

�ð2n� 1Þ!!
2nn!

�
2 k2n

2n� 1
��� �

�
;

(A2)

for k ! 1

KðkÞ ¼ ln
4

k0
þ

�
1

2

�
2
�
ln
4

k0
� 2

1 � 2
�
ðk0Þ2

þ
�
1 � 3
2 � 4

�
2
�
ln
4

k0
� 2

1 � 2�
2

3 � 4
�
ðk0Þ4

þ
�
1 � 3 � 5
2 � 4 � 6

�
2
�
ln
4

k0
� 2

1 � 2�
2

3 � 4�
2

5 � 6
�
ðk0Þ6

þ � � � (A3)

EðkÞ ¼ 1þ 1

2

�
ln
4

k0
� 1

1 � 2
�
ðk0Þ2

þ 12 � 3
22 � 4

�
ln
4

k0
� 2

1 � 2�
1

3 � 4
�
ðk0Þ4

þ 12 � 32 � 5
22 � 42 � 6

�
ln
4

k0
� 2

1 � 2�
2

3 � 4�
1

5 � 6
�
ðk0Þ6

þ � � � : (A4)

We shall expand u in the form u ¼ 1þ "ei’. For the field
� and its dual �D we find the following expansions

� ¼ 4

�

�
1� 1

8
" ln"ei’ þ

�
5

8
ln2þ 1

8

�
"ei’ � 1

8
i’"ei’

þ 1

4
"ei’ þOð"2Þ

�
; (A5)

�D ¼ i
1

2
"ei’

�
1� 5

32
"ei’

�
: (A6)

We can write the expansion of �D in the form �D 	
i
2 "e

i’e exp½�ð 532Þ"ðcos’þ i sin’Þ�, so its phase is

arg�D ¼ �
2 þ ’� 5

32" sin’. This phase is constant along

the solution of the differential Eq. (30) and equal to �
2 � �.

Thus we get a relation between " and ’ close to u ¼ 1 for
curves of constant Z phase

�þ ’ 	 5

32
" sin’: (A7)

From this we see that ’ goes to �� as we get closer to
u ¼ 1.
We can find the differential equation for " and solve it

approximately to lowest order. Inserting u ¼ 1þ "e�i� in
(31) we find the differential equation

"t ¼
�
2

ffiffiffi
2

p

� 1
2 ln"

; (A8)

where we used KðqÞ 	 � 1
2 ln" and i ��= Im� 	 1. The

solution of this equation is

" 	 ��
ffiffiffi
2

p ðt� t0Þ
ln½��

ffiffiffi
2

p ðt� t0Þ�
; (A9)

where the constant t0 is chosen so that "ðt0Þ ¼ 0, i.e. for Z
poles and critical Z poles t0 ¼ tðrcÞ, for XZ poles and
bouncing XZ poles t0 ¼ 0. Thus close to u ¼ 1 the solu-
tion goes as

u ¼ 1þ ��
ffiffiffi
2

p ðt� t0Þ
ln½��

ffiffiffi
2

p ðt� t0Þ�
e�i�: (A10)

In terms of the parameter r this can be written (except for
critical Z poles)

u ¼ 1� �
ffiffiffi
2

p
trðraÞ r� ra

lnðr� raÞ e
�i�;

where ra is the point at which u ¼ 1. For critical Z poles

trðraÞ ¼ 0, so we have to take a higher term and get u ¼
1� �

ffiffiffi
2

p
1
4 trrðraÞðr� raÞ2= lnðr� raÞ.

For the calculation of the electric fields we need the

expansions of � and �D

� ; these are

� ¼ � i�

ln"þOð"0Þ
�
1þ 1

8
"ei’ þOð"2Þ

�
; (A11)

�D

�
¼ i�

8
"ei’ þOð"2Þ: (A12)

Further we need the following expansions:

Re�

Im�
¼ � � 1

8" sin�þOð"2Þ
1þ 1

8" cos�þOð"2Þ ; (A13)

Re �D

�

Im �D

�

¼ tan�þOð"Þ; (A14)

��D

�

Im �D

�

¼ �ið1þ i tan�Þ þOð"Þ: (A15)
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