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We shall consider a 3-brane embedded in six-dimensional space-time with a negative bulk cosmological

constant. The 3-brane is constructed by a topological soliton solution living in two-dimensional axially

symmetric transverse subspace. Similar to most previous works of six-dimensional soliton models, our

Maxwell gauged CP1 brane model can also achieve localizing gravity around the 3-brane. The CP1 field

is described by a scalar doublet and derived from the Oð3Þ sigma model by projecting it onto two-

dimensional complex space. In that sense, our framework is more effective than other solitonic brane

models concerning gauge theory. We shall also discuss the linear stability analysis for our new model by

fluctuating all fields.
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I. INTRODUCTION

In recent years, manifolds living in a higher dimensional
space-time well known as D-branes have fascinated nu-
merous physicists. They have been derived from topologi-
cal soliton solutions in string theory [1], which arise
naturally in ten-dimensional supergravity or string/M the-
ory [2–6]. It is an old idea that space-time may have more
than four dimensions and the extra ones are unobservable
for ordinary energy scales [7–11]. There are generally
three different possibilities of an extra-dimensional sce-
nario: the extra-dimensional space is compact [12], non-
compact but has a finite size [13–15], and noncompact with
an infinite size [16]. In particular, Ref. [16] leads to local-
ized gravity around a 3-brane with nonzero tension in anti-
de Sitter (AdS) space through the extra-dimensional space
with an infinite size.

The brane proposed in Refs. [15,16] and its general-
izations, i.e., models of Randall-Sundrum (RS) type, are
essentially static pointlike external sources in the extra
dimensions. On the other hand, increasing interest recently
has focused on the study of gravitating thick (or fat) defects
embedded in higher dimensional space-time with
codimension-1 or more [17–23]. Our main proposal is to
construct a new 3-brane which is described by special
classical solutions, i.e., topological solitons of a field-
theoretical Lagrangian. This approach is inspired by the
D-branes where the solutions are constructed by topologi-
cal solitons in string theory. In that sense, the solitonic
branes may be more natural rather than other descriptions
by the delta-function-like potential.

3-branes in relevant previous works are constructed by
the classical solutions in gauge theory; such as the kink in
five dimensions (5D), Abelian-Higgs vortex in 6D, and
t’Hooft-Polyakov monopole in 7D [24–28]. In particular,
codimension-2 braneworld models constructed from an

Abelian-Higgs vortex in 6D are studied for not only the
case of flat 3-brane but also curved 3-brane [27]. On the
other hand, our 3-brane is written by a Maxwell gauged
CP1 model whose origin is the Oð3Þ sigma model in
(2þ 1)-dimensional field theory [29–34]. The Oð3Þ sigma
model appears in various aspects of physics and has richer
topological classes than the Abelian-Higgs vortex; lump,
gauged vortex, baby skyrmion, and instanton. The Oð3Þ
sigma model can possess finite energy soliton solutions by
adding some additional terms or gauges into the
Lagrangian. The solitons in gauge theory are strongly
restricted by the configurations of their gauge groups; on
the contrary, our framework is flexible and thus can be
easily applied for various background geometry.
Another aim of the present paper is to analyze linear

stability of our new solutions by fluctuating all fields [35–
38]. The study of a linear stability and the second order
correction of gravity and coupled fields for models of RS
type have been done by numerous authors [39–46]. Also,
analyses for gravitating thick defects embedded in higher
dimensions are found in the literature; for 5D [25,47,48],
and for 6D [49–52]. (Note that the model in Ref. [25] is
constructed by gravitating multidefects in five dimen-
sions). The studies for thick defects, however, are works
in progress since the topological defects used in the litera-
ture are quite complicated structures. More seriously, sta-
bilized mechanisms for the models of RS type, like
‘‘moduli stabilization,’’ have not been found. Analyzing
the linear stability of our obtained solutions is thus worth-
while to tackle.
The plan of this paper is as follows. In Sec. II we build

up the model and the resulting equations of motion. In
Sec. III we describe the boundary conditions for the matter
fields and the warp factors. In Sec. IV we mainly discuss
about the asymptotic behavior of the solutions of the
model. In Sec. V we introduce the methods for solving
our boundary-value problem. Some typical results localiz-
ing gravity around the 3-brane are shown in this section. In
Sec. VI we give a detailed analysis for the stability of our
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branes for linearized gravitational perturbations. Finally, in
Sec. VII some conclusions and summary of this paper are
drawn.

II. SIX-DIMENSIONAL MODEL AND FIELD
EQUATIONS

In this section we shall construct the Maxwell gauged
CP1 model combining with general relativity in six dimen-
sions. As in the previous works for braneworld scenarios,
an action of the models is written as a coupled system with
gravity and solitons. The total action of our six-
dimensional model is written as

S ¼ Sbrane þ Sgrav;

where Sbrane is the Maxwell gauged CP1 model action and
Sgrav is the six-dimensional generalization of Einstein-

Hilbert gravity. The explicit form of Einstein-Hilbert grav-
ity is given by

S grav ¼
Z
d6x

ffiffiffiffiffiffiffiffiffi
�G

q �
1

2�
R��b

�
; (2.1)

where R is the six-dimensional Ricci scalar, �b is the bulk
cosmological constant, � ¼ 8�G6 ¼ 8�=M4

6, and M6 de-

notes the six-dimensional Planck mass. On the other hand,
the brane action1 is of the form

Sbrane ¼
Z
d6x

ffiffiffiffiffiffiffiffiffi
�G

q �
� 1

4g
FMNF

MN � kðDMz
aÞ�DMza

��½1� za�ð�3Þabzb�
�
; (2.2)

where �3 is the third component of the Pauli matrix. The
action (2.2) is strongly motivated by the (2þ 1)-
dimensional field-theoretical model [31,33]. The coupling
constants g, k, � describe those of the field strength of the
gauge field, the kinetic term ofCP1, and the potential term.
Their dimensions are ½M�2�, ½M4�, ½M6� in the natural unit
(n.u.) (M denotes a unit of mass), respectively. The gauge
covariant derivative DM in Eq. (2.2) is defined in terms of
the Uð1Þ gauge field AM such as

DM ¼ @M þ iAM:

In the standard CP1 model, the AM is not an independent
field but is the composite field connection in terms of the

CP1 field defined as ~AM ¼ iza�@Mza. The composite field
connection substantially works as a Uð1Þ gauge field [30].
Thus we replace the composite field connection with the
Uð1Þ gauge connection AM and treat it as the independent
field variable [33]. It should be noted that our model with

this replacement is not to be completely equivalent to the
Oð3Þ sigma model.
Formally by varying the actions (2.1) and (2.2) with

respect to the field variables, one can obtain the classical
equations of motion

RMN � 1
2GMNR ¼ �ðTMN ��bGMNÞ; (2.3)

rMðDMzaÞ þ iAMDMza þ�

k
�ab3 z

b ¼ 0; (2.4)

rMF
MN ¼ 8kgANjzj2 þ i4kgðza@Nza� � za�@NzaÞ;

(2.5)

where rM is the covariant derivative with respect to the
metric tensor and

TMN ¼ �2
�Lbrane

�GMN þ GMNLbrane

¼ 2kðDMz
aÞ�ðDNz

aÞ þ 1

g
FMAF

A
N þ GMNLbrane

(2.6)

is the six-dimensional energy-momentum tensor.
In the present paper, we would like to consider a warped

six-dimensional space-time with axially symmetric two
extra dimensions. The ansatz is imposed on the metric
tensor

ds2 ¼ GMNdx
MdxN

¼ M2ðrÞ���dx�dx� þ dr2 þ L2ðrÞd�2; (2.7)

where r and � are, respectively, the bulk radius and the bulk
angle, ��� denotes the four-dimensional Minkowski met-

ric tensor, and the functions MðrÞ, LðrÞ are often called
warp factors in brane world scenarios. For the matter
fields, we explore the solutions for the CP1 doublet field
and the Uð1Þ gauge field of the form:

z ¼ ðz1; z2ÞT ¼
�
cos

fðrÞ
2
e�in�; sin

fðrÞ
2

�
T
;

A� ¼ 0; Ar ¼ 0; A� ¼ n� aðrÞ;
(2.8)

where n is the winding number of the gauge field and the
CP1 doublet z satisfies the constraint zyz ¼ 1.
The classical equations of motion of the present system

are then

~f 00 þ ð4mþ ‘Þ~f0 � 2

�
vf

L2
þ 	 sin~f

�
¼ 0; (2.9)

~a 00 þ ð4m� ‘Þ~a0 � va ¼ 0; (2.10)

‘0 þ 3m0 þ ‘2 þ 6m2 þ 3m‘ ¼ 
ð�0 � �Þ; (2.11)

4m0 þ 10m2 ¼ 
ð�� � �Þ; (2.12)

1The conventions for indices of the present paper are the
following: the capital Latin indices run from about 0 to 5, the
Greek indices run from about 0 to 3, and the small Latin indices
which denote the complex projection (CP) field, therefore the
small Latin indices, run from about 1 to 2.
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4m‘þ 6m2 ¼ 
ð�r � �Þ; (2.13)

where 
 :¼ �k is the dimensionless gravitational coupling
constant, � :¼ �b=k

2g is the dimensionless bulk cosmo-
logical constant, and 	 :¼ �=k2g is the dimensionless
coupling constant. Besides the dimensionless coordinate,


 :¼ ffiffiffiffiffiffi
kg

p
r

is introduced and the prime in the equations denotes the
derivative with respect to this dimensionless coordinate.
The matter fields fðrÞ, aðrÞ and the warp factorsMðrÞ, LðrÞ
are rewritten in terms of the new coordinate, that is,

~fð
Þ :¼ fðrÞ; ~að
Þ :¼ aðrÞ;
Mð
Þ :¼ MðrÞ; Lð
Þ :¼ ffiffiffiffiffiffi

kg
p

LðrÞ:
The functions mð
Þ and ‘ð
Þ are defined by the above
functions as

mð
Þ :¼ d lnMð
Þ
d


; ‘ð
Þ :¼ d lnLð
Þ
d


; (2.14)

which seem to have some similarity with the Cole-Hopf
transformation appearing in the integrable theory. The
components of the energy-momentum tensor TNM go to be
dimensionless ones

�0ð
Þ :¼ T0
0

k
¼ � 1

4
~f02 � ~a02

2L2
� v

L2
� 	ð1� cos~fÞ;

�rð
Þ :¼ Trr
k

¼ 1

4
~f02 þ ~a02

2L2
� v

L2
� 	ð1� cos~fÞ;

��ð
Þ :¼ T��
k

¼ � 1

4
~f02 þ ~a02

2L2
þ v

L2
� 	ð1� cos~fÞ;

(2.15)

where the dimensionless quantities v, va, vf have been

defined as

v :¼ a2 þ nðn� 2aÞsin2 f
2
;

va :¼ @v

@a
¼ 2

�
a� nsin2

f

2

�
;

vf :¼ @v

@f
¼ nðn� 2aÞ

2
sinf:

(2.16)

Before beginning our analysis, let us consider basic
properties of the field equations (2.9), (2.10), (2.11),
(2.12), and (2.13). Clearly Eqs. (2.9) and (2.10) are the
dynamical equations because they are second order differ-

ential equations of the fields ~fð
Þ, ~að
Þ. Since Eqs. (2.11)
and (2.12) contain ‘0, m0, i.e., the second derivative of the
warp factors, these equations are the dynamical equations
too. Equation (2.13) is comprised of the first derivatives
only. Thus it means that the equation works as a constraint

equation for the dynamical fields ~fð
Þ, ~að
Þ,Mð
Þ,Lð
Þ.
As a result, we must treat a numerical problem of a series
of four dynamical equations with one constraint equation.

III. BOUNDARY CONDITIONS

A. Soliton

The existence of topological soliton solutions is inferred
from Derrick’s scaling argument [53] in which, if a soliton
exists, a stationary point of the energy in the field configu-
ration should be stationary against all variations including
spatial rescaling. Also, the soliton solutions always have
the lower energy bound which is defined by their topology.
For the Uð1Þ gauged CP1 model with the Maxwell or
Chern-Simon term, such existence proof was confirmed
numerically [31–33]. Besides the original Maxwell gauged
CP1 model in (2þ 1) dimensions can have topological
soliton solutions [33]. These analyses clearly indicate that
the solitons can be stabilized without any higher order
terms, like the Skyrme term in (3þ 1) dimensions [29].
If we apply these models to the six-dimensional space-

time, both theCP1 field and theUð1Þ gauge field should go
to zero at infinity and be regular at the origin in the extra-
dimensional space, which exactly agree with the topologi-
cal requirements of the model. These conditions are

~fð0Þ ¼ �; lim

!1

~fð
Þ ¼ 0;

~að0Þ ¼ n; lim

!1 ~að
Þ ¼ 0:

(3.1)

As is well known the CPN model has a close relation to the
Oð3Þ sigma model. For the case of N ¼ 1, one can easily
obtain the Oð3Þ sigma model by using the transformation

�~a :¼ z�að�~aÞabzb;
where �~a, ~a ¼ 1, 2, 3 are scalar triplet fields, za are
doublet fields, and �~a are the three Pauli matrices. In the
sense, the originalCP1 model is essentially theOð3Þ sigma
model when it is written in terms of the �~a. Moreover, in
the view of the Oð3Þ sigma model, the topological bound-
ary condition is interpreted as the south pole configuration
at the origin and the north pole configuration at infinity.
The details of the above discussion can be seen, e.g., in
Ref. [30]. As mentioned before, our model, however, is not
equivalent to the Oð3Þ sigma model completely.

B. Geometry

Regular geometry at the origin defines the boundary
conditions for the warp factors. An effective action derived
from six-dimensional gravity action generally has two
kinds of singularity at the origin, which are called the
conical and curvature singularity problem (e.g., in
Ref. [54]). The boundary conditions for geometry are
introduced in order to exclude these serious difficulties in
the six-dimensional model. In this paper they are given by

M 0ð0Þ ¼ 0; Lð0Þ ¼ 0; L0ð0Þ ¼ 1: (3.2)

One simply fixes Mð0Þ ¼ 1 since the value of Mð0Þ is an
arbitrary constant. The boundary conditions forL0 andM0
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correspond to the conical and the curvature singularity
problem at the origin, respectively. Also, we concentrate
on the problem of the regular geometry without the conical
singularity so that we employ the boundary condition
L0ð0Þ ¼ 1.

In order to solve the equations of motion (2.9), (2.10),
(2.11), (2.12), and (2.13) by an analytical method, the
boundary conditions (3.1) and (3.2) are sufficient.
However, Eqs. (3.2) do not tell anything about the asymp-
totic behavior of the metric tensor at large 
 and thus a
possibility of the gravity localization around the 3-brane
remains unknown. The requirement of the gravity local-
ization is equivalent to a finiteness of the four-dimensional
Planck mass MPlanck, i.e., an inequality

M2
Planck � 2�M4

6

Z
d
M2ð
ÞLð
Þ<1 (3.3)

must be satisfied. Notice that solutions respecting the
boundary conditions do not often satisfy the inequality
(3.3). Since the inequality requires a fine-tuning of parame-
ters for realizing the gravity localization, practically it
works as the fifth boundary condition of the model. As
we shall see below, imposing it on the model and consid-
ering about an empty space-time with only the bulk cos-
mological constant, we can find the information of
geometry far from the origin.

C. Vacuum solution of warp factors

If a gravitational source in a certain brane model is
constructed by a local topological defect, the all source
terms in the Einstein equation will vanish for the region of


! 1. Namely an asymptotic behavior of geometry at
infinity, which cannot be determined by the boundary
conditions, obeys vacuum solutions of the sourceless
Einstein equation with the bulk cosmological constant.
Combining the components of Einstein equations (2.11),

(2.12), and (2.13), one can easily find equations for vacuum
solutions, given by

m0 þ 5

2
m2 þ 
�

4
¼ 0; ‘ ¼ �
�

4m
� 3m

2
:

If the cosmological constant � is negative, then one ana-
lytically obtains the solutions

Mð
Þ ¼ M0e
�c
j1þ �e5c
j2=5;

Lð
Þ ¼ L0e
�c
j�e5c
 � 1j � j1þ �e5c
j�3=5;

(3.4)

where M0, L0, � are arbitrary integral constants and the
coefficient

c :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�=10

q
> 0 (3.5)

is a function of the model parameters. On the other hand,
the case for the positive � was investigated in Ref. [55].
Therefore we shall concentrate on the case of the negative
bulk cosmological constant � at the present paper. Both
cases are acceptable in seven dimensions [28].
Furthermore, in order to study the singularity structure

of the geometry, we investigate all curvature invariants for
the metric tensor (2.7). Explicit forms of the curvature
invariants are

R :¼ R

kg
¼ �8

M0L0

ML
� 12

M02

M2
� 2

L00

L
� 8

M00

M
;

RMNRMN :¼ RMNR
MN

ðkgÞ2 ¼ 20
M02L02

M2L2
þ 24

M03L0

M3L
þ 36

M04

M4
þ 8

M0L0L00

ML2
þ 2

L002

L2
þ 8

M00M0L0

M2L
þ 24

M00M02

M3

þ 8
M00L00

ML
þ 20

M002

M2
;

RABCDRABCD :¼ RABCDR
ABCD

ðkgÞ2 ¼ 16
M02L02

M2L2
þ 24

M04

M4
þ 16

M002

M2
þ 4

L002

L2
;

CABCDCABCD :¼ CABCDC
ABCD

ðkgÞ2 ¼ 12½M02LþM2L00 �MðM0L0 þM00LÞ�2
5M4L2

;

(3.6)

where R, RMN , RABCD, CABCD are defined as dimension-
less curvatures. The curvatures were already defined, e.g.,
in Ref. [36].

Inserting Eqs. (3.4) into Eqs. (3.6), we study the geome-
try at infinity. The scalar and the Ricci curvature invariants

R ¼ �30c2; RMNRMN ¼ 150c4 (3.7)

are simply constants for any �, whereas the Riemann and
the Weyl curvature invariants

RABCDRABCD ¼ 60c4Fð�Þ;

CABCDCABCD ¼ 3840c4�2e10c


ð1þ �e5c
Þ4 ;

(3.8)

are functions of �, where

Fð�Þ :¼ 1þ 4�e5c
 þ 70�2e10c
 þ 4�3e15c
 þ �4e20c


ð1þ �e5c
Þ4 :
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Thus we find that the scalar and the Ricci curvature invar-
iants are always constant and the regularity of the Riemann
and the Weyl curvature invariants depend on �, for the
above vacuum solutions.

Next, in order to study whether the gravity can be
localized and the geometry can be regularized on those
solutions, we must analyze the integral constant �.

For � ¼ 0, the solutions become

mð
Þ ¼ ‘ð
Þ ¼ �c (3.9)

and thus the warp factors

M ð
Þ ¼ M0e
�c
; Lð
Þ ¼ L0e

�c
 (3.10)

are exponentially decreasing. In the present case the
Riemann and the Weyl curvature invariants are also con-
stants similar to the others. Also each of the curvature
invariants is equivalent to the one calculated from the
Riemann tensor for AdSN space in Ref. [56]. For AdSN
space, each of the curvature tensors is represented in terms
of the Gaussian curvature K, which are given by

R ¼ NðN � 1ÞK; RAB ¼ ðN � 1ÞKGAB;

RABCD ¼ KðGACGBD � GADGBCÞ:

Since one can easily find K ¼ �c2 fromR in Eqs. (3.7) in
our six-dimensional model (namely N ¼ 6), the other
curvature invariants for AdS6 can be also obtained simply.
Therefore the choice of � is the desired one for the finite-
ness of the four-dimensional Planck mass (3.3); since the
asymptotic solutions can lead to a smooth AdS6 geometry
far from the vortex string core and to localized gravity
around the vortex string.2

The integral constants �,M0,L0 have not been fixed for
the above discussion. However, if a stringlike defect is
placed at the origin 
 ¼ 0, the constants are no longer
arbitrary and become functions of the model parameters 
,
�, 	 namely, � ¼ �ð
;�; 	Þ, and so on. The regular ge-
ometry is achieved together with the gravity localization if
the parameters lie on the surface �ð
;�; 	Þ ¼ 0. Therefore
we shall find numerical solutions with �ð
;�; 	Þ ¼ 0.

IV. ASYMPTOTIC SOLUTIONS

In order to solve Eqs. (2.9), (2.10), (2.11), (2.12), and
(2.13) numerically, asymptotic behaviors of the warp fac-
tors, scalar, and gauge fields in the vicinity of the origin as
well as at large distance of the core are mandatory [57–59].
They are obtained by expanding the functions around the
origin and approximating the equations at infinity. In this
section, we also study relations for a string tension since
they may give useful information to find the proper
solutions.

A. At the origin

To examine behaviors at the origin, we start by expand-
ing the warp factors together with the scalar and gauge
fields as power series in 
. Here we consider the case of
n ¼ 1. (For other n’s one can estimate in a quite similar
fashion.) Inserting the power series into the equations of
motion (2.9), (2.10), (2.11), (2.12), and (2.13) and requiring
that the expanded equations obey the boundary conditions
(3.1) and (3.2) for a limit 
! 0, one can get the asymptotic
solutions

~fð
Þ ’ �þA
;

~að
Þ ’ 1þB
2;

Mð
Þ ’ 1þ 


8
ð��� 2	þ 2B2Þ
2;

Lð
Þ ’ 
� 


12
½��� 2	þA2 þ 10B2�
3;

(4.1)

where the coefficients A and B are two arbitrary con-
stants. They cannot clearly be determined by only locally
analyzing the equations of motion. We thus need informa-
tion of the results of numerical integration. Practically, the
constants are used to realize the boundary conditions at
infinity.
Furthermore, inserting the asymptotic solutions (4.1)

into Eqs. (2.15) and (3.6), we find the asymptotic behaviors
of the energy-momentum tensor and the curvature invari-
ants in the vicinity of the origin. We obtain the asymptotic
forms around the origin

�0ð
Þ ’ �2	�A2

2
� 2B2 þOð
Þ;

�rð
Þ ’ �2	þ 2B2 þOð
Þ;
��ð
Þ ’ �2	þ 2B2 þOð
Þ

(4.2)

for the components of the energy-momentum tensor and

2Other cases of � are as follows (see also Ref. [26]). If � > 0 or
� � �1, we obtain exponentially growing solutions. For this
case Eq. (3.3) diverges and therefore gravity cannot be localized.
(The case � ¼ �1 is somewhat specific since a singularity of
Kasner type is developed in the origin.) If �1< �< 0, the
geometry has a singular point 
0 and 
 < 
0 should be required.
In spite of the fact, the integral (3.3) is finite. Thus this case has a
possibility of localizing gravity if the singularity at 
0 is re-
solved. Finally, let us note that if the bulk cosmological constant
�b is zero, solutions have a power-law behavior belonging to
Kasner class. These solutions leave open only two possibilities
but cannot lead to the localization of gravity.
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R ’ 
½3ð�þ 2	Þ þA2 þ 2B2� þOð
Þ;

RABRAB ’ 

2

2
½3ð�þ 2	Þ2

þ 2ð�þ 2	ÞðA2 þ 2B2Þ þA4

þ 12A2B2 þ 44B4� þOð
Þ;
RABCDRABCD ’ 
2½2ð�þ 2	� 2B2Þ2

þ ð�þ 2	�A2 � 10B2Þ2� þOð
Þ;
CABCDCABCD ’ 3

5

2½A2 þ 12B2 � 2ð�þ 2	Þ�2

þOð
Þ (4.3)

for the curvature invariants, respectively.

B. At infinity

Next we will consider asymptotic solutions for the two
matter fields at large 
. Let us assume that geometry is
regular at infinity as the case � ¼ 0. Then asymptotic
solutions of the warp factors are determined as Eqs. (3.9).3

From the boundary conditions for the matter fields (3.1),
asymptotic forms of them can be expressed by

~fð
Þ ¼ �fð
Þ; ~að
Þ ¼ �að
Þ:
Inserting the asymptotic forms and Eq. (3.9) into the equa-
tion of motion for the gauge field (2.10), one easily obtains

ð�aÞ00 � 3cð�aÞ0 � 2ð�aÞ ¼ 0:

For 
� 1 the solution ~að
Þ can be described approxi-
mately by

�að
Þ � e�q
; q ¼ � 3c

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

9c2

s �
: (4.4)

Similarly, the linearized CP1 field equation yields

ð�fÞ00 � 5cð�fÞ0 � 2	ð�fÞ ¼ 0

which leads to the solution for the CP1 field

�fð
Þ � e�p
; p ¼ � 5c

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8	

25c2

s �
: (4.5)

In the asymptotic solutions (4.4) and (4.5), a minus sign
should be chosen in order to obtain exponentially decreas-
ing behaviors. Since the asymptotic solutions must also
satisfy the boundary conditions (3.1) at infinity, the other
exponentially growing solutions can never be allowed.

For the completeness of our analysis, let us study the
accuracy of our approximations more in detail. The equa-
tion of motion for the CP1 field (2.9) and the components

of the energy-momentum tensor (2.15) contain the terms of
order Oð1=L2Þ, which exponentially diverge at large 
.
The linearization of Eq. (2.9) is justified if and only if q >
2c, i.e., 2>
j�j which can be seen by easy calculations.
Also, as we shall see in Sec. III C, in order to drop the
components of the energy-momentum tensor rather than
the warp factors, we find that p > c and q > c, i.e., 10	 >
3
j�j and 5>
j�j are required. Thus, especially for the
strong gravity limit, we need many thorough analyses for
finding asymptotic solutions.

C. Relationship for the string tension

In four-dimensional cosmology, vortexlike topological
defects often called cosmic string have been extensively
studied. In particular, components of the string tension
defined as

�M :¼
Z 1

0
d
M4ð
ÞLð
Þ�Mð
Þ

contain much useful information for the geometry [60]. In
the study of Abelian vortex in six dimensions [26], a
constraint is easily found by a reduction which we shall
demonstrate below. Furthermore, the constraint plays an
essential role in the stability analysis of vector mode
fluctuations [49,50]. In our model a similar relation can
be found but the usefulness is rather problematic because it

contains a functional of ~fð
Þ, ~að
Þ, Mð
Þ, Lð
Þ. In the
case of the ’tHooft-Polyakov monopole in seven dimen-
sions [28], the situation is quite similar to ours.
Consider two specific linear combinations of Einstein

equations (2.11), (2.12), and (2.13), namely

m0 þ 4m2 þm‘ ¼ 


4
ð�� þ �rÞ � 
�

2
;

‘0 þ ‘2 þ 4m‘ ¼ 


4
ð4�0 þ �r � 3��Þ � 
�

2
:

(4.6)

Integrating Eqs. (4.6) from zero to infinity, one easily find
the relations

lim

c!1M

3ð
cÞM
ð
cÞLð
cÞ

¼ 


4
ð�� þ�rÞ � 
�

2

Z 1

0
M4Ld
; (4.7)

lim

c!1M

4ð
cÞL
ð
cÞ � 1

¼ 


4
ð4�0 þ�r � 3��Þ � 
�

2

Z 1

0
M4Ld
; (4.8)

where both the right-hand sides of them have already been
taken to the limit 
c ! 1. Let us note that we do not
impose the localizing condition of gravity (3.3) on the
above formulations yet. In the limit 
c ! 1, Eq. (4.7) is
the six-dimensional analogue of the relation determining
the Tolman mass whereas Eq. (4.8) is the generalization of
the relation giving the deficit angle. Imposing the condition

3The same geometry can be also realized in the case of � > 0
or � <�1, however both cases do clearly not realize the inequal-
ity (3.3) for gravity localization. Thus we exclude these possi-
bilities in subsequent consideration.
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(3.3) on Eqs. (4.7) and (4.8) and subtracting Eq. (4.7) from
Eq. (4.8), one obtains the following relation4

�0 ��� ¼ � 1



(4.9)

which must be held where �r still remains undermined. In
fact we do not use�r now. The condition (4.9) is, however,
only necessary but not sufficient in order to have solutions
leading to localized gravity.

In order to get some information about solutions at the
origin, we directly integrate the left-hand side of Eq. (4.9)
and obtain

�0 ��� ¼ �
Z 1

0
d


M4

L
ð2vþ ~a02Þ: (4.10)

Using the equation of motion for the gauge field (2.10), the
following relation is obtained�

M4~a0

L

�0 ¼ M4

L
va ¼ 2

M4

L

�
~a� nsin2

~f

2

�
;

where Eqs. (2.16) are used at the last step above formula-
tion. Inserting it back into Eq. (4.10), the integral in
Eq. (4.10) can be rewritten as

�0 ��� ¼�
Z 1

0
d


M4

L

�
2

�
~a2 þ nðn� 2~aÞsin2

~f

2

�
þ ~a02

�

¼�
Z 1

0
d


�
2
M4

L
nðn� ~aÞsin2

~f

2
þ
�
M4~a0~a

L

�0�
¼�2�½~f; ~a;M;L�

�
�
M4~a0~a

L

��������1
�M4~a0~a

L

��������0

�
; (4.11)

where for order we defined a functional of ~f, ~a, M, L as

� ½~f; ~a;M;L� :¼
Z 1

0
d


M4

L
nðn� ~aÞsin2

~f

2
:

For solutions the leading gravity localization, the boundary
term at infinity in Eq. (4.11) exactly vanishes. Moreover,
using the boundary conditions at the origin and the fine-
tuning relation (4.9), we obtain

� 1



¼ �2�½~f; ~a;M;L� þ ~a0

L

��������0
: (4.12)

According to the asymptotic solutions in the vicinity of the
origin (4.1), ~að
Þ andLð
Þ are, respectively, ~a ’ 1þB
2

and L ’ Oð
Þ for the limit 
! 0. Finally, inserting these
expansions into Eq. (4.12), we can find the relation with the
model parameters 
 and B:

B ¼ � 1

2

þ�½~f; ~a;M;L�: (4.13)

As mentioned in the above discussion, the relation is not
useful since it is given by the functional form. It may cause
a serious problem especially on the stability analysis de-
scribed later.

V. NUMERICAL SOLUTIONS

A. Method

In this subsection the numerical strategy for our system
will be outlined. An arbitrary second order dynamical
system, in principle, can be expressed in terms of a first-
order system [57–59]. Thus we transform our equations of
motion (2.9), (2.10), (2.11), (2.12), and (2.13) into first-
order differential equations. By linearly combining the
dynamical equations (2.9), (2.10), (2.11), and (2.12), the
following set of equations can be obtained

y01ð
Þ ¼ y5ð
Þ;
y02ð
Þ ¼ y6ð
Þ;
y03ð
Þ ¼ y3ð
Þy7ð
Þ;
y04ð
Þ ¼ y8ð
Þ;

y05ð
Þ ¼ �
�
4y7ð
Þ þ y8ð
Þ

y4ð
Þ
�
y5ð
Þ

þ 2

�
vfð
Þ
y24ð
Þ

þ y9ð
Þ siny1ð
Þ
�
;

y06ð
Þ ¼ �
�
4y7ð
Þ � y8ð
Þ

y4ð
Þ
�
y6ð
Þ þ vað
Þ;

y07ð
Þ ¼ � 5

2
y27ð
Þ þ




4
½��ð
Þ � ��;

y08ð
Þ ¼
3

2
y4ð
Þy27ð
Þ � 3y7ð
Þy8ð
Þ

þ 


4
y4ð
Þ½4�0ð
Þ � 3��ð
Þ � ��;

y09ð
Þ ¼ 0;

(5.1)

in which we introduce functions yið
Þ (i ¼ 1; . . . ; 9) de-
fined as

y1ð
Þ :¼ ~fð
Þ; y2ð
Þ :¼ ~að
Þ; y3ð
Þ :¼ Mð
Þ;
y4ð
Þ :¼ Lð
Þ; y5ð
Þ :¼ ~f0ð
Þ; y6ð
Þ :¼ ~a0ð
Þ;
y7ð
Þ :¼ mð
Þ; y8ð
Þ :¼ L0ð
Þ; y9ð
Þ: ¼ 	:

(5.2)

Let us note that y9 is actually not a function of 
. The
reason why we temporarily regard 	 as a function of 
 is as
follows: the requirement of regular geometry �ð
;�; 	Þ ¼
0 implies that 	 is a function of 
 and �, i.e., 	 ¼ 	ð
;�Þ,
which means that 	 must be uniquely determined once we
shall give 
 and �. In the sense, it is better to treat 	 as an
eigenvalue of our model rather than a free parameter. We

4If � � 0, one can use other asymptotic solutions of the metric
obtained by a previous discussion for the computation of the left-
hand sides of Eqs. (4.7) and (4.8). Then this calculation gives a
more general relation [26].
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find that 	 becomes a constant once proper numerical
integrations shall be attained.

The authors of Refs. [26,28,51] have already pointed out
that a 3-brane model described by a certain field-
theoretical Lagrangian almost contains enormous numeri-
cal difficulties. In the language of a numerical analysis, the
components of Einstein equations (2.11), (2.12), and (2.13)
belong to the numerical class called the stiff equations
which have exponentially growing solutions together
with converging ones. Besides solving the two-point
boundary-value problem is another difficulty.

The simple shooting method (SSM) is a very famous,
relatively easy, and an efficient method. Essentially SSM is
a hybrid system of two solvers: one is for solving differ-
ential equations as the initial-value problem and the other
is for matching boundary conditions. SSM is a simple and
useful tool, however, it necessarily must solve the initial-
value problem in the interior; some instability may occur if
the solutions strongly depend on the initial conditions. This
is exactly the case that we must treat. Solving the equations
of motion (2.9), (2.10), (2.11), (2.12), and (2.13) by means
of SSM is thus a quite difficult task. As in Refs. [26,28], we
could also achieve a localizing gravity solution using SSM
combined with the Down-hill simplex method [57]. At the
present paper, we employ the parallel or multiple shooting
method (PSM) [28,58,59] as the solver of the two-point
boundary-value problem since PSM successfully dissolves
the instability of SSM very well.

The word of instability in our problem means that the
functions released from a boundary point tend to be diver-
gent before arriving at the other. In PSM, in order to evade
the instability of SSM, the integral region is divided into
some subintervals where the running solutions are regular.
After that, we apply SSM to each of them and continue the
calculation until the functions converge at all junctions and
both boundary points. Since PSM requires many initial
conditions for all junctions, called an initial trajectory, if
one prepares an initial trajectory approximate to proper
solutions, it significantly saves the computing time. Thus
the procedure to obtain solutions is as follows: (i) solve the
equations by SSM with the Down-hill simplex method,
(ii) use the solutions as an initial trajectory for PSM,
(iii) solve by PSM to obtain new solutions, and
(iv) repeat (ii)–(iii) until the convergence is attained.

Another problem that we should care about is that the
equations are the so-called overdetermined series. Our
system is naturally constituted by the five Eqs. (2.9),
(2.10), (2.11), (2.12), and (2.13) but a number of the
dynamical variables is only four. That means Eq. (2.13)
works as a constraint of the system. Equation (2.13) is
usually used to check convergence of the numerical inte-
gration. Also it may be a guide for finding the asymptotic
solutions of the warp factors at infinity (in Sec. III C).
However its information is never used in Eqs. (5.1). If
one properly takes some linear combination of the equa-

tions, all the five Eqs. (2.9), (2.10), (2.11), (2.12), and (2.13)
are involved in the numerical system. After that,

4m0 � 20

3
m‘ ¼ 


3
ð3�� � 5�r þ 2�Þ;

‘0 þ ‘2 þ 4m‘ ¼ 


4
ð4�0 þ �r � 3�� � 2�Þ

or in numerical expression using Eq. (5.2)

y07ð
Þ ¼
5

3
y7ð
Þ y8ð
Þy4ð
Þ þ




12
½3��ð
Þ � 5�rð
Þ þ 2��;

y08ð
Þ ¼ �4y7ð
Þy8ð
Þ þ 


4
y4ð
Þ½4�0ð
Þ þ �rð
Þ

� 3��ð
Þ � 2��
(5.3)

is found to significantly improve the numerical conver-
gence because the information of the fifth equation is taken
into account. Thus the system can properly realize the
asymptotic behavior at infinity. Henceforth we shall use
Eqs. (5.3) instead of the correspondences in Eq. (5.1).

B. Results

In this subsection, we present some typical examples in
our numerical results.
Figure 1 shows a typical numerical solution realizing the

gravity localization around the 3-brane. Figure 2 and 3 are
the results of the energy-momentum tensor and the curva-
ture invariants corresponding to Fig. 1. The results in Fig. 2
suggest that our solution describes a local topological
defect because all the components of the energy-
momentum tensor vanish at large 
. Furthermore, Fig. 3
certainly means that the geometry turns to be AdS6 at large

FIG. 1. A typical example of the solution leading gravity
localization with the rescaled bulk radius 
 ¼ ffiffiffiffiffiffi

kg
p

r. The
condition of shooting-parameters is as follows: n ¼ 1, 
 ¼
0:900 000 0, � ¼ �0:200 000 0, 	 ¼ 0:488 059 791 109, A ¼
�1:606 532 143 71, and B ¼ �0:335 537 911 342.
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. As already mentioned in Ref. [61], the gravity localiza-
tion around a 3-brane, e.g., our configuration, may be a
locally trivial incident of various cosmological events in
the higher dimensional world.

Also, Fig. 4 shows the fine-tuning surface in the parame-
ter space ð
;�; 	Þ corresponding to solutions for the grav-
ity localization. Contrary to the seven-dimensional case
[28], only �< 0, i.e., the negative bulk cosmological
constant is allowed for localizing gravity solutions. The
surface is growing for 
! 0 and �! �1. In numerous
studies [26,28,51], the authors have insisted that the prop-
erty of the solutions are dominated by the parameter c, i.e.,
Eq. (3.5) which relates to the asymptotic behavior of the

warp factors at infinity and of course has much importance.
Figure 4 tells us, however, that the dependence of the
surface on the parameters 
 and � is complicated, thus a
more thorough analysis for the physical implication of the
parameter dependence is required (see also Figs. 5 and 6).
In fact, 	 ¼ 	ð
;�Þ is the dimensionless coefficient of the
potential term and the variation of 	 brings remarkable
change of the property of the solutions.

VI. LINEAR STABILITYANALYSIS

In order to clarify the physical implication of our brane
solutions, we proceed to linear stability analysis concern-
ing the solutions. The stability of the solutions remains an
open problem though it may be generally guaranteed by its
topology. In most of the previous works [47–51], the
source of gravity is a well-known Abelian vortex which
is described by a scalar singlet and Uð1Þ gauge field. The
stability for the models in those works is quasistable, which
means that brane models described by topological solitons
are not always engaged in its stability. On the other hand,
the CP1 model is written in terms of a scalar doublet (or a
scalar triplet in terms of Oð3Þ sigma model) and is not
based on gauge theory. The study of linear stability analy-
sis for the present model is absent. It is thus worthwhile to
examine its linear stability afresh.

A. Gauge-invariant framework

The perturbed linearized Einstein equation is obtained
by performing the first-order perturbation of the back-
ground metric tensor. This procedure is straightforward,
but one should care about the freedom of gauge, i.e., the
choice of background coordinates before beginning the
analysis. We adopt a gauge-invariant approach called the

FIG. 3. An example of the curvature invariants for the solution
given by Fig. 1. From the considerations in Sec. III C, we
interpret that the geometry achieves AdS6 where all curvature
invariants are constant.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

α

β 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

γ

 0.6
 0.8

 1
 1.2

 1.4
 1.6

 1.8
 2

-0.2
-0.18

-0.16
-0.14

-0.12
-0.1

-0.08
-0.06

-0.04
-0.02

 0

γ

FIG. 4. Parameter space for typical solutions which exactly
localize gravity around the Maxwell gauged CP1 brane with the
winding number n ¼ 1. Here 
 ¼ �k is the dimensionless
gravitational coupling constant, � ¼ �b=k

2g is the dimension-
less bulk cosmological constant, and 	 ¼ �=k2g is the dimen-
sionless coupling constant of the potential like a mass term of a
soliton.

FIG. 2. An example of the energy-momentum tensor for the
solution given by Fig. 1.
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longitudinal gauge choice. The detailed discussion is given
by Appendix A. In this subsection we shall show only the
outline of the analysis.

The gauge-invariant fluctuations for the original metric
tensor (2.7) can be written as

�GMN ¼
2M2U�� ME� MLF �

ME� 2X L�
MLF � L� 2L2�

0
B@

1
CA; (6.1)

where

U �� ¼ h�� þ ���� (6.2)

is the four-dimensional components. Also the gauge-
invariant perturbations of the matter fields (2.8) is defined
by

�z ¼ ð�1e
�in�; �2ÞT; �AM ¼ ð�� þ @��;�r;��Þ:

(6.3)

In the above equations, all the perturbed fields are func-
tions of the full spatial coordinates xM ¼ ðx�; r; �Þ.

In order to derive the evolution equations of the fluctua-
tions (6.1), (6.2), and (6.3), it is convenient to introduce
some perturbed quantities, e.g., the first-order perturbation
of the Einstein tensor

�GAB ¼ �RAB � 1
2ðGAB�Rþ �GABRÞ; (6.4)

where

�R ¼ GAB�RAB þ �GABRAB (6.5)

is the perturbed Ricci scalar curvature. Furthermore, if one
would like to find the explicit form of Eqs. (6.4) and (6.5),
one must calculate other perturbed quantities

�GMN ¼ �GMAGNB�GAB (6.6)

for the inverse metric tensor,

��CAB ¼ 1
2G

CDðrA�GBD þrB�GDA �rD�GABÞ (6.7)

for the Christoffel connection, and

FIG. 5. The behavior of the fields ~fð
Þ, ~að
Þ, Mð
Þ, and Lð
Þ for varying 
 at fixed � ¼ �0:200 000 0.
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�RABCD ¼ �@D��ABC þ @C��
A
BD þ ��EBD�

A
EC þ �EBD��

A
EC

� ��EBC�
A
ED � �EBC��

A
ED (6.8)

for the Riemann tensor. In Eq. (6.7), rM denotes the
covariant derivative with respect to the metric tensor
(2.7). The evolution equations given by fluctuating the
original equations of motion (2.5) are thus obtained

�GMN ¼ �ð�TMN ��b�GMNÞ;
�rMðDMzaÞ þ i�ðAMDMzaÞ þ�

k
�ab3 �z

b ¼ 0;

�rMF
MN ¼ 8kg�ðANjzj2Þ þ i4kg�ðza@Nza� � za�@NzaÞ;

(6.9)

where

�TMN ¼ 2k�½ðDðMzaÞ�DNÞza� þ 1

g
�½GABFMAFMB�

þ ð�GMNÞLbrane þ GMN�Lbrane; (6.10)

is the perturbed energy-momentum tensor with the per-
turbed brane Lagrangian density

�Lbrane ¼ �k�½ðDMz
aÞ�DMza� � 1

4g
�ðFMNFMNÞ

��½1� �ðzy�3zÞ�: (6.11)

XðMYNÞ, in the first term of the right-hand side of Eq. (6.10),

means the symmetrization [38] defined by

XðMYNÞ :¼ 1

2!
ðXMYN þ XNYMÞ:

Since the evaluation of the evolution equations (6.9),
(6.10), and (6.11) is straightforward but includes tedious
algebra, we shall show the detailed descriptions in
Appendix B.
Note that the symmetrization in Eq. (6.10) naturally

realizes the real gauge condition [51]. The �i (i ¼ 1, 2)
may be, in general, complex quantities, but we can exclude
the imaginary part of �i by applying certain Uð1Þ gauge
rotation. In the mathematical point of view, the symmetri-

FIG. 6. The behavior of the fields ~fð
Þ, ~að
Þ, Mð
Þ, and Lð
Þ for varying � at fixed 
 ¼ 1:000 000.
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zation is equivalent to choosing the real part of complex
values.

B. Tensor zero mode fluctuation

For the tensor mode fluctuation, only the ð�; �Þ compo-
nent of the perturbed Einstein equation is sufficient for the
analysis. After lengthy algebra, the final result of an evo-
lution equation for the tensor mode fluctuation h�� is given

by

1

M2
hh�� þ h00�� þ 1

L2
€h�� þ ð4m̂þ ‘̂Þh0�� ¼ 0; (6.12)

where h is the flat four-dimensional d’Alembertian

h ¼ ���@�@� ¼ �@2t þ
X3
i¼1

@2i (6.13)

and

m̂ :¼ d lnMðrÞ
dr

; ‘̂ :¼ d lnLðrÞ
dr

: (6.14)

In Eq. (6.12) the prime and the overdot denote the deriva-
tive with respect to the bulk radius r and the bulk angle �,
respectively. The first term in Eq. (6.12) can be hh�� ¼
m2
hh�� for the massive graviton, since h�� satisfies the

four-dimensional Klein-Gordon equation. The term van-
ishes for the massless graviton.

Any physical quantity must exhibit axial symmetry
since the geometry has the same symmetry. We restrict
h�� to the massless (mh ¼ 0) and the zero modes (p ¼ 0),

then

h��ðxMÞ ¼
X
p2Z

h��ðx�; rÞeip� ! h��ðrÞ:

Equation (6.12) is fairly simplified to

~h 00
��ð
Þ þ ð4mþ ‘Þ~h0��ð
Þ ¼ 0;

where

~h��ð
Þ :¼ h��ðrÞ
is the dimensionless quantity and the prime, acting on
variables with the tilde, denotes the derivative with respect
to 
. Also the functionsm and ‘ in the equation are defined
by Eq. (2.14). One easily sees that an arbitrary constant is

allowed as the solution of ~h��. Thus we employ h��ð
Þ :¼
h (constant). Since a normalizability of ~h��ð
Þ is essen-

tially equivalent to the integral (3.3), it is automatically
guaranteed if the background fields of perturbation satisfy
the finiteness condition of the four-dimensional Planck
mass (3.3).

Some authors in this field have arrived at similar con-

clusions [49,50]. Since the tensor mode ~h�� does not

couple with the source term of gravity, properties of the

localized massless graviton around a topological defect
may be independent on the gravitational source in models.

C. Vector zero mode fluctuations

Evolution equations for the vector mode fluctuations E�,
F �, and �� are derived from the ð�; �Þ, ð�; rÞ, and ð�; �Þ
components of the Einstein equation and also the (�)
component of the equation of the Uð1Þ gauge field. Here
we introduce two new variables for convenience

C � :¼ K

L
_E� � ðKF �Þ0; K :¼ L

M
: (6.15)

Similar replacements already have been used in
Refs. [49,50]. From these variables, we obtain four equa-
tions

E 0
� þ

�
4m̂þK0

K

�
E� þ 1

L
_F � ¼ 0; (6.16)

1

M2
hE� þ 1

KL
_C� þ �

g

2a0

ML2
_�� ¼ 0; (6.17)

1

M2
hF � � 1

K
C0
� �

�
5m̂�K0

K

�
1

K
C�

� 2�

ML

�
a0

g
�0
� þ kva��

�
¼ 0; (6.18)

1

M2
h�� þ�00

� þ 1

L2
€�� þ

�
3m̂þK0

K

�
�0
�

� a0

K2
C� ¼ 8kg��: (6.19)

We again concentrate on the lowest angular momentum
eigenstate upon the three vector modes. Then Eq. (6.17)
turns to be

1

M2
hE� ¼ 1

M2

X
p2Z

hE�ðx�; rÞeip�
��������p¼0

¼ 0

which means thathE�ðx�; rÞ ¼ 0, therefore, for all integer

p, X
p2Z

hE�ðx�; rÞeip� ¼ 0:

Then we conclude the vector mode E� should be always

the massless graviphoton. Inserting the condition into
Eq. (6.17), we obtain the important relation

C � ¼ � 2�

g

a0

M2
�� (6.20)

which is valid for general angular momentum eigenstates
since the vector mode E� is the massless graviphoton. Also

using the relation into Eq. (6.18), we obtain
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1

M2
hF � ¼ � 2�

g

1

ML
½a00 þ ð4m̂� ‘̂Þa0 � kgva��� ¼ 0:

For the last line we used the equation for the Uð1Þ gauge
field (2.10). Consequently, the vector mode F � should be

also the massless graviphoton for arbitrary angular mo-
mentum eigenstates. Those results mean, from Eqs. (6.15)
and (6.20), the vector mode �� should be always the

massless gauge degree of freedom too.
Next we insert Eq. (6.20) into Eq. (6.19) and define a

dimensionless function with the rescaled variable 


~��ð
Þ :¼
��ðrÞffiffiffiffiffiffi
kg

p ;

we obtain the evolution equation for the rescaled vector

mode ~��ð
Þ

~� 00
�ð
Þ þ ð2mþ ‘Þ ~�0

�ð
Þ þ 2

�


a02

L
� 4

�
~��ð
Þ ¼ 0:

(6.21)

In the analysis of the Abelian vortex [49,50], all evolution
equations for the vector mode fluctuation have been solv-
able because the useful relation for the string tension was
found. Unfortunately, in our case Eq. (6.21) is not analyti-
cally solvable since the similar relation (4.9) is less trac-
table for the analysis, as stated in Sec. IV. In this paper, we

shall examine asymptotic solutions of ~� at both bounda-
ries. At infinity, since we can linearize the evolution equa-
tion (6.21), we are able to find the asymptotic equation

~� 00
�ð
Þ � 3c ~�0

�ð
Þ � 8 ~��ð
Þ ¼ 0

and the solution

~��ð
Þ / exp

�
� 3c

2

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32

9c2

s �



�
: (6.22)

Also at the vicinity of the origin, using the asymptotic
solutions (4.1) for the background of perturbation and
imposing a regularity of Eq. (6.21) at the origin, we find
the asymptotic solution at the other boundary

~��ð
Þ ’ #ð0Þ
� ½1þ 2ð1� 
B2Þ
2� þOð
3Þ; (6.23)

where #ð0Þ
� is an arbitrary constant. From them, we specu-

late that ~�� is almost localizing around the defect.

For the vector mode E�, we easily obtain the analytical

solution from the constraint (6.16). After rescaling the two
vector modes with respect to 
, i.e.,

~E �ð
Þ :¼ E�ðrÞ; ~F �ð
Þ :¼ F �ðrÞ;
we immediately achieve the equation

~E 0
�ð
Þ þ ð3mþ ‘Þ~E�ð
Þ ¼ 0

with the solution

~E �ð
Þ ¼ eð0Þ�
M3L

;

where eð0Þ� is an integration constant. For the vector mode
F �, from Eq. (6.20), we obtain

~F �ð
Þ ¼ M
L

�
fð0Þ� þ 2


Z
d


~a0 ~��

M2

�
;

where fð0Þ� is also an integration constant. This solution,

unfortunately, is a functional of ~a0, ~��, and M.

Finally, we examine normalizability of the three vector

mode fluctuations. For ~E�, ~F �, the integrals become

Z 1

0
d
M4Lj~E�ð
Þj2 ¼

Z 1

0
d


eð0Þ2�

M2L
; (6.24)

and

Z 1

0
d
M4Lj ~F �ð
Þj2

¼
Z 1

0
d


M6

L

�
fð0Þ� þ 2


Z
d


~a0 ~��

M2

�
2
: (6.25)

Clearly, they are not normalizable if the background solu-
tions lead localizing gravity around the 3-brane. Moreover,
the integrand of Eq. (6.24) is certainly divergent at both the
boundaries and that of Eq. (6.25) is also divergent at the
origin. Thus we confirm that the two modes are not renor-
malizable without any information about an explicit form

of the vector mode ~��. On the other hand, though we could

not assure that the normalization integral for ~�� is exactly

finite, we confirm the integrand is finite at both boundaries

from Eqs. (6.22) and (6.23). In that sense, ~�� is the

potentially normalizable vector mode fluctuation.

D. Scalar zero mode fluctuations

Since all perturbed equations contain the scalar mode
fluctuations, we must deal with the whole evolution equa-
tions (6.9). (Their explicit forms are given in Appendix B.)
In Ref. [52], in order to treat such a complicated coupled
system, the authors divide the whole system into many
distinct subsets by using some redefinitions of the fields.
As Ref. [51], however, we only have two subsets from
Eqs. (6.9) if we restrict our analysis to only the lowest
angular momentum eigenstates. One of the subsets,
called sector I, contains the scalar mode fluctuations
ð�;�r;�Þ, and another subset, called sector II, contains
ð�;X; �; �1; �2; ��Þ.

1. Sector I: �, �r, �

This subset is constructed by the six evolution equations
of Eqs. (6.9); the ð�; �Þ and ðr; �Þ components of the
perturbed Einstein equation are
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� 0 þ 2ðm̂þ ‘̂Þ� ¼ 2�

g

a0

L
ð�r ��0Þ � 2k�

va
L
�

(6.26)

and

� 1

2M2
h�þ ðm̂0 � ‘̂0 þ 4m̂2 � ‘̂2 � 3 ~m ~‘Þ�

¼ �

g

a02

L2
�� k�

va
L
�r; (6.27)

the (�) and (r) components of the perturbed Uð1Þ gauge
equation are

�00 ��0
r þ ð2m̂þ ‘̂Þð�0 ��rÞ ¼ 8kg�;

1

M2
hð�r ��0Þ ��

L
va ¼ 8kg�r;

(6.28)

and two imaginary parts of the perturbed CP1 equation in
Appendix B. Since the present sector contains two con-
straint equations, we can perform to the stability analysis
of the sector with only three Eqs. (6.26), (6.27), and (6.28)

Here we define three dimensionless variables

~�ð
Þ :¼ �ðrÞ; ~�rð
Þ :¼ �rðrÞffiffiffiffiffiffi
kg

p ; ~�ð
Þ :¼ �ðrÞ;

and also two new variables

~� 1ð
Þ :¼ ~�0ð
Þ � ~�rð
Þ; ~�2ð
Þ :¼ ~�ð
Þ:
Using these variables, we get the two equations from
Eqs. (6.26) and (6.28),

~�0ð
Þ þ 2ðmþ ‘Þ ~�ð
Þ ¼ � 2


L
ð~a0 ~�1ð
Þ þ va ~�2ð
ÞÞ;

~�0
1ð
Þ þ ð2mþ ‘Þ ~�1ð
Þ ¼ 8 ~�2ð
Þ; (6.29)

and the two constraints from Eqs. (6.27) and (6.28),

2v ~�ð
Þ ¼ vað ~�1ð
Þ � ~�0
2ð
ÞÞ;

va
L

~�ð
Þ ¼ 8ð ~�1ð
Þ � ~�0
2ð
ÞÞ;

(6.30)

in which we assumed all the three degrees of freedom are
massless and used the relation

m0 � ‘0 þ 4m2 � ‘2 � 3m‘ ¼ 
ð�� � �0Þ

¼ 


�
~a02

L2
þ 2v

L2

�
;

which is obtained from the components of original Einstein
equations (2.11) and (2.12) and also the relation (4.10). In
order to satisfy Eqs. (6.30), there are two possibilities:

2v

va
¼ va

8L
or ~�ð
Þ ¼ 0:

The former condition obviously cannot be achieved by the

solutions of the numerical integration, e.g., shown in Fig. 7,

therefore we choose ~�ð
Þ ¼ 0.
From Eqs. (6.30) we find that the useful relation

~� 1ð
Þ ¼ ~�0
2ð
Þ: (6.31)

Inserting Eq. (6.31) into Eq. (6.29), we finally attain the
evolution equation

~� 00
2 ð
Þ þ ð2mþ ‘Þ ~�0

2ð
Þ � 8 ~�2ð
Þ ¼ 0: (6.32)

Similar to the above two subsections, this equation is not
analytically solvable since m and ‘ are the functions of 
,
but we can observe the asymptotic behaviors at both

boundaries. At infinity the asymptotic solution for ~�2 is

~� 2ð
Þ / exp

�
� 3c

2

�
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32

9c2

s �



�
: (6.33)

From Eqs. (6.31) and (6.33), the asymptotic solution for ~�1

is also

~� 1ð
Þ / ~�2ð
Þ: (6.34)

The asymptotic solutions for ~�1 and
~�2 are essentially the

same as Eq. (6.22). On the other hand, we find the asymp-
totic solution at the origin by expanding the equations and
the functions as the same method in Sec. IV. The results are

~�1ð
Þ ’ 4#ð0Þ
2 
þOð
2Þ;

~�2ð
Þ ’ #ð0Þ
2 ð1þ 2
2Þ þOð
3Þ;

(6.35)

where #ð0Þ
2 is an arbitrary constant. Therefore we suggest

that ~�1 and ~�2 are potentially normalizable since the
normalizability integrals for them are regular at both
boundaries.

FIG. 7. The magnitude of the function j16vL� v2aj for
various parameter choices.
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2. Sector II: � , X , �, �1, �2, ��

The analysis of the sector II is much more complicated
than the sector I, since in the sector II we should treat the
six degrees of freedom and the eight evolution equations
which we shall see below. Note that we again restrict the
analysis for the lowest angular momentum eigenstates

upon all the quantities. First for the five components of
the perturbed Einstein equation belonging to the present
sector: the (� � �) component is

@�@�ð2�þX þ�Þ ¼ 0; (6.36)

the (� ¼ �) component is

3�00 þ�00 þ 3ð4m̂þ ‘̂Þ�0 � ð3m̂þ ‘̂ÞðX0 ��0Þ � 2ð3m̂0 þ ‘̂0 þ 6m̂2 þ ‘̂2 þ 3m̂ ‘̂Þð�þ X ��Þ

¼ �

g

a0

L
½a0ðXþ�Þ þ�0

�� ���

�
1� 2�1 cos

f

2
þ 2�2 sin

f

2

�
þ k�

�
f02

2
X þ 2v

L2
�þ va

L2
�� þ f0 sinf2�0

1

� 2a2

L2
cosf2�1 � f0 cosf2�0

2 �
2ðn� aÞ2

L2
sinf2�2

�
; (6.37)

the ðr; rÞ component is

1

M2
hð3�þ�Þ þ 4ð3m̂þ ‘̂Þ�0 þ 4m̂0�0

¼ ��

g

a0

L2
ða0�þ�0

�Þ ���

�
1þ 2

�
Xð1� cosfÞ � �1 cos

f

2
þ �2 sin

f

2

��

þ k�

�
2v

L2
ð��XÞ þ va

L2
�� � f0 sin

f

2
�0
1 �

2a2

L2
cos

f

2
�1 þ f0 cos

f

2
�0
2 �

2ðn� aÞ2
L2

sin
f

2
�2

�
� 2��bX; (6.38)

the ð�; �Þ component is

1

M2
hð3�þ XÞ þ 4½�00 þ m̂ð5�0 � X0Þ þ ð2m̂0 þ 5m̂2Þð��XÞ�

¼ ��

g

a0

L2
ða0X ��0

�Þ ���

�
1þ 2

�
�ð1� cosfÞ � �1 cos

f

2
þ �2 sin

f

2

��

þ k�

�
f02

2
ðX ��Þ � va

L2
�� þ f0 sin

f

2
�0
1 þ

2a0

L2
cos

f

2
�1 � f0 cos

f

2
�0
2 þ

2ðn� aÞ2
L2

sin
f

2
�2

�
� 2��b�; (6.39)

and the ð�; rÞ component is

3�0 þ�0 � ðm̂� ‘̂Þ�� ð3m̂þ ‘̂ÞX ¼ �

g

a0

L2
�� þ k�

�
f0 sin

f

2
�1 � f0 cos

f

2
�2

�
: (6.40)

Next for the perturbed matter field equations, the real parts of the perturbed CP1 field equations are

1

M2
h�1 þ �00

1 þ ð4m̂þ ‘̂Þ
�
�0
1 þXf0 sin

f

2

�
þXf00 sin

f

2
�

�
2�0 þ�0 �X0

2

�
f0 sin

f

2

þ
�
f02

2
X þ 2a2

L2
�þ 2a

L2
��

�
cos

f

2
�

�
a2

L2
��

k

�
�1 ¼ 0 (6.41)

and

1

M2
h�2 þ �00

2 þ ð4m̂þ ‘̂Þ
�
�0
2 �Xf0 cos

f

2

�
�Xf00 cos

f

2
þ

�
2�0 þ�0 �X0

2

�
f0 cos

f

2

þ
�
f02

2
X þ 2ðn� aÞ2

L2
�� 2ðn� aÞ

L2
��

�
sin
f

2
�

�ðn� aÞ2
L2

þ�

k

�
�2 ¼ 0; (6.42)

and the only (�) component of the perturbed Uð1Þ gauge field equation is

1

M2
h�� þ�00

� þ ð4m̂� ‘̂Þ�0
� � a0ð4�0 �X0 ��0Þ þ 2Xva ¼ 8kg

�
�� � 2a�1 cos

f

2
þ 2ðn� aÞ�2 sin

f

2

�
: (6.43)
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The properties of each evolution equation are as follows:
Eq. (6.36) is a constraint for the three fluctuations of the
geometry; also Eqs. (6.38) and (6.40) are constraints for all
the fluctuations belonging to the sector II, and Eqs. (6.37),
(6.39), (6.41), (6.42), and (6.43) are dynamical evolution
equations. Owing to the constraint (6.36) for the geometry
fluctuations, we are able to evaluate about the five degrees
of freedom, i.e., �, X, �1, �2, and ��.

If we consider the special situation where all five fluc-
tuations are massless, we obtain the asymptotic equations
at infinity from Eqs. (6.38), (6.40), (6.41), (6.42), and (6.43)

2 ~�0ð
Þ � ~�0ð
Þ � 5c ~Xð
Þ ¼ 
	

4c
ð1� 2 ~�1ð
ÞÞ;

~�0ð
Þ � ~X0ð
Þ þ 4c ~Xð
Þ ¼ 0
(6.44)

for the fluctuations of the geometry and

~�00
�ð
Þ � 3c ~�0

�ð
Þ ¼ 8 ~��ð
Þ;
~�00
1 ð
Þ � 5c ~�0

1ð
Þ þ 	 ~�1ð
Þ ¼ 0;

~�00
2 ð
Þ � 5c ~�0

2ð
Þ � 	 ~�2ð
Þ ¼ 0

(6.45)

for the fluctuations of the matter fields, where we again use
the variables rescaled with respect to 
. Consider the
fluctuation of the constraint for the CP1 doublet jzj2 ¼
1, that is,

�jzj2 ¼ �ðz�azaÞ ¼ �z�aza þ z�a�za

¼ ~�1 cos
~f

2
þ ~�2 sin

~f

2
¼ �ð1Þ ¼ 0;

we find the constraint for the perturbed CP1 fields

~� 1ð
Þ ¼ ~�2ð
Þ tan
~f

2
:

~�1ð
Þ goes to zero at infinity since it must hold the bound-
ary conditions for the backgrounds (3.1). Hence we deter-
mine the asymptotic solutions for Eqs. (6.45)

~��ð
Þ / exp

�
3c

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32

9c2

s �



�
; ~�1ð
Þ ’ 0;

~�2ð
Þ / exp

�
5c

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8	

25c2

s �



�
: (6.46)

Also, we get the asymptotic solutions of the fluctuations for
the geometry from the above results and Eqs. (6.36) and
(6.44):

~Xð
Þ ¼ 
	

4c
þ ~Xð1Þe13c
;

~�ð
Þ ¼ ~ ð1Þ � 
	
þ 9

13
~�ð1Þe13c
;

~�ð
Þ ¼ ~�ð1Þ � 
	

4c
þ 2
	
� 31

13
~�ð1Þe13c
;

(6.47)

where ~�ð1Þ, ~ ð1Þ, and ~�ð1Þ are arbitrary integral constants
which satisfy Eq. (6.36). Equations (6.46) and (6.47)
clearly show that the three scalar mode fluctuations of
the geometry diverge at infinity even though the other three
fluctuations of the matters are regular.
On the other hand, we investigate asymptotic behaviors

at the origin as the same method in Sec. IV. Consequently
we get the asymptotic solutions as follows:

�ð
Þ ’ �


8
ð	þ 4B ~#ð0Þ

� Þ
2 þOð
3Þ;
~Xð
Þ ’ ~Xð0Þ
2 þOð
3Þ;
~��ð
Þ ’ ~#ð0Þ

� 

2 þOð
3Þ;

~�1ð
Þ ’ ~�ð0Þ
1 


3 þOð
4Þ;
~�2ð
Þ ’ A

2
~�ð0Þ
1 


4 þOð
5Þ;

(6.48)

where ~#ð0Þ
� , ~�ð0Þ, and ~�ð0Þ

1 are arbitrary constants. For the

rest of degrees ~�ð
Þ, we similarly evaluate by plugging the
asymptotic solutions into the constraint (6.36).
Therefore, from Eqs. (6.46), (6.47), and (6.48), we con-

clude that the geometry parts of the fluctuations belonging
to the sector II are not normalizable degrees whereas the
matter parts of them are potentially normalizable ones. Of
course, we should practically require some numerical cal-
culations in order to find exact solutions for the evolution
equations.

VII. CONCLUSION

In this paper we have investigated a new brane model in
six dimensions and constructed the thick brane solution by
the Maxwell gauged CP1 model. The origin of this model
is naturally obtained by projecting the Oð3Þ sigma model
onto a complex space and exchanging a Uð1Þ gauge term
with the native composite connection. As we have shown,
our model can realize localizing gravity around the 3-brane
with certain parameter space of the model and attain a
finite four-dimensional Planck mass (Eq. (3.3)). Our results
clearly suggest the possibility of a new variety of brane-
worlds based on classical field theory because there are
many variants for the Oð3Þ sigma model [31–34,62–67]
(see also Ref. [68]). Besides, relevant previous works are
almost constructed from the classical solutions in gauge
theory; in particular, the Abelian-Higgs (AH) vortex in six
dimensions [26]. By using the different model from the AH
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vortex, we have showed that a solitonic nature of vortices
can attain gravity localization around the brane core in
codimension-2 braneworld models. Since such a mecha-
nism using any topological soliton models does not always
work in higher codimensional models [19], it is significant
that our model practically obtain similar results to the AH
vortex.

Another aim at the present paper is to analyze the linear
stability of the model for all fluctuating fields around the
background classical solution. We have concentrated on
studying only their zero modes here. For the fluctuations of
the geometry, the tensor zero mode is always localized
around the origin; on the other hand neither the vector nor
scalar modes are localized. The fluctuations of the matter
fields are potentially localized since they are regular at
infinity and near the origin. Here, ‘‘potentially’’ means
that we could not find any analytical solutions. In order
to determine whether these fluctuations of matters are true
stable or not, we need vast numerical calculations for all
the perturbed equations of motion presented in
Appendix B. We therefore conclude the brane described
by Maxwell CP1 model is a quasistable configuration.

For the linear stability analysis on the zero mode fluc-
tuations, other thick brane models in six dimensions
[49,50,52] have obtained similar results to us. These
codimension-2 models including ours have a serious draw-
back as pointed out in Ref. [51]. One of the aims in our
paper is to study such a problem by using another model
with different topology from the AH vortex, but we finally
encounter a similar difficulty. However, we believe that
thick branes include richer physical implications than thin
ones, thus we should tackle with the problem. In recent
years, there have been many attempts to resolve the prob-
lem of the quasistability by introducing other degrees of
freedom. We are also currently studying such a quasist-
ability problem about our solutions and the results will be
reported in the near future.
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APPENDIX A: LONGITUDINAL GAUGE SYSTEM

Mathematically, the problem of describing evolution
equations for small perturbations in general relativity is
equivalent for solving the Einstein equation linearized
about an expanding background metric tensor. This proce-
dure is straightforward but there are complicated issues
concerning the freedom of gauge, i.e., the choice of back-
ground coordinates. In this appendix we derive the gauge-
invariant fluctuation for all fields (6.1), (6.2), and (6.3) in
Sec. VI by imposing general fluctuations upon the longi-
tudinal gauge conditions.

First of all, we introduce the first-order general fluctua-
tion of the background metric tensor (2.7) given by

�GMN ¼ �ðtÞGMN þ �ðvÞGMN þ �ðsÞGMN

¼
2M2U�� MV � MLW �

MV� 2� L!
MLW � L! 2L2�

0
B@

1
CA; (A1)

where

U�� ¼ h�� þ @ð�I�Þ þ ��� þ @�@�O;

V� ¼ J � þ @�P ; W � ¼ K� þ @�Q;

with the divergenceless and the traceless constraints

@�h
�
� ¼ 0; h�� ¼ 0; @�I� ¼ 0;

@�J � ¼ 0; @�K� ¼ 0:
(A2)

In the above fluctuations, h�� is a tensor mode, I�, J �,

and K� are vector modes, and finally  , O, P , Q, �, �,

and ! are scalar modes, which depend on all the spatial
coordinates xM ¼ ðx�; r; �Þ.
As we mentioned before, any gauge-invariant quantities

are required to be invariant with respect to the choice of
background coordinates. Here infinitesimal coordinates
transformations are defined by

xM ! ~xM ¼ xM þ �MðxNÞ (A3)

with

�MðxNÞ ¼ ðM2��; �r; L2��Þ;
where the local infinitesimal parameter �M depends on xM.
Also we take the four-dimensional sector of the transfor-
mations as follows:

�� ¼ @��þ ��: (A4)

If the perturbed metric tensor (A1) is transformed �~GMN

under the transformations (A3), which can be written by

�~GMN ¼ �GMN �L�GMN; (A5)

where L� is the Lie derivative defined as

L �GMN ¼ �L@LGMN þ GML@N�
L þ GLN@M�

L

¼ rM�N þrN�M;

where rM means the covariant derivative with respect to
the metric tensor. When one calculates the Lie covariant
derivative involved in the perturbed quantities and others,
one may use the original metric tensor (2.7) and the origi-
nal Christoffel connections

�
�

r ¼ M0

M
�
�

; ��r� ¼

L0

L
;

�r
� ¼ �MM0�
�; �r�� ¼ �LL0:

Inserting the perturbed metric tensor (A1) into Eq. (A5),

LOCALIZING GRAVITY ON MAXWELL GAUGED . . . PHYSICAL REVIEW D 78, 045001 (2008)

045001-17



we obtain the explicit forms of �~GMN . Taking some linear
combination of them, we can obtain the following forms of
the scalar functions:

~� :¼ ~ �M0ð ~P �M ~O0Þ;
~X :¼ ~X � ½Mð ~P �M ~O0Þ�0;
~� :¼ ~��ML0

L
ð ~P �M ~O0Þ �

�
M

L

�
~Q�M

L
_~O
���

;

~� :¼ ~!� 1

L
½Mð ~P �M ~O0Þ�� � L

�
M

L

�
~Q�M

L
_~O
��0
;

(A6)

where the prime and the overdot denote the derivative with
respect to the bulk radius r and the bulk angle �, respec-
tively. Similarly, two gauge-invariant vector functions

~E � :¼ ~J � �M~I 0
�; ~F � :¼ ~K� �M

L
_~I�; (A7)

and one gauge-invariant tensor function

~h �� ¼ h�� (A8)

are obtained.
On the other hand, for the matter fields, the original CP1

and Uð1Þ gauge fields (2.8) are fluctuated by

�z ¼ ð�z1; �z2ÞT ¼ ð�1ðxMÞe�ina�; �2ðxMÞÞT ;
�AM ¼ ð#�ðxNÞ; #rðxNÞ; #�ðxNÞÞ (A9)

with the decoupled vector component

#� ¼ �� þ @�#;

where�� and# are a vector and a scalar fluctuation for the

Uð1Þ gauge field, respectively. We obtain transforms of the
matter fields under Eq. (A3) in the same way as the
geometry. Hence we can define six gauge-invariant scalar
functions given by

~�1 :¼ ~�1 þ f0

2
Mð ~P �M ~O0Þ sinf

2
þ ina

M

L

�
~Q�M

L
_~O
�

	 cos
f

2
;

~�2 :¼ ~�2 � f0

2
Mð ~P �M ~O0Þ cosf

2

(A10)

for the CP1 field and

~�� ¼ ��;

~� :¼ ~# � A�
M

L

�
~Q�M

L
_~O
�
;

~�r :¼ ~#r � A�

�
M

L

�
~Q�M

L
_~O
��0 � A�

ML0

L2

�
~Q�M

L
_~O
�
;

~�� :¼ ~#� � A�

�
M

L

�
~Q�M

L
_~O
��� � A0

�Mð ~P �M ~O0Þ
(A11)

for the gauge field where the vector mode ~�� is automati-

cally a gauge-invariant variable like ~h��.

Finally, we take the longitudinal (or conformal

Newtonian) gauge conditions [37], where ~O, ~P , ~Q, ~I�
are to be zero after the infinitesimal coordinates trans-
formations (A3). These gauges can be written in terms of
O, P , Q, I� as

� ¼ O; �r ¼ MðP �MO0Þ;

�� ¼ M

L

�
Q�M

L
_O
�
;

and �� ¼ I�. Then the gauge-invariant fluctuations of the

geometry (A6)–(A8) and of the matter fields (A10) and
(A11) are exactly equivalent to the original one under the
transformations (A3). In our perturbative calculation,
therefore, the independent gauge degrees of freedom are
~�, ~X, ~�, ~�, ~E�, ~F�, ~h��,

~�1,
~�2,

~��,
~�, ~�r, and

~��.

Also we omit the tilde for convenience in Sec. VI.

APPENDIX B: PERTURBED QUANTITIES

The explicit evaluation of the perturbed equations of
motion (6.9) is proceeded here. We shall show the clear
forms of the perturbed Christoffel connection, Einstein
tensor, energy-momentum tensor, and equations for the
matter fields below.

1. Christoffel connection

Inserting the explicit form of the gauge-invariant per-
turbed metric tensor (6.1) into Eq. (6.7), one can get all
components of the perturbed Christoffel connection after
lengthy calculations. The ð�;M;NÞ components are

��
�

� ¼ 2@ð
U

�
�Þ � @�U
� þM0�
�E�;

��
�

r ¼ U�0


 þ 1

2M
ð@
E� � @�E
Þ;

���
� ¼ _U�

 þ L

2M
ð@
F � � @�F 
Þ;

��
�
rr ¼ 1

M
ðE�0 þ m̂E�Þ � 1

M2
@�X;

���r� ¼
1

2M
_E� þ L

2M
½F �0 þ ðm̂� ‘̂ÞF �� � L

2M2
@��;

��
�
�� ¼

L

M
ðL0E� þ _F�Þ � L2

M2
@��;

(B1)

the ðr;M;NÞ components are
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��r
� ¼ �M2ðU0

� þ 2m̂U
�Þ þM@ð
E�Þ

þ 2M2�
�m̂X;

��r
r ¼ �M0E
 þ @
X;

��r
� ¼
M

2
_E
 �ML

2
½F 0


 þ ðm̂þ ‘̂ÞF 
� þ L

2
@
�;

��rrr ¼ X0;

��rr� ¼ _X � L0�;

��r�� ¼ L _�� L2½�0 þ 2‘̂ð��XÞ�;

(B2)

and the ð�;M;NÞ components are

���
� ¼ �M2

L2
_U
� þM

L
@ð
F �Þ þM

L
�
�M

0�;

���
r ¼ � M

2L2
_E
 þ M

2L
½F 0


 � ðm̂� ‘̂ÞF 
� þ 1

2L
@
�;

���
� ¼ @
�;

���rr ¼ � 1

L2
_X þ 1

L
ð�0 þ ‘̂�Þ;

���r� ¼ �0;

����� ¼ _�þ L0�:

(B3)

2. Einstein tensor

Using the explicit forms of the perturbed Christoffel
connections which we obtained, one can also evaluate the
perturbed Riemann tensor (6.8) and Ricci scalar (6.5).
Inserting these perturbed quantities into Eq. (6.4), one
can achieve six components of the perturbed Einstein
tensor. The four-dimensional component ð�; �Þ

�G�� ¼ �hh�� �M2

L2
€h�� �M2½h00�� þ ð4m̂þ ‘̂Þh0�� � 2h��ð3m̂0 þ ‘̂0 þ 6m̂2 þ ‘̂2 þ 3m̂ ‘̂Þ�

þM½@ð�E0
�Þ þ ð3m̂þ l̂Þ@ð�E�Þ� þM

L
@ð� _F �Þ � ð@�@� � ���hÞð2�þX þ�Þ

þM2���

�
1

L2
ð3 €�þ €XÞ þ 3�00 þ�00 þ 3ð4m̂þ l̂Þ�0 � ð3m̂þ ‘̂ÞðX0 ��0Þ � 2ð3m̂0 þ ‘̂0 þ 6m̂2 þ ‘̂2 þ 3m̂ ‘̂Þ

	 ðX ��Þ � 1

L
½ _�0 þ ð3m̂þ ‘̂Þ _��

�
(B4)

has all mode fluctuations of the perturbed quantities. The
three extra-dimensional components ðr; rÞ, ð�; �Þ, and ðr; �Þ

�Grr ¼ 1

M2
hð3�þ�Þ þ 4

L

�
1

L
€�� m̂ _�

�
þ 4ð3m̂þ l̂Þ�0 þ 4m̂�0; (B5)

�G�� ¼ L2

M2
hð3�þXÞ þ L2½4�00 þ 4m̂ð5�0 �X0Þ

þ 4ð2m̂0 þ 5m̂2Þð��XÞ�; (B6)

�Gr� ¼ � L

2M2
h�þ 2Lð2m̂0 þ 5m̂2Þ�

� 4½ _�0 þ ðm̂� ‘̂Þ _�� m̂ _X� (B7)

have the scalar mode fluctuations only. Finally, the rest of
the components ð�; rÞ and ð�; �Þ

�G�r ¼ � 1

2M
hE� � M

2L2
€E� þMð3m̂0 þ ‘̂0 þ 6m̂2 þ ‘̂2 þ 3m̂ ‘̂ÞE� þ M

2L
½ _F 0

� � ðm̂� ‘̂Þ _F ��

� @�

�
3�0 þ�0 � ðm̂� ‘̂Þ�� ð3m̂þ ‘̂ÞX � 1

2L
_�

�
(B8)

�G�� ¼ � L

2M
hF� þM

2
½ _E0
� þ ð5m̂� ‘̂Þ _E�� �ML

2
½F 00

� þ ð4m̂þ ‘̂ÞF 0
� � ð7m̂0 þ ‘̂0 þ 17m̂2 þ 2‘̂2 þ m̂ ‘̂ÞF ��

þ @�

�
L

2
½�0 þ 2ðm̂þ ‘̂Þ�� � 3 _�� _X

�
(B9)
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have the vector and scalar mode fluctuations.

3. Energy-momentum tensor

In order to evaluate the perturbed energy-momentum tensor (6.10), one needs the explicit form of the perturbed matter
Lagrangian density (6.11). Calculating all the fluctuation terms one can obtain

�Lbrane ¼ k

�
f02

2
X þ va

L2
�� þ 2v

L2
�þ f0 sin

f

2
�0
1 � 2

a2

L2
cos

f

2
�1 � f0 cos

f

2
�0
2 � 2

ðna � aÞ2
L2

sin
f

2
�2

�

þ 1

g

a0

L2
½a0ðX þ�Þ þ�0

� � _�r� ��

�
1� 2�1 cos

f

2
þ 2�2 sin

f

2

�
: (B10)

Hence all components of the perturbed energy-momentum tensor can be given as follows. The four-dimensional diagonal
component ð�; �Þ

�T�� ¼ �M2���

�
1

g

a0

L2
½a0ð��X ��Þ þ _�r ��0

�� þ�

�
1þ 2�ð1� cosfÞ � 2�1 cos

f

2
þ 2�2 sin

f

2

�

þ k

�
f02

2
ð��XÞ þ 2v

L2
ð���Þ � va

L2
�� � f0 sin

f

2
�0
1 þ 2

a2

L2
cos

f

2
�1 þ f0 cos

f

2
�0
2 þ 2

ðna � aÞ2
L2

sin
f

2
�2

��

� 2M2h��

�
k

�
f02

4
þ v

L2

�
þ 1

g

a02

2L2
þ�ð1� cosfÞ

�
(B11)

has the tensor and the scalar mode fluctuations, even though the corresponding component of the perturbed Einstein tensor
contains the all mode. The two extra-dimensional diagonal components ðr; rÞ and ð�; �Þ

�Trr ¼ � 1

g

a0

L2
ða0�þ�0

� � _�rÞ ��

�
1þ 2Xð1� cosfÞ � 2�1 cos

f

2
þ 2�2 sin

f

2

�

þ k

�
2v

L2
ð��XÞ þ va

L2
�� � f0 sin

f

2
�0
1 � 2

a2

L2
cos

f

2
�1 þ f0 cos

f

2
�0
2 � 2

ðna � aÞ2
L2

sin
f

2
�2

�
; (B12)

�T�� ¼ � 1

g
a0ða0X þ _�r ��0

�Þ � L2

�
�

�
1þ 2�ð1� cosfÞ � 2�1 cos

f

2
þ 2�2 sin

f

2

�

� k

�
f02

2
ðX ��Þ � va

L2
�� þ f0 sin

f

2
�0
1 þ 2

a2

L2
cos

f

2
�1 � f0 cos

f

2
�0
2 þ 2

ðna � aÞ2
L2

sin
f

2
�2

��
: (B13)

have the only scalar mode fluctuations. The two off-
diagonal mixing components ð�; rÞ and ð�; �Þ

�T�r ¼ ME�Lbrane þ 1

g

a0

L2
½@�ð _����Þ þ _���

� k@�

�
f0 sin

f

2
�1 � f0 cos

f

2
�2

�
; (B14)

�T�� ¼ MLF �Lbrane þ 1

g
a0½@�ð�r ��0Þ ��0

��
� kvað@��þ��Þ (B15)

have the vector and the scalar mode fluctuations. Finally,
the rest ðr; �Þ component

�Tr� ¼ L�Lbrane þ 1

g

a02

L
�

� k

�
f0 sin

f

2
_�1 � f0 cos

f

2
_�2 þ va�r

�
(B16)

has only the scalar mode fluctuations.

4. Matter field equations

For the CP1 and Uð1Þ gauge fields, one can obtain the
perturbed equations of motion by inserting the perturbed
fields (6.3) into Eq. (6.9).
For the a ¼ 1 component of the evolution equation for

the CP1 field, the real part is
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1

M2
h�1 þ �00

1 þ
1

L2
€�1 þ ð4m̂þ ‘̂Þ

�
�0
1 þXf0 sin

f

2

�
þ

�
Xf00 þ f0

2L
_�

�
sin
f

2
�

�
2�0 þ�0 �X0

2

�
f0 sin

f

2

þ
�
f02

2
X þ 2a2

L2
�þ 2a

L2
��

�
cos

f

2
�

�
a2

L2
��

k

�
�1 ¼ 0; (B17)

and the imaginary part is�
1

M2
h�þ�0

r þ 1

L2
_��

�
cos

f

2
þ ð4m̂þ ‘̂Þ

�
�r þ a

L
�

�
cos

f

2
� ð4 _�þ _X � _�Þ a

L2
cos

f

2
þ 1

L
ða�0 þ a0�� a�‘̂Þ cosf

2

�
�
�r þ a

L
�

�
f0 sin

f

2
� 2a

L2
_�1 ¼ 0: (B18)

For the a ¼ 2 component, the real part is

1

M2
h�2 þ �00

2 þ
1

L2
€�2 þ ð4m̂þ ‘̂Þ

�
�0
2 �Xf0 cos

f

2

�
�

�
Xf00 þ f0

2L
_�

�
cos

f

2
þ

�
2�0 þ�0 �X0

2

�
f0 cos

f

2

þ
�
f02

2
X þ 2ðna � aÞ2

L2
�� 2ðna � aÞ

L2
��

�
sin
f

2
�

�ðna � aÞ2
L2

þ�

k

�
�2 ¼ 0; (B19)

and the imaginary part is�
1

M2
h�þ�0

r þ 1

L2
_��

�
sin
f

2
þ ð4m̂þ ‘̂Þ

�
�r � na � a

L
�

�
sin
f

2
� ð4 _�þ _X � _�Þna � a

L2
sin
f

2

þ 1

L
½a0�þ ðna � aÞð�‘̂��0Þ� sinf

2
þ

�
�r � na � a

L
�

�
f0 cos

f

2
þ 2ðna � aÞ

L2
_�2 ¼ 0: (B20)

There are only scalar mode fluctuations in Eq. (B17)–(B20).
Similar to the CP1 field, one can obtain the evolution equations for the Uð1Þ gauge field. The (�) component of this

equation has the vector mode sector

1

M2
h�� þ�00

� þ 1

L2
€�� þ ð2m̂þ ‘̂Þ�0

� �M

L
a0
�
1

L
_E� � ½F 0

� þ ð‘̂� m̂ÞF ��
�
¼ 8kg��; (B21)

and the scalar mode sector

� 00 ��0
r þ ð2m̂þ ‘̂Þð�0 ��rÞ þ 1

L2
ð €�� _��Þ ¼ 8kg�: (B22)

In contrast to the component (�), the (r) component

1

M2
hð�r ��0Þ þ 1

L2
ð €�r � _�0

�Þ þ a0

L2
ð4 _�� _X � _�Þ ��

L
va ¼ 8kg�r (B23)

and the (�) component

1

M2
hð�� � _�Þ þ�00

� � _�0
r þ ð4m̂� ‘̂Þð�0

� � _�rÞ � a0ð4�0 �X0 ��0Þ þ 2Xva

¼ 8kg

�
�� � 2a�1 cos

f

2
þ 2ðna � aÞ�2 sin

f

2

�
(B24)

have the only scalar mode fluctuations.
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