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We propose a new way to hide large extra dimensions without invoking branes, based on Lorentz-

violating tensor fields with expectation values along the extra directions. We investigate the case of a

single vector aether field on a compact circle. In such a background, interactions of other fields with the

aether can lead to modified dispersion relations, increasing the mass of the Kaluza-Klein excitations. The

mass scale characterizing each Kaluza-Klein tower can be chosen independently for each species of

scalar, fermion, or gauge boson. No small-scale deviations from the inverse square law for gravity are

predicted, although light graviton modes may exist.
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I. INTRODUCTION

If spacetime has extra dimensions in addition to the four
we perceive, they are somehow hidden from us. For a long
time, the only known way to achieve this goal was the
classic Kaluza-Klein scenario: compactify the dimensions
on a manifold of characteristic size�R. Momentum in the
extra dimensions is then quantized in units of R�1, giving
rise to a Kaluza-Klein tower of states; if R is sufficiently
small, the extra dimensions only become evident at very
high energies. More recently, it has become popular to
consider scenarios in which standard model fields are
localized on a brane embedded in a larger bulk [1–4]. In
this picture, the extra dimensions are difficult to perceive
because we cannot get there.

In this paper we consider a new way to keep extra
dimensions hidden, or more generally to affect the propa-
gation of fields along directions orthogonal to our macro-
scopic dimensions: adding Lorentz-violating tensor fields
(aether) with expectation values aligned along the extra
directions. Interactions with the aether modify the disper-
sion relations of other fields, leading (with appropriate
choice of parameters) to larger energies associated with
extra-dimensional momentum.1 We should emphasize that
we have no underlying reason for choosing any particular
values of the relevant parameters; in particular, obtaining
very large mass splittings requires unnaturally large pa-
rameters. Mass splittings that are different for different
species are, however, generic predictions of the model.

This scenario has several novel features. Most impor-
tantly, it allows for completely different spacings in the

Kaluza-Klein towers of each species. If the couplings are
chosen universally, the extra mass given to fermions will be
twice that given to bosons. There will also be new degrees
of freedom associated with fluctuations of the aether field
itself; these are massless Goldstone bosons from the spon-
taneous breaking of Lorentz invariance, but can be very
weakly coupled to ordinary matter. There is a sense in
which the effect of the aether field is to distort the back-
ground metric, but in a way that is felt differently by
different kinds of fields. The extra dimensions can be
‘‘large’’ if the expectation value of the aether field is
much larger than the inverse coupling. In contrast to brane-
world models, we expect no deviation from Newton’s
inverse square law even if the extra dimensions are as large
as a millimeter, as the gravitational source will be distrib-
uted uniformly throughout the extra dimensions rather than
confined to a brane. The model has no obvious connection
to the hierarchy problem; indeed, hiding large dimensions
requires the introduction of a new hierarchy. New physical
phenomena associated with the scenario deserve more
extensive investigation.

II. AETHER

For definiteness, consider a five-dimensional flat space-
time with coordinates xa ¼ fx�; x5g and metric signature
(�þþþþ ). The fifth dimension is compactified on a
circle of radius R. The aether is a spacelike five-vector ua,
and we can define a ‘‘field strength’’ tensor

Vab ¼ raub �rbua: (1)

This field is not related to the electromagnetic vector
potential Aa or its associated field strength Fab ¼ raAb �
rbAa, nor will the dynamics of ua respect a U(1) group of
gauge transformations. Rather, the aether field will be fixed
to have a constant norm, with an action

S¼M�
Z
d5x

ffiffiffiffiffiffiffi�gp �
�1

4
VabV

ab��ðuaua�v2ÞþX
i

Li

�
:

(2)

1After this paper was completed, we became aware of closely
related work by Rizzo [5]. He enumerated a complete set of five-
dimensional Lorentz-violating operators that preserve Lorentz
invariance in 4D, and calculated their effect on the spectrum of
the Kaluza-Klein tower. In contrast, our starting point is the
expectation value of a dynamical aether field, and its lowest-
order couplings to ordinary matter. The modified dispersion
relations we derive recover in large measure Rizzo’s phenome-
nological results.
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The Li’s are various interaction terms to be considered
below, andM� is an overall scaling parameter. Note that �
is not a fixed parameter, but a Lagrange multiplier enforc-
ing the constraint

uaua ¼ v2: (3)

We choose conventions such that ua has dimensions of
mass. The equation of motion for ua, neglecting interac-
tions with other fields for the moment, is

raV
ab þ v�2ubucrdV

cd ¼ 0; (4)

where we have used the equations of motion to solve for �.
Any configuration for which Vab ¼ 0 everywhere will
solve this equation. In particular, there is a background
solution of the form

ua ¼ ð0; 0; 0; 0; vÞ; (5)

so that the aether field points exclusively along the extra
direction. We will consider this solution for most of this
paper.

Constraints on four-dimensional Lorentz violation via
couplings to Standard Model fields have been extensively
studied [6–9]. The dynamics of the (typically timelike)
aether fields themselves and their gravitational effects
have also been considered [10–19]. More recently, atten-
tion has turned to the case of spacelike vector fields,
especially in the early universe [20,21].

The particular form of the Lagrangian (2) is chosen to
ensure stability of the theory; for spacelike vector fields, a
generic set of kinetic terms would generally give rise to
negative-energy excitations. This specific choice propa-
gates two positive-energy modes: one massless scalar,
and one massless pseudoscalar [21]. For purposes of this
paper we will not investigate the fluctuations of ua in any
detail. Although the modes are light, their couplings to
standard model fields can be suppressed. Nevertheless, we
expect that traditional methods of constraining light scalars
(such as limits from stellar cooling) will provide interest-
ing bounds on the parameter space of these models.

III. ENERGY-MOMENTUM AND
COMPACTIFICATION

A crucial property of aether fields is the dependence of
their energy density on the spacetime geometry. The
energy-momentum tensor takes the form

Tab ¼ VacV
c
b � 1

4VcdV
cdgab þ v�2uaubucrdV

cd: (6)

In particular, Tab vanishes when Vab vanishes, as for the
constant field configuration in flat space (5). The nonvan-
ishing expectation value for the aether field does not by
itself produce any energy density. In the context of an extra
dimension, this implies that the aether field will not pro-
vide a contribution to the effective potential for the radion,
so the task of stabilizing the extra dimension must be left to
other mechanisms.

When the background spacetime is not Minkowski,
however, even a ‘‘fixed’’ aether field can give a nonvanish-
ing energy-momentum tensor. In [10] it was shown that a
timelike aether field would produce an energy density
proportional to the square of the Hubble constant, while
in [20] a spacelike aether field was shown to produce an
anisotropic stress. We should therefore check that an oth-
erwise quiescent aether field oriented along an extra di-
mension does not create energy density when the four-
dimensional geometry is curved.
Consider a factorizable geometry with an arbitrary four-

dimensional metric and a radion field bðx�Þ parametrizing
the size of the single extra dimension,

ds2 ¼ g��ðxÞdx�dx� þ bðxÞ2dx25; (7)

where x here stands for the four-dimensional coordinates
x�. In any such spacetime, there is a background solution

ua ¼
�
0; 0; 0; 0;

v

bðxÞ
�
: (8)

It is straightforward to verify that this configuration sat-
isfies the equation of motion (4), as well as the constraint
(3), even though Vab does not vanish:

V�5 ¼ �V5� ¼ vr�b: (9)

We can then calculate the energy-momentum tensor
associated with the aether:

TðuÞ
�� ¼ v2

b2

�
r�br�b� 1

2
g��r�br�b

�
;

TðuÞ
�5 ¼ 0;

TðuÞ
55 ¼ v2ðr�r�b� 1

2r�br�bÞ:
(10)

The important feature is that TðuÞ
ab will vanish when r�b ¼

0. As long as the extra dimension is stabilized and the
aether takes on the configuration (8), there will be no
contributions to the energy-momentum tensor; in particu-
lar, neither the expansion of the universe nor the spacetime
geometry around a localized gravitating source will be
affected.

IV. SCALARS

We now return to flat spacetime (gab ¼ �ab) and con-
sider the effects of interactions of the aether on various
types of matter fields, beginning with a real scalar �. We
impose a Z2 symmetry, ua ! �ua. The Lagrangian with
the lowest-order coupling is then

L � ¼ � 1

2
ð@�Þ2 � 1

2
m2�2 � 1

2�2
�

uaub@a�@b�; (11)

with a corresponding equation of motion

@a@
a��m2� ¼ ��2

� @aðuaub@b�Þ: (12)
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Expanding the scalar in Fourier modes,

� / eikaxa ¼ eik�k
�þik5x5 ; (13)

yields a dispersion relation

� k�k
� ¼ m2 þ ð1þ �2

�Þk25; (14)

where

�� ¼ v=��: (15)

Note that with our metric signature, �k�k� ¼ !2 � ~k2.

This simple calculation illustrates the effect of the cou-
pling to the spacelike vector field. Compactifying the fifth
dimension on a circle of radius R quantizes the momentum
in that direction, k5 ¼ n=R. In standard Kaluza-Klein the-
ory, this gives rise to a tower of states of masses m2

KK ¼
m2 þ ðn=RÞ2. With the addition of the aether field, the
mass spacing between different states in the KK tower is
enhanced,

m2
AC ¼ m2 þ ð1þ �2

�Þ
�
n

R

�
2
: (16)

The parameter �� is a ratio of the aether vev to the mass

scale �� characterizing the coupling, and could be much

larger than unity. If the vev is v�MP, and the coupling
parameter is �� � TeV, the masses of the excited modes

are enhanced by a factor of 1015. The extra dimension
could be as large as R� 1 mm, and the n ¼ 1 state would
have a mass of order TeV. Admittedly, we have no com-
pelling reason why there should be such a hierarchy be-
tween v and�� at this point, other than that it is interesting

to contemplate.
We will examine the effects of aether compactification

on gravitons below, but it is already possible to see that we
should not expect any small-scale deviations from
Newton’s law, even if the extra dimensions are
millimeter-sized. Unlike braneworld compactifications,
here the sources are not confined to a thin brane embedded
in a large bulk; rather, light fields are zero modes, spread
uniformly throughout the extra dimensions. Therefore, the
gravitational lines of force do not spread out from the
source into the higher-dimensional bulk; the sources are
still of codimension three in space, and gravity will appear
three dimensional. There is correspondingly less motiva-
tion for considering macroscopic-sized extra dimensions in
this scenario, as they would remain undetectable by tab-
letop experiments.

One may reasonably ask whether it is appropriate to
think of such a scenario as a large extra dimension at all,
or whether we have simply rescaled the metric in an
unusual way. In the Lagrangian (11) alone, the effect of
the aether field is simply to modify the metric by a dis-
formal transformation, gab ! gab þ uaub. There is a cru-
cial difference, however, in that the interaction with the
aether vector is generically not universal. Different fields

will tend to have different mass splittings in their Kaluza-
Klein towers. Indeed, we shall see that while the splittings
for gauge fields follow the pattern of that for scalars, the
splittings for fermions are of order �4 rather than �2, and
the splittings for gravitons do not involve a mass scale� at
all. Thus, aether compactification is conceptually different
from an ordinary extra dimension.
Finally, we point out that if we have not imposed the Z2

symmetry, the lowest-order coupling becomes ��1ua@a�.
By integration by parts, this is equivalent to
���1ð@auaÞ�, which vanishes given our background so-
lution for ua in (5).

V. GAUGE FIELDS

Consider an Abelian gauge field Aa, with field strength
tensor Fab. The Lagrangian with the lowest-order coupling
to ua is

L A ¼ � 1

4
FabF

ab � 1

2�2
A

uaubgcdFacFbd; (17)

with equation of motion

@aF
ab ¼ ��2

A ðucub@aFca � ucu
a@aF

cbÞ: (18)

We can decompose this into b ¼ 5 and b ¼ � components
in the background (5):

@�F
�5 ¼ 0; (19)

@�F
�� ¼ �ð1þ �2

AÞ@5F5�; (20)

where

�A ¼ v=�A: (21)

We can take advantage of gauge transformations Aa !
Aa þ @a� to set A5 ¼ 0. This leaves some residual gauge

freedom; we can still transform A� ! A� þ @� ~�, as long

as @5 ~� ¼ 0. In other words, the zero mode retains all of its
conventional four-dimensional gauge invariance.

Choose A5 ¼ 0 gauge, and go to Fourier space, A� /
��eik�x

�þik5x5 , where �� is the polarization vector. Then
(19) and (20) imply

k5k��
� ¼ 0; (22)

½k�k� þ ð1þ �2
AÞk25��� � k�k��

� ¼ 0: (23)

When k5 ¼ 0, we obtain the ordinary dispersion relation
for a photon. When k5 is not zero, (22) implies k��

� ¼ 0,

and the dispersion relation is

� k�k
� ¼ ð1þ �2

AÞk25: (24)

Precisely as in the scalar case, the Kaluza-Klein masses are
enhanced by a factor (1þ �2

A), although there is no neces-
sary relationship between �A and ��. The same reasoning
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would apply to non-Abelian gauge fields, through a cou-
pling uaub TrðGacGb

cÞ.

VI. FERMIONS

Next we turn to fermions, taken to be Dirac for simplic-
ity. Given the symmetry ua ! �ua, we might consider a
coupling of the form uaub � 	a	b . But because u

aub is
symmetric in its two indices, this is equivalent to
uaub � 	ða	bÞ ¼ uaub � gab ¼ v2 �  , so this interaction

does not violate Lorentz invariance.
The first nontrivial coupling involves one derivative,

L  ¼ i � 	a@a �m �  � i

�2
 

uaub � 	a@b ; (25)

leading to an equation of motion

i	a@a �m � i

�2
 

uaub	a@b ¼ 0: (26)

Going to Fourier space as before, we ultimately find a
dispersion relation

� kaka � 2

�2
 

ðuakaÞ2 � 1

�4
 

uauaðubkbÞ2 ¼ m2: (27)

Plugging in the background (5) and defining

� ¼ v=� ; (28)

we end up with

� k�k� ¼ m2 þ ð1þ �2
 Þ2k25: (29)

Although the form of this equation is identical to the
scalar and gauge-field cases, it is quantitatively different:
for large � the enhancement goes as �4 rather than �2. If
(in the context of some as-yet-unknown underlying theory)
all of the mass scales � are similar, we would expect a
much larger mass splitting for fermions in an aether back-
ground than for bosons.

Similar to the scalar case, if we do not impose the Z2

symmetry, we are led to consider the following two lower
order couplings: ua � 	

a and i
� u

a � @a . Following the

same procedure as before, the first term leads to the dis-
persion relation

� k�k
� ¼ m2 þ v2 þ k25 þ 2vk5 ¼ m2 þ ðvþ k5Þ2:

(30)

As usual, coupling to ua enhances the mass spacing of the
KK tower, but now the spacing will depend on the direction
of the 5th-dimensional momentum as well as its
magnitude.

Meanwhile, the second term leads to the dispersion

� k�k
� ¼ m2 � 2m�k5 þ ð1þ �2Þk25 (31)

¼ ðm� �k5Þ2 þ k25; (32)

where � ¼ v=�. Interestingly, if ð1þ �2Þ=� < 2mR, this
coupling results in a reduction in m2 for small n. However,
it can be checked that these negative mass corrections are
never sufficiently large to lead to tachyons. For n large, the
mass spacing is enhanced, as usual.

VII. GRAVITY

The aether field can couple nonminimally to gravity
through an action

S ¼ M�
Z
d5x

ffiffiffiffiffiffiffi�gp �
M2
P

2
Rþ �gu

aubRab

�
; (33)

where MP is the 4-dimensional Planck scale and �g is

dimensionless. The gravitational equation of motion takes
the form

Gab ¼
�g

2M2
P

Wab; (34)

where Gab ¼ Rab � 1
2Rgab and

Wab ¼ Rcdu
cudgab þrcraðubucÞ þ rcrbðuaucÞ

� rcrdðucudÞgab �rcrcðuaubÞ: (35)

Now we consider small fluctuations of the metric,

gab ¼ �ab þ hab: (36)

The choice of background field ua ¼ ð0; 0; 0; 0; vÞ sponta-
neously breaks diffeomorphism invariance, so not all co-
ordinate transformations are open to us if we want to
preserve that form. Under an infinitesimal coordinate trans-
formation parameterized by a vector field, xa ! �xa ¼
xa þ 
a, the metric fluctuation and aether change by
hab ! hab þ @a
b þ @b
a and ua ! ua þ @5


a.
Therefore, we should limit our attention to gauge trans-
formations satisfying @5


a ¼ 0. We can, for example, set
h�5 ¼ 0. We then still have residual gauge freedom in the

form of 
�, as long as @5

� ¼ 0. This amounts to the usual

4-d gauge freedom for the massless four-dimensional
graviton.
Taking advantage of this gauge freedom, we can partly

decompose the metric perturbation as

h�� ¼ �h�� þ����; h55 ¼ �; (37)

where ��� �h�� ¼ 0. In this decomposition, �h�� represents

propagating gravitational waves, � represents Newtonian
gravitational fields, and � is the radion field representing
the breathing mode of the extra dimension. The zero mode
of this field is a massless scalar coupled to matter with
gravitational strength; in a phenomenologically viable
model, it would have to be stabilized, presumably by
bulk matter fields. The Einstein tensor becomes
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G�� ¼ 1
2½�@�@� �h�� � @25

�h�� þ @�@
� �h�� þ @�@

� �h��

� 2@�@��� @�@��� ð@�@� �h�� � 2@�@
��

þ 3@25�� @�@
��Þ����; (38)

G�5 ¼ 1
2ð@5@� �h�� � 3@�@5�Þ; (39)

G55 ¼ 1
2ð�@�@� �h�� þ 3@�@

��Þ; (40)

and (35) is

W�� ¼ v2ð@25 �h�� � 3@25���� � @25����Þ; (41)

W�5 ¼ v2@�@5�; (42)

W55 ¼ �2v2ð2@25�þ @25�Þ: (43)

We have already argued that there will be no macro-
scopic deviations from Newton’s law on the scale of the
extra-dimensional radius R, because the zero-mode fields
are distributed uniformly through the extra dimensions.
However, we can also inquire about the Kaluza-Klein
tower of propagating gravitons. To that end, we set � ¼
0 ¼ � and consider transverse waves, @� �h�� ¼ 0. The

gravity equation (34) becomes

� 1

2
@c@

c �h�� ¼
�gv

2

2M2
P

@25
�h��: (44)

This implies a dispersion relation

� k�k
� ¼

�
1þ �gv

2

M2
P

�
k25: (45)

As before, there is an altered dispersion relation for modes
with bulk momentum. However, the dimensionless cou-
pling �g appears directly in the Lagrangian, rather than

arising as a ratio � ¼ v=�. It is therefore consistent to
imagine scenarios with �g � 1, while the other �i’s are

substantially larger. In that case, KK gravitons will have
masses that are close to the conventional expectation, m �
n=R, even while other fields are much heavier. In the
scenario with a single extra dimension, the underlying
quantum-gravity scaleM3

QG ¼ M�M2
P will still be substan-

tially larger than a TeV, and we do not expect graviton
production at colliders; but such a phenomenon might be
important in extensions with more than one extra
dimension.

VIII. CONCLUSIONS

The presence of Lorentz-violating aether fields in extra
dimensions introduces novel effects into Kaluza-Klein
compactification schemes. Interactions with the aether al-
ter the relationship between the size of the extra dimen-
sions and the mass splittings within the KK towers. With
appropriately chosen parameters, modes with extra-
dimensional momentum can appear very heavy from a
four-dimensional perspective, even with relatively large
extra dimensions.
A number of empirical tests of this idea suggest them-

selves. The most obvious is the possibility of KK towers
with substantially different masses for different species.
While scalar and gauge-boson mass splittings follow a
similar pattern, fermions experience greater enhancement,
while gravitons can naturally be less massive. In addition,
although we have not considered the prospect carefully in
this paper, oscillations of the aether field itself are poten-
tially detectable. Their couplings will be suppressed by the
mass scales �i, without being enhanced by the vev v;
nevertheless, searches for massless Goldstone bosons
should provide interesting constraints on the parameter
space.
Our investigation has been phenomenological in nature;

we do not have an underlying theory of the aether field, nor
any natural expectation for the magnitudes of the parame-
ters v, �i, and �g. The possibility of a hidden millimeter-

sized dimension requires a substantial hierarchy, v=�i �
1015; even in the absence of such large numbers, however,
interactions with the aether may lead to subtle yet impor-
tant effects. It would certainly be interesting to have a
deeper understanding of the possible origin of these fields
and couplings.
Numerous questions remain to be addressed. We con-

sidered a vector field in a single extra dimension, but
higher-rank tensors in multiple dimensions should lead to
analogous effects. It would also be interesting to study the
gravitational effects of the aether fields themselves in non-
trivial spacetime backgrounds. The idea of modified extra-
dimensional dispersion relations in the presence of
Lorentz-violating tensor fields opens up a variety of pos-
sibilities that merit further exploration.
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