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We study the effect of internal space rotation on the gravitational properties of infinite straight and

stationary cosmic strings. From the approximate solution of Einstein equations for the spinning Q-lump

string, we obtain long-range gravitational acceleration resembling that of a rotating massive cylindrical

shell. We also compute the angular velocity of the inertial frame dragging and the angle of light deflection

by the Q-lump string. Matter accretion onto spinning strings can play a role in galaxy formation when the

angular velocity times the string width is comparable to the speed of light.
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I. INTRODUCTION

Cosmic strings are one of a family of topological defects
generated by phase transitions in the early universe [1,2].
The gravitational field of strings is of particular interest in
view of their possible role in the galaxy formation [2].
Vilenkin [3] studied an infinite straight static string and
found that its gravitational field is very different from that
of a massive rod. First of all, there is no net active gravi-
tational mass associated with this string. This is because
the tension in the string leads to a negative active gravita-
tional mass which balances the positive mass of the energy
density. Thus a test particle in the neighborhood would
experience no gravitational force. Consequently, straight
static strings would not initiate the gravitational instability
necessary for galaxy formation. Nevertheless, owing to the
unusual geometry of their exterior metric, they are of
considerable astronomical importance. Vilenkin [3] found
that the metric exhibits a geometry of a conical space with
a wedge removed, and concluded that the string acts as a
gravitational lens.

The absence of the active gravitational mass for a static
string, parallel to the x3 axis, is linked to independence of
string fields of x0 and x3. This leads to the invariance of the
stress-energy tensor T�

� with respect to the Lorentz boost in

the x3 direction. It follows that T0
0 ¼ T3

3 , an equality which

makes the active mass density vanish. However, if the
string solution is time dependent, the Lorentz-boost invari-
ance is lost and a finite mass density ensues. For the
Abelian Higgs model, the string solutions are fully char-
acterized by their position and there is no rotational de-
grees of freedom. Hence, unless the string moves, the
Abelian Higgs field remains time independent. On the
other hand, a non-Abelian model provides a degree of
freedom corresponding to rotations in the internal space.
One particularly elegant non-Abelian model allowing a
classical internal spin is the sigma-model lump due to
Leese [4]. The solutions of this model were termed
Q lumps where Q is the charge of the model. Owing to

the spinning in the internal phase, theQ-lump solutions are
time dependent but their position as well as energy remains
static. Thus, a stationary cosmic string built from the
Q-lump solution may provide a source of an active gravi-
tational mass. This contrasts with the absence of the active
mass for static sigma-model string [5].
The purpose of the present work is to investigate the

gravitational properties of the Q-lump string in the weak
field approximation. In Secs. II and III, we derive the long-
range gravitational acceleration and show that, for dis-
tances well beyond the string width, the string acts as a
massive rod. Section IV is devoted to the dragging of the
inertial frame caused by the spinning. This effect has been
investigated for rotating spherical mass shells since 1918
and it carries the name ‘‘Lense-Thirring’’ effect [6–8]. In
Sec. V, we study the deflection of light ray propagating in
the plane perpendicular to the string axis. Finally, in
Sec. VI we discuss some cosmological consequences of
the present work.

II. LAGRANGIAN AND STRESS-ENERGY TENSOR

We consider an infinite, straight, and stationary string
parallel to the x3 axis. The Lagrangian density is obtained
by trivially extending the 2þ 1 theory [4] of theQ lump to
3þ 1 dimensions. Since the fields of our model are inde-
pendent of x3, the added dimension does not change the
original form of the Lagrangian density of the Q lump [4].

The basic field is a triplet ~� � ð�1; �2; �3Þ of real scalar
fields satisfying the constraint ~� � ~� ¼ 1. We write the
Lagrangian density in the form (@ ¼ c ¼ 1)

L ¼ �2

�
1

4
g��@� ~� � @� ~�� �2

4
ð1��2

3Þ
�
: (1)

The constant �2 is proportional to the energy per unit
length of the pure sigma-model string [5] whose
Lagragian follows from (1) by putting � ¼ 0.
The second term in Eq. (1) is reminiscent of the uniaxial

anisotropy energy of a nonrelativistic Heisenberg ferro-
magnet where it is responsible for a Larmor precession*simanek@ucr.edu
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of the magnetization vector ~M about the x3 axis. In that

case, the equations of motion for ~M have localized solu-
tions in 2þ 1 dimensions called precessional solitons [9].
In the absence of an external magnetic field, the preces-
sional frequency of these solitons is given by the ferro-
magnetic resonance frequency proportional to the
anisotropy field [9] (given by �2 in the present notation).
The precessional soliton resulting from Eq. (1) is, however,
of a different nature. Solving the equations of motion,
Leese [4] finds precessional frequency equal to �. This
stems from the fact that the dynamics of the Lagrangian (1)

is second order in the time derivatives of ~�, whereas it is
first order for the Lagrangian for the nonrelativistic ferro-
magnet [9]. Note that the sign of the potential energy in
Eq. (1) is opposite to that seen in Eq. (2.1) of Ref. [4]. This
is due to our choice of the space-time metric which in the
flat space limit has signature (1;�1;�1;�1) [see also
Eq. (6.70) in Manton and Sutcliffe [10]].

Anticipating nonzero gravitational density for the spin-
ning string, we write the metric in the form

ds2 ¼ g00ðrÞðdx0Þ2 ��2ðrÞ½ðdx1Þ2 þ ðdx2Þ2�
þ 2½g01ð ~xÞdx0dx1 þ g02ð ~xÞdx0dx2� þ g33ðrÞðdx3Þ2;

(2)

where ~x is a vector in the x1, x2 space, and r ¼ ½ðx1Þ2 þ
ðx2Þ2�1=2.

The metric for the static string of the pure (� ¼ 0) sigma
model [5] is recovered from Eq. (2) by letting g00 ¼ 1,
g01 ¼ g02 ¼ 0, and g33 ¼ �1.

The components of our metric tensor (g00, g11 ¼ g22 ¼
��2, g33, g01, and g02) are obtained by solving the corre-
sponding components of the Einstein equation [11]:

R�� ¼ �8�GðT�� � 1
2g��TÞ; (3)

where R�� is the Ricci tensor, T�� is the stress-energy

tensor, and T ¼ T�
� . Using Eq. (1), we have

T�� ¼ 2ffiffiffiffiffiffijgjp @

@g�� ð
ffiffiffiffiffiffi
jgj

q
LÞ ¼ 1

2
�2@� ~� � @� ~�� g��L;

(4)

where g is the determinant of the metric. In what follows,
we treat Eq. (3) in the weak field limit which amounts to
replacing g�� in Eq. (4) by g�� ¼ diagð1;�1;�1;�1Þ. It
is convenient to calculate T�� by discarding the field ~� in

favor of a complex scalar field uðt; zÞ, where z ¼ x1 þ ix2,
and

u ¼ �1 þ i�2

1þ�3

: (5)

This leads to the CP1 representation in which the
Lagrangian density of Eq. (1) becomes [4,10]

L ¼ �2

�
1

2
g��

@�u@� �uþ @� �u@�u

ð1þ juj2Þ2 � �2u �u

ð1þ juj2Þ2
�
: (6)

For the stress tensor (4), we obtain in this representation

T�� ¼ �2
@�u@� �uþ @� �u@�u

ð1þ juj2Þ2 � g��L: (7)

III. ACTIVE GRAVITATIONAL MASS

To calculate the active gravitational mass, we take the
00-component of Eq. (3). We write g�� ¼ ��� þ h��,

where ��� ¼ diagð1;�1;�1;�1Þ. In the weak field limit,

we have

R00 ¼ �1
2ð@21 þ @22Þh00 ¼ �1

2 52 h00: (8)

On the right-hand side (rhs) of Eq. (3) we need the ex-
pression T00 � 1

2T. Using Eqs. (6) and (7), we obtain

T00 ¼ �2

ð1þ juj2Þ2 ð@tu@t �uþ @iu@i �uþ �2u �uÞ (9)

and

T33 ¼ �2

ð1þ juj2Þ2 ð@tu@t �u� @iu@i �u� �2u �uÞ;

i ¼ 1; 2:

(10)

The axial symmetry of the string fields implies @1u@1 �u ¼
@2u@2 �u. With the use of this relation, we have from
Eqs. (6) and (7)

T11 ¼ T22 ¼ �2

ð1þ juj2Þ2 ð@tu@t �u� �2u �uÞ: (11)

Using Eqs. (9)–(11) we obtain

T00 � 1

2
T ¼ �2

ð1þ juj2Þ2 ð2@tu@t �u� �2u �uÞ: (12)

Introducing this result and Eq. (8) in the 00-component of
Eq. (3), we obtain

r2h00 ¼ 16�G�2�2u �u

ð1þ juj2Þ2 : (13)

We have used the identity @tu@t �u ¼ �2u �u which follows
from the solution [4] (see the Appendix for derivation)

uðt; zÞ ¼ expð�i�tÞuðzÞ; (14)

where uðzÞ is a degree N rational map in z ¼ x1 þ ix2

uðzÞ ¼
�
�

z

�
N
: (15)

Leese [4] finds that in order to have a lump of finite
energy, the integer N must be equal or larger than 2.
Incidentally, the same condition applies to the nonrelativ-
istic spinning soliton [9]. This can be understood by con-
sidering the energy per unit string length
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� ¼
Z

d2xT00 ¼ 2��2N þ 2�2�2�2�2

N2 sin�N
; (16)

where the second equality follows by integrating Eq. (9)
with uðt; zÞ given by Eqs. (14) and (15). As shown in the
Appendix, N is the topological charge.

We see that the second term in Eq. (16) diverges forN ¼
1. Since this term originates from the anisotropy energy, it
is of no surprise to have the same condition for the non-
relativistic spinning soliton [9].

For the Q lump, this term can be expressed by means of
the Noether charge Q [4]

Q ¼ i
Z

d2x
�u@tu� u@t �u

ð1þ juj2Þ2 ¼ 2�
Z

d2x
u �u

ð1þ juj2Þ2 : (17)

With the use of this result, the energy given in Eq. (16)
becomes [10]

� ¼ �2ð2�jNj þ j�QjÞ; (18)

which is valid for N and Q positive or negative (see the
Appendix). Starting from Eq. (13), we now proceed to the
evaluation of the gravitational acceleration ~gðrÞ. Noting
that h00 ¼ 2�g, where �g is the gravitational potential

related to the acceleration by ~gðrÞ ¼ � ~r�g, Eq. (13) can

be cast into the form of a Poisson equation

~r � ~gðrÞ ¼ �4�G	ðrÞ; (19)

where 	ðrÞ is the active gravitational mass density (per unit
volume)

	ðrÞ ¼ 2�2�2�2Nr2N

ðr2N þ �2NÞ2 : (20)

Using the Gauss theorem, Eq. (19) yields gðrÞ (not to be
confused with the determinant of the metric)

gðrÞ ¼ � 4�G

r

Z r

0
dr0r0	ðr0Þ: (21)

For N ¼ 2, we obtain from Eqs. (20) and (21)

gðrÞ ¼ 2�G�2�2�4

�
r

r4 þ �4
� 1

�2r
tan�1 r

2

�2

�
: (22)

This function has a maximum at r ’ 1
2�. Since � is the

width of the sigma-model string, it is useful to have
asymptotic results deep in the interior region, r � �, and
in the exterior region, r � �. From Eq. (22), we obtain

gðrÞ ! � 4�G�2�2r5

3�4
(23)

for r=� ! 0 and

gðrÞ ! ��2G�2�2�2

r
(24)

for r=� ! 1. From Eq. (23), we see that gðrÞ is a non-
singular function of r as we approach the string axis.

Introducing the linear active mass density m [obtained
for N ¼ 2 from Eq. (20)]

m ¼ 2�
Z 1

0
drr	ðrÞ ¼ �2�2�2�2

2
; (25)

we can express Eq. (24) as follows:

gðrÞ ! � 2Gm

r
¼ �G�2j�Qj

r
: (26)

This result shows that, for r well beyond the soliton width
�, the string acts as a massive rod of linear active mass
density m. Recalling Eq. (18), we see that m ¼ �2j�Qj.

IV. INDUCED FRAME DRAGGING

The dragging of inertial frames relative to the asymp-
totic frame inside a rotating mass shell has been first
investigated by Thirring and Lense [6]. We expect that
this effect is also present for a spinning string.
Calculation of the mixed space-time components of the
metric tensor (2), described below, confirms this
expectation.
First consider the component g01ð ~xÞ. Taking the 01-

component of Eq. (3) and using the weak field result R01 ¼
� 1

2r2g01, we have

r2g01ð ~xÞ ¼ 16�GT01ð ~xÞ: (27)

From Eq. (7), we obtain in the weak field approximation

T01 ¼ �2

ð1þ juj2Þ2 ð@0u@1 �uþ @0 �u@1uÞ: (28)

Substituting for uðt; zÞ the solution (14), Eq. (28) yields for
N ¼ 2

T01ð ~xÞ ¼ � 4�2��4r3

ðr4 þ �4Þ2 sin
; (29)

where we introduced polar coordinates x1 ¼ r cos
 and
x2 ¼ r sin
. To solve Eq. (27), we use the two-dimensional
Green’s function

Gð ~x� ~x0Þ ¼ 1

2�

�
logr� X1

n¼1

1

n

�
r0

r

�
n
cos½nð
� 
0Þ�

�

� Sðr� r0Þ

þ 1

2�

�
logr0 � X1

n¼1

1

n

�
r

r0

�
n
cos½nð
� 
0Þ�

�

� Sðr0 � rÞ; (30)

where SðrÞ is the unit step function. Using Eqs. (29) and
(30), the solution of Eq. (27) is written as follows:

g01
~ðxÞ ¼ �

2�

Z 1

0
dr0r0Fðr0Þ

Z 2�

0
d
0 sin
0

�
r0

r
cosð
� 
0Þ

� Sðr� r0Þ þ r

r0
cosð
� 
0ÞSðr0 � rÞ

�
; (31)
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where � ¼ 64�G�2��4, and FðrÞ ¼ r3ðr4 þ �4Þ�2.
Performing the angular integrations, Eq. (31) yields

g01ð ~xÞ ¼ 1

2
� sin


�
1

r

Z r

0
dr0Fðr0Þr02 þ r

Z 1

r
dr0Fðr0Þ

�

¼ 8�G�2��2 sin


r
tan�1 r

2

�2
: (32)

In a similar way, we calculate g02ð ~xÞ. Solving the 02-
component of Eq. (3), we have

g02ð ~xÞ ¼ �8�G�2��2 cos


r
tan�1 r

2

�2
: (33)

Using Eqs. (32) and (33), we calculate the local angular
velocity, !ðrÞ, of the frame rotation induced by the spin-
ning of the Q-lump string. This is done by expressing the
third term of Eq. (2) in polar coordinates. Using Eqs. (32)
and (33), we have

2½g01ð ~xÞdx1 þ g02ð ~xÞdx2�dx0

¼ �16�G�2��2d
dx0tan�1 r
2

�2
: (34)

By comparing the rhs of this equation with the cross term
of the rotating metric component r2½d
�!ðrÞdx0�2, we
obtain

!ðrÞ ¼ 8�G�2�

�
�

r

�
2
tan�1 r

2

�2
: (35)

Interesting conclusions emerge from the asymptotic ex-
pansions of (35). For r=� ! 0, we have

!ðrÞ ’ 8�G�2� ¼ 2�0G!s; (36)

where �0 ¼ 4��2 is the linear mass density of the pure
sigma model [5] given by the first term of Eq. (18). We
have also set � ¼ !s. Now, the rhs of Eq. (36) allows us to
make a comparison with the well-known Thirring result [7]
for the rotation rate�ðrÞ of the inertial frame induced by a
thin spherical shell of radius r0 and mass M, rotating with
the angular velocity !s. In the interior region, r < r0,
�ðrÞ ¼ �intðrÞ is given by [7]

�intðrÞ ¼ 4MG!s

3r0
: (37)

Equation (37) exhibits a similarity with the rhs of Eq. (36),
except for the geometric factor 2=3r0 characteristic of the
spherical symmetry. For r=� ! 1, we have from Eq. (35)

!ðrÞ ’ ��0G!s

�2

r2
: (38)

This is to be compared with the Thirring formula [7] for the
exterior region, r > r0,

�extðrÞ ¼ 4MG!s

3

r20
r3

: (39)

This time, the geometric factor 4=3�r enters in Eq. (39).

Moreover, the comparison suggests that � in Eq. (38) plays
a role of the radius of the rotating mass shell. This view is
substantiated by looking at the r dependence of the mass
density T00ðrÞ of the pure sigma model. According to
Eq. (9), we have for N ¼ 2

T00ðrÞ ¼ �2@iu@i �u

ð1þ juj2Þ2 ¼
8�2�4r2

ðr4 þ �4Þ2 : (40)

From this expression we see that T00ðrÞ goes as r2, and r�6

for r=� ! 0, and r=� ! 1, respectively. The maximum of
T00ðrÞ is at r ’ 0:75�. In view of this comparison, we
conjecture that the inertial frame dragging effect for the
Q-lump string is similar to that for the cylindrical shell of
radius of order �, rotating at the angular velocity !s ¼ �.
This conjecture can be substantiated quantitatively by

computing the x3 component, J3, of the angular momen-
tum per unit length of the string. Using the expression
�jkxjT0k for the angular momentum density, we obtain in

the weak field approximation J3 ’ �2��2�2. This should
be compared with the angular momentum, J ¼ 4���2r20,
of a thin cylindrical shell of radius r0 with linear mass
density, �0, rotating at angular velocity �. From this com-
parison, we have r20 ’ ��2=4 confirming the above con-

jecture. Note that the rhs of Eq. (38) can be expressed in
terms of J yielding !ðrÞ ’ 4JG=r2. This is a string analog
of the Thirring [7] formula (39) expressed via the angular
momentum of the spherical shell, Jsph ¼ 2!sMr20=3, as

�extðrÞ ¼ 2JsphG=r
3.

V. DEFLECTION OF LIGHT

We assume that the light path is in the ðx1; x2Þ plane.
First we neglect the contribution to the deflection caused
by the frame dragging. Then the relevant metric is

ds2 ¼ g00ðdx0Þ2 þ g11½ðdx1Þ2 þ ðdx2Þ2�; (41)

where

g00 ¼ 1þ 2�; g11 ¼ �1þ 2 ��: (42)

The gravitational potentials � ¼ 1
2h00 and �� ¼ 1

2h11 are

obtained by solving the 00- and 11-components of the
Einstein equation (3), respectively.
To calculate the deflection angle, we consider the geo-

desic equation of motion for the four momentum, pi, of the
photon [11]

dpi

dt
¼ 1

2
gjk;i

pjpk

p0
: (43)

Assuming that the light ray is approaching the string in
the y direction, the deflection is produced by the rate of
increase of the x component of the coordinate velocity
ux ¼ px=p0. Thus, we consider Eq. (43) for i ¼ x, and
obtain with use of Eqs. (41) and (42)

E. SIMÁNEK PHYSICAL REVIEW D 78, 045014 (2008)

045014-4



� d

dt
½ð1� 2 ��Þpx� ¼ p0

�
@x�þ @x ��

ðpxÞ2 þ ðpyÞ2
ðp0Þ2

�
:

(44)

Taking i ¼ 0, and noting that the metric tensor gjk is

independent of time, Eq. (43) yields

d

dt
½ð1þ 2�Þp0� ¼ 0: (45)

Using this result, it follows that to first order in � and ��,
the following identity holds:

1

p0

d

dt
½ð1� 2 ��Þpx� ’ d

dt

�
ð1� 2 ��� 2�Þp

x

p0

�
: (46)

Further simplification of Eq. (44) follows by noting that pi

is a null vector. With the metric (41), this implies

ðpxÞ2 þ ðpyÞ2
ðp0Þ2 ¼ 1þ 2�

1� 2 ��
’ 1: (47)

Dividing Eq. (44) by p0, we obtain with use of Eqs. (46)
and (47) to order �, ��

dux

dt
’ �@x½�ðrÞ þ ��ðrÞ� ¼ � x

r
@r½�ðrÞ þ ��ðrÞ�: (48)

From Eq. (22), we have @r� ¼ @r�g ¼ �gðrÞ. To ob-

tain the quantity @r ��, we consider the Einstein equation (3)
for h11

r2h11 ¼ 16�G

�
T11 þ 1

2
T

�
¼ 16�G�2�4

ðr4 þ �4Þ2 ð8r2 þ �2r4Þ;
(49)

where the second equality follows from Eqs. (9) and (11)
using the ansatz (15) with N ¼ 2. Similar to the derivation
of Eq. (22), we use the Gauss theorem to solve Eq. (49) for
@rh11. Combining this result with Eq. (22), we have

@rð�þ ��Þ ¼ 4�G�2

�
4r3

r4 þ �4
þ �2�2

�
1

r
tan�1 r

2

�2

� �2r

r4 þ �4

��
: (50)

The differential of the deflection angle ��, acquired
during time interval dt, is dð��Þ ¼ ðdux=dtÞdy. Using
Eq. (48), the net deflection angle �� becomes

�� ¼ �x
Z 1

�1
dy

1

r
@rð�þ ��Þ; (51)

where r ¼ ½x2 þ y2�1=2 and x is the impact parameter. In
what follows, we assume x � � implying that also r � �.
In this limit, Eq. (50) yields

@rð�þ ��Þ � �0G

r

�
4þ �

2
�2�2

�
: (52)

Using this result in Eq. (51), the deflection angle becomes

�� � �x�0G

�
4þ �

2
�2�2

�Z 1

�1
dy

ðx2 þ y2Þ
¼ ���0G

�
4þ �

2
�2�2

�
: (53)

We see that in the limit x=� ! 1, the deflection angle is
independent of x. Moreover, the rhs of Eq. (53) can be
written as �� � �4�G�, where � is the net energy per
unit length given in Eq. (16). These results are reminiscent
of the deflection angle obtained from the wedge angle
deficit of the conical space [3,5]. In fact, for � ¼ 0, the
angle 2�� � �8�G�0 coincides with the deficit angle �
obtained in Ref. [5] using the Gauss-Bonnet formula.
We now consider the additional contribution to light

deflection due to the frame dragging. Denoting the corre-
sponding deflection angle as ��d, we obtain with use of
Eq. (35)

��d ¼
Z 1

�1
dy!ðrÞ ¼ 8�G�2��2

Z 1

�1
dy

tan�1ðr2
�2Þ

r2
:

(54)

An approximate evaluation of ��dðxÞ for 0< x<1 can
be made by replacing the integrand of Eq. (54) by ð�=2Þ�
ðr2 þ ��2=2Þ�1. In this way, we get

��dðxÞ 	 �2�0G��
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ��2

2

q : (55)

VI. DISCUSSION

According to Eq. (25), an infinite stationary Q-lump
spinning string acquires an active linear mass density m ¼
�
8 �0ð��Þ2, where �0 is the linear mass density of pure

sigma-model string. The fact that matter can be attracted
onto these strings prompts us to examine their role in the
formation of galaxies.
The main concern is the magnitude of the density in-

homogeneity due to infinite strings, �	=	 ¼ 	inf=	.
According to Ref. [2], 	inf at cosmic time t is given by
m=t2. In the radiation dominated era we have 	 ¼
3=32�Gt2. Thus

	inf

	
¼ 32�

3
Gm: (56)

Galaxy formation scenarios require that Gm	 10�6.
Let us first consider the pure sigma-model string with
linear mass density �0 ¼ 4��2. These strings are formed
when the Universe cools to temperature T 	 �. We note
that at this temperature the Higgs field acquires a nonzero
vacuum expectation value owing to the O(3) invariant
Higgs potential. With m replaced by �0, the condition
G�0 	 10�6 implies �	 3� 1015 Gev which falls into
the grand unification (GU) region.
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For the stationary Q-lump spinning string we have
Gm ¼ G�0�ð��Þ2=8. Since the formation of galaxies re-
quires Gm	 10�6, we get a condition ��	 1 if G�0 	
10�6 is assumed.

There are observational constraints implying limits on
the cosmic string tension �0. Recent attention has focused
on the power spectrum of the cosmic microwave back-
ground (CMB). Albrecht, Battye, and Robinson [12] report
G�0 
 10�6 based on normalization of the calculated
CMB temperature fluctuations to the Cosmic Background
Explorer (COBE) satellite data [13]. They calculate these
fluctuations using a standard scaling model in which the
string network is represented as a collection of uncorre-
lated string segments with random uncorrelated velocities.
Consequently, the resulting two-point correlation function
for the stress-energy tensor exhibits a temporal decoher-
ence and the calculated angular power spectrum is in
disagreement with the observed CMB anisotropies
[13,14]. In particular, it does not show the acoustic
(Doppler) peaks seen in the spectrum, a feature that is
due to a high degree of temporal coherence of the pressure
perturbations [15]. On the other hand, adiabatic inflation-
ary models exhibit coherence leading to phase focusing on
the subhorizon pressure waves and producing a secondary
Doppler peak in the angular power spectrum. For this
reason, it is believed that topological defect models cannot
provide the dominant source of structure formation.

More detailed measurements of the CMB have been
made by the Wilkinson microwave anisotropy probe
(WMAP) [16,17]. Jeong and Smoot [18] have searched
the first year WMAP W-band CMB anisotropy map and
deduced a limit on the string tension G�0 < 6� 10�7.
Bevis, Hindmarsh, and Kunz [19] have used the first year
WMAP data to produce an upper bound, 0.13, on the
fraction of global defects contributing to cosmic structure
formation.

Standard defect networks are not frozen and coherent as
inflationary models. It should be noted that these networks
are modeled as an ensemble of Nambu-Goto strings [20] or
their modifications due to wiggliness [21]. The tension of
wiggly strings is smaller than the effective mass per unit
length. Thus they represent another example of the break-
down of the Lorentz-boost invariance that also motivated
the present work. Similar to the Q-lump string, there is a
long-range gravitational field of the wiggly string related to
the difference between the tension and the effective mass
[21]. Representing the network of wiggly strings as a
collection of uncorrelated segments and performing the
COBE normalization of the calculated CMB temperature
fluctuations, Pogosian and Vachaspati [21] predict G 

1:9� 10�6.

Let us now consider possible effects of the long-range
gravitational field on the modeling of Q-lump string net-
work. It can be shown [22] that between two parallel
strings (spinning in the same sense) there is an attractive

force due to graviton exchange which (for ��	 1) goes
asymptotically as F	 �4G=d, where d � � is the dis-
tance between strings. This long-range interaction may be
responsible for correlations between string segments in the
network which in turn could produce temporal coherence.
Initially, the stationary pair begins to move together under
the influence of the graviton-induced attraction. However,
when their spacing d is of order � they do not necessarily
annihilate since their interaction is dominated by short-
range repulsive force due to boson exchange [22].
The potential energy associated with these forces may

contribute to localization of strings. This suggests the
possibility of a freezing of the network into a three-
dimensinal structure in a local minimum of the potential
energy. There is an analogy with the formation of a vortex
lattice in a type II superconductor [23]. Collective modes in
a frozen network of strings would then act as a source of
coherent fluctuations that could contribute to the genera-
tion of acoustic peaks in the angular spectrum of CMB.
This, of course, implies a drastic departure from the stan-
dard modeling of string networks as a collection of seg-
ments with uncorrelated velocities. In the absence of
quantitative treatment of a correlated or frozen network,
an estimate of the limit of Q-lump string tension using
CMB data is presently uncertain.
The idea of the formation of frozen networks of strings is

not entirely new; it has been considered previously for the
case when strings of different types collide [1,24]. A
renewed interest in this possibility comes from the pres-
ence of both F- and D-type strings in superstring networks
[25–27]. These strings are produced at the end of the
inflationary epoch in the brane world. In this scenario the
inflationary expansion proceeds by the attractive interac-
tion of D-branes and anti-D-branes and the strings are
produced during brane collision. Sarangi and Tye [28]
used the inflationary, brane scenario to estimate the string
tension. Comparing the combined effect of the inflaton and
the ‘‘uncorrelated’’ cosmic string fluctuations with the
COBE data [13], they find that G�0 	 10�7.
If non-Abelian symmetry is broken to a discrete sub-

group, multiple types of cosmic strings are produced.
When strings of different types collide they do not inter-
commute. Instead, they form frustrated networks with tri-
linear vertices [27]. Bucher and Spergel [29] proposed a
solid dark matter component created from frustrated net-
works of non-Abelian cosmic strings and domain walls.
There is a significant negative pressure associated with this
mechanism. Vachaspati and Vilenkin [24] calculated the
average pressure Ps starting from the energy-momentum
tensor of a string moving with the velocity vs and obtained
Ps=	s ¼ �1=3ð1� hv2

siÞ, where 	s is the energy density
of the string network. For stationary strings, hv2

si ¼ 0, and
the ratio Ps=	s ¼ �1=3 implying a universe that is neither
accelerating nor deccelerating. As pointed out by Bucher
and Spergel [29], the recent observations suggesting that
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the Universe is presently accelerating requires that the ratio
w ¼ P=	 <�1=3. Of course, other dark matter compo-
nents may supply the needed negative pressure contribu-
tion. In this context, the model of frustrated networks
formed from sigma-model spinning strings may be of
interest. As shown in the present paper, these strings rep-
resent a source of active gravitational mass even when
stationary. This allows the ratio Ps=	s to reach the most
negative value of �1=3. Moreover, as suggested by the
virial equation of state, an additional contribution to the
negative pressure may come from the attractive interaction
between the strings [22].

Another observational bound on the cosmic string ten-
sion comes from pulsar timing. When gravity waves sweep
over the pulsar, they affect the ticking rate of the pulsar
clock. Vibrations of closed loops of cosmic strings gener-
ate stochastic gravitational wave background characterized
by the quantity �GW defined as the energy density per
logarithmic frequency range [2]. The limits on �GW, in-
ferred from the pulsar timing, range from [30] �GW <
1:2� 10�7 to a value that is about 30 times weaker [31].
The stochastic background produced by a quadrupole ra-
diation from a network of strings has been estimated by
Vilenkin [2] to yield �GW ’ 0:04G�0. By comparing this
result with the above pulsar timing limits [30,31], we
obtain G�0 < 10�5:5 and G�0 < 10�7. A critical analysis
of these results is presented by Polchinski [27]. It should be
pointed out that the theoretical estimate [2] of �GW is
based on the standard model of the network which does
not involve any correlation effects that may be present in a
network of Q-lump strings. This may introduce further
uncertainties in the estimate of the tension of Q-lump
strings based on pulsar timing.

TheQ-lump string can be detected through gravitational
deflection of light. When the impact parameter is large so
that x � �, Eq. (53) shows that the deflection angle is
independent of x and its magnitude �� ’ 4�G�, where �
is the net energy per unit length of the string. In the limit
�� ! 0, these features agree with the deflection angle for
the vacuum string obtained in Ref. [3]. For ��	 1, there is
an enhancement (about 40%) of the deflection angle due to
spinning.

Equation (55) shows that the drag-induced light deflec-
tion angle depends not only on the product �� but also on
the string radius � itself. However, in the Q-lump model,
the radius is not fixed (being determined by the Noether
charge Q which is a free parameter). An orientational
estimate of � can be made with the use of a related string
model that is based on a spinning baby Skyrmion model of
Piette, Schroers, and Zakrzewski [32]. In this model, the
soliton has a preferred size determined by the competition
between the potential and Skyrme terms in the Lagrangian.
Recently, we studied the gravitational field of a string
obtained by trivially extending the baby Skyrmion model
from 2þ 1 to 3þ 1 dimensions [22]. We note that the

spinning frequency, !, of this model is a free parameter.
However, by requiring that the active gravitational mass be
a relevant factor in galaxy formation, the product !� must
be of the order of 1. Also, to ensure exponential localiza-
tion of the soliton,!must be smaller than the magnitude of
the potential term. From these conditions, we deduce that
� < 1=�. Thus, the radius of a GU string is comparable to
a Higgs Compton wavelength �	 10�31 m. We note that
this result is similar to the transverse dimensions of strings
studied in Ref. [3]. With this value of �, we now proceed to
make an estimate of ��d from Eq. (55). Denoting by R the
proper distance of the observer to the string axis, the
impact parameter x	 R��d. Owing to the extremely
small value of �, the second term in the denominator of

Eq. (55) can be neglected yielding ��d 	
ð�2�0G��

2=RÞ1=2. Taking �0G	 10�6, ��	 1, �	
10�31 m, and R	 104 m, we get ��d 	 10�20 rad which
is negligible compared with the deflection angle ��	
10�5 resulting from Eq. (53).
Sazhin et al. [33] have considered an interpretation of

the extragalactic double source CSL-1 (Capodimonte-
Sternberg-Lens candidate, No. 1) as a gravitational lensing
by a cosmic string. The pair of images exhibits a separation
of 2 arc s which correspond toG�0 equal to 4� 10�7 times
a geometric factor of order 1. However, this interpretation
has now been ruled out by high quality imaging data from
the Hubble Space Telescope (HTS) [34]. Rather the HTS
data show that the galaxy image pair CSL-1 is not a lens
but a pair of galaxies.
Let us turn to some problems of the dynamics of spin-

ning strings. First note that a string can remain static only if
it is straight. Curved strings oscillate under their own
tension. Of particular importance for the galaxy formation
are oscillating closed loops [2]. In this case, the oscillation
of the string axis is responsible for the generation of an
active gravitational mass that bears qualitative similarities
with the mechanism outlined in Sec. III. This may be seen
by recalling Eq. (25), which shows that the active mass
induced in a unit length of a spinning string is of the order
of �2 times the square of the velocity at the radius � of the
cylindrical shell. This should be compared with the mass
M	 �2v2

rms derived by Turok [35] for a loop oscillating
with rms velocity vrms.
Now, the question that needs to be addressed is if closed

loops of spinning strings could also serve as seeds for
galaxy formation. The scenario of galaxy formation pro-
posed by Vilenkin [2] requires that the main energy loss
mechanism of large loops be gravitational radiation. For
gauge-symmetry nonspinning strings Vachaspati, Everett,
and Vilenkin [36] have shown that electromagnetic radia-
tion and the radiation of massive particles fail to yield
significant energy loss in comparison to the gravitational
radiation. For the Q-lump string, considered in this paper,
there is no gauge field in the Lagrangian density of Eq. (1).
Thus, there is no coupling of the photon field to the
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oscillations of the string as a whole. However, there is
nonzero coupling of these oscillations to the field corre-

sponding to small oscillations, � ~�, of the vector ~� about

the vacuum configuration ~�0 ¼ ð0; 0; 1Þ. This coupling is
of a similar nature to that considered by Davis [37] for

global nonspinning string. Specifically, the � ~� field is
rigidly carried along with the string as it moves.
Nevertheless, the power radiated due to this coupling is
zero as long as the frequency of the string oscillation ! is

less than the spinning frequency �. This is because � ~�
satisfies a Klein-Gordon equation describing massive bo-
sons with the mass �. For a loop of size R, !	 1=R,
whereas � is of order �	 1015 GeV. Thus, � � !, im-

plying that the decay into the � ~� bosons is ruled out.
The global properties of the 2þ 1-dimensional space-

times generated by massive point particle with angular
momentum J have been thoroughly investigated in
Ref. [38]. It is of interest to note the relation of the line
element given in Eq. (4.17) of this reference to Eq. (34) of
the present paper. As r=� ! 1, the rhs of this equation
goes to�8GJ3d
dx

0, where J3 is the x
3 component of the

angular momentum per unit length of the Q-lump string.
This result should be compared with the term 2Adtd
 ¼
�8GJdtd
 in Eq. (4.17). This agreement is not surprising,
since we show that the spinning string behaves as a rotating
cylindrical mass shell (see Sec. IV). In Refs. [39,40], the
2þ 1-dimensional metric of Ref. [38] has been extended
to study the gravitational effects of straight spinning string.
The physical consequences of the ‘‘time-helical’’ structure
of the locally flat coordinates derived in Ref. [38] have
been thoroughly studied in Ref. [41] which presents solu-
tions of the Klein-Gordon and Dirac equations in the
presence of massive point particle with arbitrary angular
momentum.

Closer to our present work appears to be a more recent
paper by Verbin and Larsen [42] who study the Q-lump
string with a general oscillatory behavior of the fields given
by expðiqz� i!tÞ. The case q ¼ 0 corresponds to the
present model, but since Ref. [42] goes beyond the weak
coupling approximation, the solutions for the metric are
obtained numerically. From Fig. 6 of Ref. [42] we see that

the metric N ¼ ð1þ h00Þ1=2 is consistent with our result
showing that h00 goes as ðr=�Þ6 for r=� ! 0 and as
logðr=�Þ for r=� ! 1. Thus the metric g00 is not asymp-
totically flat owing to finite frequency of spinning. This
general trend is also exhibited by other examples studied
numerically by Verbin and Larsen [42]. This confirms
predictions made by these authors following a deep analy-
sis based on the Kaluza-Klein reduction from
D-dimensional global strings to the D� 1-dimensional
gauged strings. On the other hand, the numerically ob-
tained quantity L’ is asymptotically flat and negative.

This is consistent with our weak coupling result (34),
according to which L’ ! �ð8=�ÞGJ3ðr=�Þ2 for r=� !
0, and L’ ! �4GJ3 for r=� ! 1.

Note added.—When I wrote this paper I was not aware
of several related earlier papers. Thanks to correspondence
from Professor S. Deser, Professor R. Jackiw, and
Professor Y. Verbin I have been enlightened and thus
some of the most relevant papers are now included in
Refs. [38–42].

APPENDIX: Q-LUMP SOLUTION TO
BOGOMOL’NYI EQUATIONS

We now show that Eqs. (14) and (15) can be obtained as
solutions to first order Bogomol’nyi equations for the
Q-lump string. We start with the expression for the net
energy � per unit length of the string. Using Eq. (9) we
have

� ¼ �2
Z

d2xð1þ juj2Þ�2ð@tu@t �uþ @iu@i �uþ �2u �uÞ:
(A1)

Motivated by this formula, the Bogomol’nyi inequality is
written as [4,10]

�2
Z

d2xð1þ juj2Þ�2½ð@iu� i�ij@juÞð@i �u� i�ik@k �uÞ
þ 2ð@tu� i�uÞð@t �u� i� �uÞ�  0: (A2)

Note the factor of 2 multiplying the last product. Using
Eq. (A1), Eq. (A2) simplifies to

�  �2��2N � �2�Q; (A3)

where

N ¼ i

2�

Z
d2x

�ij@iu@j �u

ð1þ juj2Þ2 (A4)

is the topological charge. Using Eq. (5), it can be shown
that Eq. (A4) agrees with the well-known definition [10]

N ¼ 1

4�

Z
d2x ~� � ð@1 ~�� @2 ~�Þ: (A5)

The quantity Q which appears on the rhs of Eq. (A3),
happens to coincide with the Noether charge defined by the
first equality in Eq. (17). We note that Q is conserved
owing to the gauge invariance of the Lagrangian density
(6).
According to Eq. (A2), the bound (A3) is attained when

the following first order equations hold:

@iu� i�ij@ju ¼ 0; (A6)

@tu� i�u ¼ 0: (A7)

When uðz; tÞ is a solution of these equations, equality
occurs in Eq. (A3). Taken with the upper sign, Eq. (A6)
shows that u satisfies the Cauchy-Riemann conditions for a
holomorphic function of z ¼ x1 þ ix2. For this choice of
sign, Eqs. (17) and (A4) yield positive values for N and Q.
On the other hand, choosing a lower sign in Eq. (A6) makes
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uðzÞ antiholomorphic and N and Q are both negative.
Using these results in conjunction with Eq. (A3), we obtain
Eq. (18) that holds for both sign choices. [Eq. (16) holds
only for N positive]. The general solution of Eq. (A6) is
given by the rational map uðzÞ ¼ pðzÞ=qðzÞ where p and q

are polynomials. The degree N rational map uðzÞ ¼ �N

zN

corresponds to N lumps coincident at the origin. It also
describes a radially symmetric Q lump with topological
charge N. This can be verified by substituting this map into
Eq. (A4). Our choice of a radially symmetric map made in
Eq. (15) greatly simplifies the solution of the Einstein
equation (3). Using this solution on the rhs of Eq. (17)
and substituting the result in Eq. (18), we obtain, for N >
0, the expression (16). For N ¼ 1, the integral in Eq. (17)
diverges (as cosec�) owing to slow power law decay of
juðzÞj ¼ j�=zj. The lowest degree yielding finite energy �
is N ¼ 2 as used in Eq. (15) and throughout the following

computations. Equation (A7), taken with upper sign, im-
plies

uðt; zÞ ¼ expð�i�tÞuðzÞ (A8)

as written in Eq. (14).
It should be pointed out that, in contrast to the present

model, the spinning baby Skyrmion model [32] yields

solutions for the fields ~� that are exponentionally localized
as long as the spinning frequency does not exceed the
meson mass threshold. Consequently, finite energy solu-
tions are obtained in this model even for N ¼ 1. For the
Q-lump model, the exponential localization is absent due
to the fact that the spinning frequency is exactly equal to
the meson mass threshold. In the case of the pure sigma
model [5], the rational map of degree 1, uðzÞ ¼ �=z, also
yields finite energy per unit length of the string since the
anisotropic potential is absent.
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