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In this paper, a protocol is proposed in which energy extraction from local vacuum states is possible by

using quantum measurement information for the vacuum state of quantum fields. In the protocol, Alice,

who stays at a spatial point, excites the ground state of the fields by a local measurement. Consequently,

wave packets generated by Alice’s measurement propagate the vacuum to spatial infinity. Let us assume

that Bob stays away from Alice and fails to catch the excitation energy when the wave packets pass in

front of him. Next Alice announces her local measurement result to Bob by classical communication. Bob

performs a local unitary operation depending on the measurement result. In this process, positive energy is

released from the fields to Bob’s apparatus of the unitary operation. In the field systems, wave packets are

generated with negative energy around Bob’s location. Soon afterwards, the negative-energy wave packets

begin to chase after the positive-energy wave packets generated by Alice and form loosely bound states.
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I. INTRODUCTION

The interplay between quantum information theory and
quantum field theory has intensified and is expected to
revolutionize physics. For example, novel ideas are pro-
posed on the information loss problem of black holes [1]
and quantum causal histories of quantum gravity [2]. It has
also been discussed that distillation of vacuum entangle-
ment of quantum fields yields EPR pairs [3] and W states
[4]. In Ref. [5], the method of field theory in curved
spacetime is employed to evaluate actuating energy of
photon switching in quantum communication. In this pa-
per, we apply positive operator value measure (POVM) and
local operations and classical communication (LOCC) to
the physics of negative-energy density in quantum field
theory. POVM and LOCC are fundamental tools of quan-
tum information theory [6].

Quantum fluctuations of the local energy around its zero
value in field theory has been studied for a long time [7].
Quantum interference is able to create states containing
regions of negative energy, though the total energy remains
nonnegative. A notion of negative energy has impacts on
many fundamental problems of physics, including travers-
able wormhole [8], cosmic censorship [9], and the second
law of thermodynamics [10]. It has been pointed out that
available absolute values of negative energy are crucial for
those problems. Possible values of negative energy are
restricted by quantum inequalities for energy density based
on uncertainty relations [11,12].

Classical energy of free fields takes nonnegative values,
and cannot be used successfully when our apparatus of
energy extraction from the fields is located outside
nonvanishing-energy regions. This situation is dramati-
cally different for quantum energy. Let us consider a local
quantum measurement performed for the vacuum state. A

finite amount of positive energy is infused into the system
at the measurement device position. Because the properties
of states excited by local measurement are the same as
those of the vacuum outside the excited regions, those
states can be called local vacuum states. The concept of
local vacuum states is the same of that of strictly localized
states proposed by Knight [13]. In this paper, it is proven
for a free massless scalar field in 1þ 1 dimensions that the
excitation energy can be partly extracted back from the
field using the measurement results and a quantum appa-
ratus located away from the measurement point, even if the
field has, on average, no energy around the apparatus at
all. Using this method, we can transport energy to a distant
location by sending not a physical object with excitation
energy, but classical information. In the extraction process,
wave packets with negative-energy density are generated
in the system and form loosely bound states with positive-
energy wave packets excited first by the measurement
device. This method is based on a quantum energy tele-
portation protocol proposed for spin chains [14]. The pro-
tocol transfers localized energy from one site of a spin
chain to another only by LOCC. However, aims of the
paper are confined to short time scale processes in which
dynamical evolution induced by the Hamiltonian is negli-
gible, although LOCC is assumed possible many times in
the short interval. In relativistic field systems, the dynami-
cal effect propagates with light velocity, which is the upper
bound on the speed of classical communication. Thus, we
generally cannot omit global time evolution. It is also
noted that any continuous limit of zero lattice spacing
cannot be taken for the protocol in [14] because measure-
ments in the protocol are projective, which becomes an
obstacle to obtaining a smooth limit. In this paper, we
adopt a different general measurement that is well defined
in field theory.
The paper is organized as follows. In Sec. II, we briefly
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formation theory. In Sec. III, a short review of negative-
energy physics of a 1þ 1 dimensional free scalar field is
given. Section IV presents a protocol in which energy is
extracted from local vacuum states using measurement
results. In Sec. V, an explicit example of the protocol is
given. Section VI summarizes the results. We adopt the
natural unit c ¼ @ ¼ 1.

II. POVM AND LOCC

In this section, we give an overview of concepts related
to general measurements by use of POVM and measure-
ment operator and LOCC in quantum information theory.
A detailed explanation can be found in standard textbooks
of quantum information [6]. Measurements are generalized
measurements beyond projective (ideal) measurements.
Let us consider a quantum system S about which we
wish to obtain information. In order to formulate general
measurements, we need another quantum system S0 as a
probe. In general, dimension N of the Hilbert space of S is
not equal to that of S0. We bring S0 into contact with S by
probe interactions between the two. In this process, infor-
mation on S is imprinted into S0. After switch off of the
measurement interactions, we perform a projective mea-
surement on not S but the probe system S0 and obtain
imprinted information about S. This completes a general
measurement. An ideal measurement can be made if a
composite quantum state after switch off of the interaction
is given by

j�iSS0 ¼
XN
n¼1

cnjniSjuniS0 ;

where fjnijn ¼ 1� Ng is the complete set of orthonormal
basis state vectors of S and fjuniS0 g is the set of orthonormal
state vectors of S0. When a measurement result for S0 is
given by juniS0 with probability pn ¼ jcnj2, we infer that S
is also observed in the state jniS with the same probability.
Hereafter we will express quantum states by density op-
erators. General measurements are mathematically de-
scribed using measurement operators M� (� ¼ 1�m),

which act on the Hilbert space of S and satisfy

Xm
�¼1

My
�M� ¼ IS; (1)

where the number ofM� is denoted bym and generally not

equal to N. Let us consider explicitly an indirect measure-
ment model in order to understand the measurement op-
erators. Let us write down a probe Hamiltonian as

HpðtÞ ¼
X
�

g�ðtÞOð�Þ
S �Oð�Þ

S0 ;

where Oð�Þ
S , Oð�Þ

S0 are Hermitian operators acting on the

Hilbert spaces of S and S0, and g�ðtÞ are real functions of

time twhich take zero values for t =2 ð0; TÞ. The interaction

generates entanglement between S and S0. The time evo-
lution is described by the following unitary operator:

UpðTÞ ¼ T exp

�
�i

Z T

0
HpðtÞdt

�

¼ exp

�
�iX

�

Z T

0
g�ðtÞdtOð�Þ

S �Oð�Þ
S0

�
:

Let us set the initial state as j Si for S, and j0S0 i for S0 at
t ¼ 0. After switch off of the probe interaction, the total
state is given by

j�i ¼ UpðTÞðj Si � j0S0 iÞ:
Now let us perform a S0 projective measurement for j�i.
Consider a complete orthonormal basis fj�; S0ij� ¼
1; � � � ; mg of the Hilbert space of S0. The index � classifies
m possible outputs of the measurement. The projection
operator onto j�; S0i is defined by

P�ðS0Þ ¼ j�; S0ih�; S0j:
Because of completeness, the following relation is satis-
fied:

Xm
�¼1

P�ðS0Þ ¼ IS0 : (2)

The measurement operator M� is obtained by acting IS �
P�ðS0Þ on j�i such that

ðIS � P�ðS0ÞÞj�i ¼ M�j Si � j�; S0i:
It is noted thatM� are operators acting on the Hilbert space

of S. The explicit form of M� is given by

M� ¼ h�; S0jUpðTÞj0S0 i:
Equation (1) then is easily verified as follows:

Xm
�¼1

My
�M� ¼ Xm

�¼1

h0S0 jUy
pðTÞj�; S0ih�; S0jUpðTÞj0S0 i

¼ Xm
�¼1

h0S0 jUy
pðTÞðIS � j�; S0i

� h�; S0jÞUpðTÞj0S0 i

¼ h0S0 jUy
pðTÞ

�
IS �

Xm
�¼1

P�ðS0Þ
�
UpðTÞj0S0 i

¼ h0S0 jUy
pðTÞUpðTÞj0S0 i ¼ h0S0 jIS � IS0 j0S0 i

¼ IS:

In the above proof, we have used Eq. (2) and the unitarity
of UpðTÞ. It should be stressed that, in general,M� is not a

projective operator. It can be shown [6] that for an arbitrary
quantum state � of S, the result � is observed with proba-
bility p� evaluated via
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p� ¼ Tr½�My
�M��: (3)

After the measurement, the state of S is transformed into a
state given by

�� ¼ M��M
y
�

Tr½�My
�M��

: (4)

These results are always correct when we start from any
indirect measurement model. It has been proven [15] that,
inversely, if we have some operatorsM� satisfying Eq. (1),

there exists an indirect measurement model with a probe
system S0 and a measurement interaction between S and S0
such that the relations in Eq. (3) and (4) are reproduced.
Hence, we are able to make general arguments on general
measurements by considering general operators M� satis-

fying Eq. (1). In mathematics, the set of Hermitian positive
semidefinite operators My

�M� is called a POVM. This is

because some people call the general measurement a
POVM measurement.

Here I give comments for measurements in field theory.
The localized general measurement operators are ex-
pressed as functions of averaged local operators with test
functions with compact supports. For example, let us con-
sider arbitrary local operators OkðxÞ with k ¼ 1; 2; � � � ;1
of a field system in one spatial dimension S. Then the
averaged operators are given by

�O kðRÞ ¼
Z 1

�1
!RðxÞOkðxÞdx;

where !RðxÞ is a test function with a compact support R.
The Hamiltonian of probe interactions depends on time t
and those averaged operators as follows:

Hp ¼ Hpðt; �O1ðR1Þ; �O2ðR2Þ; � � �Þ:
The time evolution operator is given by

UpðTÞ ¼ T exp

�
�i

Z T

0
Hpðt; �O1ðR1Þ; �O2ðR2Þ; � � �Þdt

�
:

The general measurements for fields are fixed by givingHp

and the initial state jS0i of the probe system S0. The final
state of S, after the ideal measurement of the probe system
S0 yields the result �, is expressed by use of the measure-
ment operators M� as follows:

Tr S0 ½P�ðS0ÞðUpðTÞðjSihSj � jS0ihS0jÞUy
pðTÞÞ�

¼ M�jSihSjMy
�; (5)

where jSi is an arbitrary initial state of S. It is then noticed
that M� becomes a function of the averaged operators as

M� ¼ M�ð �O1ðR1Þ; �O2ðR2Þ; � � �Þ:
Even if one wants to take a nonseparable initial state jSþ
S0i of S and S0 in Eq. (5), the formulation discussed above
still works. This is because any jSþ S0i is reproduced by

acting a unitary operation V on a separable state jSIijS0Ii:
jSþ S0i ¼ VjSIijS0Ii:

Therefore we are able to introduce measurement operators
~M� satisfying

Tr S0 ½P�ðS0ÞðUpðTÞjSþ S0ihSþ S0jUy
pðTÞÞ�

¼ TrS0 ½P�ðS0ÞðUpðTÞVðjSIihSIj � jS0IihS0IjÞVyUy
pðTÞÞ�

¼ ~M�jSIihSIj ~My
�:

The general measurements are generated by probing
interactions (expressed by Hp) which are assumed to be

switched on in a time interval, ½0; T�. Effective switching
of those couplings may be achieved by various methods in
field theory. For example, by applying laser beams to
semiconductor devices in quantum optics, energy levels
of the devices can be shifted corresponding to the beam
strength. This mechanism has been applied to control of
photon-counter switching.
LOCC is a setting of quantum communication. Let us

consider two parties who share a quantum state of a
composite system and want to communicate with each
other using the quantum system and classical channels.
In the LOCC setting, they are able to perform local opera-
tions at each side, including local unitary transformations
and local general measurements. The two parties are also
allowed to use classical channels for sending classical
information like measurement results. However, they are
not allowed to use global quantum operations over the
composite system. For example, quantum teleportation
[16] is a well-known protocol obtainable by LOCC. It
transfers any unknown quantum state to a distant place.

III. NEGATIVE-ENERGY DENSITY OF QUANTUM
FIELDS

In this section, we give an overview of negative-energy
physics of a 1þ 1 dimensional free scalar field �. The
properties described will be applied to a protocol in the
next section. A detailed explanation can be found in [5,12].
The equation of motion is�

@2

@t2
� @2

@x2

�
�ðt; xÞ ¼ 0: (6)

The general solution of Eq. (6) is written as a sum of left-
and right-moving components: �ðx; tÞ ¼ �þðxþÞ þ
��ðx�Þ, where �þðxþÞ denotes the left-moving field and
��ðx�Þ the right-moving field with light-cone coordinates
x� ¼ t� x: It is remarkable that the quantum interference
effect between multiparticle states is able to suppress
quantum fluctuation of the field and to yield negative-
energy density of the field. For example, even though the
classical energy flux ½@þ�þðxþÞ�2 of the left-moving field
is nonnegative, the expectation value of the corresponding
quantum flux operator TþþðxþÞ ¼ :@þ�LðxþÞ@þ�LðxþÞ:
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can be negative. Despite the existence of regions with
negative-energy density, expectation values of the total
energy flux

R1
�1 TþþðxþÞdxþ for an arbitrary state remain

nonnegative because the total flux is given byR1
0 @!aþy

! aþ!d!. By taking an arbitrary, monotonically

increasing C1 function fðxÞ of x 2 ð�1;1Þ satisfying
fð�1Þ ¼ �1, the set of mode functions

v!ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
@

4�!

s
e�i!fðxÞ; ð! � 0Þ (7)

is obtained, which can uniquely expand the field. Their
orthonormality in terms of the normal product can also be
derived straightforwardly. By using mode functions, the
left-moving field �þ is expanded via

�þðxþÞ ¼
Z 1

0
d!½bþ!v!ðxþÞ þ bþy

! v	!ðxþÞ�:

Here bþy
! , bþ! are creation and annihilation operators that

satisfy ½bþ!; bþy
!0 � ¼ �ð!�!0Þ. We note that the normal-

ized quantum state j�i defined by bþ! j�i ¼ 0 is a
squeezed state. For j�i, the expectation value is evaluated
through

h�jTþþðxþÞj�i ¼ � @

24�

�
f
...ðxþÞ
_fðxþÞ �

3

2

� €fðxþÞ
_fðxþÞ

�
2
�
; (8)

where the dot denotes a derivative in terms of xþ [7]. An
interesting example of negative-energy flux is generated by
a monotonically increasing C1 function f"ðxÞ given by

f"ðxÞ ¼ �ðxi � xÞxþ�ðxf � xÞ�ðx� xiÞ
�
xi � 1ffiffiffi

"
p

þ 1ffiffiffi
"

p � "ðx� xiÞ
�
þ�ðx� xfÞ

�
�

"

ð ffiffiffi
"

p � "ðxf � xiÞÞ2
ðx� xfÞ þ xi � 1ffiffiffi

"
p

þ 1ffiffiffi
"

p � "ðxf � xiÞ
�
;

where xi 
 xf,�ðxÞ is a step function, and " ¼ ð12�jEnj
@

Þ2 is
a nonnegative constant. For the squeezed state j�shocki
corresponding to f"ðxÞ, the left-moving energy flux is
estimated by

h�shockjTþþðxþÞj�shocki ¼ �jEnj�ðxþ � xiÞ

þ jEnj
1� 12�

@
jEnjl

�ðxþ � xfÞ;
(9)

where l ¼ xf � xið>0Þ. The first term on the right-hand

side shows the flux of a shock wave with negative energy
�jEnj. Because

R1
�1h�shockjTþþðxÞj�shockidx is positive,

we obtain the following inequality

jEnj2l
@

12�� jEnjl � 0:

Because the numerator is definitely positive, the denomi-
nator must be nonnegative, which leads to an uncertainty-
relation-type inequality:

l ¼ xf � xi 
 @

12�jEnj : (10)

This means that negative-energy shock waves cannot be
separated infinitely far from positive-energy shock waves.
This is because the existence of negative energy is sus-
tained by a quantum correlation effect with positive-energy
excitations. If the quantum correlation vanishes com-
pletely, negative energy cannot appear in any region be-
cause nonnegativity of the Hamiltonian should hold in
every local region. Hence, it can be concluded that the
negative-energy shock waves form loosely bounded states
with the positive-energy shock waves. Creation of the
above loosely bound states of negative- and positive-
energy excitations is not peculiar to this example, but
rather takes place in any arbitrary system with negative-
energy local excitations.

IV. ENERGY EXTRACTION FROM LOCAL
VACUUMS BY LOCC

In this section, a protocol for energy extraction from
local vacuums by LOCC is proposed for a free massless
scalar field � in 1þ 1 dimensions. The system is intro-
duced as a toy model to present a new idea which can be
applied to 3þ 1 dimensional electromagnetic field. We
may consider that � corresponds to asymptotic field of
QED gauge field in the analogy. Hereinafter, we will refer
to this protocol as quantum field energy teleportation
(QFET). In canonical quantization, the standard commu-
tation relations are set for the canonical Schrödinger op-
erators as follows:

½�̂ðxÞ; �̂ðx0Þ� ¼ i�ðx� x0Þ; ½�̂ðxÞ; �̂ðx0Þ� ¼ 0;

½�̂ðxÞ; �̂ðx0Þ� ¼ 0:

The energy density operator is written as

"̂ðxÞ ¼ 1
2½�̂2 þ ð@x�̂Þ2� � "0;

where "0 is a constant for subtraction of the vacuum
contribution. The Hamiltonian is given by spatial integra-

tion of "̂ðxÞ as Ĥ ¼ R
"̂ðxÞdx. The vacuum j0i is the

eigenstate corresponding to the lowest eigenvalue of Ĥ.
By adjusting "0, we can set

h0j"̂ðxÞj0i ¼ 0; Ĥj0i ¼ 0:

This choice of "0 corresponds to the normal order pre-
scription. The evolution operator of the system is defined

by UðtÞ ¼ e�itĤ. Then, using the Schrödinger operators,
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the canonical Heisenberg operators are calculated as

�̂ðt; xÞ ¼ 1

2
½�̂ðxþ tÞ þ �̂ðx� tÞ� þ 1

2

Z xþt

x�t
�̂ðyÞdy;

(11)

�̂ðt; xÞ ¼ 1
2½�̂ðxþ tÞ þ �̂ðx� tÞ� þ 1

2½@x�̂ðxþ tÞ
� @x�̂ðx� tÞ�: (12)

Let us consider Alice at x ¼ xA who excites the ground
state of the field by a local measurement, and Bob who
stays at x ¼ xB away from Alice and extracts energy from
the field. Then the QFET protocol is composed of the
following four phases:

(1) At time t ¼ 0, Alice makes a local general measure-
ment defined by operators MnðAÞ satisfyingX

n

My
n ðAÞMnðAÞ ¼ 1 (13)

to the vacuum state j0i and obtains the result n. To
perform this measurement, she must, on average,
give positive energy EA to the field. Using this
energy, positive-energy wave packets of the field
are generated.

(2) At time t ¼ to, the wave packets excited by Alice
have already passed by the position of Bob. Assume
that Bob fails to catch any energy of the wave
packets at all. Consequently, no energy of� remains
around Bob after t ¼ to.

(3) Alice announces the measurement result n to Bob by
classical communication. Bob receives the informa-
tion at time t ¼ Tð� toÞ.

(4) At t ¼ T, Bob performs a unitary operation depend-
ing on the value of n defined by

UnðBÞ ¼ exp

�
igan

Z 1

�1
pBðxÞ�̂ðxÞdx

�
; (14)

where g is a real constant fixed below, an are real
constants depending on n, and pBðxÞ is a function
whose support is localized around Bob’s location. In
this process, positive energy EB is released on aver-
age from � to Bob’s apparatus of UnðBÞ. In the
system of �, wave packets are generated with nega-
tive energy �EB around Bob’s location. Soon after-
wards, the wave packets begin to chase after the
positive-energy wave packets generated by Alice.

The schematics in Figs. 1–3 describe this QFET protocol
with plots of h"ðxÞi ¼ Tr½�"̂ðxÞ� as a function of x. A
spacetime diagram for protocol events is given in Fig. 4.
The amount of energy EA is evaluated by

EA ¼ X
n

h0jMy
n ðAÞĤMnðAÞj0i> 0:

After phase (1), the quantum state is transformed into the
following state depending on n.

x

n

BxAx

)(xε

tnemerusaem MVOP

AE

FIG. 1. The first schematic diagram of QFET. Alice stays at
x ¼ xA and Bob at x ¼ xB. Alice performs a general measure-
ment to the vacuum state with energy input EA and obtains the
measurement result n. Then, positive-energy wave packets are
generated in the system and escape to spatial infinity at the speed
of light. The expectational value of the energy density h"ðxÞi ¼
Tr½�"̂ðxÞ� is plotted as a function of x.

x

n

( )U Bn

BxAx

)(xε

FIG. 2. The second schematic diagram of QFET. After the
wave packet passes through Bob’s location, Alice announces
to Bob the measurement result n. Bob obtaining n performs local
unitary operation UnðBÞ depending on n.

x

BE

Ax Bx

)(xε

FIG. 3. The third schematic diagram of QFET. In the process
of UnðBÞ, Bob gets a positive amount of energy from the field,
generating negative-energy wave packets in the field system.

QUANTUM MEASUREMENT INFORMATION AS A KEY TO . . . PHYSICAL REVIEW D 78, 045006 (2008)

045006-5



jAni ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0jMy

n ðAÞMnðAÞj0i
q MnðAÞj0i: (15)

The average quantum state after measurement evolves until
t ¼ T as follows:

�ðTÞ ¼ X
n

UðTÞMnðAÞj0ih0jMy
n ðAÞUyðTÞ: (16)

Soon after phase (4), the average quantum state transforms
into the following state:

�F ¼ X
n

UnðBÞUðTÞMnðAÞj0ih0jMy
n ðAÞUyðTÞUy

n ðBÞ:

In order to evaluate EB, let us introduce a localized energy
operator � around Bob:

Ĥ B ¼
Z
wBðxÞ"̂ðxÞdx;

where wB is a nonnegative window function that satisfies

wBðxÞ ¼ 1

for x 2 ðxB � �; xB þ �Þ with a positive constant � and
rapidly decreases outside the region ðxB � �; xB þ �Þ.
Also, we assume that

wBðxÞpBðxÞ ¼ pBðxÞ:
In order to calculate Tr½�FĤB�, recall that the Schrödinger
operators in "̂ðxÞ are transformed by UnðBÞ via

Uy
n ðBÞ�̂ðxÞUnðBÞ ¼ �̂ðxÞ;

Uy
n ðBÞ�̂ðxÞUnðBÞ ¼ �̂ðxÞ þ ganpBðxÞ:

Using these relationships, we obtain

Uy
n ðBÞĤBUnðBÞ ¼ ĤB þ ganÔB þ g2

2
a2n

Z
pBðxÞ2dx;

where operator ÔB is defined by

Ô B ¼
Z
pBðxÞ�̂ðxÞdx:

The localized energy hĤBi ¼ Tr½�FĤB� is then given by

hĤBi ¼
X
n

h0jMy
n ðAÞ

� ðUyðTÞUy
n ðBÞĤBUnðBÞUðTÞÞMnðAÞj0i;

where

UyðTÞUy
n ðBÞĤBUnðBÞUðTÞ ¼ UyðTÞĤBUðTÞ

þ ganÔBðTÞ

þ g2

2
a2n

Z
pBðxÞ2dx;

(17)

and ÔBðTÞ ¼ UyðTÞÔBUðTÞ. It is noted that the above
operator commutes with MnðAÞ at time T. This is because
the relations

½UyðTÞĤBUðTÞ;MnðAÞ� ¼ 0; (18)

½ganÔBðTÞ;MnðAÞ� ¼ 0 (19)

hold. Equations (18) and (19) can be verified through
Eq. (12) and a relation obtained by differentiation of
Eq. (11) such that

@x�̂ðt; xÞ ¼ 1
2½@x�̂ðxþ tÞ þ @x�̂ðx� tÞ� þ 1

2½�̂ðxþ tÞ
� �̂ðx� tÞ�:

Thus, we are able to obtain a relationship such that

hĤBi ¼
X
n

h0jMy
n ðAÞMnðAÞ

� ðUyðTÞUy
n ðBÞĤBUnðBÞUðTÞÞj0i: (20)

Substituting Eq. (17) into Eq. (20) yields the following:

hĤBi ¼ h0j
�X
n

My
n ðAÞMnðAÞ

�
UyðTÞĤBUðTÞj0i

þ gh0j
�X
n

anM
y
n ðAÞMnðAÞ

�
ÔBðTÞj0i þ g2

2

�
Z
pBðxÞ2dxh0j

�X
n

a2nM
y
n ðAÞMnðAÞ

�
j0i:

Let us define Hermitian operators D̂A and ~D2
A as

D̂ A ¼ X
n

anM
y
n ðAÞMnðAÞ; (21)

~D 2
A ¼ X

n

a2nM
y
n ðAÞMnðAÞ: (22)

Using Eqs. (13), (21), and (22), hĤBi can be simplified into

t

x

n

( )M An

Ax Bx

( )U Bn

 ygrene e-vitisop
 packetevaw

 ygrene e-vitisop
e packetvaw

 ygrene e-vitagen
ve packetaw

FIG. 4. A spacetime diagram of QFET. Entanglement is cre-
ated between positive-energy wave packets generated by Alice
and negative-energy wave packets generated by Bob, which
form a loosely bound state.
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hĤBi ¼ h0jUyðTÞĤBUðTÞj0i þ gh0jD̂AÔBðTÞj0i

þ g2

2

Z
pBðxÞ2dxh0j ~D2

Aj0i:

Because UðTÞj0i ¼ j0i and h0jĤBj0i ¼ 0, the first term on

the right-hand side vanishes. Hence, hĤBi is given by

hĤBi ¼ 1
2�g

2 þ 	g;

where constants � and 	 are defined as

� ¼ h0j ~D2
Aj0i

Z
pBðxÞ2dx; (23)

	 ¼ h0jD̂AÔBðTÞj0i: (24)

By fixing the parameter g by

g ¼ �	

�
;

we obtain a negative value for hĤBi given by

hĤBi ¼ �	2

2�
< 0: (25)

It can be shown explicitly from Eq. (16) that the expecta-
tion value of energy density is exactly zero right before the
operation in phase (4). This is because �ðTÞ in Eq. (16) is a
local vacuum state (or strictly localized state) in which
physical properties around B are the same as those of a

vacuum. The vanishing of Tr½�ðTÞĤB� is regarded as an
example of general results about statistical independence

of separable localized regions (see e.g. [17]). Because hĤBi
becomes negative shortly after phase (4), this field system
releases positive energy to Bob’s apparatus UnðBÞ. The
amount of energy is given by EB ¼ �hĤBi ¼ 	2=ð2�Þ.
We note that for the quantum state �ðTÞ in Eq. (16)
many-point functions of the field are equal to those of
the vacuum state in the vicinity of Bob. Consequently,
we can regard phase (4) as an energy-extraction process
from the local vacuum of � around Bob. It is a typical
property of negative energy that negative-energy wave
packets generated by Bob cannot evolve independently of
positive-energy wave packets generated first by Alice. As
mentioned in Sec. III, this is because the existence of
negative energy is sustained by the existence of positive
energy so as to make the total energy in space nonnegative.
Negative-energy density is able to emerge only in spatial
regions that have finite correlation to other spatial regions
with positive-energy density. Thus, it is impossible to
separate a wave packet with a fixed negative energy far
from wave packets with positive energy. This observation
teaches us that Bob’s wave packets begin to chase after
Alice’s wave packets and form a loosely bound state with
them after phase (4). At first glance, this statement about
loosely bound states might seem irrelevant because the
system is in one spatial dimension and both Alice’s and

Bob’s wave packets maintain their interval while propagat-
ing with the same velocity. However, in higher-
dimensional field theory, the traveling direction of the first
positive-energy wave packets generally do not have an
isotropic distribution and, in particular, there may be a
spatial region through which no wave packet passes. If
Bob stays at a point in such a region and makes his local
operations, formation of the above loosely bound states
becomes a rather nontrivial phenomenon.

V. EXAMPLE

Although the protocol works for any general measure-
ment by Alice, we present a simple example of a two-
valued general measurement. This will allow us to experi-
ment with a similar protocol extended for the electromag-
netic field. Let us choose MnðAÞ as follows:

M0ðAÞ ¼ cos�̂A; (26)

M1ðAÞ ¼ sin�̂A; (27)

where �̂A is a Hermitian operator given by

�̂ A ¼ �

4
�

Z

AðxÞ�̂ðxÞdx;

and 
AðxÞ is a real localized function around Alice’s loca-
tion. The POVM can be constructed by combining the
system with a two-state probe system P by a certain
interaction. Let us consider an orthonormal state basis
fj0Pi; j1Pig of P. Then let us give an interaction
Hamiltonian defined by

Hp ¼ igðtÞ�̂A � ½j1Pih0Pj � j0Pih1Pj�:
Using the time evolution operator VðtÞ ¼
exp½�iRt0 gðtÞdtHp�, it can be easily proven that the mea-

surement is reproduced at time satisfying
R
t
0 gðtÞdt ¼ 1 by

an ideal measurement of an observable j0Pih0Pj � j1Pih1Pj
for the probe system:

Mb�M
y
b ¼ TrP½ðI � jbPihbPjÞVð� � j0Pih0PjÞVy�;

where b ¼ 0, 1 and � is an arbitrary state of the system. In
the above protocol setting, it is assumed that switching of
the measurement interaction is performed abruptly such
that

gðtÞ ¼ �ðt� 0Þ:
To make our argument more concrete, let us choose pa-
rameters an as an ¼ ð�1Þn. From Eqs. (23) and (24) the
following explicit relations are derived:

D̂ A ¼ sin

�
2
Z

AðxÞ�̂ðxÞdx

�
; (28)

~D 2
A ¼ I: (29)
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From Eq. (15), the measurement by Alice yields post-
measurement states depending on n as a sum of two
coherent states given by

jA0i ¼ 1ffiffiffi
2

p ½eið�=4Þj
Ai þ e�ið�=4Þj � 
Ai�;

jA1i ¼ 1ffiffiffi
2

p ½e�ið�=4Þj
Ai þ eið�=4Þj � 
Ai�;

where j
i is a coherent state satisfying h
j�̂ðxÞj
i ¼ 
ðxÞ
and h
j�̂ðxÞj
i ¼ 0. For both post-measurement states,
the expectational value of the Heisenberg energy density
operator takes the value given by

hAnj"̂ðt; xÞjAni ¼ 1
2½ð@x
Aðx� tÞÞ2 þ ð@x
Aðxþ tÞÞ2�:

(30)

Here it should be noticed that energy density vanishes
outside the compact supports of 
Aðx� tÞ and 
Aðxþ tÞ
in Eq. (30) because of locality. The first term on the right-
hand side of Eq. (30) describes a right-moving positive-
energy wave packet with light velocity. The second term
describes a left-moving wave packet. The energy input EA
is given by the integration of Eq. (30) as

EA ¼
Z 1

�1
ð@x
AðxÞÞ2dx: (31)

At time t ¼ T, Bob gets information about n and per-
forms UnðBÞ to the state. The amount of energy gain by
Bob can be calculated from Eq. (25) as follows. First, � is
obtained from Eq. (23) by

� ¼
Z
pBðxÞ2dx: (32)

On the basis of Eq. (24) and a relation such that

Ô BðTÞ ¼ 1

2

Z
dx½pBðx� TÞ þ pBðxþ TÞ��̂ðxÞ þ 1

2

�
Z
dx½pBðx� TÞ � pBðxþ TÞ�@x�̂ðxÞ;

it is possible to write 	 as

	 ¼
Z
h0jD̂A�̂ðxÞj0i½pBðx� TÞ þ pBðxþ TÞ�dx

þ
Z
h0jD̂A@x�̂ðxÞj0i½pBðx� TÞ � pBðxþ TÞ�dx:

(33)

It is worth noting that the following relation holds from
Eq. (28).

h0jD̂A ¼ 1

2i
h0j

�
exp

�
2i
Z

AðxÞ�̂ðxÞdx

�

� exp

�
�2i

Z

AðxÞ�̂ðxÞdx

��

¼ 1

2i
½h�2
Aj � h2
Aj�;

and that

h2
Aj0i ¼ h�2
Aj0i ¼ h2
Aj0i	:
Let us introduce a distributional function �ðxÞ by

�ðxÞ ¼ 2h0j _�ð0; xÞ _�ð0; 0Þj0i ¼ 1

2�

Z 1

�1
jkjeikxdk:

�ðxÞ has a delta-functional contribution at x ¼ 0 and is
evaluated as

�ðxÞ ¼ � 1

�jxj2
for x � 0. By using�ðxÞ, we derive the following relation-
ship:

h2
Aj�̂ðxÞj0i ¼ ih2
Aj0i
Z 1

�1
�ðx� yÞ
AðyÞdy:

Hence, we obtain the relation

h0jD̂A�̂ðxÞj0i ¼ �h2
Aj0i
Z 1

�1
�ðx� yÞ
AðyÞdy: (34)

We are also able to show thatZ
h0jD̂A@x�̂ðxÞj0i½pBðx� TÞ � pBðxþ TÞ�dx

¼ ih2
Aj0i
Z
@x
AðxÞ½pBðx� TÞ � pBðxþ TÞ�dx ¼ 0:

(35)

Here, the last integral vanishes because there is no overlap
between @x
AðxÞ and pBðx� TÞ. Substituting Eqs. (34)
and (35) into Eq. (33) yields

	 ¼ �h2
Aj0i
Z
dx

Z
dy
AðxÞ½�ðx� y� TÞ

þ �ðx� yþ TÞ�pBðyÞ: (36)

By substituting Eqs. (32) and (36) into Eq. (25), we obtain
the final expression for EB:

EB¼

�
h2
Aj0i

R
dx

R
dy
AðxÞ

�
1

ðx�y�TÞ2þ 1
ðx�yþTÞ2

�
pBðyÞ

�
2

2�2
R
pBðzÞ2dz

:

(37)

Extension of the protocol to the 3þ 1 dimensional
electromagnetic field is also possible by adopting three-
dimensional measurements and unitary operations. The
free gauge field A� can be expressed in the Coulomb
gauge. The gauge fixing condition is given by A0 ¼ 0
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and div ~A ¼ 0. The two-valued general measurement op-
erators corresponding to Eqs. (26) and (27) and are defined
by setting

�̂ A ¼ �

4
�

Z
~
Að ~xÞ � ~Eð ~xÞd3x;

where ~Eð ~xÞ is the electric field and ~
Að ~xÞ is a three-
dimensional vector local function around Alice’s position.
The local unitary operation of Bob in Eq. (14) is extended
as

UnðBÞ ¼ exp

�
igan

Z
~pBð ~xÞ � ~Að ~xÞd3x

�
;

where ~pBð ~xÞ is a three-dimensional vector localized func-
tion around Bob’s position and should satisfy the relation

div ~pB ¼ 0;

because of residual gauge symmetry of the gauge fixing. A
detailed analysis on the electromagnetic field case will be
published elsewhere. Experimental checks of the protocol
proposed in this paper may be promising in quantum
optics, and stimulate future development of new methods
of quantum energy transportation.

VI. CONCLUSION

This paper discusses local vacuum states excited by a
local general measurement for the vacuum state of a free
massless scalar field in 1þ 1 dimensions. Properties of
local vacuum states are the same as those of a vacuum as
long as we consider the vanishing-energy regions of those
states. A protocol is presented that can partially extract the
excitation energy from local vacuum states using both
information on the measurement result and a quantum
apparatus located away from the measurement point,
even if the field has, on average, no quantum energy around
the apparatus. As an example, the case of the two-valued
general measurements are defined in Eqs. (26) and (27) and
are analyzed in detail. The energy input for the measure-
ment is given by the result in Eq. (31). The extracted
energy is calculated using Eq. (37) for measurement-
data-dependent unitary operations given by Eq. (14) with
an ¼ ð�1Þn for n ¼ 0, 1.
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