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Spin-string interaction in QCD strings
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I consider the question of the interaction between a QCD string and the spin of a quark or an antiquark
on whose worldline the string terminates. The problem is analyzed from the point of view of a string
representation for the expectation value of a Wilson loop for a spin-half particle. A string representation of
the super Wilson loop is obtained starting from an effective string representation of a Wilson Loop. The
action obtained in this manner is invariant under a worldline supersymmetry and has a boundary term
which contains the spin-string interaction. For rectangular loops the spin-string interaction vanishes and
there is no spin-spin term in the resulting heavy quark potential. On the other hand if an allowance is made
for the finite intrinsic thickness of the flux tube by assuming that the spin-string interaction takes place not
just at the boundary of the string world sheet but extends to a distance of the order of the intrinsic
thickness of the flux tube then we do obtain a spin-spin interaction which falls as the fifth power of the
distance. Such a term was previously suggested by Kogut and Parisi in the context of a flux-tube model of

confinement.
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I. INTRODUCTION

There is strong numerical evidence that a flux tube is
formed between a static quark and an antiquark when the
separation between them is of the order of a Fermi or even
less, and that such flux tubes can be described by effective
string models (for a review see, e.g, [1,2]). This evidence
for the formation of a flux tube and its stringlike behavior
matches well with the fact that the spectrum of highly
excited mesons are well described by open-string models
of mesons. Further, these facts are in concordance with the
idea that in a suitable limit, namely, in the limit of a large
number of colors, QCD is exactly equivalent to some
unknown fundamental string theory (for a contemporary
review of these idea see, e.g, [3]). It is therefore natural to
ask a more detailed question about the dynamics of the
QCD string, namely, do the spin of the quark and the
antiquark interact with the string connecting them? Such
an interaction could lead to a long range spin-spin term in
the heavy quark potential [4]. Spin-string interaction could
also perhaps be responsible for the pion-rho mass differ-
ence in effective string models of meson [5]. More gen-
erally the spin-string interaction could help answer the
question of how is spontaneous breaking of chiral symme-
try reflected in a fundamental string representation of
QCD?

The nature of the interaction between the spin of the
quark and the string has been investigated in the context of
open-string models of mesons (see, e.g., [6-8]). In the
present investigation, we will take a different approach.
We will start with the assumption that the expectation value
of the Wilson loop over the gauge fields can be written as a
sum over surfaces whose boundary is the given loop [9-
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13]. These surfaces can be regarded as the world sheets of a
string whose end points lie on the loop, while the loop
represents the worldline of a scalar particle-antiparticle
pair that is created at a point and is annihilated latter. If
we replace the closed worldline of a scalar particle by a
closed worldline of a spin-half particle then the amplitude
for the corresponding process is given, apart from the
kinematic factors, by the Wilson loop for a spin-half par-
ticle [14—18]. Such a Wilson loop is often referred to as a
super Wilson loop as it is invariant under a one-
dimensional supersymmetry [19]. If we can write the ex-
pectation value of a super Wilson loop as a sum over the
surface whose boundary is the given loop, then the corre-
sponding string action automatically includes the spin of
the quark and the spin-string interaction [20]. The task of
finding the string representation of a super Wilson loop is
facilitated by the fact that the super Wilson loop is not an
independent loop functional but is related to the Wilson
loop via the area derivative of a loop [19].

The simplest string action used to model QCD strings is
the Nambu-Goto action which is the area of the string
world sheet. Though the Nambu-Goto string in four di-
mensions suffers from serious problems, it can be thought
of as the leading term in an effective description [21-24].
The success of Nambu-Goto string in modelling the heavy
quark potential as obtained from the lattice QCD simula-
tions [25-27] indicates that the expectation value of the
Wilson loop over the gauge fields can be well represented
by a sum over surfaces with the surface being weighted by
the exponential of the Nambu-Goto action, at least for
rectangular loops. With this as our justification, we will
obtain a string representation for the expectation value of
the super Wilson loop via the area derivative of the Nambu-
Goto action. The super Wilson loop, when written in terms
of anticommuting variables, is invariant under a worldline
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supersymmetry. We will verify that the action of the string
representing the super Wilson loop is also invariant under
the worldline supersymmetry (SUSY).

In the string representation of the super Wilson loop the
spin-string interaction appears as a boundary term, repre-
senting interaction between the spin of the quark (or the
antiquark) and the extrinsic curvature of the world sheet at
the boundary. To obtain some intuition about the signifi-
cance of the spin-string interaction we calculate the expec-
tation value of a rectangular super Wilson loop, from which
one can extract the spin-dependent heavy quark potential
[28-35]. It turns out that for a rectangular super Wilson
loop the spin-string term vanishes, and therefore there is no
spin-spin dependent term in the heavy quark potential.

But if we think of a string as an effective description for
a flux tube of finite intrinsic width that is formed between a
static quark-antiquark pair, and evaluate the spin-string
interaction not right at the boundary of the rectangular
loop but average it over a distance of the order of the
thickness of the flux tube, then we do obtain a spin-spin
interaction term. The form of this term is precisely the one
considered by Kogut and Parisi in the context of a fluctuat-
ing flux-tube model of confinement [4]. This term repre-
sents an attractive interaction between antialigned spins
which falls as the fifth power of the inverse distance
between the quark and the antiquark.

The outline of the paper is the following: in the next
section the physical significance of the Wilson loop and the
super Wilson loop are recalled and their relationship via
area derivative of the loop is stated. A string representation
of the super Wilson loop is obtained in Sec. II, assuming
that the string representation of the Wilson loop is provided
by the Nambu-Goto action. It is also shown that the string
action for the super Wilson loop is invariant under the
worldline SUSY, and a brief comment on the relationship
between the string representation of a super Wilson loop
and the vacuum expectation value of chiral condensate is
made. In Sec. IV the string representation of the super
Wilson loop is used to obtain the expectation value of a
rectangular super Wilson loop from which the heavy quark
potential is obtained. It is found that the spin-string inter-
action vanishes and therefore there is no spin-spin depen-
dent correction to the heavy quark potential. Next, in
Sec. V we evaluate the spin-string interaction in the spirit
of the flux-tube model and obtain a nonvanishing spin-spin
interaction. The conclusions are stated in the final section.

II. THE WILSON LOOP AND THE SUPER WILSON
LOOP

The Wilson loop (WL) for a scalar particle in the fun-
damental representation of the gauge group is defined as,

W[x(7)] = TrP exp{i }( drA. %}, (1)

where the trace is over the color indices of the matrix
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valued vector potential, A = A%.7,, with 7, as the matrices
providing the fundamental representation of the Lie alge-
bra of the gauge group. P is the path ordering operator that
instructs us to order the color matrices along the loop x(7)
in the order of the increasing value of the parameter 7. To
recall the physical significance of the Wilson loop [9],
consider the propagation of a meson which is created at
x; and annihilated at x; in the approximation in which one
neglects the virtual quark pairs. In this approximation, the
amplitude for this process can be written as a sum over
closed paths passing through points x; and x;, each path
being weighted by the expectation value of the correspond-
ing Wilson loop and some kinematic factors. The expec-
tation value of the Wilson loop being defined as

(WEx(m) Dy =ﬁ DAexp(—Sy[ADW[x(D)] (2)

Zynt = j DA exp(—Sym[A)). 3)

where Syp[A] is the Yang-Mills (YM) action for the gauge
field in the Euclidean space. One way of formulating
gauge-string duality is to assume that the expectation value
of the Wilson loop can be written as a sum over surfaces,

(WD) Dyt = [ DXexp(—SwilX). @)

where X (o) is the surface whose boundary is the loop x(7)
and Sy [X] is some unknown string action [9-13].

In the above discussion the particle was assumed to be a
scalar particle, if we want to describe the propagation of a
meson, including the spin of the quark and the antiquark,
then the role of the Wilson loop is played by the Wilson
loop for a spin-half particle [14] (see [29] for a review)

W [x(7), YulT)] = TrP exp{ifdrﬂ.A .
dr 4

X fdwﬂyFw} )

. 1
= TrPexp{ifdtx A+ 1 deE,,,VFW} (6)

where ,, are the Dirac gamma matrices and X, are the
corresponding spin matrices. Since these matrices do not
commute therefore they too have to be path ordered and in
that sense they are function of the loop parameter 7. In the
context of the path integral for a spin-half particle the
appropriate  Wilson loop can also be written using
Grassmann variables,

W x(r), p(r)] = TeP exp{i }( dr(%.A

St} 0
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where (1) are four independent anticommuting variables
[15-18]. Their role is the same as that of gamma matrices,
the integration over (7) with suitable action for a free
spin-half particle is equivalent to taking trace over the
gamma matrices. An immediate advantage of writing the
Wilson loop for a spin-half particle using #(7) is that it is
invariant under the following one-dimensional supersym-

metry
ox = ey oY = —ex. ®)

For this reason, in what follows we will refer both to (5)
and to (7) as the super Wilson Loop. The super Wilson loop
is not an independent loop functional but is related via a
linear operator to the Wilson loop

expl =5 § i }W[xm]—mx(r) o))
9

Oy

where

5

III. STRING REPRESENTATION OF SUPER
WILSON LOOP

The quark-antiquark potential is surprisingly well mod-
eled by a Nambu-Goto string [25-27], suggesting that at
least for rectangular loops the expectation value of the
Wilson loop can be written as,

(W) Dy = [ DX(0) exp{—Sxa[X(@)]:  (10)

The Nambu-Goto action (NG), Sng, is given by
SwalX(@] =T, [ &0 5, (an

where T is the string tension and g is the determinant of
the induced metric. The induced metric can be written
using the world sheet coordinates, (o, o), as
X o0X

do, dop,

gaplo]= 12)

Using Eq. (9) one can write the expectation value of the
super Wilson loop in terms of the expectation value of the
Wilson loop,

WE(e) oD = (exp{ =5 § drih 5|

= exp{ dea,le//,,S }/DX

X exp{—Sng[ X1},
- [ DX exp{—Sswi[X, x(r), (7]}
(13)

where the string action for the super Wilson loop (SWL) is
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T
SSWL = TO [d20_ 8~ 70 del//,U,(T)’Wl[V(T)t,LLV(T)‘
(14)

In obtaining the above action we have used the fact [37]
that the area derivative of the area functional is

5 /
80 ,,(o(x(7)) [dz" V&8 =ty lok(m)] 15

and t,, is given by

€?0,X,0,X, X,,(0)
Ve Ve

Thus, the action for the super Wilson loop differ from the
Nambu-Goto action by the presence of an additional
boundary term. The boundary term represents the interac-
tion between the string variables and the spin of the quark
whose worldline is the boundary of the given loop.

As mentioned earlier, super Wilson loop is invariant
under a worldline SUSY (8), which we will refer to as
SUSY1. One expects that the action (14) too should be
invariant under SUSY1 [38]. We can check this using the
methods of loop calculus [36,39]. To do so, let us write the
action (14) as

SswL = To/d20\/§ - % delPM(T)l//u(T)t,w(T)

= SNG + Sss, (17)

tu(0) = (16)

and consider the variation of each of these terms under
SUSY1. The general variation of a loop functional,
F[x(7)], can be written as

6F
oF = fﬁxﬂdx,,—. (18)
00,
Using this the variation of Syg under (8) can be written as
V]

SSISNG = Tofﬁxﬂd = Todex El//,u o
19)

The variation of Sgg under (8) is

= ou(~ 2 farunt,)

T
= —T, fdfx,,ezpﬂtw — 70 fdﬂﬂ’ulﬁ,,(s_glt#w
(20)

the first term in the above equation cancels with the varia-
tion of Syg given by (19). Consider now the variation of
up under SUSY,

6Slty,1/(x(7-)) = t,uv(x(T) + Elﬁ(T)) - t;LV(x(T))’ (21)

in the context of loop calculus this quantity can be repre-
sented by a path derivative [36,39],

BSlSSS
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SS]Z’M,,(X(T)) = a“f\tw,(?x,\, 6¢)\ B ,u,w (22)
where 9% denotes the path derivative at point x(7) and we
have used (8). This allows us to write the variation in the
second term of (20), using (15), as

f dri 8511, = f dre 01 5——— (T)
Oy

X ( f dza'\/;}). (23)

The area derivative satisfies a Bianchi identity

INT) 53+ 0u(D) s s T 9,(1) 55 = 0,

U,tu/( ) V}\( ) oo /\,u(T)

(24)

as a result the second term (23) in Eq. (20) vanishes and the
action (17) is invariant under the worldline SUSY trans-
formation (8).

Having obtained the spin-string interaction, one would
like to know whether one can relate it to spontaneous
breaking of chiral symmetry. This can be done, at least
formally, in the large N limit using Banks and Casher’s
relation [40] that expresses the vacuum expectation value
of chiral condensate, Vx’ in terms of the expectation value
of a super Wilson loop

2

m
o T} f) ” exp{— S0}<W>YM»
(25)

Ve=m . dTexp{—

where the subscript y, ¢ under the integral represents a sum
over all closed paths of spin-half particle whose length is 7',
and S is the action for a free spin-half particle,

S = fo ’ dr{%z + %%%}. (26)

To check for spontaneous breaking of chiral symmetry one
has to consider the above expression in the limit m — 0,
where m is the current quark mass. Using the string repre-
sentation for the expectation value of super Wilson loop
(13), we can write chiral condensate as

vV, = hmm[ dTexp{ TT}[ exp{—S,}
»

X / DX exp{—Sewi[X, x(r), ()]} @7)

Unfortunately, this is cumbersome and intractable as it
involves sum over an infinite number of boundaries, and
for each boundary one has to sum over surfaces. But it does
indicate the role of spin-string interaction for describing
the spontaneous breaking of chiral symmetry.
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IV. SUPER WILSON LOOP AND THE HEAVY
QUARK POTENTIAL

The spin-dependent corrections to the heavy quark po-
tential can be obtained from the expectation value of a
rectangular super Wilson loop [28-31,33]. For this pur-
pose, it will be more convenient to consider super Wilson
loop written in terms of the Dirac gamma matrices, Eq. (5),
and then consider the nonrelativistic limit of the following
amplitude

Z,; = /:o dT[Dxexp{— [()T dT%()'Cz + mz)}<W>YM.

(28)

In the nonrelativistic (NR) limit the parameter 7 is related
to the Euclidean time by

r="=_, (29)

where m is the quark mass [29], and in the same limit the
super Wilson loop associated with a rectangular loop,
Fig. 1, is

W IT, R] = Trﬁ{i f di(x - A) + ﬁ f dz(EWFW)},

(30)

where we have taken the limit 7 — oo and ignored the
contribution from the short sides of the rectangular loop.
The rectangular loop can be thought of as being made of
the worldline of a quark at origin and a worldline of an
antiquark located at a distance R from it. According to our
assumptions the expectation value of such a super Wilson
loop is given by

<WNR>YM = f DX CXP{_SSWL}, (31)

with the string action

T/2

-T2

FIG. 1.
tential.

Loop for calculating spin-dependent heavy quark po-
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. T
SSWL[TJ R] = TO /dz(f\/g + lﬁ fEﬂVZMV(XO)dl.
(32)

The expectation value of a rectangular super Wilson loop,
in the limit 7 — oo, can be expressed as

(WIT, RDym = explid(T, R)}exp{-V(R)T},  (33)

where @ (T, R) is a phase factor which is a peculiarity of
Euclidean path integrals for fermions, while V(R) is the
spin-dependent potential between the quark and the anti-
quark separated by a distance R (the use of euclidean path
integral to obtain spin-dependent potentials is reviewed in
[29D.

In extracting the spin-dependent potential, it is both
suggestive and convenient to write the spin-string interac-
tion term as

2ty =0"B—0-¢ (34)
where the worldline quantities B and £ are defined as
B, = %‘fijkfjk, Ei = 1y, (35)

and o are the Pauli-spin matrices. In the nonrelativistic
limit we can restrict to the upper two components of the
Dirac spinors. For a rectangular super Wilson loop the
“electric term,” o - £, only contributes to a phase factor
in Eq. (33) and the spin-spin term arises from the ‘“mag-
netic term,” o - B. The string action for a rectangular
super Wilson loop that contributes to the heavy quark
potential takes the form

T
SSWL[T’R]: Toj‘dz(f\/g‘k 1470,[dt+0'+ . B+
m

- iE dt— o™ - B, (36)
4m
where the superscripts = denote the quark and the anti-
quark S.
It will be convenient to introduce dimensionless coor-
dinates,

M = T,

and the small transverse fluctuations of the minimal sur-
face

Y(0y, 01) = MX(0y, o), 37

d) = (YZ) Y3) = (¢y: ¢Z)7 (38)
can be parametrized using
gy = Yo = ZT,

o =Y =F (39)

In terms of these dimensionless variables the action for the
rectangular super Wilson loop is
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- M _
SSWL[T’ R] = [dt'[di_".\/g+l4.— [dt+0'+ ° B+
m
M -
—i— ]dt_O'_ - B~. (40)
4dm

The appropriate boundary conditions for a rectangular
super Wilson loop are

9:¢p(7,0) = 0;¢(7. R) = 0, (41)

with these boundary conditions, and using

ti; = \/Lg(d’z(ﬁ; - d’;‘ﬁj)y (42)

we immediately see that
Bt=B =0 (43)

and therefore there is no contribution from the spin-string
interaction to the heavy quark-antiquark potential, and, in
particular, there is no spin-spin dependent term in the
heavy quark potential.

Absence of a spin-spin term in the heavy quark potential
seems to be consistent with the experimental results and
lattice simulations. These results suggest that quarks see
purely chromoelectric fields in their rest frame [41], and is
the starting point for introducing spin degrees of freedom
in open-string models of mesons in [8].

V. SPIN-STRING INTERACTION IN THE FLUX-
TUBE MODEL

The absence of a spin-spin dependent correction to the
heavy quark potential is perhaps surprising, for there is an
argument due to Kogut and Parisi [4], in the context of the
flux-tube model of confinement, for the existence of a long
range spin-spin dependent term in the heavy quark poten-
tial. They argue, using the language of U(1) gauge theory,
that the zero-point fluctuations of the flux tube creates
time-dependent electric flux lines which in turn produces
a magnetic field. This magnetic field interacts with the spin
of the quark and the antiquark, leading to a spin-spin
interaction term in the heavy quark potential. The argu-
ment in the previous section implies that the ‘““magnetic”
field vanishes on the quark worldline for a static quark or
antiquark, but the argument is for the magnetic field pro-
duced by a string with no intrinsic thickness and could get
modified for a flux tube which has finite intrinsic thickness.
One possible way of taking into account the intrinsic
thickness of the flux tube, while still retaining the effective
string description, is to evaluate the magnetic field ;;, not
at the boundary, but to average it over a longitudinal
distance of the order of the intrinsic thickness of the string,
rr,
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_ 1 [r
1t x")=— / ! drt;(t, r)
rr Jo
1 T
_ 1 f T dr(ty (6 x*) + 1ot x0)
rr Jo
_Ir
- ?(artij)er. (44)

Evaluating ;; for small transverse fluctuations, ¢; < 1,
for which

Jg =1+ L0:9% + 0:0?), (45)

and keeping only the leading terms in ¢, we find a non-
vanishing spin-string interaction

7B = 20 0.0,d,05) ~0,h, (), (46)
g

where M, ' = /2 is some measure of the intrinsic thick-
ness of the flux tube. Apart from the factor of M ¢ ! this is
precisely the interaction assumed by Kogut and Parisi in
Ref. [4]. Using this spin-string interaction, the action for
small transverse fluctuations about the minimal surface
binding the rectangular loop is

1 . , .
Sy = RT+5 fdtdf(a;¢2 + 9;%) + iary, fdﬁa b

—lagg ]df_a' - b, 47
where the spin-string coupling constant is
Ty
= 48
% = Tl (48)

and the dimensionless magnetic field is
b =(00,¢05)  —9,4,&) (49

The expectation value of the rectangular super Wilson loop
then is

(Wxr)ym = exp{—R T}ZRT<exp{—iass<f dito b

- [ di o - b>}>¢, (50)

where the average over the string fluctuations ¢ is given by
1 _ . .
ZRT = [ exp{—z fdtdf(&;(bz + 6;([)2)} (51)
¢

If we set g to zero then the super Wilson loop reduces to
the Wilson loop and we recover the linear potential along
with the Liischer term. The effect of the spin-string inter-
action b - o can be evaluated in perturbation theory in a
manner identical to that of Ref. [4] and the first nonvanish-
ing term appears in the fourth order in a ¢ and gives rises to
the
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72 ot -Ro™ R
Vi = —2 , 52
8s (mMg)4 RS ( )

where R is a unit vector pointing from the quark to the
antiquark and dimensionless numerical factors have been
absorbed in M, whose inverse we have taken as a measure
of the thickness of the flux tube. In the limit M, =0,
which corresponds to a flux tube with no intrinsic thick-
ness, V vanishes and there is no spin-spin correction to the
heavy quark potential due to spin-string interaction.

It is worth emphasizing that our calculation is entirely
within an effective string description. We have only modi-
fied the spin-string interaction, in Eq. (44), by averaging it
along the string rather than restricting it to the boundary.
Thus, the dynamics are that of a string with no intrinsic
thickness but with a modified spin-string interaction. It is
because of this and particularly because of the ground state
fluctuations of the string, that we obtain a long range spin-
spin interaction (52) and this is also the reason for the
vanishing of the second order term in spin-spin interaction
which is proportional to 1/m? (see [4] for details). Our
effective string model, by definition, does not include the
short-range correlation which is responsible for the forma-
tion of the flux tube and which gives rise to exponentially
decaying spin-spin interaction of the order 1/m? with a
decay length proportional to the intrinsic thickness of the
flux tube [42,43]. We comment on a possible way of
exploring the relationship between a fundamental string
and a flux tube in the next section.

VI. CONCLUSIONS

In a string description of QCD it is important to find out
the nature of the spin-string interaction, as it can illuminate
both the spin-dependent corrections to the heavy quark
potential and within the context of a fundamental string
description it may also help us in understanding the exis-
tence of a massless pion in chiral limit and more generally
understand the pion-rho mass difference. The approach we
have taken to analyze this question is to write the expec-
tation value of a super Wilson loop as a sum over surfaces
whose boundary is the given loop. Each surface appearing
in the sum can be interpreted as a world sheet of an open
string that terminates on a worldline of a spin-half particle,
the quark in our case. The action appearing in the string
representation then naturally includes the spin-string
interaction.

In order to obtain a string representation for the expec-
tation value of the super Wilson loop, we used the fact that
the super Wilson loop is related to the Wilson loop via the
area derivative of a loop. Then we assumed that the expec-
tation value of the Wilson loop has a string representation
with the string action for large loops being the Nambu-
Goto action. The resulting string action for the super
Wilson loop is the Nambu-Goto action with an additional
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boundary term that incorporates the interaction between
the spin degrees of freedom and the string degrees of
freedom. The super Wilson loop is invariant under a world-
line SUSY, the string action that we have obtained has the
desired property that it too is invariant under this symme-
try. An important question that we have not discussed in
the present investigation is the relationship between the
string representation of the super Wilson loop and the
string model of mesons which include spin quantum num-
ber. A formal string representation for the meson propa-
gator can of course be written in terms of the expectation
value of super Wilson loop, in a manner very similar to the
expression for chiral condensate (27), but it does not
provide a direct string representation for the mesons.

One can extract the spin-dependent potential from the
expectation value of a rectangular super Wilson loop. We
found that the spin-string interaction does not contribute to
heavy quark potential. But if we try and incorporate the
effect of the finite intrinsic thickness of the flux tube by
averaging the spin-string interaction over a longitudinal
distance of the order of thickness of the flux tube, then we
do obtain a spin-spin term in the heavy quark potential. The
form of the resulting term is precisely the one suggested by
Kogut and Paris based on the fluctuation of the electric
field lines forming a flux tube [4]. The spin-spin interaction
that we obtained depends, in addition to the mass of the
quark, on the square of the string tension and on the
intrinsic thickness of the flux tube.

In the context of an effective string description of QCD
the idea of an intrinsic thickness of a flux tube remains
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heuristic. It is quite plausible that the flux tube in QCD has
an intrinsic thickness, but in the absence of our under-
standing of the physics behind confinement we cannot
identify an operator whose expectation value would give
the thickness of the flux tube. AdS/CFT correspondence
could perhaps illuminate this issue. In Ref. [44] the authors
have argued, using AdS/CFT correspondence, that while
the hadrons are represented by an ideal fundamental string
with no intrinsic thickness in the bulk of the five-
dimensional anti-de Sitter (AdS) space, but their holo-
graphic projection on to the four-dimensional boundary
theory does have a finite intrinsic thickness. Therefore it
would be very interesting and useful to try and obtain a
string representation for the expectation value of super
Wilson loop using AdS/CFT correspondence and to see if
there are any spin-spin terms in the heavy quark potential
so obtained.
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