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The calculation of the real part of a quasiparticle dispersion relation at next-to-leading order in the hard

thermal loop effective theory is a very difficult problem. Even though the hard thermal loop effective

theory is almost 20 years old, there is only one next-to-leading order calculation of the real part of a

quasiparticle dispersion relation in the literature [H. Schulz, Nucl. Phys. B413, 353 (1994)]. In this paper,

we calculate the fermion mass in QED and QCD at next-to-leading order. For QED the result is M ¼
eT=

ffiffiffi
8

p ð1� ð1:427� 0:02Þe=4�Þ and for QCD with Nf ¼ 2 and Nc ¼ 3 we obtain M ¼ gT=
ffiffiffi
6

p ð1þ
ð1:867� 0:02Þg=4�Þ.
DOI: 10.1103/PhysRevD.78.045018 PACS numbers: 11.10.Wx, 11.15.�q

I. INTRODUCTION

It is well known that the behavior of an elementary
particle becomes modified when the particle propagates
in a medium. The particles become ‘‘dressed’’ by their
interaction with the medium, and one speaks of collective
modes, or quasiparticles. One studies these collective
modes by looking at the corresponding thermal propaga-
tors. The behavior of the quasiparticles is deduced from the
analytic structure of the propagator. In [1] it was shown
from general principles that the singularity structure of
certain components of gauge and matter propagators are
gauge independent, when all contributions of a given order
are systematically taken into account.

The calculation of dispersion relations for soft quantities
at next-to-leading order (NLO) in the hard thermal loop
(HTL) effective theory is notoriously difficult. There are
several calculations of damping rates at NLO. The soft
static gluon damping rate was calculated in Ref. [2]. The
damping rate of a soft static quark was calculated in
Refs. [3–5]. Calculations of masses and oscillation fre-
quencies require the real part of the dispersion relation,
which is considerably more difficult to obtain. There is
only one complete calculation in the literature of the real
part of a quasiparticle dispersion relation at NLO: the pure
glue plasma frequency in the long wavelength limit was
calculated by Schulz [6]. In this paper we calculate the
fermion mass, in QED and QCD, at NLO. It is straightfor-
ward to obtain the result for QCD from the corresponding
result for QED by adjusting the HTL masses and including
an overall factor CF in the quark self-energy.

For soft static electrons with momenta Q� ¼
ðq0 � eT; ~q ¼ 0Þ, the mass and damping rate of the quasi-
particle are obtained from the solution of the equation

detðQ6 ��retðQÞÞjq0¼M�i� ¼ 0: (1)

The fermion self-energy can be decomposed in the usual
way:

� ret ¼ �0�ð0Þ
ret þ ~� � q̂�ðiÞ

ret: (2)

Since we have taken q ¼ 0, the only nonzero component is

�ð0Þ
ret ðq0Þ ¼ Trð�0�retðQÞÞ=4. From now on, we suppress

the superscript ‘‘(0)’’ to simplify the notation. In addition,
we suppress throughout the subscript ‘‘ret’’ indicating the
retarded component of the self-energy. Using this notation
we write the dispersion relation as

q0 � �ðq0Þjq0¼M�i� ¼ 0: (3)

At leading order (LO), the self-energy is given by the
familiar HTL result,

Re�HTL ¼ e2T2

8q0
; Im�HTL ¼ 0: (4)

Substituting (4) into (3) we obtain the leading order results
for the mass and damping rate:

mf :¼ Mð0Þ ¼ eTffiffiffi
8

p ; �ð0Þ ¼ 0: (5)

We are interested in obtaining NLO corrections to these
results. To obtain these NLO corrections, we expand the
dispersion relation around the lowest order (LO) solution
in Eq. (5), keeping contributions to linear order in NLO
quantities. The resulting equations are particularly simple
because of the fact that the imaginary part of the LO HTL
self-energy is zero. The real and imaginary parts of the
dispersion relation give

Mð1Þ �Mð1Þ Re�0
HTL½Mð0Þ� � Re�NLO½Mð0Þ� ¼ 0;

�ð1Þ � �ð1Þ Re�0
HTL½Mð0Þ� þ Im�NLO½Mð0Þ� ¼ 0:

(6)

Using (4) and (5) we obtain
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Mð1Þ ¼ 1
2 Re�NLO½Mð0Þ�; �ð1Þ ¼ �1

2 Im�NLO½Mð0Þ�:
(7)

To obtain the NLO mass and damping rate from (7) we
must calculate the NLO self-energy. The original paper by
Braaten and Pisarski [7] identified three potential contri-
butions. They are (1) corrections to the LO result for the 1-
loop diagram obtained by expanding to next order in the
ratio of the soft external momentum to the hard loop
momentum; (2) contributions to the 2-loop diagrams
from the region of the phase space that corresponds to
both loops hard; and (3) contributions to 1-loop diagrams
with soft loop momentum, and all propagators and vertices
replaced with HTL effective ones. The power counting
arguments of Braaten and Pisarski refer to the maximum
possible contribution from each type of term. The actual
contribution may be lower order for kinematical reasons,
or because of some cancellation between different
integrals.

The full NLO contribution is contained in the dressed 1-
loop diagrams shown in Fig. 1, where the dots on the
vertices indicate the sum of the bare vertex and the HTL
vertex. These diagrams contain all of the contributions
identified by Braaten and Pisarski, if the loop momentum
is integrated over the full range from zero to infinity. The
integral will also contain subleading contributions that are
suppressed by powers of coupling.

It has been demonstrated that the NLO contribution to
the dispersion relation from the diagrams in Fig. 1 is gauge
invariant. This result is obtained by using the fact that the
HTL vertices and propagators satisfy the usual Ward iden-
tities. One finds that the gauge dependent contribution to
the NLO fermion self-energy is proportional to an integral

times the square of the inverse propagator Sð�1ÞðQÞ ¼ Q6 �
�HTLðQÞ, which vanishes on the mass shell. In [8] it was
pointed out that a straightforward evaluation of the integral
produces mass-shell singularities that cancel the contribu-
tions from the two inverse propagators, and give a finite
gauge dependent contribution to the damping rate. This
problem was resolved by Rebhan [9] who showed that the
integral must be regulated before the mass shell is ap-
proached. Using this procedure one finds that the position
of the pole is gauge independent, and the gauge depen-
dence occurs only in the unphysical residue.

The integral that corresponds to the diagrams in Fig. 1
has the general form

�ðq0Þ ¼ e2
Z
dp0

Z
dp

�F ðq0; p0; p;mf; nbðp0Þ; nfðp0ÞÞjq0¼mf
: (8)

The factor of e2 in front of the integral is the explicit factor
coming from the two vertices. The integrand is obtained by
combining HTL propagators and HTL vertex functions,
and thermal distribution functions [defined in (12)]. The
HTL propagators and vertices depend on the 4-momenta
and the HTL fermion mass mf. As explained above, we

substitute the LO result q0 ¼ mf in order to extract the

NLO contribution.
We begin by noting that, if the integral in Eq. (8) is

dominated by the part of phase space that corresponds to
p-soft, we can expand the thermal distribution functions
and use nbðpÞ ! T=p and nfðpÞ ! 0. After expanding the

distribution functions, one can extract a factor of the
temperature and scale all remaining variables by the LO
mass mf. The result has the form

�NLO ¼ e2T � I ; (9)

where I is a dimensionless integral that can be calculated
numerically.
For the imaginary part of the self-energy, we have ex-

plicitly calculated the 2-loop contributions and checked
that the integral in (8) is dominated by the p-soft region of
the phase space. The numerical calculation of the integral
represented in (9) has been done previously [3–5]. The
result is [10]

�QED ¼ e2T

4�
� ð1:35Þ;

�QCD ¼ g2TCF
4�

� ð1:41Þ for Nc ¼ 3; Nf ¼ 2; CF ¼ 4=3:

(10)

In this paper we calculate the real part of the self-energy
by evaluating numerically the integrals that correspond to
the diagrams in Fig. 1, without expanding the distribution
functions. We extract the numerical coefficients of the
NLO terms by extrapolating to small values of the coupling
constant. The result of this computation is

MQED ¼ eTffiffiffi
8

p
�
1� ð1:427� 0:02Þ e

4�

�
þOðe3TÞ;

MQCD ¼ gTffiffiffi
6

p
�
1þ ð1:867� 0:02Þ g

4�

�
þOðg3TÞ;

ðNf ¼ 2; Nc ¼ 3Þ:

(11)

FIG. 1. The diagrams that contribute to the self-energy up to
NLO. Wavy lines indicate HTL photons and solid lines are HTL
fermions. The vertices are defined in Eq. (22).
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II. NOTATION

In this section we define our notation and give the
integrals that determine the real part of the fermion self-
energy at NLO. We use

f��; ��g ¼ 2g��; g�� ¼ diagð1;�1;�1;�1Þ:
The thermal distribution functions are defined as

nbðpÞ ¼ 1

e�p � 1
; nfðpÞ ¼ 1

e�p þ 1
;

NBðpÞ ¼ 1þ 2nbðpÞ; NFðpÞ ¼ 1� 2nfðpÞ:
(12)

In this paper we are only interested in thermal effects and
consequently we ignore zero temperature pieces of the
self-energy. We use capital letters to denote 4-momenta:

K ¼ ðk0; ~kÞ. We take the external momentum to be Q ¼
ðq0; ~0Þ and the loop momentum is P ¼ ðp0; ~pÞ. We write
R ¼ PþQ so that we have ~r ¼ ~p. Retarded propagators
and self-energies are obtained from p0 ! p0 þ i� and
advanced functions from p0 ! p0 � i�. In QED, to lead-
ing order the fermion and photon thermal masses are

m2
f ¼

e2T2

8
; m2

G ¼ e2T2

6
; (13)

and in QCD

m2
f ¼

g2T2

8
CF; CF ¼ N2

c � 1

2Nc
;

m2
G ¼ g2T2

6

�
Nc þ 1

2
Nf

�
;

(14)

where Nc is the number of colors and Nf is the number of

flavors.
The HTL self-energy is

�HTLðQÞ ¼
m2
f

q
Q0ðq0; qÞ;

Q0ðq0; qÞ ¼ 1

2
ln

�
q0 þ q

q0 � q

�
;

(15)

and we define

�HTLðdÞðQÞ ¼ 2i Im�ret
HTLðQÞ;

�HTLðsÞðQÞ ¼ 2Re�ret
HTLðQÞ: (16)

The HTL fermion propagators are written as

SðRÞ ¼ 1

2

�
SþðRÞð�0 � r̂6 Þ þ 1

2
S�ðRÞð�0 þ r̂6 Þ

�
;

SþðRÞ ¼ � 2r2

2rðm2
f þ rðr� r0ÞÞ þ lnðr0þrr0�rÞðr� r0Þm2

f

;

S�ðRÞ ¼ 2r2

2rðm2
f þ rðrþ r0ÞÞ � lnðr0þrr0�rÞm2

fðrþ r0Þ
:

(17)

We use the covariant gauge and write the photon propa-
gator in terms of transverse and longtitudinal components
(recall that p ¼ r),

D��ðPÞ ¼ PT��DTðPÞ þ PL��
p2

P2
DLðPÞ;

DTðPÞ ¼ 1

P2 �Gðp0; rÞ
;

DLðPÞ ¼ P2

r2
1

P2 � Fðp0; rÞ
;

Gðp0; rÞ ¼ 1

r2

�
1�Q0ðp0; rÞp0

r

�
P2m2

G þm2
G;

Fðp0; rÞ ¼ � 1

r2
2m2

G

�
1�Q0ðp0; rÞp0

r

�
P2:

(18)

Furthermore, we define the discontinuities and the princi-
ple parts as

d�ðRÞ ¼ 2i ImS�retðRÞ; P�ðRÞ ¼ ReS�retðRÞ;
dT=LðPÞ ¼ 2i ImDT=L

ret ðPÞ; P T=LðPÞ ¼ ReDT=L
ret :

(19)

Here, each discontinuity contains a pole contribution and a
cut contribution:

dT=LðKÞ ¼�2�i
X
n¼�1

nZT=Lð!T=LðkÞ; kÞ�ðk0 �n!T=LðkÞÞ

� 2�i�T=Lðk0; kÞ;
d�ðKÞ ¼�2�iZðk0; kÞ½�ðk0 �!�ðkÞÞþ�ðk0 þ!�ðkÞÞ�

� 2�i��ðk0; kÞ: (20)

Expressions for the functions f�T; �L�þ; ��g, and the
equations from which f!T;!L!þ; !�g, are obtained can
be found using Eqs. (17) and (18). They are also given in
the appendix of [5].

III. INTEGRANDS

At zero temperature, the integral corresponding to the
diagrams in Fig. 1 can be written as

�ðQÞ ¼ �ie2
Z
dPð��ðQ;PþQÞSðPþQÞ

� ��ðPþQ;QÞD��ðPÞ
þM��ðQ;P;�P;QÞD��ðPÞÞ; (21)

where
R
dP :¼ R

dp0

R
d3p, and iS and �iD�� corre-

spond to the electron and photon lines, respectively. We
need to obtain the corresponding integral at finite tempera-
ture. We work in the Keldysh representation of the real
time formalism. The method we use to sum over Keldysh
indices is described in [11]. The vertices � and M are
defined in Eq. (22) where P in indicates the momentum

FERMION MASS AT NEXT-TO-LEADING ORDER IN THE . . . PHYSICAL REVIEW D 78, 045018 (2008)

045018-3



of an incoming fermion, P out is the momentum of an

outgoing fermion, and P
�
�in is the momentum of an incom-

ing photon,

��ðP in;P outÞ ¼ ��þ�HTL
� ðP in;P outÞ;

M��ðP in;P��in;P��in;P outÞ ¼MHTL
�� ðP in;P��in;P��in;P outÞ:

(22)

A complete expression for the integrand is derived in
Ref. [5]. A reasonably simple form is obtained by rewriting
the HTL vertices in terms of the self-energies, and rear-
ranging the result. There are several tricks that must be
used to remove the dependence on the HTL vertices. First,
one uses the Kubo-Martin-Schwinger (KMS) conditions
for 3- and 4-point functions to obtain an expression that
depends only on retarded vertex functions. A complete list
of the KMS conditions for 3- and 4-point functions is found
in [11]. For many terms, the HTL Ward identities can be
used to replace contractions of HTL vertices with the
connecting photon momentum by the appropriate differ-
ence of HTL self-energies. There are some terms for which
one must use explicit results for the HTL 3-point vertex
functions. Fortunately, these expressions have a particu-
larly simple form when one of the fermions is not moving.
Using these techniques, all components of the vertices can
be written as simple functions of the HTL self-energy.

These self-energies also appear in the denominators of
the HTL fermion propagators. The general strategy is to
rearrange terms in the numerators to cancel as many terms
as possible with the corresponding factors in the denomi-
nators. Significant simplifications occur after combining
terms and using the mass-shell condition q20 ¼ m2

f. The

imaginary part of the resulting expression, which deter-
mines the damping rate at NLO, has been evaluated nu-
merically in Refs. [3–5].
The calculation of the real part of the self-energy, which

determines the NLO contribution to the mass, is more
complicated for several reasons. One problem is that the
second diagram in Fig. 1 produces pure real tadpole type
contributions that can be dropped in the calculation of the
imaginary part. There are additional numerical complica-
tions that will be discussed in more detail in Sec. IV. We
give below the integrals that need to be calculated to obtain
the NLO contribution to the real part of the self-energy [5].
We separate terms that contain different combinations of
delta functions, principle parts, and thermal factors. In
addition, we define the operator

N̂ :¼ � ie2

32�3

Z
dp0

Z
dr; (23)

which will be factored out of all expressions. The integrals
are

Re�ðdL; NBÞ ¼ 12

q0
N̂r2dLðpÞNBðp0Þ;

Re�ðdL;Pþ; NBÞ ¼ � 2

q20
N̂r2ð�rþ q0 þ r0Þ2dLðPÞNBðp0ÞPþðRÞ;

Re�ðdL;P�; NBÞ ¼ � 2

q20
N̂r2ðrþ q0 þ r0Þ2dLðPÞNBðp0ÞP�ðRÞ;

Re�ðdþ;P L; NFÞ ¼ � 2

q20
N̂r2ð�rþ q0 þ r0Þ2dþðRÞNFðr0ÞP LðPÞ;

Re�ðd�;P L; NFÞ ¼ � 2

q20
N̂r2ðrþ q0 þ r0Þ2d�ðRÞNFðr0ÞP LðPÞ;

Re�ðdT; NBÞ ¼ � 1

q20
N̂dTðpÞNBðp0Þð2ð�3r0R

2 þ 4m2
fr0 þ 8r2q0 þ 6P2q0Þ � R2�HTLðsÞðRÞÞ;

Re�ðP T; NFÞ ¼ 2

q20
N̂R2NFðr0ÞP TðPÞ�HTLðdÞðRÞ;

Re�ðdT;Pþ; NBÞ ¼ � 1

q20
N̂ðp0 � rÞ2ðrþ p0 þ 2q0Þ2dTðPÞNBðp0ÞPþðRÞ;

Re�ðdT;P�; NBÞ ¼ � 1

q20
N̂ðrþ p0Þ2ð�rþ p0 þ 2q0Þ2dTðPÞNBðp0ÞP�ðRÞ;

Re�ðdþ;P T; NFÞ ¼ � 1

q20
N̂ðp0 � rÞ2ðrþ p0 þ 2q0Þ2dþðRÞNFðr0ÞP TðPÞ;

Re�ðd�;P T; NFÞ ¼ � 1

q20
N̂ðrþ p0Þ2ð�rþ p0 þ 2q0Þ2d�ðRÞNFðr0ÞP TðPÞ:

(24)
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The sixth equation in (24) contains the part of the lowest
order result that comes from the Bose-Einstein distribution
function and the last two equations contain the part of the
lowest order result that comes from the Fermi-Dirac dis-
tribution function. The results for these two terms are

ReðdT; NBÞ ¼ e2T2

12
þ � � � ;

Reðdþ;P T; NFÞ þ Reðd�;P T; NFÞ ¼ e2T2

24
þ � � �

(25)

where the dots indicate the NLO contribution.

IV. NUMERICAL ANALYSIS

In this section we briefly describe the numeric methods
used to get the results given in Eq. (11). The dimensionless
integrals to be evaluated numerically, given in Eq. (24), are
of the form

IðgÞ ¼
Z 1

0
dp

Z 1

�1
dp0fðg; p0; pÞ; (26)

where g is the coupling constant. The integrand fðg; p0; pÞ
diverges along some curve p0 ¼ hðpÞ like ½p0 � hðpÞ��1

and therefore the integrals must be defined using a princi-
ple value prescription,

IðgÞ ¼ lim
�!0

�Z 1

0
dp

�Z hðpÞ��

�1
dp0fðg; p0; pÞ

þ
Z 1

hðpÞþ�
dp0fðg; p0; pÞ

��
: (27)

The curve hðpÞ can be computed numerically for each
integrand to a high and controllable accuracy. We write

ð~hðpÞ � hðpÞÞ=hðpÞ � �, where ~hðpÞ is the numeric esti-
mate of hðpÞ and � is a measure of the error. A numeric
approximation of the required integrals is obtained as

~Iðg; �Þ ¼
Z 1

0
dp

�Z ~hðpÞ��

�1
dp0fðg; p0; pÞ

þ
Z 1

~hðpÞþ�
dp0fðg; p0; pÞ

�
þOð�Þ: (28)

The integral must be evaluated for a number of different
values of � and then extrapolated to �! 0. However, for

numeric stability, one must require �� �~hðpÞ. As a con-
sequence, we have to estimate hðpÞ to very high accuracy
in order to get a reliable extrapolation of the limit �! 0.
This extrapolation is illustrated in Fig. 2 for one value of
the coupling constant.
In order to extract the NLO correction to the thermal

fermion mass we must further extrapolate the result to
small values of the coupling constant. Using the LO result
to set the dimensions, we use the ansatz

�ðmfÞ
mf

¼ 1þ a1
g

2�
þ a2

�
g

2�

�
2ðln1=gþ a02Þ þOðg3Þ;

(29)

FIG. 2. Extrapolation of the numeric estimate of the sum of
integrals given in Eq. (24) to �! 0 as defined in the text (for
QCD at g ¼ 0:005).

FIG. 3. The error in a1 as a function of the coupling constant.

FIG. 4 (color online). The numeric results for�ðmfÞ=mf along
with the best fit curve.
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where we assume that all coefficients ai are of order one.
Our goal is to determine the coefficient a1. The accuracy of
the result depends on two things: the accuracy of the
numeric estimate of the integrals, and the size of the error
that is made by neglecting higher order terms from the
ansatz. If we drop terms of order g2, the error in a1 can be
estimated as

�a1 	
��������
2�

g

��

mf

��������þ
��������a2

g

2�
ðlnð1=gÞ þ a02Þ

��������; (30)

where �� is the error in �ðmfÞ from the numeric estima-

tion of the integrals. Minimizing the error in a1 determines
the optimal range of values of the coupling constant at
which the integrals should be computed. We are able to
obtain an accuracy of the order of ��=mf 	 10�6 which

means that by using 0:001 & g & 0:006 we obtain an error
in the result for a1 of order �a1 	 0:02 (see Fig. 3).

In Figs. 4 and 5 we have plotted the numeric results for
�ðmfÞ=mf and ð�ðmfÞ �mfÞ=mf � 2�=g ¼ a1 þOðgÞ
along with the best fit (least-square) curve. The best fit
results for a1 are

aQED1 ¼ �1:427� 0:02;

aQCD1 ¼ 1:867� 0:02 ðNf ¼ 2; Nc ¼ 3Þ: (31)

V. DISCUSSION AND CONCLUSIONS

The calculation of dispersion relations for soft quantities
at next-to-leading order in the hard thermal loop effective
theory is extremely difficult. Real quantities are particu-
larly hard to obtain. Our results for the next-to-leading
fermion mass in QED and QCD are given in Eq (11).
It was pointed out in [12] that the subleading correction

to the 1-loop HTL contribution (calculated by expanding to
next order in the ratio of the soft external momentum to the
hard loop momentum) is gauge dependent and of order
�e3 lnð1=eÞT. There is a contribution of the same order
from 2-loop diagrams where one loop momentum is of
order T and the other loop momentum contributes a log
term coming from an integral of the form

R
dp 1

p !
lnðphard=psoftÞ � lnð1=eÞ. In [13] it was shown that the
sum of these two contributions is gauge independent (in
the class of covariant gauges). Both of these contributions
contribute to the coefficient a2 in Eq. (29) and are formally
included in the integrals given in this paper, which corre-
spond to the diagrams in Fig. 1. The gauge independence of
the result in [13] suggests that the full contribution at order
g3 ln1=g might be contained in these diagrams.

FIG. 5. The numeric results for 2�=gð�ðmfÞ �mfÞ=mf. The dots are the result of the numeric computations, the solid lines
correspond to the numeric estimate for a1, and the gray regions correspond to the estimated errors as defined in Eq. (30).
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