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We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers

of nonspinning black holes, based on numerical simulations of systems varying from equal mass to a 6:1

mass ratio. Our primary goal is to present relatively complete information about the waveforms, including

all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest

physical description of the dominant features in the radiation, providing an interpretation of the wave-

forms in terms of an implicit rotating source. This interpretation applies uniformly to the full wave train,

from inspiral through ringdown. We emphasize strong relationships among the ‘ ¼ m modes that persist

through the full wave train. Exploring the structure of the waveforms in more detail, we conduct detailed

analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the

‘ ¼ mmodes among all mass ratios. We identify relationships, with a simple interpretation in terms of the

implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time

radiation. These detailed relationships provide sufficient information about the late-time radiation to yield

a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a

sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-

based analytic waveform model.
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I. INTRODUCTION

The final merger of two black holes (BHs) having com-
parable masses will produce an intense burst of gravita-
tional radiation, and is expected to be one of the strongest
sources in the gravitational-wave sky. Mergers of stellar
black holes are key targets for ground-based detectors such
as LIGO, VIRGO, and GEO600, and knowledge of the
merger waveforms is an important component of improv-
ing the detachability of such systems. The space-based
LISA detector will observe mergers of massive black holes
at high signal-to-noise ratios, allowing tests of general
relativity in the strong-field, dynamical regime.

Today, numerical relativity (NR) studies are beginning
to progress toward a full description of black-hole binary
merger systems. For noneccentric inspirals, this space is
spanned by seven parameters: the symmetric mass ratio
� ¼ m1m2=ðm1 þm2Þ2, and the six combined compo-
nents of the black holes’ spin vectors. Considerable study
has been focused on the fiducial center point of this pa-
rameter space, the case of equal-mass nonspinning black-
hole mergers. After the series of breakthroughs that ush-
ered in an era of rapid progress in the field [1–4], several
investigations assessing the accuracy of the available
equal-mass waveforms and applying them to data analysis
were conducted [5–9].

In this paper, we undertake a descriptive study of the
waveforms generated in the late inspiral and merger of
black-hole binaries for the subspace of nonspinning black
holes, parametrized only by �. Our study is based on a
series of numerical simulations, discussed in Sec. III, cov-

ering at least the last * 4 orbits of nonspinning black-hole
binary mergers with mass ratios extending to 6:1 (� �
0:122). Several of the simulations presented here have
already been applied in a recent paper, focusing on the
development of a faithful analytic waveform model [10].
Here we provide details of these and additional simula-
tions, together with considerable analysis, focused on pro-
viding a qualitative and quantitative picture of how the
waveforms from nonspinning black-hole mergers depend
on �. Nonspinning black-hole binary merger waveforms
were previously examined in Ref. [11], but our analysis is
novel and complementary to that work. Our descriptive
presentation puts emphasis on the relationships between
waveforms from the different mass-ratio cases and differ-
ent harmonic modes, with references to Ref. [11] where
related observations have been made. Our approach to
describing the inspiral-merger-ringdown transition is par-
ticularly distinct, founded in a uniform approach that de-
scribes all stages of this process in similar terms, and
ultimately suggesting a complementary physical picture.
Black-hole-binary merger waveforms have been noted

for their ‘‘simplicity.’’ For the nonspinning systems the
simple physics of the coalescence is exposed by a spherical
harmonic decomposition of the waveforms. In Sec. IV we
walk readers through the basic features of the radiation,
characterizing amplitude and phase evolution of the multi-
polar components, and discussing relationships among the
simulations representing different mass ratios, and among
the multipolar components of each simulation. As we
analyze the waveforms, we develop a conceptual interpre-
tation of the basic waveform features. In this interpretation

PHYSICAL REVIEW D 78, 044046 (2008)

1550-7998=2008=78(4)=044046(25) 044046-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.044046


we consider the structure of an implicit rotating source,
which could have generated the measured radiation
through its rotational motion. This allows a uniform inter-
pretation that applies throughout the coalescence process:
inspiral, merger, and ringdown.

In Sec. V, we examine the strong final burst of radiation
beginning �20M before the formation of a common hori-
zon. We quantitatively describe the phasing in terms of an
analytic model, based on a continuous, monotonically in-
creasing frequency. We find, in particular, that the peak rate
of change in frequency, appropriately scaled, is the same
across all ‘ ¼ m modes and mass ratios. We also identify
relationships among the mode amplitudes and phases,
which are connected to an approximately linear relation-
ship between angular momentum and frequency:
d2J=d!2 � 0. We interpret these relationships in terms
of the implicit source.

Finally, in Sec. VI, we demonstrate the utility of what we
have learned in our waveform characterization by applying
some of the quantitative features we have uncovered in a
new variation on the analytic waveform model in [10],
which was based on the effective-one-body (EOB) resum-
mation of the post-Newtonian (PN) approximation to in-
spiral dynamics [12]. In particular, we provide a distinct
late-time waveform model, alternative to the common
‘‘spectroscopic’’ model [13,14] based on sums of quasi-
normal mode overtones.

II. OVERVIEW

We begin with some examples of gravitational strain
waveforms as they might be observed by gravitational-
wave instruments. In observational work, and PN analysis,
it is customary to describe the radiation in terms of
gravitational-wave strain, h. In representing the strain, it
is convenient to combine the two real waveform polariza-
tion components, hþ and h�, into one complex strain
waveform,

h ¼ hþ þ ih�: (1)

We decompose the strain waveforms measured on a sphere
of radius Rext, into spin-weighted spherical harmonic com-
ponents, h‘m. The details of the decomposition, and how
the waveform information is extracted from the numerical
simulations, are given in Appendix A.

The waveforms in this section are aligned in time and
phase so that the maximum strain amplitude occurs at t ¼
0. The remaining figures of this paper will be aligned in a
similar way, but with t ¼ 0 marking the time of peak (2,2)
mode energy flux, _E22 (unless stated otherwise).

Figure 1 shows waveforms from mergers of nonspinning
black holes for various mass ratios, as observed at distance
R on the rotational/orbital axis of the system. The figure
shows hþ for each of the four mass ratios 1:1, 2:1, 4:1, and
6:1. For these observers the observed waveforms will be
circularly polarized, so that h� is 90� out of phase with hþ.

We use units in which G ¼ 1 and c ¼ 1 and express both
time and spatial distances in terms of the total mass M,
where M� 5� 10�6ðM=M�Þ sec�1:5ðM=M�Þ km.
More typically, the observer will not be located on the

system’s orbital axis. The left panel of Fig. 2 shows hþ for
the 4:1 case. The strain is measured at an azimuthal angle
of 0� and various inclinations.1 The detailed shapes of the
waveforms change as the system is reoriented so that the
observer moves off the system’s rotational axis. For larger
inclinations (closer to being viewed edge-on) there are
notable modulations at half the base gravitational-wave
frequency.
The right panel of Fig. 2 shows hþ for different mass

ratios oriented at an inclination of 90� and an azimuthal
angle of 0�. For this orientation, hþ constitutes the full
strain waveform. For larger mass ratios, the lower fre-
quency modulation increases. For gravitational-wave ob-
servations of sufficiently strong binary black-hole sources,
the types of differences shown in Fig. 2 could be exploited
to estimate the inclination and mass ratio of the source
system.
For observational purposes, the combined waveform

information encoding all possible source orientations can
be conveniently represented in terms of spin-weighted
spherical harmonic components [see Eqs. (A2)–(A4)], pro-
viding a neat description of the leading waveform features,
The multipolar decomposition is even more valuable as a
tool for exposing the hallmark simplicity of the merger
radiation. The readily apparent simplicity in the waves
viewed from the system’s orbital axis in Fig. 1 extends to
each of the spherical harmonic components. Viewed off
axis, these components linearly combine to yield the more
complex appearance of the waveforms in Fig. 2.
This characterization of the gravitational radiation from

a merging black-hole binary in terms of circular polariza-
tion was first recognized in the Lazarus project studies
[15]. In this picture, the radiation can be represented by a
slowly varying amplitude and a polarization angle; see
Eq. (2) below. This description relies on how the radiation
appears to distant observers located on the rotational axis
of the system. Other observers will typically see elliptically
polarized waves, having a generally simple pattern that
conforms to the rotational nature of the source. In the
equatorial plane, the radiation reduces to the plus polariza-
tion, corresponding to the observer seeing no circulation in
the source. Looking along the negative rotation axis, the
observer sees circular polarization with the opposite
helicity.

1The inclination angle is defined here as the angle between the
line of sight with respect to the detector and the orbital axis of
the binary. This is the same angle referred to as ‘‘inclination’’ in
the PN/NR literature, and most equations are constructed using
that definition. However, the astronomical literature has often
defined inclination to be the angle between the line of sight and
the orbital plane of the binary, resulting in a 90� inconsistency.
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Each of the spherical harmonic waveform components
exhibits circular polarization with steadily varying phase
and amplitude, providing a natural framework for devel-
oping a practical and intuitive understanding of binary
black-hole merger radiation. Our basic waveform descrip-
tion, in Sec. IV, and the more detailed analysis that follows,
is based on this spherical harmonic decomposition.

As we describe the waveforms, we will also suggest a
heuristic interpretation of what the radiation tells us about
the motion and structure of the binary black-hole source. In
the weak-field description of radiation from a rotating
object, the multipolar waveform components of the gravi-
tational radiation can be associated with dynamics of mul-
tipolar moments of the radiating source [16]. It is useful, in

conceptualizing the full-coalescence radiation from inspi-
ral through merger and ringdown, to think of the multipolar
radiation description as providing information about the
motion of a changing source object, described as a sum of
several multipolar mass moments. This source object is
what we will interpret as an effective rigid rotator radiation
source, with a slowly changing structure. We refer to this as
the implicit rotating source (IRS).
In the process of coalescence, the source begins as a

separated black-hole binary system and ends as a single
distorted black hole. For nonspinning binary mergers, nu-
merical and PN results consistently indicate that the radia-
tion is circularly polarized, in the sense first recognized in
the Lazarus project studies [15], not only in the inspiral,
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FIG. 2 (color online). Waveform variation with inclination. The left panel shows how the wave shape changes with inclination � for a
4:1mass ratio. hþ is plotted, using the sum of multipolar modes up to ‘ ¼ 5. The curves are labeled by the inclination in degrees of the
observer, and the time axis is labeled so that the peak of h22 occurs at t ¼ 0. The right panel shows how the wave shape changes with
mass ratio. The waveforms hþ are computed at an inclination of 90� from the ‘ ¼ 2 and ‘ ¼ 3 modes. The different mass ratios are
aligned in time so that the peak of h22 occurs at t ¼ 0. The rotational phases are matched to 0� at t ¼ 0. In both panels, the azimuthal
angle is 0�.
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FIG. 1 (color online). The plus component of the strain, hþ, is shown for different mass ratios using the ‘ ¼ 2 and ‘ ¼ 3modes. The
observer is located at distance R along the axis of the system, at inclination (footnote 1) � ¼ 0� and azimuthal angle � ¼ 0�. The
strains are scaled by symmetric mass ratio and aligned such that, for each mass ratio, the peak of h22 occurs at t ¼ 0. The phases are
rotated such that the phases are 0� at t ¼ 0.
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but uniformly through the merger and ringdown. In our
conceptual source description, this pattern of circular po-
larization is consistent with radiation generated by rota-
tional motion of each source multipolar moment, where the
polarization phase is tied to the instantaneous orientation
of the source. Similarly, we think of the amplitude of the
radiation multipole as related, through some generalization
of the quadrupole formula, to the magnitude of the implicit
source multipole.

We can write each multipolar component in a specific
polar form natural for circularly polarized radiation:

rh‘mðtÞ ¼
�
H‘me

im�ðhÞ
‘m
ðtÞ ðm> 0Þ;

H‘me
im�ðhÞ

‘m
ðtÞð�1Þ‘ ðm< 0Þ: (2)

Each amplitude H‘m is expected to be a slowly varying
function of time and can be conceptually considered as a
function only of the magnitude of the source multipolar
moment and its rotational frequency. The additional sign
for some m< 0 cases allows a consistent interpretation for
the component phases and the component amplitudes. The

waveform phase is given here bym�ðhÞ
‘m, but in most of our

analysis we refer to �ðhÞ
‘m, which we call the rotational

phase. In our terms of our implicit source heuristic, the
rotational phase for some particular ð‘;mÞ mode can be
thought of as the azimuthal orientation of the specified
multipolar source component. In the inspiral, where the

source can be considered as a separated binary,�ðhÞ
‘m should

coincide with the orbital phase, independent of ð‘;mÞ. In
the post-Newtonian expansion [17], all the �ðhÞ

‘m defined

here agree to at least 2PN order, while the amplitudes H‘m

remain real and non-negative. The equatorial-plane sym-
metry of these mergers ensures thatH‘m ¼ H‘ð�mÞ and that
�ðhÞ
‘m ¼ �ðhÞ

‘ð�mÞ, so that we need consider only m> 0

modes for this analysis.
The expansion (2) is not appropriate for the m ¼ 0

modes. This points to an important caveat to our implicit
rotating source interpretation of the radiation, that it ap-
plies to the degree that the radiation is circularly polarized.
While not strictly vanishing, the m ¼ 0 waveform compo-
nents and other deviations from circular polarization are
generally extremely small, and largely unmeasurable at the
resolutions of the simulations we study. For the most part,
we will not address deviations from circular polarization,
and the consequent limitations of our implicit-rotating-
source interpretation in this paper, focusing for now on
the dominant features of the radiation.

III. SIMULATIONS

Our analysis is based on four simulations, representing
mass ratios 1:1, 2:1, 4:1, and 6:1. Results from the 1:1 and
4:1 simulations have appeared in previous publications
([7,10], respectively). More recently, higher accuracy
simulations have been presented by other groups for the

1:1 case [9,18]. Our older waveform is sufficiently accurate
for our present purpose, to examine the general features of
the nonspinning merger waveforms.
Our numerical simulations are carried out with the

HAHNDOL evolution code [19], which uses finite-

differencing methods to solve a 3þ 1 formulation of
Einstein’s equations on a Cartesian grid. For initial data
we solve the elliptic equation given by Brandt and
Brügmann for conformally flat data in which the black
holes are represented by punctures [20]. This is performed
numerically using the multigrid solver AMRMG [21], which
is second-order accurate but tuned to give truncation errors
typically much smaller than those produced by the evolu-
tion code. The momentum parameters are chosen accord-
ing to the 2PN-accurate quasicircular approximation given
by Kidder [22], which has been found to result in low
eccentricity. We evolve these data using the moving punc-
ture method [3,23] with a modified version of the
Baumgarte-Shapiro-Shibata-Nakamura equations [24,25].
Specifically, as suggested in [26], we replaced the confor-
mal factor variable � with expð�2�Þ, which vanishes at
the punctures. Further, we added the constraint-damping
terms suggested in [27], and the dissipation terms sug-
gested in [28,29]. For the gauge we use the specific 1þ
log lapse and Gamma-freezing shift conditions recom-
mended for moving punctures in [30].
Accurate simulations require adequate spatial resolution

near the black holes (length scales �M) as well as in the
wave zone where the gravitational waves are extracted
[length scales �ð10–100ÞM]. To this end, the grid has
multiple refinement levels, determined adaptively near
the black holes, but fixed in regions farther away (typically,
jxj> 30M) where the waves are extracted; all grid refine-
ment is handled within the framework of the software
package PARAMESH [31]. The adaptive mesh refinement
criterion near the black holes is designed to keep the scale
of the square root of an invariantly defined curvature
component, known as the Coulomb scalar [32,33], roughly
constant with respect to the grid spacing. Interpolation in
guard cells between refinement regions is fifth-order accu-
rate, coupling with differencing stencils to yield at least
fourth-order accuracy in the bulk.
Spatial derivatives are taken by sixth-order-accurate

differencing stencils, with the exception of advection de-
rivatives, which are handled by fifth-order accurate mesh-
adapted differencing for greater stability [34].2 Time inte-
gration is performed with a fourth-order Runge-Kutta
algorithm.
The initial configurations of the simulations we analyze

are given in Table I. In each case, the initial separation was
chosen to be large enough to result in at least five orbits.

2Sixth-order center-differenced advection is unstable, and
sixth-order lopsided advection is too costly in terms of
PARAMESH guard cells, which motivated our particular
modification.
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The finest resolution, hf, ranged fromM=32 to 3M=224, as

required to adequately resolve the black hole with the
smaller mass in each case. The outer boundary was typi-
cally at jxj> 1000M, far enough away to prevent reflec-
tions from reaching the wave-extraction region during the
simulation.

We have measured the individual black-hole masses
using the apparent-horizon mass mi, a quantity calculated
from the area of each hole’s horizon, which we locate using
the AHFINDERDIRECT code [35]. From these horizon
masses, we calculate the symmetric mass ratio � �
m1m2=ðm1 þm2Þ2. This gives the most precise specifica-
tion of the actual mass ratio attained in our simulations. In
the text we will refer to the simulations by the mass ratio
(e.g. 4:1).

We define the total, infinite-separation, mass M of the
system as an analogue for the total rest mass parameter
used in PN studies. We measure M in two ways:

MAH � m1 þm2; (3)

the sum of the individual BH horizon masses, and

Mrest ¼ MADM � Eb; (4)

defined as the difference between MADM, the total energy
of the initial data, and the (negative) binding energy of the
binary. The binding energy Eb is estimated from an
effective-one-body PN treatment [12], given the initial
angular momentum J0. The result shows a very close
correspondence between MAH and Mrest, with differences
at the level 10�4. For the rest of this paper, we use M ¼
MAH, except for the 1:1 simulation data, where MAH was
not available for technical reasons.

In interpreting the late-time radiation, it is valuable to
know the mass and spin of the final Kerr black hole formed
by the merger. We discuss the state of the final black hole,
determined consistently by several means, in Appendix C.

For the 4:1 mass-ratio case, we have carried out runs at
three different resolutions in order to assess the quality of
the simulations. The convergence of the constraints and
waveforms is discussed in Appendix B.

The most important products of our simulations are the
gravitational radiation waveforms, which we extract from
the evolved simulation data as explained in Appendix A.
Strain-rate waveforms for the 4:1 case at various resolu-
tions are shown in Fig. 3, where the times and phases have
been shifted to agree at the moment of peak energy flux, as
is generally done in our analysis below. We can get some
measure of the error in the waveforms by comparing the
difference between the high and medium resolution simu-
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FIG. 3 (color online). The (2, 2) (top panel) and (4, 4) (bottom
panel) strain-rate waveform modes from the 4:1 mass-ratio case.
Three resolutions are shown, time- and phase-shifted, to match at
their respective peak amplitudes. Excellent agreement is seen to
persist throughout most of the simulation.

TABLE I. Physical and numerical parameters of the initial data for all the runs presented. m1;p and m2;p are the puncture masses of
the two premerger holes. r0 and P0 are the initial coordinate separation and (transverse) linear momentum, respectively, giving rise to a
total initial orbital angular momentum J0. hf is the spatial resolution of the highest refinement level for each run. MADM is the total

energy of the initial data. The total, infinite-separation mass M of the system is measured in two ways—MAH, the sum of the initial
(apparent) horizon masses of the two holes, and Mrest, the sum of the ADM energy and the binding energy from effective-one-body
theory [12]. Finally, � is the resulting symmetric mass ratio, as determined from the two holes’ horizon masses.

Mass ratio hf m1;p m2;p r0 P0 J20 MADM MAH Mrest �

1:1 M=32 0.4872 0.4872 10.800 0.091 18 0.9847 0.9907 � � � 1.0005 0.2500

2:1 3M=160 0.3202 0.6504 8.865 0.093 30 0.8271 0.9889 0.9989 0.9990 0.2228

4:1 3M=224 0.1890 0.7900 8.470 0.069 57 0.5893 0.9929 1.0003 1.0004 0.1601

M=64 0.1890 0.7900 8.470 0.069 57 0.5893 0.9929 1.0003 1.0004 0.1601

3M=160 0.1890 0.7900 8.470 0.069 57 0.5893 0.9930 1.0003 1.0005 0.1601

6:1 M=64 0.1338 0.8490 8.003 0.055 59 0.4449 0.9942 1.0000 1.0001 0.1226

MERGERS OF NONSPINNING BLACK-HOLE BINARIES: . . . PHYSICAL REVIEW D 78, 044046 (2008)

044046-5



lations. Figure 4 shows the relative differences in ampli-
tudes, scaled by the high-resolution result. Ignoring the
high frequency noise, the (2, 2)-mode differences (upper
panel) indicate a combination of a secular amplitude dif-
ference and a sinusoidal effect, which results from the
combination of the eccentricity in the orbital dynamics
and the difference in peak time due to limited resolution.
These combine to give differences generally at the 3%
level, somewhat smaller at late times. The eccentricity
plays less of a role in the (4, 4) differences (lower panel),
as the relative secular error is much (� 5 times) larger.
Sinusoidal eccentricity effects are also visible in the phas-
ing error (Fig. 5). Overall, we find waveform amplitude
and phase errors to be consistent with between fourth- and
fifth-order convergence (see Appendix B).

Assuming fourth-order convergence, and using
Richardson extrapolation, our nominal expectation for
these simulations leads to an error estimate for the high-
resolution simulation applied in our analysis of�1:2� the
difference shown in Fig. 4. To be conservative, we could
instead assume second-order convergence, which would
lead to an error estimate of�2:8� the difference shown in
Fig. 4.
The errors for the 2:1 case should be comparable to the

4:1 case. The resolution for the 6:1, scaled by the smaller
black hole’s mass is about 15% lower than lowest resolu-
tion 4:1 simulation, suggesting errors 8 times larger, if we
conservatively assume fourth-order convergence and that
the errors around the smaller black hole dominate. The
errors for the 1:1 mass-ratio case are discussed in Ref. [7].

IV. DESCRIPTIVE ANALYSIS OF WAVEFORMS

In this section we provide a descriptive analysis of the
waveforms from our simulations. We try to serve two
purposes in analyzing the radiation. In the first place, we
are hoping to provide material for gravitational-wave ob-
servers, and others outside the field of numerical relativity,
which makes clear some of the general characteristics of
the radiation from these mergers. Beyond that, we also
push the analysis in more detail, hoping to generate deeper
insight into the physics which generates the radiation.
Through this analysis we explore the similarities and dif-
ferences for the various mass-ratio simulations, and among
the different multipole components of the 4:1 case case. In
this way, we examine the waveform amplitudes and energy,
and the waveform phasing. As we proceed, we will inter-
pret the results in terms of our implicit rotating source
model, building up a heuristic description that applies
through the inspiral, merger, and ringdown of the binary.
Following a brief discussion of strain rate in IVA, we

study the waveform amplitudes and the associated ener-
getics of the merger in IVB. In IVC we address the
polarization phase of several waveform modes, relating
them to a common implicit source phase. Next, in Sec. V,
we will examine the late-time frequency evolution and the
relation to amplitude in more quantitative detail through
the inspiral-merger-ringdown transition.

A. Strain rate

In the Introduction, we motivated the spherical harmonic
phase and amplitude waveform decomposition with a dis-
cussion in terms of strain h. In analyzing our numerical
simulation results, however, we can work more directly

with the strain rate _hðtÞ ¼ dhðtÞ=dt (see Appendix A for a
more detailed discussion). As with the strain decomposi-
tion (2), we will expand the strain rate as

R _h‘mðtÞ ¼
�
iA‘me

im�‘mðtÞ ðm> 0Þ
�iA‘meim�‘mðtÞð�1Þ‘ ðm< 0Þ; (5)
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with A‘m real and non-negative.3 Direct differentiation of
(2) reveals the relationships between the phases and am-

plitudes defined in (2) and (5), with A‘m � jmj _�ðhÞ
‘mH‘m þ

Oð5PNÞ while �ðhÞ
‘m differs from �‘m only at 2.5PN order.

Note that the differentiation produces a phase shift of �=2,
so that strain-rate phases should be defined in the slightly
unconventional form (5) if we wish to preserve the prop-
erty that all �‘m are equal to orbital phase in the limit of
well-separated binaries. This representation allows a more
meaningful comparison of the phases of different multi-
polar modes, ensuring that instantaneous phase corre-
sponds to the orientation of the binary system during the
inspiral.

The strain-rate amplitude is directly related to the radia-
tion power for the ð‘;mÞ mode by Eq. (A7), _E‘m ¼
ðA‘mÞ2=16�. Henceforth we shall use the strain-rate-

derived rotational phase �‘m, rather than �ðhÞ
‘m. We also

limit our presentation to the m> 0 modes, as equatorial
symmetry implies �‘m ¼ �‘ð�mÞ and A‘m ¼ A‘ð�mÞ.

Unless otherwise indicated, in the remainder of the
paper, the time axis of each plot will be shifted so that
the peak of _E22 (and hence of the strain-rate amplitude A22)
occurs at t ¼ 0. As the (2, 2) mode is strongly dominant,
this will closely approximate the peak time of the total _E.

B. Amplitude and energetics

We first study wave amplitudes across modes and mass
ratios. Since we are examining strain-rate waveforms, the
modal energy flux is effectively equivalent to the square of
the mode amplitude, as in Eq. (A7). Preferring the most
physical language we will express our modal amplitude
comparisons as energy flux comparisons. In terms of the
implicit rotating source model, we can think of the energy
carried by the radiation as energy lost by the source.

In Fig. 6, we plot the actual peak values of the dominant
(2, 2) energy flux contribution from Eq. (A7) as a function
of symmetric mass ratio �. As this mode contribution is

proportional to j _h22j2, and we expect lim�!0j _h22j ! 0 (the

test-particle limit), we fit it to a quadratic-quartic form,
obtaining the fit4:

_E22ð�Þ ¼ ð4:40	 0:17Þ � 10�3�2

þ ð5:43	 0:31Þ � 10�2�4: (6)

We also plot the peak of the total energy flux for each mass
ratio, scaled by one-half, since the (2, 2) and (2,�2) modes
contribute equally to _E. The difference between _ETOTAL=2
and _E22 increases as �! 0, reflecting the increased im-
portance of other modes for unequal masses.

Aside from the value of the radiation maxima, it is
interesting to see how the radiation power evolves in
time near the peak. In Fig. 7, we show shapes of the
dominant (2, 2) contributions to the peak energy fluxes
(A7) for each mass ratio. These are scaled to the same peak
height to allow shape comparison, and shifted in time so
that the peaks of _E22 are aligned. We note the striking
similarity of the peak shape and duration across all mass
ratios. During the late-inspiral phase, the more extreme
mass ratios appear to radiate more energy; however, since
we have normalized each curve by peak height, this only
means that the equal-mass binary experiences a steeper
climb to its peak power rate. Nevertheless, the different
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inset focuses on the ringdown portion of the curves.

3A similar expression, differing from (2) by an overall sign,
would be equally appropriate for direct interpretation of numeri-
cally derived  4 waveforms.

4A quadratic-cubic form is equally plausible, but fit the
numerical data worse in this case.
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mass ratios follow similarly shaped tracks approaching
merger, and differences have been effaced by �10M be-
fore the peak power. The postpeak portion of the curve is
determined by the dominant quasinormal mode (QNM)
damping time, which varies only slightly with underlying
Kerr spin for moderate spins (see, for instance, tables in
[14]). The lower spins on the black holes formed by
smaller-� mergers should cause power to fall off faster in
these cases. The inset in Fig. 7 shows the difference in
falloff rate relative to the equal-mass case from 20M after
the peak.

In Fig. 8, we concentrate on the 4:1 mass ratio, plotting
the strongest modal contributions to the flux, again scaled
to the same peak height. Here we have applied only an
overall time shift, so that the total flux peak is at t ¼ 0. The
energy profiles of the radiation burst in modes with ‘ ¼ m
are similar, all peaking at approximately the same time.
The subdominant modes are relatively stronger in the burst
than in the inspiral, so that they show up here as weaker in
the approach to the peak even after scaling to the peak
radiation. We note that the subdominant modes with ‘ ¼
m, (3, 3) and (4, 4), are particularly similar in this regard.
Similarity in ‘ ¼ m modes, and distinction in the other
modes is a general feature of the bursts in several ways.

The shape of the peaks with ‘ � m are particularly
distinct. The (2, 1) mode peaks particularly late, and the
burst is much stronger than the inspiral. We note that the (3,
2) mode shows a double bump in its contribution to the
energy flux. From Fig. 9, this appears to be robust in its
gross shape over resolution and extraction radius. From
Fig. 10 we note, however, that the extent of this double-
bump effect is very dependent on mass ratio; it is less in the
6:1 case, and not evident at all in the 2:1 case. Later we will
also note irregularities in the late-time frequency evolution

of this mode, apparently indicating a deviation from cir-
cular polarization in this case.
In both Fig. 7 and Fig. 8 we have normalized the mode-

flux peaks for the purposes of shape comparison. It is also
important to understand the relative strengths of each
mode. We show in Fig. 11 the relative mode contributions
to _EðtÞ for several dominant modes over the final inspiral
and merger of the 4:1 case. In the merger-ringdown peaks,
as in the inspirals, the ‘ ¼ m modes dominate the energy
flux, followed by the ‘ ¼ jmj þ 1 modes. More discussion
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of the relative mode strengths for general nonspinning
mergers is given in Ref. [11].

In addition to the direct mode contributions, we plot the
PN-derived energy ‘‘partitions’’—the power emitted in
each mode as a fraction of the total, according to the
leading-order ‘‘restricted’’ PN expressions found in
Eqs. (30)–(36) of [10], where the underlying orbital fre-
quency was derived from the (2, 2) mode. These are shown
in Fig. 11 using dashed lines. Until near the peak time,
where we discontinue the PN curves, we see that the
partitioning tracks the numerics very well for all modes
except (2, 1), which grows visibly faster than the restricted
amplitude prediction after �100M before merger. A simi-
lar study [10] showed that the restricted (leading-order)
approximation for the amplitudes consistently overesti-
mates the strength of the radiation. This shows that the
leading order partitioning of energy can provide a simple,
but more accurate, approximation of the mode amplitudes.
We will take advantage of this in Sec. VI to provide more
accurate amplitudes in a variation on the analytic EOB-
based waveform model studied in [10].

C. Waveform phasing

In gravitational-wave observations, the waveform phase
provides most of the time variation in the signals, and
consequently is critically important in encoding observable
information about the source. Here we consider the phas-
ing of the leading spherical harmonic waveform compo-
nents. Following the discussion above, we conceptually
interpret each waveform phase as describing the orienta-
tion of a particular ð‘;mÞ multipole of an implicit rotating
source of the gravitational waves.

Direct comparative analysis of phases provides a
stronger probe of the phase relations among the multipolar

modes than the comparative analysis of frequencies con-
ducted in a number of previous studies of numerical simu-
lations. Here we will discuss waveform phasing in terms of
�‘m as it appears in (5), which we will compute from each

strain-rate mode _h‘mðtÞ. As noted in Sec. II, we expect all
phases to agree in the large-separation limit.
We first compute the strain-rate waveform phase ’‘m

using the conventional decomposition:

R _h‘mðtÞ ¼ V‘mðtÞei’‘mðtÞ; (7)

with V‘m real and non-negative. Then, setting this equal to
(5), and solving for the rotational phase �‘mðtÞ, we find

�‘mðtÞ ¼
8<
:

1
m ð’‘mðtÞ � �

2 þ 2�n‘mÞ ðm> 0Þ
1
m ð’‘mðtÞ þ �

2 þ 2�n‘m þ ‘�Þ ðm< 0Þ:
(8)

The �2 term results from the factor i in (5), while the ð�1Þ‘
factor there produces the ‘� term for m< 0. The n‘m
terms express the 2� ambiguity in defining waveform
phase. Considering any ð‘;mÞ mode in isolation leads to
an m-fold degeneracy in the associated rotational phase.
We resolve this degeneracy by choosing the pair
fn22; n33g 2 fð0; 1Þ � ð0; 1; 2Þg that yields the closest con-
sistency between �22 and �33 at early times (near t ¼
�400M). We then determine the remaining n‘m for closest
early consistency with �22. This gives us a phase for each
mode that can be interpreted as the rotational phase of the
implicit rotating source that produced that component of
the radiation.
Figure 12 shows the rotational phase �‘m from several

modes of the strain-rate waveforms from the highest-
resolution (3M=224) 4:1 run, together with the rotational
phase calculated from the tracks of the punctures. The left
panel shows that, for the inspiral portion of the evolution,
all waveform phases, extracted at Rext ¼ 45M, agree ex-
tremely well, except for the (2, 1) and (3, 2) modes, which
differ by a significant part of a radian. The relative differ-
ence of each mode from the (2, 2) mode is shown in the
right panel. The differences between the ‘ ¼ m modes are
& �=60, much smaller than the 2�=m ambiguity in defin-
ing rotational phase from the waveforms.
Note that the early part of the (2, 1) waveforms contains,

by far, the longest wavelength radiation present, suggesting
a greater potential for problems caused by extracting the
waveforms too close to the source, not yet in the wave
zone. For the relatively deviant (2, 1) and (3, 2) modes, we
performed Richardson extrapolation with respect to extrac-
tion radius Rext, using the values extracted at 45M and 90M
and assuming an R�2

ext error for each mode. These
Richardson-extrapolated phases are also shown in the right
panel of Fig. 12, subtracted from the (2, 2) rotational phase.
Richardson extrapolation evidently reduces the early phase
deviations in these modes considerably.
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FIG. 11 (color online). Relative power _E‘;m for different multi-
polar modes of the 4:1 case, on a logarithmic scale (solid lines).
For comparison, we also plot (dashed lines) the fractional power
expected from each of these modes based on Eq. (A6), and the
restricted PN waveforms of Eqs. (30)–(36) of [10]. The different
modes have been aligned to peak at t ¼ 0. The right-hand scale
gives the power in c.g.s. units.
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The rotational phases calculated from the ‘ ¼ m
modes agree to within 0.025 radians during the inspiral
for several hundred M before the peak _E, effectively
identical within the uncertainties of the numerical ap-
proach. This phase agreement is consistent with expecta-
tions based on the PN analysis, for which all ð‘;mÞ phases
should agree up to 2PN order. These rotational phases also
agree to within about 0.2 radians with the coordinate-
dependent rotational phases measured from the puncture
tracks, after shifting the puncture track phase by an overall
factor of �=2. Heuristically, we can think of each ð‘;mÞ
radiation waveform mode as having been generated by the
rotation of its own implicit source component. The phase
agreement would then be interpreted as indicating that
these implicit source components remain aligned through
the inspiral. This is to be expected for a system which can
be effectively described as an orbiting pair of point
particles.

It is, perhaps, more remarkable that a very tight agree-
ment among the ‘ ¼ m mode persists throughout the
merger and even into the ringdown, remaining within about
1 rad until�50M after the merger, when the amplitude has
already diminished significantly. According to our inter-
pretation, this phase agreement suggests that a significant
portion of the implicit rotating radiation source maintains
some structural integrity throughout the coalescence. That
is, the implicit source we have considered appears to
exhibit considerable ‘‘rigidity’’ through merger. This is
only possible because of the close relationship among the
fundamental ‘ ¼ m quasinormal ringdown frequencies

(see Sec. VA), mimicking the harmonic frequency rela-
tionship that holds during the inspiral. For the ‘ � m
modes this quasinormal frequency relation does not hold
and the phases must separate in the merger. In terms of our
implicit source picture, these ‘ � m components of the
source seem to shear away from the main source structure
to rotate at a faster rate.
Heuristically, the puncture motion is strongly tied to the

rotation of the implicit source for most of the evolution.
During this period, it is natural to think of the implicit
source as an inspiralling pair of pointlike objects moving
on timelike world lines. At late times the orientation phase
angle of the puncture track disassociates from the wave-
form rotational phase. The punctures veer away from the
implicit source at a late times as they fall into the final
black hole. At this point, though we can continue to con-
sider an implicit rotating radiation source, it no longer
makes sense to think of that source as a pair of pointlike
objects.
Having compared the phases of different multipolar

modes for the 4:1 case, we now consider how the phase
evolution depends on mass ratio. There are various reason-
able approaches to comparing the phases among simula-
tions of the different mass-ratio cases. Having established
above the rotational phase consistency for the different
ð‘;mÞ modes, we will compare only the dominant (2, 2)
phases. An obvious approach is to compare phases directly
against time, scaled by the total PN mass M. In the early-
time well-separated limit, however, the leading-order PN
analysis indicates that phases for different mass ratios
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should evolve at similar rates when time is scaled by the

chirp mass M � M�3=5.
Figure 13 shows the rotational phase computed from the

(2, 2) mode of strain rate for different mass ratios. In the
left panel, we align the rotational phases at an early time
and scale time by the chirp massM. For this plot, we shift
the rotational phases in (chirp) time so that at t ¼ 0, the
chirp frequency, which is rotational frequency multiplied
by chirp mass, is 0.033 and the rotational phase is 0.
Following this approach, we would expect good phase
agreement at times sufficiently early that only the
leading-order PN effects are significant. However, for the
late portion of coalescence that we have simulated, we find
that the different mass ratios remain roughly in phase for
several hundredM before and after t ¼ 0, peeling away in
order at late times.

In the right panel we compare phases in a manner
common for numerical relativity waveform comparisons,
we shift the curves in time so that each peak energy flux
occurs at t ¼ 0, and we rotate the phases so that the phases
are 0 at this time. We scale the time by M. For the equal-
mass caseM ¼ 0:435 275, and for the other mass ratios it
is smaller, so all of the curves in the left panel are stretched
by at least a factor of 1=M � 2:3 in time relative to the
curves in the right panel. In the M-scaled right panel, the
different mass ratios again remain approximately in phase
for several hundred M before and after t ¼ 0. At suffi-
ciently late times, and particularly for small �, we might
expect this manner of consistent phasing as the evolution of
the system eventually [after the innermost stable circular
orbit] may become dominated by the course of unstable
geodesic trajectories around the larger black hole [or an
effective black hole in the effective-one-body (EOB)
framework]. In that case the frequency evolves indepen-

dently of the more strongly �-dependent rate of energy or
angular momentum loss.

V. DETAILED LATE-TIME ANALYSIS

In Sec. IV we have presented general information about
the phasing and amplitudes of the radiation components.
Our analysis has stayed close to the standard numerical
relativity waveform analysis, though we have emphasized
an interpretation in terms of an implicit rotating source
model. In this section we go beyond the standard waveform
presentation, exploring the radiation with the hope of
developing a deeper understanding of the simple character-
istics of the radiation as described above. Those features
and our heuristic interpretation suggest a new approach to
examining the structure of the late-time phasing and ap-
parent relationships between frequency and amplitude
evolution.
In Sec. VA, we examine the phasing again, seeking a

quantitative understanding of the late-time evolution of the
polarization frequency. We introduce a practical model that
captures the merger-ringdown transition without the need
for multiple quasinormal mode overtones. We investigate
the implications of this model in relating the frequency and
amplitude close to merger in Sec. VB.
This section is more technical than Sec. IV, with some

subtle discussion of late-time radiation characteristics. For
readers who may wish to jump ahead to Sec. VI, we note
two results that we will carry forward: (1) a simple quanti-
fication of the peak chirp rate _! for ‘ ¼ m modes, and
(2) the idea that dJ=d! becomes approximately constant at
late times, which may serve as summary of relationships
between frequency and amplitude near the radiation peak.
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A. Waveform frequency evolution

First we will study the phasing in the merger and ring-
down in more quantitative detail by comparing the polar-
ization frequency evolution for each mode with a simple
empirical model. Based on our heuristic model, we inter-
pret the polarization frequency as corresponding to the
rotational frequency ð‘;mÞ component of the implicit
source.

Figure 14 shows the evolution of the rotational fre-
quency for several ð‘;mÞ modes of the 4:1 mass-ratio
case. Similar frequency evolution curves are a common
feature in papers on numerical relativity waveforms (see,
for example, Refs. [4,6,11]). These curves are time deriva-
tives of the phase evolution curves shown in Fig. 12,
zoomed in on the late-time behavior, near the elbows in
the phase curves. The striking similarity in phasing for the
various ‘ ¼ m modes implies similar frequency evolution,
which has been noted in previous studies [36].

At late times, this similarity in frequency is made pos-
sible because of a special approximate relationship among
the fundamental ‘ ¼ m quasinormal-ringing frequencies,
that they are nearly equal after dividing by the azimuthal
mode number m to get what we call the rotational fre-
quency. This has been considered in [37], which pointed to
a connection between the quasinormal-ringing frequencies
and the frequencies of stable null orbits of a black hole at

the ‘‘light-ring’’ with frequency �LR ¼ 1=ðaþ
Mðrþ=MÞð3=2ÞÞ. The association extends to charged Kerr-
Newman black holes and has been compared with recent
precise quasinormal-ringing frequency calculations in
[14,38]. Conceptually, this allows us to think of the rota-
tional frequency of the ‘ ¼ m modes at late times as
corresponding to the rotational rate of gravitational pertur-

bations orbiting at the ‘‘light ring.’’ This suggests a heu-
ristic description of our implicit rotating source at late
times as a gravitational distortion of the forming final black
hole which predominantly revolves around the black hole
on null orbits at the light ring.
Returning to Fig. 14, we note that the (3, 2) mode is

different from all the others, showing two spikes, near t ¼
9M and 37M. Comparisons of waveforms extracted at
different radii, and from simulations of different resolu-
tions, suggest some sensitivity to extraction radius, but do
not suggest that the features will vanish in more accurate
simulations or with more distant wave extraction. These
anomalies may be related to the unusual shape in the
amplitude peaks noted in Fig. 9 above. We will discuss
this mode’s behavior further in Sec. VII.
For all other modes the frequency evolution follows a

simple smoothly evolving curve, qualitatively similar in
each ð‘;mÞ and mass-ratio case (see Fig. 15 below). In
particular, we note that, except for small noise contribu-
tions, each curve shows that the frequency increases mono-
tonically, ultimately saturating at a frequency set by the
fundamental quasinormal ringdown mode. This monotonic
frequency development is a universal characteristic of the
radiation from inspiral, through merger, and up to ring-
down. In the PN analysis of quasicircular inspiral, this
characteristic makes it possible to describe the changing
structure of the hardening binary as a function of frequency
instead of the more coordinate-specific separation. This
allows us, for instance, to write the waveform amplitude
as a function of frequency.
Subsequently, we will assume monotonic frequency de-

velopment throughout the coalescence process. This prin-
ciple underlies our empirical curve fitting of the frequency
evolution, allowing more quantitative analysis of the late-
time phasing evolution. In Sec. VB we will further apply
this idea as we study relationships between late-time fre-
quency and amplitude evolution.
To produce an empirical curve for describing the late-

time frequency evolution, we assume that each ð‘;mÞmode
has a monotonically increasing polarization frequency,
which approaches the fundamental ringdown frequency
!QNM at late times. The general expectation that the fre-

quency decays exponentially toward the ringdown fre-
quency suggests that we model frequency evolution
based on the hyperbolic tangent function.
Specifically, we will compare frequency evolution of the

strain-rate waveforms with a model of the form �ðtÞ ¼
gðtÞ, where

gðtÞ ¼ �i þ ð�f ��iÞ
�
1þ tanh½ln ffiffiffiffi

�
p þ ðt� t0Þ=b

2

�
�
:

(9)

This provides a curve that first grows exponentially, with e-
folding time b=ð2�Þ, from some initial frequency �i, then
decays exponentially, with e-folding time b=2, to the final

-60 -40 -20 0 20 40
t (M)

0

0.1

0.2

0.3

0.4

0.5

M
Ω

(2,2)
(3,3)
(4,4)
(2,1)
(3,2)
tracks

FIG. 14 (color online). Rotational frequency for several ð‘;mÞ
modes of the 4:1 mass-ratio simulation. These are time deriva-
tives of the curves in Fig. 12. For ‘ ¼ m the rotational frequen-
cies remain similar from inspiral through ringdown. These are
similar to the puncture track frequency until t��40M, while
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frequency �f . The presence of the exponent � allows the
early exponential growth rate to differ from that at late
times. The early part of this model is a coarse approxima-
tion to the growth in frequency near the end of the inspiral.
This approximation must, therefore, fail to fit the data if we
look back sufficiently long before the time of peak radia-
tion, but, as we will show, it provides a fair approximation
of the approach to the peak. The rate at which the fre-
quency grows, the chirp rate, increases to some maximum,
then decreases to zero on approach to the final frequency
�f . For a more meaningful parametrization, we set

�i � �f � b

2
_�0

�
1þ 1

�

�
1þ�

: (10)

With this choice, dg=dt will peak with value _�0 at time t0.

The model then depends on the five parameters �, b, _�0,
t0, and �f .

As shown in Figs. 15 and 16, we find that fits to the
model gðtÞ provide an excellent approximation to the
numerical data for the strain-rate rotational frequencies
in most significant cases. For the (2, 2) modes of all mass
ratios, and for all but one of the significant ð‘;mÞmodes for
the representative 4:1 mass-ratio case, we find agreement
within a few percent after t ¼ �20M, with the primary

differences coming from apparent noise in the numerical
simulations, within the uncertainties in the numerical
results.
Figure 15 shows the comparison for the (2, 2) mode

rotational frequencies for several mass ratios. A glance at
the curves shows that the unequal-mass cases are quite
similar to the equal-mass frequency evolution, previously
examined in Refs. [6,39]. The dominant difference for the
unequal-mass cases is that the final frequency�f decreases
with �, consistent with the decrease in the spin of the final
black hole produced. We expect �f to correspond to
!QNM=m, where !QNM is the fundamental (n ¼ 0)
quasinormal-ringing frequency for the specific ð‘;mÞ
mode for a black hole with the appropriate spin. In the
infinite-mass-ratio limit (�! 0), �f should correspond to
half the Schwarzschild (2, 2) quasinormal mode frequency
M!QNM ¼ 0:3737, indicated by the horizontal dashed line
in the left panel of Fig. 15.
We show a few examples of polarization frequency

curves, for subdominant modes in Fig. 16. The (3, 3)
mode is very similar to the (2, 2) modes shown in
Fig. 15, as are the other ‘ ¼ m modes (not shown). The
(2, 1) mode is of similar shape, also well approximated by
our fit.
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FIG. 16 (color online). Strain-rate frequency evolution in the 4:1 mass-ratio merger for several spherical harmonic modes, with an
analytic fit as in Fig. 15. The left panel shows the polarization frequency !‘m. The right panel shows the residuals of the unscaled
rotational frequencies �‘m ¼ !‘m=m.
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FIG. 15 (color online). Strain-rate rotational frequency evolution in the merger for (2, 2) modes of several mass ratios (dashed lines),
with an analytic fit (solid lines). The fit encodes a monotonically increasing frequency, which at late times decays exponentially toward
the fundamental ringdown mode. The horizontal dashed line marks M�f ¼ 0:186 85, half the (2, 2) mode QNM frequency for a
nonspinning perturbed hole. The right panel shows the residuals, which are comparable to uncertainties in the numerical data after
20M before the peak.
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The quantitative fit results are summarized in Table II.
The error bars are based on statistical fit estimates, also
incorporating the ranges of best fit results obtained by
varying the fit range starting between t=M ¼ �25 and
�15 and ending between t=M ¼ 20 and 60. The final
frequencies �f approached in the fit curves in Figs. 15
and 16 were robustly determined by the fits within a
fraction of a percent. The �f frequencies from the fits in
Fig. 15 were applied in Table V to find final black-hole
parameters consistent with those determined by conserva-
tion of energy and angular momentum.

The peak in the chirp rate _�0 is a particularly significant
quantity in determining the shape of curves of our general

form gðtÞ. As shown in Table II, our fits determine _�0 to
within a few percent in all cases. An interesting relation-
ship is apparent among the fits for all the ‘ ¼ m cases for
all values of � studied. In the last column of the table, we
show the peak chirp-rate values scaled by the mass of the
final black holeMf and the final frequency�f . In each case

where ‘ ¼ m we find _�0Mf=�f � 0:02, consistent within
the fit uncertainties. This scaling makes some sense, since
the height of the rise in frequency through the final radia-
tion burst is largely determined by�f , while the time scale
over which this rise occurs seems to be similar when time
is scaled byMf . In Sec. VI we will use this result to predict
the phase evolution in an analytic waveform model.

Our model for late-time frequency evolution (12) de-
scribes exponential decay toward �f at an e-folding rate
given by half our fitting parameter b. For all cases, the
values of b are within about 30% of 10M. In some cases,
the fits for b are rather sensitive to the initial starting time,
varying by up to 20% or 30% in the (2, 1) and (4, 4) modes
of the 4:1 case. At this coarse level, we note that the values
for b are similar to the exponential decay rates for quasi-
normal ringdown mode amplitudes listed in Table IV. We
will consider this relationship further in Sec. VB below.

The other parameters in our fit are �, relating to the
shape of our fit curve at early times, and t0, giving the time
at which the frequency peak occurs. The parameter � is not
very precisely determined; as we would expect, it depends
sensitively on the starting time of the fit interval, since the
early exponential frequency growth is only a coarse ap-

proximation of the expected behavior. The values for t0
show that the peaks in _� generally occur roughly 4M
before the total energy peaks at tpeak. As was the case for

the power peaks in Fig. 8, the chirp rates of the different
spherical harmonic modes peak at slightly different times.
We have supplemented our general implicit rotating

source picture with the additional idea that the rotational
frequency for each mode grows monotonically, not only in
the inspiral, but also through the merger and ringdown.
Based on this expectation we have identified an analytic fit
model for the late-time frequency evolution that precisely
matches the data for all cases but the (3, 2) mode. These fits
provide a quantitative understanding of the late-time phas-
ing yielding, in particular, a robust result for the peak chirp

rate _�0 for all ‘ ¼ m modes. We will apply this informa-
tion in Sec. VI.

B. Late-time frequency and amplitude relationships

The last step in our waveform analysis is to consider
relationships between the frequency evolution and the
waveform amplitude.
In the PN description of the quasicircular inspiral, the

orbital frequency not only tells us the rotational rate, but
can also serve as a label for describing the momentary state
of the rotating object [in the inspiral case this means that
we can reference the state of the system in terms of rð�Þ].
The PN generalization of the quadrupole formula, describ-
ing radiation from the rotating system, then leads to an
expression for amplitude as a function of frequency. Our
description of the gravitational radiation suggests an im-
plicit source rotating with monotonically increasing fre-
quency as it continues to ‘‘harden,’’ as the system evolves
smoothly into merger and ringdown. In this section we
seek to further unify this picture of the full coalescence
process, considering an analogue of the PN description of
amplitude as a function of frequency that can describe the
radiation in the merger and ringdown.
In Sec. IVB we emphasized that the radiation power

_E‘m provides essentially the same information as the
strain-rate amplitude (A6). If the wave frequency is known,
then the modal contribution to the total radiative angular

TABLE II. Results of fitting Eq. (9). All quantities are scaled by the final mass Mf ¼ Mf;rad defined in Eq. (C1). The parameter �f

can be related to the fundamental real QNM frequency, !QNM, and has been used to extract two different estimates of the final

dimensionless spin â of the hole—see Table V.

Mass ratio ð‘;mÞ � b=Mf m _�0M
2
f m�fMf t0=M _�0Mf=�f

1:1 (2,2) 0:7	 0:1 13:2	 0:3 0:0112	 0:0001 0:528	 0:001 �4:6	 0:2 0:0210	 0:0002
2:1 (2, 2) 0:6	 0:1 12:3	 0:8 0:0104	 0:0002 0:5023	 0:0006 �3:6	 0:2 0:0207	 0:0004
4:1 (2, 2) 0:5	 0:1 10:5	 0:2 0:0096	 0:0001 0:4566	 0:0001 �4:8	 0:3 0:0210	 0:0002

(2, 1) 1:0	 0:5 12	 2 0:0120	 0:0005 0:421	 0:006 �3:9	 0:8 0:0285	 0:0012
(3, 3) 0:3	 0:1 9:7	 0:2 0:0153	 0:0001 0:730	 0:001 �3:3	 0:1 0:0210	 0:0002
(4, 4) 0:15	 0:1 7:5	 0:7 0:0212	 0:0003 0:991	 0:005 �1	 1 0:0213	 0:003

6:1 (2, 2) 0:5	 0:1 10:4	 0:5 0:0089	 0:0002 0:4349	 0:0004 �6:5	 0:3 0:0205	 0:004
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momentum can similarly provide information about the
gravitational-wave amplitude. Equation (A9) gives an ex-
pression for angular-momentum flux in terms of wave
amplitude and phase. The relation simplifies to

_J ‘m � 1

16��
ðA‘mÞ2 (11)

up to 5PN order, indicating that the radiation carries maxi-
mal angular momentum _J ¼ _E=�, as we generally expect
for circularly polarized radiation. If we know how the
rotational frequency evolves, we can derive the mode
amplitudes A‘m from the mode-by-mode relationship of
either energy or angular momentum with frequency,
E‘mð�Þ or J‘mð�Þ.

To approach an understanding of the late-time relation-
ships between amplitude and frequency, we compare how
the system’s energy and angular momentum approach their
final values, with how the system’s frequency approaches
its final value. In Fig. 17 we examine the radiative loss of
energy dE and angular momentum dJ as the coalescing
system approaches its final quiescent state, comparing
these with the remaining difference of gravitational-wave
frequency from its late-time limit �f , as determined in
Table II. As well as our standard final rotational frequency

� ¼ _� defined in (5), we also show the frequency: based

on the strain, �h ¼ _�h as defined in (2). We have also
rescaled the energy and angular momentum by a constant,
selected so that the value matches that of�h at the time of
peak radiation power.

Figure 17 indicates a general correspondence between
how the angular momentum approaches its final state and
how the gravitational-wave frequency approaches its final
state. Of the several cases of spherical harmonic modes and
mass ratios that we have examined in this manner, we show
two examples: the (2, 2) case for the equal-mass simula-

tion, where the evolution of angular momentum and fre-
quency correspond most closely (left panel), and the (2, 1)
mode from the 4:1 mass-ratio simulation, with the weakest
correspondence [aside from the nonconforming (3, 2) case]
(right panel). The correspondence is closest, holding to a
better approximation over a longer period of time, in
associating dJ with �h. The association with energy is
slightly weaker.
Though these plots suffer significantly from small mod-

ulations in frequency that we have not resolved numeri-
cally, the results suggest an approximate relationship
between rotational frequency and angular momentum in
particular. If the frequency evolution is otherwise known,
then the late-time evolution of angular momentum for each
mode could be approximately described by JðtÞ ¼ Jf þ
�ð�ðtÞ ��fÞ, where � is a case-dependent constant that
we will not attempt to specify generically. As � ¼ dJ=d�
we may refer to it as the dynamical moment of inertia of
the implicit rotating source. This late-time expectation
creates the possibility of extending our PN-based under-
standing of angular-momentum flux into the late-time
waveforms, giving us the additional information we need
for a full (approximate) description of Jð�Þ.
This relation between frequency, angular momentum,

and amplitude provides a connection between the peaks
in modal radiation power, shown in Fig. 11, and the peaks
in chirp rate given in Table II. Assuming dJ=d� ¼ �, a
constant, yields

_E � �� _� (12)

) €E � �ð� €�þ _�2Þ: (13)

Since the�ðtÞ curve is steeply increasing, wewould expect
the peak in _E to be near the peak in _� but slightly delayed.
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FIG. 17 (color online). Relationship between angular momentum and frequency evolution approaching ringdown for the (2, 2) mode
of the 1:1 case (left panel) and the (2, 1) mode of the 4:1 case (right panel). We show the differences dE and dJ from the final mass and
angular momentum as measured from the radiation, together with the difference from the final ringdown rotational frequency,
measured from _h (d�) and from the strain h (d�h). We see similar evolution for the dominant (2, 2) mode of each mass-ratio
simulation, and for all modes other than (3, 2). In the left panel, the angular momentum and energy (in geometrical units) have been
scaled up by factors of 2.5 and 10, respectively, to roughly match the frequency residuals at t ¼ 0. In the right panel, the rescaling
factors are 760 for angular momentum and 2000 for energy. The agreement of the curves, with these rescalings, is consistent with
dJ22=d�22 � 0:40 from t ¼ 20 through the peak radiation. The more approximate agreement in the right panel is consistent with
dJ21=d�21 ¼ 0:0013, through the peak radiation.
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Expanding (13) linearly about t0, when €� ¼ 0, we find that
_E reaches its peak at a time

tpeak � t0 �
_�2
0

�0�
:::
0

> t0; (14)

where �0 and �
:::
0 are the frequency and its third time

derivative at t0. These can be evaluated from (9) and the

fit parameters �, b, _�0, and�f in Table II; we find that the
values for tpeak � t0 all lie in the approximate range (2.16,

3.17), in rough agreement with the direct fit for t0 in
Table II.

Conceptually, the monotonic evolution of frequency
might lead us to hypothesize a relationship between the
structure of the implicit rotating source and its rotational
frequency, such that the changes in the structure of this
radiating rotator will be associated with finite changes in
frequency. Knowing that the frequency growth must be
limited by the quasinormal-ringing frequency implies a
peak in the chirp rate. This leads to the expectation that
finite changes in energy and angular momentum are asso-
ciated with finite changes in frequency, so that dE=d� and
dJ=d� approach constants once the evolution in frequency
slows. The peak in radiation power might then be viewed
as a consequence of the peak in chirp rate. More quantita-
tively we find that dJ=d� seems to be roughly constant
even before the evolution in frequency slows down (i.e.
before t ¼ 0). This correspondence will be applied in the
next section to provide a model for amplitude evolution
through the peak, based on information about the fre-
quency evolution.

If we could postulate the constancy of dJ=d�, we might
also apply that assumption to ‘‘explain’’ some of what we
have seen above. In Sec. VA we noted a rough agreement
between the time scale b in our frequency fitting curve (9)
and the quasinormal ringdown amplitude decay rates for
the corresponding quasinormal modes. Following the dis-
cussion above, this relationship could be derived, in the
� ! !QNM=m limit, from the constancy of either energy

or angular momentum losses with respect to change in
frequency. For constant � ¼ dJ=d�, Eqs. (5), (12), and
(A6) imply that

A2 ¼ jR _hj2 ¼ 16� _E � 16��� _�: (15)

In the� ! �f limit, the strain-rate amplitude decays at
the rate predicted from black-hole perturbation theory,
A‘m ! A0‘m expð�t=�‘mÞ, where �‘m is the e-folding rate
for the amplitude decay for the fundamental ð‘;mÞ quasi-
normal mode. In this limit, our frequency evolution fit
model reduces to

�ðtÞ ! �f � ð�f ��iÞe�2ðt�t0Þ=b: (16)

Applying these limiting expressions for amplitude and
frequency in (15) in the limit � ! �f yields

ðA0Þ2e�2t=� � 32���f

b
ð�f ��iÞe�2ðt�t0Þ=b; (17)

where the left-hand side derives from the amplitude, and
the right-hand side from frequency. Ignoring the constant
coefficients, this implies that b ¼ �.
If we adventurously assume the constancy of � on

approaching the ringdown, and expand the amplitude in
powers of � ¼ expð�t=bÞ ¼ expð�t=�Þ, the implied am-
plitude frequency relation might also provide more infor-
mation about the amplitude evolution. Since �ðtÞ, and
consequently the right-hand side of (17), contains only
even powers of �, the next term in the expansion for
amplitude should be Oð�3Þ. This suggestion motivated
our expansion (C4) applied in fitting the late-time ampli-
tudes in Sec. III.

VI. VARIATIONS ON THE EOB MODEL

An approach to modeling black-hole binary radiation
known as the effective-one-body (EOB) model has been
presented in the literature [12,40–45]. The late-time wave-
forms in these models are based on a now-common de-
scription of the merger process as an epoch of radiation
from spiraling particlelike trajectories, followed, in a sud-
den transition, by black-hole ringdown dynamics with
waveforms described by a superposition of quasinormal
frequencies. Our waveform analysis provides a comple-
mentary description of black-hole binary merger radiation
that can be applied in an alternative late-time waveform
model.
A recent promising approach along these lines is the so-

called pseudo-4PN (p4PN) EOB model [10]. This model
extends the 3PN-accurate EOB metric with a term of 4PN
order with a tunable multiplier 	. The phasing obtained
from this expansion is combined with leading-order PN
strain amplitudes (the restricted approximation) to obtain
mode-by-mode waveforms valid for inspiral. For the
merger and ringdown, the phasing and amplitude are de-
rived simultaneously from a superposition of quasinormal
modes. For each ð‘;mÞ angular mode, the fundamental
ringdown modes and a few overtones are summed in
proportions as required for continuity with the late end of
the radiation from the inspiral phase. The value of the
p4PN multiplier 	 is then chosen to match the premerger
and postmerger waveform portions, optimizing the agree-
ment with full-numeric waveforms.
In this section, we show that it is possible to develop

variations on the p4PN EOB model that usefully encode
some of the waveform phase and amplitude relationships
we have described above. A key difference with the new
variant is our prescription for the transition from inspiral to
merger-ringdown radiation. In contrast with [10], for each
ð‘;mÞ mode we consider the entire wave train as that of a
slowly varying instantaneously rigid rotator, consistent
with the dominant ‘‘circular-polarization’’ waveform pat-
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tern encoded in the radiation. The phase evolution might be
thought of as arising from the rotation rate of the corre-
sponding ð‘;mÞ source structure, which is continued
through ringdown by continuous matching to a function
of the form (9). The wave amplitude will be derived
directly from expectations for the energy or angular-
momentum content of the radiation.

We present two specific models of this nature. Model 1
is based on exactly the same EOB-based prescription for
inspiral-plunge trajectories in [10], while model 2 shows
the effect of a slight variation in the underlying EOB
model. In both variants, as in [10], we derive the waveform
phasing directly from the EOB trajectories (with 	 ¼ 60
for the strength of the p4PN term) up until some matching
time, which we take simply as the time at which the (2, 2)
wave frequency is half the frequency of the fundamental
(2, 2) ringdown mode. After this point we use our fit model
(9) to describe the subsequent phase evolution.

Recall that this model depends on several parameters: �,

b, _�0, t0, and �f . The results of our analysis in Sec. VB
guide us in producing a fully specified model for these
parameters. We take�f ¼ !QNM=m from the fundamental

ringdown frequency !QNM of the radiation. For the time

constant for frequency decay b, we use the fundamental
quasinormal mode amplitude decay time constant. While
this is not clearly implied by our fits in the last section, it
will lead to the correct amplitude falloff, as specified
below. For the strongest ‘ ¼ m modes, our fits indicate
_�0 ¼ 0:021!QNM=mMf . Lacking any better model we

simply increase this by a factor 4=3 when ‘ � m, roughly

consistent with the higher value of _�0 found for the (2, 1)
mode. For these models we derive the quasinormal modes
using the fit for the final black-hole mass and spin de-
scribed in [10]. The remaining parameters t0 and � are
chosen to provide continuity, up to the second time deriva-
tive of phase, with the direct EOB-based phasing at the
matching time.

Our prescription for the wave amplitudes differs from
the restricted amplitude description applied in [10]. As we
showed in Fig. 11, we can improve on the restricted
amplitude approximation by using the leading-order PN
expressions for waveform ð‘;mÞ mode amplitudes only to
fix the partitioning of radiation power into angular modes.
We set the total power independently, from the full-order
EOB model description of the radiation power; the result-
ing waveforms are then energetically consistent with the
EOB description of the dynamics, and also show better
agreement with the numerical results (note that in this
model there is no radiation in the nonrotational m ¼ 0
modes). After reaching the matching frequency, we con-
tinue the amplitude evolution based on the assumption,
suggested in Sec. VB, that the amplitude is roughly con-
stant through the radiation peak.
In our new model, we set the late-time amplitude by

asserting the approximate relationship (15), written this
time in terms of the polarization frequency ! ¼ m�:

A2
‘m � 16��‘m

!‘m _!‘m

m2
; (18)

setting the value of �‘m for amplitude continuity at the
match frequency. With this model for the amplitude, the
peak in the gravitational-wave amplitude is a direct con-
sequence of the peak in the time derivative of gravitational

frequency, fixed by _�0 in (9). The exponential decay in
amplitude also follows directly from the exponential ap-
proach of the wave frequency to !QNM.

We compare the frequency and amplitude of the mod-
eled waveform (2, 2) component with the corresponding
numerical result for the 1:1 and 4:1 mass-ratio cases in
Fig. 18. A similar comparison is shown for some of the
subdominant modes in the 4:1 case, in Fig. 19. The model
we have so far described, based on the p4PN EOB trajec-
tories, is labeled model 1 in the figures. The matching
frequency is indicated as a vertical line in each plot. The
frequency curves indicate very good phasing agreement for
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FIG. 18 (color online). Comparisons of new EOB-based models with numerical results for the (2, 2) waveform frequency and
amplitude for the 1:1 (left) and 4:1 (right) mass-ratio cases. The models are variations on the p4PN EOB waveform model with a flux-
based determination of the wave amplitudes and an alternative, based on Eq. (9), to quasinormal mode summing for continuing the
waveforms through ringdown. The vertical bar indicates our matching frequency where we transition from direct EOB phasing and
flux. Models 1 and 2 correspond to different versions of the radiative flux, which primarily affects the consequent wave amplitudes; see
the text for more details.
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all cases except the (2, 1) mode of the 4:1 mass-ratio case.
In that case the sharp rise in frequency occurs a fewM too
late, several times worse than the agreement shown for the
other modes. The difference is a consequence of the
slightly higher frequency early on, as the numerical (2, 1)
frequency begins to grow already before the matching
point as compared with the rotational frequency consistent
with the numerical ‘ ¼ m modes.

The generally good amplitude agreement shown before
merger represents an improvement over the simple re-
stricted amplitude model employed in [10]. For the ‘ ¼
mmodes, model 1 overestimates the amplitudes just before
and consequently after matching. This indicates that the
PN-based flux expression applied to the p4PN EOB model,
based on [46,47], overestimates the flux at high frequen-
cies. This is perhaps not surprising, since the flux formula
is formulated with a pole at finite frequency. Physically we
expect the flux to decrease at late times, when the fre-
quency approaches the quasinormal ringdown frequency.

To correct for this, we show also results for a second
variation, model 2, in which we have introduced a zero in
the flux function at ringdown frequency. Following the
notation of [46], we modify their Eq. (45) for the flux to
read

F PN ¼ 32

5
�2v10

1�!=!QNM

1� v=vpole
fPN ðv;�Þ; (19)

and then respecify the coefficients c1 � c7 in their Eq. (50)
to again provide consistency to 3.5PN order with the Taylor
series expansion for the flux. Note that the flux now de-
pends on ‘ and m via the quasinormal mode frequency

!QNM and v ¼ ðM�Þ1=3 ¼ ðM!=mÞ1=3. The modified flux

function anticipates that the radiation will cut off at the
ringdown frequency. We find that the new EOB model
provides a very good approximation to the original p4PN
EOB phasing (with 	 ¼ 60) if we choose 	 ¼ 27 for the
new version with modified flux. The figures show that, for
the ‘ ¼ m waveform modes, the amplitudes based on
model 2 with the modified flux show better agreement
with the numerical results leading up to the matching point,
and also at the peak, while the frequency evolution is

nearly identical. For the (2, 1) case, model 2 suffers the
same problems as model 1.
We have applied the observations made in previous

sections to successfully predict late-time waveforms.
This provides an alternative description of the transition
to ringdown, distinct from the widely applied approach of
summing quasinormal modes [6,11,48]. In Ref. [10], we
applied it to nonspinning mergers.
This raises the question: how is it that each of these quite

distinct approaches to approximately describing the late-
time radiation can be simultaneously effective? We can
explore this question by considering the polarization fre-
quency evolution in a waveform constructed from a sum of
quasinormal modes (suppressing ‘ and m labels)

sðtÞ ¼ X1
n¼0

Ane
�
ntþi’nðtÞ; (20)

with ’nðtÞ ¼ ’nð0Þ þ!nt and where !n and 
n ¼ 1=�n
correspond to the nth quasinormal overtone mode. Next we
restrict to the first two terms and to linear order in �ðtÞ ¼
exp½�ð
1 � 
0Þt
, which vanishes at late times. This
yields

sðtÞ � A0e
�
0tþi’0ðtÞð1þ �eið’1ðtÞ�’0ðtÞÞÞ (21)

� A0e
�
0tþ� cosð�’Þþi½’0þ� sinð�’Þ
; (22)

where �
 ¼ 
1 � 
0 and �’ðtÞ � ’1ðtÞ � ’0ðtÞ. Taking
the derivative of the expression in square brackets gives the
polarization frequency of sðtÞ

!sðtÞ � !0 � �½�
 sinð�’Þ ��! cosð�’Þ
; (23)

where �! � !1 �!0. Note that the expression in brack-
ets is periodic with period 2�=�!, where �! is the
difference between the fundamental quasinormal-ringing
frequency and its first overtone (see [14] for a table of these
overtones).
For the waveform modes we consider hereM�! is quite

small, generally 1% or 2%, which means that the period of
the expression in brackets is* 100M. We rewrite !s, only
keeping terms linear in �!, as
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FIG. 19 (color online). Comparisons of new EOB-based models with numerical results for the 4:1 case, for the (3, 3) (left) and (2, 1)
(right) waveform modes. The plots show frequency and amplitude, labeled as in Fig. 18

JOHN G. BAKER et al. PHYSICAL REVIEW D 78, 044046 (2008)

044046-18



!sðtÞ � !0 � ��
 sinð�’Þ
�
1��!

�

cotð�’Þ

�
: (24)

Considering the second term, we note that M�
 is gen-
erally just under 0.2 for the cases we have studied so that
ð�!=�
Þ & 0:1. The other factor, cotð�’Þ, is not predict-
able without knowledge of the initial conditions, but most
values of �’ leave the second term somewhat less than
one.

If these conditions hold near the onset of ringdown, we
might neglect the time dependence in the second term. The
late-time frequency evolution is approximated by a expo-
nential decay with a time constant of 1=�
. Working
under these assumptions, and comparing with the late-
time frequency evolution model in this paper, yields the
association 2b ¼ 1=�
, where b is the fitting parameter in
our late-time frequency evolution model. Again, looking at
the quasinormal mode values, we comment that 
1=
0 �
3 so that 1=ð2�
Þ � b� �0, the approximate relationship
noted in Sec. VA, which was also approximately derived
from the assumption that dJ=d! is constant at late times.
Consistently, applying the relation 
1=
0 � 3 in Eq. (22)
also gives an expression for late-time amplitude consistent
with Eq. (C4).

VII. DISCUSSION

With hope of reaching out to a wide range of researchers
interested in gravitational radiation from black-hole binary
mergers, we have provided a descriptive walk-through of
many of the general features of late-time waveforms from
generic mergers of nonspinning binary black-hole systems,
based on a series of numerical simulations covering sys-
tems from equal mass up to mass ratio 6:1. In this basic
waveform description we have examined waveform phase
and amplitude, comparing results among different mass
ratios, as well as among the different spin-weighted spheri-
cal harmonic ð‘;mÞ component modes.

In our presentation, we have attempted to describe the
radiation in the simplest physical terms, pointing out traits
in the waveforms that are similar through the inspiral,
merger, and ringdown stages. Throughout the coalescence,
we find simple waveforms in each ð‘;mÞ mode, each
exhibiting strong circular polarization and monotonically
increasing polarization frequency.

In our amplitude comparisons, we find that the leading-
order PN prediction for energy partitioning provides a
good estimate of the amplitude until late in the merger
for ‘ ¼ mmodes. In astrophysical units, our fit for the peak
power in the dominant (2, 2) mode is

_E 2;2ð�Þ ¼ ð1:60�2 þ 19:70�4Þ � 1057 ergs�1: (25)

Scaling the amplitudes by the peak values yields a very
similar shape through the peak for the (2, 2) mode ampli-
tudes for all mass ratios we have studied. For a particular

mass-ratio case, the peak widths remain similar, though
there is some variation in peak time.
For each mass ratio, the phase (and frequency) of the

different ð‘;mÞ components are strongly related. While this
should be expected for the early inspiral, where the wave-
form phase is directly connected to the orbital phase, we
show that, for ‘ ¼ m modes, the same relationship holds
through the merger and into the inspiral. We compare the
phasing among simulations with different mass ratios in
two ways, with time scaled by chirp mass, as is appropriate
in the early-time limit, and then with time scaled by total
system massM. With the latter scaling, the dominant (2, 2)
waveforms are similar in phase (and �-scaled amplitude)
for the last �200M.
In the near-peak waveform comparisons the (3, 2) mode

does not exhibit the same simple behavior as the other
modes. This mode is easily subject to coupling with the
much stronger (2, 2) mode. It has been seen in [6,36] that
the (3, 2) mode demonstrates significant mode mixing with
the dominant (2, 2) mode—the QNM ringdown part of the
(3, 2) waveform contains the fundamental frequencies of
both the (3, 2) and the (2, 2) modes. We speculate that this
mixing might be partly due to the use of coordinate ex-
traction spheres that are systematically warped from the
areal-radius spheres appropriate for correct radiation ex-
traction. A more refined choice of extraction spheres and
perhaps a better tuned decomposition basis (e.g. spheroidal
harmonics) would make it possible to represent the (3, 2)
waveform content in a manner which is like that seen with
the other modes. Thereby we expect that a similar simple
physical representation of the waveform content can be
extended to all m � 0 modes.
We suggest a simple conceptual interpretation that ap-

plies through the full coalescence. We think of the radia-
tion as being generated by an implicit rotating source, with
each ð‘;mÞ mode generated separately by the ð‘;mÞ mo-
ment of some implicit source (which we understand here
only in the context of the radiation). The nearly fixed
relationship among the ð‘;mÞ phase moments is interpreted
to indicate that the implicit source maintains some struc-
tural integrity throughout the coalescence, without shear-
ing among the various modal components. For the ‘ ¼ m
modes, this rigidity is maintained through the merger and
into the ringdown, a relationship made possible by the
approximate equality for each of the ‘ ¼ m quasinormal
modes !QNM=m��LR, where �LR is the orbital fre-

quency of unstable circular prograde graviton (or photon)
orbits.
The following physical picture may underlie these rela-

tionships. For well-separated black holes, the fields that
embody the implicit source object evidenced in the radia-
tion may be tied directly to the pointlike centers of the
orbiting black holes. The source rotation frequency is the
orbital frequency of the timelike trajectories traced out by
the black holes. As the binaries spiral together, the pair can
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continuously be viewed as a shrinking, distributed
dumbbell-like rotator. Eventually, most of this dumbbell
shrinks inside the light ring, which roughly coincides with
the potential barrier in the wave mechanics of gravitational
perturbation theory. From inside, little radiation can escape
to a distant observer, and the timelike motion of the black-
hole centers disconnects from the radiation. At late times,
the effective radiation source becomes a gravitational dis-
turbance orbiting the forming black hole at the light ring.
This is a seamless transition, with nearly consistent rota-
tional phasing among all ‘ ¼ m modes throughout the
process. For the ‘ � m modes the associated
quasinormal-ringing dynamics are somewhat distinct, and
the phasing and amplitude relationships begin to peel away
from the main ‘ ¼ m trend through the merger process.

For the late-time portions of the waveforms, including
the approach to the peak and the ringdown, we have
introduced a quantitative fitting model based on a mono-
tonically increasing polarization frequency for each mode,
which decays exponentially toward the expected funda-
mental quasinormal ringdown frequency !QNM at late

times. These fits provide an excellent match for the fre-
quency evolution beginning �20M before the peak, and
allow precise estimates of!QNM, as well as the peak rate of

change in frequency _!0. Scaling the latter quantity by the
final black-hole mass Mf and !QNM, we find

_!0Mf=!QNM � 0:021 for all ‘ ¼ m waveforms we have

looked at, including the (2, 2) modes of each mass ratio,
and modes up to (4, 4) for the 4:1 mass-ratio case.

Conceptually, the monotonicity of the frequency evolu-
tion suggests that, as is the case for inspiralling systems,
the frequency can be taken to label the state of the adiabati-
cally changing implicit rotating source that we interpret as
the source of the radiation. If we suppose that changes in
the source structure are tied to loss of angular momentum,
then we would expect that finite changes in frequency
would be associated with finite angular-momentum loss,
so that dJð!Þ=d! has a finite, nonzero value even at late
times. Since! approaches a nonzero constant at late times,
we would likewise expect dJ=d! to approach a constant
value. In Sec. VB, we show that the late-time evolution of
J and! are approximately consistent, mode by mode, with
constant dJ=d! beginning about �20M before merger.

Such a relation between frequency and angular momen-
tum also implies a connection between frequency and
amplitude. The moment of peak amplitude is expected to
be near the peak in _!ðtÞ. At very late times, constant
dJ=d! implies a connection between the rates at which
the frequency and amplitude approach their quasinormal
late-time state, namely, that our fitting parameter b � �,
where � is the damping time of the quasinormal amplitude
decay [see Eq. (9)].

The simple relationships between the waveform modes
and simple dependence on mass ratio make it possible to
specify much of the late-time waveform information de-

veloped in our numerical simulations in terms of just a few
quantities. This information can then be combined with
information from the PN approximation about the inspiral
trajectories to provide analytical models for full-
coalescence waveforms. In Sec. VI we have applied the
PN-consistent EOB-based p4PN trajectory model pre-
sented in [10] together with assumptions asserting several
of the approximate waveform features observed in Sec. IV.
As in [10], early waveform phasing is derived from the
p4PN EOB trajectories, with waveform amplitudes based
on our PN-based power partitioning, together with the PN
flux model. As the waveform approaches the anticipated
peak, we match to a waveform phasing model based on our
fit model, with parameters specified according to the ap-
proximate relationships identified in Sec. IV, and with
amplitudes derived from dJ=d! ¼ constant. The fits
show excellent phase agreement with the numerical simu-
lation results for the most significant ‘ ¼ m modes. A
variation in the PN flux model that enforces that the flux
for each ð‘;mÞ mode vanish as !! !QNM gives better

late-time amplitude agreement.
Lastly, we observe that our description of the late-time

phasing and amplitudes provides a picture complementary
to another approach applied in several previous studies
[6,10,11,48], which successfully treat the late-time wave-
forms as a sum of quasinormal fundamental and overtone
modes for each ð‘;mÞ waveform component. This is mo-
tivated by the expectation that waveforms from generic
initially compact distortions of the forming black hole will
quickly reduce to a sum of these quasinormal harmonics
[49]. In [10], we have shown that in comparison with some
of the runs presented here, for mass ratios up to 2:1, this
assumption can lead to a predictive waveform model with
similar accuracy to our alternative model presented in
Sec. VI. As a link between the two approaches, we have
shown that at late times the combination of the fundamen-
tal and first QNM overtones for a particular mode may,
under reasonable circumstances, mimic the amplitude de-
cay properties of our model.
This work suggests several directions for further study.

In the immediate future, we plan to assess the fidelity of the
available nonspinning waveforms and models, and the
impact of mass ratio on the overall detectability of the
merger signal. We also plan to apply our implicit-rotat-
ing-source description as a baseline in analyzing future
higher-precision numerical simulations. This might pro-
vide insight into understanding finer features of the merger
physics, some of which could violate our simplified de-
scription. Further understanding the anomalous (3, 2)
mode waveforms will be a first step in this direction. We
must also investigate whether our description of the merger
radiation applies also to spinning black holes. It is plau-
sible that even precessing systems might be analyzed in
this way using a spherical harmonic basis that tracks the
orbital axis [50]. This may make it possible to extend the
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analytic EOB-based waveform model presented here to
include spin effects. Including spins in such analytic mod-
els will be necessary for observational data analysis
applications.
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APPENDIX A: RADIATION EXTRACTION

We extracted radiation using the outgoing Weyl scalar
 4, defined as in [51], calculated with a symmetric tetrad.
This is related to the complex gravitational-wave strain
hðt; ~xÞ via

 4ðt; ~xÞ ¼ � €hþðt; ~xÞ þ i €h�ðt; ~xÞ: (A1)

 4, the strain h, and its time derivative _h (which we call the
strain rate) are all functions of time t, extraction radius
Rext, and polar angles �, �. As is customary in numerical
relativity, we decompose the radiation into spin-(�2)-
weighted spherical harmonic components:

 4 ¼
X1
‘¼2

X‘
m¼�‘

C‘mðt; RÞ�2Y
m
‘ ð�;�Þ: (A2)

_h ¼ X1
‘¼2

X‘
m¼�‘

_h‘mðt; RÞ�2Y
m
‘ ð�;�Þ; (A3)

h ¼ X1
‘¼2

X‘
m¼�‘

h‘mðt; RÞ�2Y
m
‘ ð�;�Þ: (A4)

With this, two time integrations of our measured quantity,
 4, yields the more familiar gravitational-wave strain h.

To extract the radiation from a simulation, we define a
series of coordinate spheres of different radii Rext; here we
use extraction spheres having radii between Rext ¼ 40M
and Rext ¼ 100M. We extracted the radiation in modes by
integrating  4 against different �2Ym‘ ð�;�Þ over these

coordinate spheres, using fourth-order interpolation onto
each sphere followed by Newton-Cotes angular
integration.

The gravitational waves produced by the binary carry
both energy and angular momentum. Overall, the rate of
energy emission is given by an angular integral of the

squared strain rate j _hj2 over a coordinate sphere [see

Eq. (5.1) of [15] ]:

dE

dt
¼ lim

R!1
R2

16�

I
d�j _hj2: (A5)

Then using Eq. (A3), we can express the total energy flux
(A5) as a sum over modes:

_E ‘m �
�
dE

dt

�
‘m

¼ lim
R!1

1

16�
jR _h‘mj2; (A6)

¼ ðA‘mÞ2
16�

; (A7)

where we have used the strain-rate decomposition (5) and
taken the limit R! 1 to go from (A6) to (A7).
Similarly, the rate of radiation of the z component of

angular momentum can be expressed as a sum over modes
[52]:

_J ‘m �
�
dJz

dt

�
‘m

¼ lim
R!1

m

16�
R2 Imð _h‘mh�‘mÞ: (A8)

Substituting the definitions (2) and (5) into expression
(A8) for the angular momentum, and taking the limit R!
1 yields

_J ‘m ¼ jmj
16�

A‘mH‘m cosðmð�‘m ��ðhÞ
‘mÞÞ: (A9)

APPENDIX B: CONVERGENCE

We carried out three runs of the 4:1 mass-ratio model at
different resolutions to study the convergence properties of
our simulations. For these cases, the mesh spacing of the
finest grids (the ones including the smaller puncture) was
taken to be hf ¼ 3M=160 (low resolution), hf ¼ M=64

(medium resolution), and hf ¼ 3M=224 (high resolution).

To facilitate comparisons among these cases, the overall
grid structure of the runs was kept the same. In this
Appendix, we discuss the convergence properties of the
constraints and gravitational waveforms.
In comparing our medium and high resolutions for the

4:1 mass-ratio case, the Hamiltonian constraint was found
to be manifestly fourth-order convergent in the dynamical
strong field, where the black holes move, evidently domi-
nated by the expected fourth-order error from refinement
interfaces. The convergence falls off to an apparent rate
closer to first order in the coarsest regions. This seems to
result from stronger dissipation of high frequency noise.
Though less noise is generated in the higher resolution
simulations, a greater portion of it survives propagation
into the distant coarser regions. As shown below, this does
not appear to affect the waveforms, which are well resolved
in the wave zone. The momentum constraint appeared to be
at least second-order convergent in the dynamical strong-
field region, but also fell off to an apparent rate closer to
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first order in the coarsest regions—from the wave-
extraction region outwards.

In our waveform mode analysis, we have typically time-
and phase-shifted the data so that the amplitude peak fell at
time t ¼ 0 [4]. In Fig. 3, the real part of the (2, 2) and (4, 4)
strain-rate harmonics is shown for all three resolutions.
The agreement between the resolutions is then seen to be
excellent. In Figs. 4 and 5, we showed the errors to be
expected from the maquillaged strain-rate waveform data.

However, the presence of considerable eccentricity in
the binary makes it difficult to compare such time-shifted
waveforms between resolutions and establish an unambig-

uous order of convergence. In Figs. 20 and 21 we show the
amplitude errors for our three resolutions without time
shifting—that is, we plot the data starting from the initial
time in each case, scaling the medium-high differences for
fourth and fifth-order convergence. It is clear that we
observe convergence between fourth and fifth order
throughout the evolution until around 150M before merger,
when the difference in merger times among the runs be-
comes important. Additionally, it is possible that at this
higher-frequency stage of merger, the lowest-resolution
data is no longer in the convergence regime. We do note,
however, that the rate of growth of amplitude difference
between the medium and high-resolution runs is compa-
rable here to that observed closer to the merger for time-
shifted data (see Fig. 4). From this we deduce that the
medium and high-resolution runs are still in the conver-
gence regime, with errors consistent with fourth-order
convergence.

APPENDIX C: END STATES

In this Appendix we discuss the state of the final black
hole formed in our simulations. This can be measured by
several independent means, which we compare, finding
agreement to within 0.4% for Mf and 2.1% for â.
Table III, we present ‘‘coarse’’ results for the simulations.
The total radiated energy �Erad is obtained by integrating
Eq. (A5), and the total radiated angular momentum�Jrad is
obtained by summing over mode contributions (A8). The
final mass and angular momentum of the postmerger black
hole are calculated using

Mf;rad � MADM ��Erad; (C1)

Jf;rad � J0 ��Jrad; (C2)

where, by the symmetries of the current simulations, we
only deal with the z component of angular momentum. For
the 1:1 simulations, we only had the leading-order ð2;	2Þ
radiation modes available, so our �Jrad estimate is signifi-
cantly truncated, by as much as 11% (a conservative error
estimate based on the effect of similarly truncating mode
contributions past ‘ ¼ 2 for the 4:1 case); we have marked
this and derived values. We also quote the measured value
of tpeak, the time at which _E reaches its peak. All waveform

and derived plots in this paper have been time shifted by
subtracting this time, as an approximate marker of the time
of merger, unless otherwise indicated.
Table III also contains data about the common apparent

horizon (CAH) of the merged binary: the time tCAH at
which the CAH was first detected, the CAH’s irreducible
mass Mirr;CAH, and its full (horizon) mass, obtained from

the Christodoulou [53] formula:

M2
f;CAH ¼ M2

irr þ
J2

4M2
irr

; (C3)
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FIG. 20 (color online). Convergence of strain-rate amplitude
for (2, 2) (upper panel) and (4, 4) (lower panel) modes. The
medium-high differences are scaled for both fourth- and fifth-
order convergence. Three-level convergence is lost around 150M
before merger (vertical dashed line).
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FIG. 21 (color online). Convergence of strain-rate phase for (2,
2) (upper panel) and (4, 4) (lower panel) modes. The medium-
high differences are scaled for both fourth- and fifth-order
convergence. Three-level convergence is lost around 150M
before merger (vertical dashed line).
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where we use J ¼ Jf;rad for the final hole’s angular

momentum.
We can use the data from Table III to estimate the mass

and dimensionless spin of the end-state Kerr black hole
through different methods. Given the final mass estimates
Mf;rad and Mf;CAH, we can calculate â � Jf=M

2
f .

Another means of characterizing the final black hole
comes from studying the characteristics of the radiation
after the peak. This is expected to be a sum of the hole’s
quasinormal modes (QNMs). We can determine the imagi-
nary part of the mode frequency by fitting the waveform
amplitude Al;m from (7) postpeak to a decaying exponen-

tial. The damping time in this fit corresponds to the imagi-
nary frequency. Specifically, we fit to a functional form:

AðtÞ ¼ A0e
�t=�QNMð1� Ce�2t=�QNMÞ: (C4)

The presence of the additional damping term, parametrized
by C, allows more freedom for nonlinear decay early in the
ringdown. Note that this factor of 3 between primary and
secondary damping times approximately mirrors the dif-
ference in damping times one sees between the first two
QNMs of a Kerr hole [54]. The results of this fit are given
in Table IV. The value of �QNM, together with an estimate

of the real QNM frequency!QNM, uniquely determines the

mass and dimensionless spin of the Kerr hole. We combine
our present fit for �QNM with the real frequency !QNM, as

presented in Table II, to obtain (MQNM, âQNM).
If we already have a robust determination of the Kerr

mass, then we only need one component of the QNM
frequency to lock down â. In Table II, we use !QNM to

obtain âQNM;re, assuming MQNM ¼ Mf;.

We have gathered all the estimates of Mf and/or â
discussed above in Table V. It is instructive to compare
these values with recent predictions for the final mass and
spin from analytic and numerical methods. Working with a
subset of the data supplied here, and also invoking the test-
mass limit, [10] suggest the one-parameter fits:

Mf=M ¼ 1� ð1�
ffiffiffiffiffiffiffiffi
8=9

p
Þ�� ð0:498	 0:027Þ�2; (C5)

â ¼ ffiffiffiffiffiffi
12

p
�� ð2:900	 0:065Þ�2: (C6)

TABLE IV. Fit results for �QNM from Eq. (C4). �QNM is used
for one of the determinations of final Kerr parameters in Table V.

Mass ratio ð‘;mÞ A0ð�10�2Þ �QNM=M

1:1 (2, 2) 31:3	 0:1 11:68	 0:01
2:1 (2, 2) 26:80	 0:06 11:57	 0:01
4:1 (2, 2) 17:23	 0:09 11:37	 0:01

(2, 1) 4:1	 0:1 11:42	 0:11
(3, 3) 8:2	 0:2 10:96	 0:06
(4, 4) 2:85	 0:05 10:88	 0:06

6:1 (2, 2) 12:77	 0:08 11:35	 0:02

TABLE III. Results of radiation and apparent-horizon analysis of merger. The total energy flux _E (A5) reaches its peak at time
tpeak=M. �Erad and �Jrad are the total energy and (z) angular momentum radiated during the simulation [the latter calculated as a sum

over modes (A8)], resulting in final massMf;rad and angular momentum Jf;rad. (For the 1:1 case, only the ‘ ¼ 2 modes were available,

so the emitted �Jrad will underestimate, and Jf;rad will overestimate, the physical results.) Mirr;CAH is the irreducible mass of the

common apparent horizon, first detected at simulation time tCAH. Mf;CAH is the mass deduced from this and Jf;rad using the

Christodoulou formula [53].

Mass ratio hf Rext=M tpeak=M �Eradð�10�2Þ=M Mf;rad=M �Jradð�10�2Þ=M2 Jf;rad=M
2 tCAH=M Mirr;CAH=M Mf;CAH=M

1:1 M=32 60 1303.7 3.5934 0.9548 33:79 0:6468 1196 � � � � � �
2:1 3M=160 45 627.7 2.8306 0.9606 23.34 0.5937 581 0.9063 0.9637

4:1 3M=224 45 641.9 1.4327 0.9786 12.78 0.4615 588 0.9489 0.9796

M=64 45 652.6 1.4262 0.9786 12.99 0.4594 599 0.9489 0.9793

3M=160 45 1.4102 0.9789 12.90 0.4603 610 0.9492 0.9797

6:1 M=64 45 564.9 0.9212 0.9850 7.83 0.3666 513 0.9667 0.9851

TABLE V. The parameters of the postmerger Kerr black hole, estimated by different methods. Mf;rad and ârad are based on energy
and angular-momentum balance in the gravitational radiation over the whole evolution. Mf;CAH is the mass of the common apparent

horizon, as determined from the horizon’s irreducible mass (see Table III). Mf;QNM and âQNM are the mass and spin determined from

the real frequency !QNM and damping time of the postmerger radiation (see Tables II and IV), while âQNM;re was determined from the

real frequency !QNM only, assuming the final mass Mf;rad.

Mass ratio Mf;rad=M ârad Mf;CAH=M Mf;QNM=M âQNM âQNM;re

1:1 0.9548 0:7095y � � � 0:951	 0:002 0:684	 0:002 0:689	 0:002
2:1 0.9606 0.6434 0.9637 0:961	 0:002 0:624	 0:001 0:624	 0:002
4:1 0.9786 0.4819 0.9796 0:979	 0:001 0:472	 0:002 0:4710	 0:0004
6:1 0.9850 0.3779 0.9851 0:989	 0:002 0:383	 0:004 0:377	 0:002
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The numerical data from Table V also fits well the wholly
numerical formula (3.17a) from [11], as well as the pa-
rametrized formula of [55].

We note that, when discussing the mass Mf of the end-
state Kerr hole in Secs. VA and later, we have consistently
taken the radiation-derived value, Mf � Mf;rad, as results

from [7] indicate this has errors up to a factor of 3 less than

QNM-based mass. Since a far larger proportion of the
initial angular momentum than mass is emitted during
the inspiral and merger, there is greater uncertainty in the
radiation-derived final spin than the final mass. For this
reason, our preferred measure of the final dimensionless
spin is the QNM-derived value âQNM;re.
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