
Extremal vacuum black holes in higher dimensions

Pau Figueras,1,* Hari K. Kunduri,2,+ James Lucietti,1,‡ and Mukund Rangamani1,x
1Centre for Particle Theory, Department of Mathematical Sciences,

University of Durham, South Road, Durham, DH1 3LE, United Kingdom
2DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilbeforce Road, Cambridge, CB3 0WA, United Kingdom

(Received 4 April 2008; published 19 August 2008)

We consider extremal black hole solutions to the vacuum Einstein equations in dimensions greater

than five. We prove that the near-horizon geometry of any such black hole must possess an SOð2; 1Þ
symmetry in a special case where one has an enhanced rotational symmetry group. We construct

examples of vacuum near-horizon geometries using the extremal Myers-Perry black holes and boosted

Myers-Perry strings. The latter lead to near-horizon geometries of black ring topology, which in odd

spacetime dimensions have the correct number of rotational symmetries to describe an asymptotically

flat black object. We argue that a subset of these correspond to the near-horizon limit of asymptotically

flat extremal black rings. Using this identification we provide a conjecture for the exact ‘‘phase diagram’’

of extremal vacuum black rings with a connected horizon in odd spacetime dimensions greater than

five.
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I. INTRODUCTION

Exact black hole solutions to Einstein’s equations are
notoriously difficult to find. In recent years remarkable
progress has been made in five dimensions, starting with
the important work of [1] on Weyl solutions. This classi-
fication inspired the discovery of the black ring [2], an
exact solution describing a black hole with horizon topol-
ogy S1 � S2 (cf. [3] for a review). Subsequently, for vac-
uum gravity, the existence of more systematic techniques
has led to the construction of a number of new solutions. In
particular, the Belinsky-Zhakarov method [4,5], which
employs ideas from integrable systems such as inverse-
scattering, has been exploited to find many novel black
hole configurations. These methods have been used to
construct a generalization of the black ring that carries
two independent angular momenta [6–9], the ‘‘black
Saturn’’ [10] (a multi-black-hole solution consisting of a
rotating black ring with a spinning black hole at its center)
and other solutions with multiple horizons such as the di-
ring [11,12], the bi-ring [13,14], etc.. The recent reviews
[15,16] summarize our current understanding of higher-
dimensional black holes.1

Unfortunately such techniques do not extend beyond
five spacetime dimensions, if one is interested in station-
ary asymptotically flat spacetimes. This is due to the
fact that these techniques rely on the integrability of

Einstein’s equations when restricted to D-dimensional sta-
tionary spacetimes with a spatial Uð1ÞD�3 symmetry
group. For D ¼ 4, 5 this coincides with the dimension of
the maximal Abelian rotational group (which must be a
subgroup of SOðD� 1Þ). However, for D> 5 this is too
much (Abelian) symmetry to describe a localized object.
As a result, very little is known about higher-dimensional
asymptotically flat black hole solutions. In particular, the
only exact black hole solutions known in the vacuum are
the Myers-Perry (MP) black holes [18] which have a
spherical horizon topology. Therefore black hole non-
uniqueness still remains to be proved for D> 5; however,
see [19] for compelling arguments for nonuniqueness.
Moreover, one expects other possible horizon topologies
to exist; in particular, higher-dimensional versions of black
rings, i.e., black holes with horizon topology S1 � SD�3. In
fact, in the analysis of balanced black rings of [20,21] it is
argued that such solutions exist. Further, the recent pertur-
bative analysis of [19] constructs approximate solutions
and infers properties of the ‘‘phase diagram’’ to argue for
nonuniqueness in dimensions D � 6 with one nonzero
angular momentum.
It is of course well known that a useful tool to aid

construction of exact solutions to Einstein’s equations
is supersymmetry. Indeed, the exploration of super-
symmetric black holes/branes has a rich history, and
in recent years the systematic classification program
has led to the discovery of many interesting new solutions
[22–39]. A supersymmetric black-hole is necessarily
extremal. It has emerged that in fact it is this latter prop-
erty which is responsible for the black hole attrac-
tor mechanism (cf., [40] for a review of recent develop-
ments in this area). This is essentially due to the fact
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that the near-horizon limit of an extremal black hole
in D ¼ 4, 5 always has an SOð2; 1Þ symmetry group
[41,42].2 While vacuum black holes can never be super-
symmetric, they can be extremal (e.g., extremal Kerr in
four dimensions). Therefore, a natural simplifying assump-
tion to study higher-dimensional vacuum black holes is to
focus on extremal solutions. This will be the strategy
employed in this paper.

One might be concerned that the assumption of extrem-
ality is too strong to reveal any interesting aspects of black
hole solutions in higher dimensions. In five dimensions,
where we have exact solutions, this is not the case—one
still has both topologically spherical black holes and black
rings. In particular, the known extremal vacuum black
holes consist of the extremal MP solution (which must
have two nonzero angular momenta) as well an extremal
black ring (which also must have two nonzero angular
momenta). Curiously, black hole uniqueness is not actually
violated for these extremal solutions, in contrast to the
nonextremal case [14]. In any case the restriction to ex-
tremal black holes is not overly constraining. Another
motivation for studying extremal, nonsupersymmetric
black holes comes from the fact that recently there has
been progress in providing exact microscopic counting of
their entropy [43–48].3

In five dimensions, it turns out that the near-horizon
geometry of the vacuum extremal black ring is isometric
to a special case of the near-horizon geometry of the
boosted Kerr-string [42] (the boost is such that the string
is tensionless). It should be emphasized that this is a state-
ment regarding exact solutions to the vacuum Einstein
equations. The usual relation between boosted black
strings and black rings occurs only in the limit of large
thin rings. This is due to the obvious qualitative expecta-
tion that a large thin ring locally ‘‘looks like’’ a black
string. However, the statement about near-horizon geome-
tries of the extremal solutions is actually valid at the full
nonlinear level. It is this intriguing connection which we
will exploit to make progress in higher dimensions.

One of our results will be to give the explicit near-
horizon geometries of the general extremal MP black holes
in D> 5 and the boosted MP black string in D ¼ 2nþ 3.
These solutions possess the typical SOð2; 1Þ symmetry

which occurs for D ¼ 4, 5 black holes [41,42]. Spatial
sections of the horizon of the MP string near-horizon
geometry are of S1 � S2n topology, thus providing a can-
didate black ring near-horizon geometry in higher dimen-
sions. Indeed, we argue that the near-horizon geometry of
the MP black string is isometric to that of an asymptoti-
cally flat extremal black ring in D ¼ 2nþ 3 spacetime
dimensions, provided one takes a particular value for the
boost parameter. This value must be such that the MP
string is tensionless. Our construction only works in odd
dimensions, since a d ¼ 2nþ 2 dimensional MP solution
times a line has the correct number of Abelian symmetries
to describe an asymptotically flat black object with a
compactly generated horizon in D ¼ dþ 1 dimensions
(this is not the case for an odd-dimensional MP black hole).
To support this proposal we will also prove a technical

result regarding the symmetries of near-horizon geometries
of D> 5 dimensional black holes. We expect that the
SOð2; 1Þ symmetry which occurs for D ¼ 4, 5 black holes
generalizes to higher-dimensional black holes. However,
this general statement seems difficult to prove. As a step
towards this we establish that, in the special case where the
rotational symmetry group is enhanced to Uð1Þ � SUðnÞ
(in 2nþ 2 dimensions) or Uð1Þ2 � SUðnÞ (in 2nþ 3 di-
mensions), one must have an SOð2; 1Þ symmetry. The
proof directly generalizes the one used in D ¼ 4, 5 [42],
and uses dynamical information (i.e., certain components
of the Ricci tensor must vanish). The result is valid for
vacuum solutions (even with a cosmological constant) and
we expect it can be generalized to include matter as was
done in D ¼ 4, 5. Such an enhancement of rotational
symmetry typically occurs when one is dealing with black
holes with equal angular momenta in even dimensions, or
all but one angular momenta equal in odd dimensions.
The identification of the near-horizon of the black ring in

odd D> 5 will be incomplete unless we can use it to
provide a detailed analysis of the physical parameters of
the solution. The general picture of the attractor mecha-
nism would suggest that we should be able to recover all
the conserved charges from the near-horizon geometry
[53,54].4 As we discuss, this expectation is not true in
general; one needs more information than the near-horizon
geometry to identify the conserved quantities of a black
hole solution. We will clarify exactly what data one should
expect to be able to compute from a near-horizon geome-
try. For example, obtaining the mass requires knowledge of
the asymptotic stationary Killing field, which is not con-
tained in the near-horizon geometry. Likewise knowledge
of the asymptotic stationary frame is required to identify
the angular velocities of the black hole/ring.

2Intuitively, extremal black holes have a long throatlike region,
with the horizon located at an infinite proper distance from the
any point outside the black hole. This suffices to erase the
memory of the asymptotic boundary conditions as one ap-
proaches the near-horizon. Hence one expects the attractor
mechanism to also hold in D � 6.

3The underlying reason responsible for this seems to be the
attractor mechanism, which has been argued to guarantee that
the entropy of the black hole should not vary as we move in the
moduli space (for instance by tuning the string coupling) [49]
(see also [50]). Indeed, the assumption of SOð2; 1Þ symmetry in
the near-horizon limit (subsequently proved in [42]) has been
used to establish an attractor mechanism for rotating extremal
black holes in D ¼ 4, 5 [51] (see also [52]).

4In these analyses, the authors considered supersymmetric
black holes, in which case one also has the Bogomol’nyi-
Prasad-Sommerfield relation fixing the mass. For black holes
with spherical topology, this will suffice to compute the charges.
Our interest, however, lies in generic extremal situations where
the near-horizon geometry is the only available data.
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While this presents an obstacle to identifying the physi-
cal parameters of the putative extremal black rings in D>
5, we argue that it is nevertheless possible to deduce the
necessary quantities by employing extra information at
hand. For instance, to determine the mass we use knowl-
edge of the mass of the corresponding MP string. We are
able to recover certain components of the conserved angu-
lar momenta from the near-horizon geometry, i.e., the
components orthogonal (at asymptotic infinity) to the S1

of the ring. However, the angular momentum along the S1

is not as straightforward. There is an important difference
between a black ring and a black string—the former carries
angular momentum, while the latter carries linear momen-
tum. Heuristically, one must ‘‘fold’’ the latter (in the thin
ring limit) to convert it to a black ring. Here we encounter a
crucial issue; the direction along the string is not neces-
sarily the S1 direction of the ring. To complete the speci-
fication of the physical parameters, we need to infer some
aspects regarding the asymptotic geometry, in particular,
the plane in which the ring rotates. Using the fact that thin
black rings look like black strings, we argue that in D> 5
certain regularity conditions force the direction along the
string to be the same as the direction along the ring. This
allows us to complete the determination of all the physical
parameters of the extremal black rings. Based on this
identification we present results for the phase diagram of
these solutions in various dimensions.

The organization of this paper is as follows: we begin in
Sec. II with a general analysis of near-horizon geometries
for extremal solutions. Apart from proving (under certain
restrictions) that the near-horizon geometry has an en-
hanced symmetry, we present examples of vacuum near-
horizon geometries in D> 5 and we also discuss in detail
the parameters we can extract from the knowledge of the
near-horizon geometry alone. In Sec. III we discuss prop-
erties of extremal MP black holes in various dimensions
focusing on the ‘‘moduli space’’ of extremal solutions. We
extend this analysis to extremal MP black strings in
Sec. IV. In Sec. V we discuss the known extremal doubly
spinning black ring. In Sec. VI we argue that we have the
exact near-horizon geometries of the yet to be found
asymptotically flat extremal black rings in D ¼ 2nþ 3
and analyze their physical properties. Finally, we conclude
in Sec. VII with a discussion. In the Appendix we collect
some technical details that are useful in extracting the near-
horizon geometries of known extremal solutions.

II. NEAR-HORIZON GEOMETRIES

We begin in Sec. II A by introducing a useful coordinate
chart valid in the neighborhood of the event horizon of a
stationary black hole solution: the Gaussian null coordi-
nates [23,55].5 We will then prove in Sec. II B a general

result regarding the symmetries of near-horizon geometries
in higher than five dimensions. Following this technical
result, we will present the near-horizon metrics for MP
black holes and black-strings in Sec. II C 1 and II C 2 as
examples of near-horizon geometries with spherical and
ringlike topology. Finally, in Sec. II D we discuss what
physical quantities can be expected to be extracted from
the knowledge of a near-horizon geometry alone. A short
word on notation: We will use D to denote the total space-
time dimension for black rings and black strings and d to
denote the dimension of the black holes used to construct
the strings, so that D ¼ dþ 1. For convenience, we will
also use a variable n, related to the spacetime dimension by
D ¼ 2nþ 3.

A. Gaussian null coordinates and the near-horizon limit

In the neighborhood of the event horizon of a stationary
black hole one can introduce coordinates x� ¼ ðv; r; xaÞ
such that the metric takes the form [23]:

ds2 ¼ rfðr; xÞdv2 þ 2dvdrþ 2rhaðr; xÞdvdxa
þ �abðr; xÞdxadxb: (2.1)

The horizon is located at r ¼ 0, and @
@v is a Killing field

normal to the horizon. The exterior of the black hole is the
region r > 0. Spatial sections of the horizon consist of a
compact manifold H , with coordinates xa, equipped with
a Riemannian metric �abð0; xÞ. The surface gravity of the
horizon is given by

� ¼ � 1

2
fjr¼0: (2.2)

By definition, an extremal black hole is one with vanish-
ing surface gravity. Therefore, assuming analyticity, it
follows that fðr; xÞ ¼ rFðr; xÞ; this implies gvv ¼ Oðr2Þ.
From this it follows that the horizon is an infinite proper
distance from any point outside the black hole. This allows
us to zoom into the vicinity of the horizon in a particular
way and define a consistent near-horizon limit; the limiting
geometry explicitly solves Einstein’s equations [23].
For an extremal black hole one may define the near-

horizon limit6 by: r! �r, v! v=� where we take �! 0.
The resulting geometry (in the rescaled coordinates) is:

ds2 ¼ r2FðxÞdv2 þ 2dvdrþ 2rhaðxÞdvdxa
þ �abðxÞdxadxb (2.3)

where FðxÞ ¼ Fð0; xÞ, etc., and will be referred to as the
near-horizon geometry of the black hole. It is guaranteed to
solve the same equations of motion as the full black hole
solution (since it is just a well-defined limit of the original
metric). We should emphasize that the near-horizon limit

5These are the analog of Gaussian normal coordinates used in
the neighborhood of a spacelike hypersurface.

6Note this is analogous to the concept of a double-scaling
limit.
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only exists because gvv ¼ Oðr2Þ (i.e., from the extremality
condition).

Similar scalings do not exist for the nonextremal solu-
tions, although we note that if � � 0 then to leading order
‘‘near’’ the horizon (i.e., for small r) one has

ds2 ��2�rdv2 þ 2dvdrþ 2rhaðxÞdvdxa
þ �abðxÞdxadxb: (2.4)

The first two terms are Rindler space written in ðv; rÞ
coordinates, which is familiar from studies of black hole
thermodynamics. However, observe that the metric (2.4) is
not a solution of the field equations as it is not obtained via
a limit of a sequence of metrics, but rather through just
truncating the Taylor expansion in r of the metric
coefficients.

B. Symmetry enhancement in the near-horizon limit:
SOð2; 1Þ

The near-horizon geometry (2.3) has an enhanced sym-
metry, relative to the black hole, generated by v! �v and
r! r=�, which when combined with translations in v
forms a two-dimensional non-Abelian group G2.

7 In D ¼
4, 5 if one assumes the presence of Uð1ÞD�3 rotational
symmetries one can prove that Einstein’s equations (in a
fairly general class of theories) imply that the symmetry is
further enhanced to SOð2; 1Þ �Uð1ÞD�3 [42]. The exis-
tence of the Uð1ÞD�3 symmetry allows us to introduce
coordinates on the horizon xa ¼ ð�; xiÞ, where i ¼
1; � � � ; D� 3, such that the @

@xi
are Killing fields. The

near-horizon geometry can then be written in a particularly
simple form:

ds2 ¼ �ð�ÞðA0r
2dv2 þ 2dvdrÞ þ d�2

þ �ijð�Þðdxi þ kirdvÞðdxj þ kjrdvÞ (2.5)

where �ð�Þ is a positive function of the coordinate �
introduced on the horizon, while A0 and ki are constants.
Note that the generators of the rotational symmetries will
in general be linear combinations of the @

@xi
and thus these

need not have closed orbits.
An open question is whether the same occurs for D> 5

when one assumes8 ½D�1
2 � rotational Abelian symmetries;9

this is the maximal Abelian subgroup of SOðD� 1Þ. We
will not be able to address this general question here.
However, we are able to prove the existence of the
SOð2; 1Þ symmetry in a special case where the rotational

symmetry group enhances to Uð1Þ � SUðnÞ in 2nþ 2
dimensions and Uð1Þ2 � SUðnÞ in 2nþ 3 dimensions.
Such a symmetry typically10 occurs when all the angular
momenta are set equal in 2nþ 2 dimensions, or all but one
are equal in 2nþ 3 dimensions. The rest of this section
will be dedicated to the proof of this assertion. Readers
interested in the physical aspects of the extremal solutions
can jump directly to the examples discussed in Sec. II C.
For the sake of generality, consider horizons H

equipped with a metric �ab with an isometry group
Uð1Þm �G whose orbits are generically cohomogeneity-
1 Tm (torus) fibrations over a homogeneous space M ¼
G=H. We will also assume that the rest of the near-horizon
data F, ha is also invariant under this symmetry. Then the
full near-horizon geometry has an isometry group G2 �
Uð1Þm �G with D� 1 dimensional orbits, and hence is
also cohomogeneity-1. We restrict our attention to homo-
geneous spaces M that admit a unique (up to homothety)
G-invariant metric,11 which we denote by �g. It follows that
M cannot admit any G-invariant one-forms, for if such a
one-form � existed, then �gþ ��2 would yield a one-
parameter (�) family of G-invariant metrics contradicting
our original assumption. However,G-invariant closed two-
forms J may exist. Suppose K such two-forms JI (where
I 2 f0; 1; � � � ; Kg) exist and denote their respective poten-
tials by AI, so JI ¼ dAI. Note that the AI are invariant
under G up to a gauge transformation. Now, one can
introduce coordinates on the horizon xa ¼ ð�; xi; ypÞ,
where xi are adapted to Uð1Þm Killing fields and yp are
coordinates on M. Then, the most general Uð1Þm �G
invariant metric on the horizon can be written as

�abdx
adxb¼d�2þ�ijð�Þ�i�jþRð�Þ �gpqðyÞdypdyq

(2.6)

where �i ¼ dxi þ AiðyÞ and Ai are some linear combina-
tion of the AI i.e., Ai ¼ P

I�
i
IA

I. Note the action of G on
the Ai shifts them by a total derivative which can be
compensated by a shift in the xi to ensure G-invariance.
Observe that the �i are the only G-invariant one-forms on
H . Hence the most generalUð1Þm �G invariant one-form
on the horizon can be written as

h ¼ ��0

�
d�þ ��1kið�Þ�i (2.7)

where � ¼ �ð�Þ> 0.
7The generators of G2 are of course vð @@vÞ � rð @@rÞ and ð @@vÞ,

respectively.
8We use ½x� to denote the integer part of x.
9In fact there is the possibility of having black holes with less

symmetry than this since the rigidity theorem [56] only guaran-
tees the existence on one rotational isometry for generic sta-
tionary solutions.

10Note that there is no general proof of this statement, it is
merely based on the observation it occurs for all known
solutions.
11This is true for CPN ¼ SUðN þ 1Þ=SUðNÞ and SN ¼
SOðN þ 1Þ=SOðNÞ for example.
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Performing the coordinate transformation r! �ð�Þr in
the near-horizon metric (2.3) allows us to write it as

ds2¼Að�Þr2dv2þ2�ð�Þdvdrþd�2þRð�Þ �gpqðyÞdypdyq
þ�ijð�Þð�iþkið�ÞrdvÞð�jþkjð�ÞrdvÞ (2.8)

where A ¼ �2F� kiki and k
i ¼ �ijkj. We are now ready

to present our result:
Theorem: Consider a cohomogeneity-1 near-horizon ge-

ometry with an isometry group G2 �Uð1Þm �G, whose
orbits on the horizon are generically cohomogeneity-1 Tm

fibrations over a homogeneous space M ¼ G=H. Suppose
M admits a unique (up to homothety) G-invariant metric.
Introduce coordinates ðv; r; �; xi; ypÞ as described above in
(2.8). If R�i ¼ 0 and R�v ¼ 0, then ki are constants and

A ¼ A0� for some constant A0. If A0 � 0 the near-horizon
geometry then possesses Oð2; 1Þ �Uð1Þm �G symmetry,
where the Oð2; 1Þ has three-dimensional orbits if ki � 0
and two-dimensional orbits otherwise. If A0 ¼ 0 then
Oð2; 1Þ is replaced by the 2d Poincare group.

Proof: Direct calculation gives

R�i ¼ 1

2�
�ijðkjÞ0; R�v ¼ r

�

�
A0 � �0A

�
þ kiðkiÞ0

�
(2.9)

and thus the vanishing of these components implies ki are
constants and A ¼ A0� for some constant A0. The near-
horizon metric (2.8) then simplifies to

ds2 ¼�ð�Þ½A0r
2dv2þ2dvdr�þd�2þRð�Þ �gpqðyÞdypdyq

þ�ijð�Þð�iþkirdvÞð�jþkjrdvÞ: (2.10)

The 2d maximally symmetric space in the square brackets
is: (i) AdS2 when A0 < 0 or (ii) dS2 when A0 > 0, both of
which have Oð2; 1Þ isometry groups, or (iii) R1;1 if A0 ¼ 0
which has 2d Poincare symmetry. The volume form of this
2d space is dv ^ dr and thus under all its isometries rdv!
�ðrdvþ d	Þ where 	ðr; vÞ is some function (the choice
of sign depends on whether the isometry is orientation
preserving or not). Thus if under the isometries of the 2d
space we also shift xi ! �ðxi � ki	Þ, then the full near-
horizon metric is invariant under Oð2; 1Þ if A0 � 0 or the
2d Poincare group if A0 ¼ 0. Further, if ki � 0 the isome-
try of the 2d space has 3d orbits due to the shifts in xi.

Remarks:
(i) Clearly the conditions of the above theorem are

fulfilled for vacuum solutions with or without a
cosmological constant. Further it is easy to show it
is also valid when one couples scalar fields with a
potential. Presumably it can also be established in
the presence of Maxwell fields but we shall not
pursue this here.

(ii) We can prove that A0 � 0 (which rules out the dS2
case) and argue that only the AdS2 (A0 < 0) case is
relevant to black holes as follows [42]. The vr
component of the Ricci tensor of the near-horizon

metric (2.10) is Rvr ¼ A0 þ kiki
2� � 1

2 r̂2� where r̂ is

the metric connection on H . Integrate this over H
to conclude that, for a vacuum solution, A0 � 0 with
equality if ki 	 0 (in which case � is harmonic on a
compact space H and thus a constant). Therefore
the case A0 ¼ 0 is a direct product of R1;1 and a
Ricci flat metric onH which is a static near-horizon
geometry. In fact, the general analysis of static vac-
uum near-horizon geometries in [57] shows that they
are always (i.e., without the assumption of rotational
symmetry) a direct product of R1;1 and a Ricci flat
metric on H . In D ¼ 4, 5 it follows H is a torus
with a flat metric which one discounts in view of
the horizon topology theorems. In D> 5 a new
feature arises as one can have nontrivial D� 2 di-
mensional Ricci flat compact manifolds. Generically
Ricci flat metrics on compact spaces do not have
continuous isometries, except for flat torii factors.
However, such a situation is incompatible with our
cohomogeneity-1 assumption, as the only way to
have the correct number of Abelian rotational sym-
metries (i.e., ½ðD� 1Þ=2�) would be to have higher
cohomogeneity metrics.12 Note that with a negative
cosmological constant one must have A0 < 0.

(iii) The case relevant to vacuum black holes in 2nþ 2
and 2nþ 3 dimensions is when m ¼ 1 and m ¼ 2
respectively (corresponding to S1 or T2 fibrations)
and M ¼ CPn�1 so G ¼ SUðnÞ. From cohomology
we know there is a unique G-invariant closed two-
form, the Kähler form J, and hence Ji ¼ CiJ for
some constants Ci. All known black hole solutions
with these symmetries have equal angular momenta
in even dimensions (m ¼ 1) or all but one equal in
odd dimensions (m ¼ 2).

(iv) The case m ¼ 1, 2 with M ¼ S2n�2 is relevant to
black holes spinning in a single plane in 2nþ 2 and
2nþ 3 dimensions, respectively. While in the vac-
uum there are no known extremal solutions of this
type, in the presence of charge one can have near-
horizon geometries of this type. It is easy to see from
cohomology that there are no closed two-forms when
n > 2; in this case JI ¼ 0.

(v) The staticity conditions of the near-horizon metric
(2.10) imply either: (i) ki ¼ 0, or (ii) A0� ¼ �kiki,

12If one relaxes the cohomogeneity-1 assumption these static
cases can be made compatible with the correct number of rota-
tional symmetries (for high enough D). However, none of these
symmetries would have fixed points. While we are not aware of a
theorem stating such horizons are incompatible with asymptotic
flatness, we expect such horizons not to occur for asymptotically
flat black holes.
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and ki ¼ � �ki with �ki constant and J
i �ki ¼ 0. Case (i)

leads to near-horizon geometries which are warped
products of AdS2 withH . Case (ii) is more interest-
ing as one can show that in this case the near-horizon
geometry is a warped product of AdS3 with a com-
pact space. This will be of relevance if one is con-
sidering nonvacuum black ring near-horizon
geometries since these can be static [23,29].

C. Examples of near-horizon metrics

In this section we will write down examples of vacuum
near-horizon geometries and separate them according to
horizon topology. We will in fact present some solutions
with ringlike topology.

1. Spherical topology horizons

The only known vacuum solutions in this class are the
MP black holes. Thus, consider the extremal MP solution
in 2nþ 1 and 2nþ 2 dimensions.13 These solutions are
stationary and have n rotational isometries, so the isometry
group is Rt �Uð1Þn. The solution, in both cases, is speci-
fied by n independent rotation parameters ai, with i 2
f1; � � � ; ng and a mass parameter �. For convenience, we
write down the explicit metrics in the Appendix in Boyer-
Lindquist type coordinates ðt; r; �i;	iÞ, where the �i are
the direction cosines and the 	i’s are angles in each two
plane with Cartesian coordinates fxi; yig. In even spacetime
dimensions one has an extra direction cosine � since there
are an odd number of spatial dimensions. The direction
cosines�i and� (which take values in the range 0 � �i �
1 with �1 � � � 1) satisfy

Xn
i¼1

�2
i ¼ 1;

Xn
i¼1

�2
i þ �2 ¼ 1; (2.11)

in odd and even dimensions, respectively. The location of
the horizon is determined by the largest positive number rþ
such that14

�ðrþÞ ��r2þ ¼ 0 �ðrþÞ ��rþ ¼ 0; (2.12)

in odd and even dimensions, respectively, where

�ðrÞ ¼ Yn
i¼1

ðr2 þ a2i Þ: (2.13)

The extremal limit of these black holes is given by

�0ðrþÞ ¼ 2�rþ; �0ðrþÞ ¼ � (2.14)

in odd and even dimensions, respectively. The conditions
(2.12) and (2.14) can simultaneously hold only when the
black hole is spinning in all the two planes available i.e.,
we need ai � 08 i ¼ 1; � � � ; n. Without loss of generality
we will henceforth assume ai > 08 i ¼ 1; � � � ; n and use
(2.14) to eliminate �, the mass parameter.
The near-horizon geometry is obtained by taking the

near-horizon limit as described earlier such that r! rþ
(i.e., the horizon in these coordinates is at r ¼ rþ). The
procedure requires one to first introduce coordinates valid
on the horizon and is greatly facilitated if one works with
corotating coordinates as discussed in [42]. We present
some of the details relevant to these higher-dimensional
examples in the Appendix. The upshot of these calcula-
tions is that the near-horizon geometry of the 2nþ 1 and
2nþ 2 dimensional extremal MP black holes can be writ-
ten as

ds2¼Fþ
�
��00ðrþÞ
2�ðrþÞr

2dv2þ2dvdr

�
þ��i�j

d�id�j

þ�ij
�
d	iþ 2rþai

ðr2þþa2i Þ2
rdv

��
d	jþ 2rþaj

ðr2þþa2j Þ2
rdv

�
;

(2.15)

where

Fþ ¼ 1�Xn
i¼1

a2i �
2
i

r2þ þ a2i
; (2.16)

�ij ¼ ðr2þ þ a2i Þ�2
i 
ij þ

1

Fþ
ai�

2
i aj�

2
j ; (2.17)

and

��i�j
d�id�j ¼ Xn

i¼1

ðr2þ þ a2i Þd�2
i ;

��i�j
d�id�j ¼ r2þd�2 þXn

i¼1

ðr2þ þ a2i Þd�2
i

(2.18)

in odd and even dimensions, respectively.
The coordinates on the horizon are ð�i;	iÞ, where 	i

are 2�-periodic and the direction cosines are subject to the
appropriate constraint (2.11). Note that the coordinates r,
	i here are not the same as those in the original MP
solution (see the Appendix) The horizon in the above
coordinates is at r ¼ 0 and spatial sections are of topology
S2n�1 in 2nþ 1 dimensions and S2n in 2nþ 2 dimensions.
The metric on the horizon has Uð1Þn symmetry in both
cases and describes a cohomogeneity-(n� 1) metric on
S2n�1 and a cohomogeneity-n metric on S2n, respectively.
The full near-horizon geometry has SOð2; 1Þ �Uð1Þn sym-
metry and is also cohomogeneity-(n� 1) in 2nþ 1 dimen-
sions and cohomogeneity-n in 2nþ 2 dimensions. Thus,

13In the initial part of the section alone will we discuss black
holes in 2nþ 1 odd dimensions, for notational convenience.
Later on we will exclusively focus on D ¼ 2nþ 3 dimensions.
14The mass parameter �, which we will later have occasion to
refer to as �D and �d, should not be confused with the direction
cosines.
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for generic values of the parameters ai, the metric (2.15)
provides explicit examples of near-horizon symmetry en-
hancement, which are outside the assumptions of our theo-
rem proved in Sec. II B. These geometries generalize the
discussion of the extremal Kerr black hole near-horizon
geometry and the five-dimensional extremal MP black hole
near-horizon geometry discussed in [41,42].

While the near-horizon geometries given above are
complicated for generic values of the angular momenta
parameters ai, there are special cases in which the solu-
tions can simplify drastically. These cases arise when some
subsets of the ai are taken to be equal. As will be explained
in subsequent sections, for even dimensions, we will be
interested in the case when all the ai are taken equal,
whereas in odd dimensions we will want explicit expres-
sions for the case in which all but one of the ai are taken
equal. In either situation, the full MP black hole solutions
are cohomogeneity-2, and the corresponding near-horizon
geometries are cohomogeneity-1.

From (2.15) we find that the near-horizon geometry of
the extremal MP black hole in 2nþ 2 dimensions with
ai ¼ a is

ds2 ¼ fnð�Þ
2n

�
�ð2n� 1Þ2

2a2n
r2dv2 þ 2dvdr

�

þ a2fnð�Þ
2n� 1

d�2 þ 2na2sin2�

2n� 1
d�2

n�1

þ 4n2a2sin2�

ð2n� 1Þfnð�Þ
�
d	þ Aþ ð2n� 1Þ3=2

2n2a2
rdv

�
2

(2.19)

where

fnð�Þ ¼ 1þ ð2n� 1Þcos2�; (2.20)

and d�2
n�1 is the Fubini-Study metric on CPn�1 with

Kähler form J ¼ 1
2dA, and 	 is 2� periodic with

0 � � � �.15 The near-horizon geometry has SOð2; 1Þ �
Uð1Þ � SUðnÞ symmetry and the horizon is described by a
cohomogeneity-1 metric on S2n. The Uð1Þ � SUðnÞ has
S2n�1 orbits. Note that the n ¼ 1 case corresponds to the
near-horizon geometry of extremal Kerr discussed in
[41,42].

Finally, we consider an extremal MP black hole in D ¼
2nþ 3 dimensions, as this will prove useful for compari-
son to the black strings studied in the next section. Such a
black hole has Uð1Þnþ1 rotational symmetries in general,
and its near-horizon geometry for arbitrary angular mo-
menta parameters ai can be easily read off from (2.15) (one
must shift n! nþ 1). In the special case with ai ¼ a2 for
i ¼ 2; � � � ; nþ 1, the black hole solution becomes

cohomogeneity-2 with a cohomogeneity-1 near-horizon
geometry given by

ds2 ¼ Fþð�Þ
�
��00ðrþÞ
2�ðrþÞ r

2dv2 þ 2dvdr

�
þ �þð�Þ2d�2

þ ðr2þ þ a21Þcos2�d 2 þ ðr2þ þ a22Þsin2�d�2
n�1

þ 1

Fþð�Þ
�
a2sin

2�

�
d	þ Aþ 2rþa2

ðr2þ þ a22Þ2
rdv

�

þ a1cos
2�

�
d þ 2rþa1

ðr2þ þ a21Þ2
rdv

��
2

(2.21)

with

�þð�Þ2 ¼ r2þ þ a22cos
2�þ a21sin

2�;

Fþð�Þ ¼ r2þ�þð�Þ2
ðr2þ þ a21Þðr2þ þ a22Þ

(2.22)

where 	 is 2�-periodic, 0 � � � �=2 and we have de-
fined  	 	1.

16 The near-horizon geometry has
SOð2; 1Þ �Uð1Þ2 � SUðnÞ symmetry, and spatial cross
sections of the horizon are equipped with a
cohomogeneity-1 metric on S2nþ1. One can, of course,
further specialize to a1 ¼ a2 to obtain a homogeneous
metric, which we will refrain from writing down explicitly.
The n ¼ 1 case corresponds to the cohomogeneity-1 near-
horizon geometry of theD ¼ 5MP black hole discussed in
[41,42].

2. Black ring topology horizons

The only known exact vacuum solution with S1 � SD�3

horizon topology is the boosted MP string which is not
asymptotically flat (there are of course the perturbative
singly spinning black ring solutions of [19]). We will
consider only odd dimensions in this section, as we will
see only in this case can the string near-horizon geometry
correspond to that of an asymptotically flat black ring. To
construct the string we use the d ¼ 2nþ 2MP solution, so
the string lives in D ¼ dþ 1 dimensions. The string then
will have horizon topology S1 � S2n with symmetry
Uð1Þnþ1 (which is the correct number of rotational sym-
metries in this dimension) and thus provide us with a
candidate black ring near-horizon geometry.
To proceed, we simply take the extremal MP black hole

in d ¼ 2nþ 2 dimensions and add a flat direction dz2 and
boost ðt; zÞ ! ðcosht� sinhz;� sinhtþ coshzÞ.
The explicit string metric is given in (A4) in the
Appendix. We then take the near-horizon limit in the
manner described in the Appendix. After some calculation
one finds (denoting cosh ¼ c and sinh ¼ s)15We have written the squashed S2n in terms of a polar angle �

and a round S2n�1. A round odd-dimensional sphere with coor-
dinates ð�i; 	iÞ can be written as

P
n
i¼1 d�

2
i þ �2i d	

2
i ¼ ðd	þ

AÞ2 þ d�2
n�1 and

P
n
i¼1 �

2
i d	i ¼ d	þ A, where �i are direc-

tions cosine.

16Here we have written the squashed S2nþ1 in terms of an angle
 and a polar angle � leaving a round S2n�1 which we have then
written in terms of CPn�1 quantities as in the previous footnote.
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ds2 ¼ Fþ
c

�
� �00ðrþÞ
2c�ðrþÞ r

2dv2 þ 2dvdr

�
þ ��i�j

d�id�j

þ �ij

�
d	i þ!i

dzþ
2rþai

ðr2þ þ a2i Þ2
rdv

��
d	j þ!j

dzþ
2rþaj

ðr2þ þ a2j Þ2
rdv

�
þ c2dz

2 (2.23)

where

!i
 ¼ sai

r2þ þ a2i
; (2.24)

and Fþ is defined in (2.16). In this case, the metric on the horizon is

�abdx
adxb ¼ ��i�j

d�id�j þ �ijðd	i þ!i
dzÞðd	j þ!j

dzÞ þ c2dz
2

¼ r2þd�2 þXn
i¼1

ðr2þ þ a2i Þ½d�2
i þ�2

i ðd	i þ!i
dzÞ2�

þ 1

Fþ

Xn
i;j¼1

ai�
2
i aj�

2
j ðd	i þ!i

dzÞðd	j þ!j
dzÞ þ c2dz

2: (2.25)

The coordinate ranges for the �i and 	
i are the same as

that for the MP black hole i.e., 	i are 2�-periodic, 0 �
�i � 1, and �1 � � � 1. We denote the period of z by
2�‘. The full near-horizon geometry (2.23) is
cohomogeniety-n and has SOð2; 1Þ �Uð1Þnþ1 isometry.
Spatial sections of the horizon have topology S1 � S2n,
and the metric on the horizon (2.25) describes a
cohomogenity-n metric on S1 � S2n.

As in the black hole case discussed previously, the near-
horizon of the extremal MP black string simplifies consid-
erably in the case where all angular momenta parameters ai
are taken to be equal. The full black string solution then
becomes cohomogeneity-2 and the corresponding near-
horizon geometry is cohomogeneity-1. The near-horizon
geometry of the extremal MP string inD ¼ 2nþ 3 dimen-
sions with ai ¼ a8 i is

ds2 ¼ fnð�Þ
2nc

�
�ð2n� 1Þ2

2a2nc
r2dv2 þ 2dvdr

�

þ a2fnð�Þ
2n� 1

d�2 þ 2na2sin2�

2n� 1
d�2

n�1

þ 4n2a2sin2�

ð2n� 1Þfnð�Þ
�
d	þ Aþ sð2n� 1Þdz

2na

þ ð2n� 1Þ3=2
2n2a2c

rdv

�
2 þ c2dz

2; (2.26)

where we follow the notation used in (2.19). The near-
horizon geometry in this special case has SOð2; 1Þ �
Uð1Þ2 � SUðnÞ symmetry and spatial cross sections of
the horizon have topology S1 � S2n and are equipped
with a cohomogeneity-1 metric on S1 � S2n. The n ¼ 1
case corresponds to the Kerr string discussed in [42].

D. What physical data can be extracted from a
near-horizon geometry?

In this section we will clarify which quantities can be
expected to be calculable from the near-horizon geometry
alone, without any knowledge of the full black hole solu-
tion. Apart from being of intrinsic interest our analysis
should also clarify aspects related to the entropy function
formalism [58] and the attractor mechanism—see [40] for
a review and [53,54] for earlier discussions on obtaining
conserved charges from the near-horizon.
One quantity which can be obviously computed from the

near-horizon geometry alone is the area of spatial sections
of the horizonAH ¼ R

H
ffiffiffiffi
�

p
. However, this is only mean-

ingful if it is expressed as a function of the physical charges
of the black hole.
Wewill restrict our discussion to vacuum asymptotically

flat black holes in D spacetime dimensions, possessing
Uð1Þnþ1 spatial isometry with generators @

@	i
(so i ¼

1; � � � ; nþ 1) where the angles 	i are chosen to have
period 2�. These generators are orthogonal at asymptotic
infinity.
While it is easy to calculate the near-horizon geometry

of a known solution, as was done for the MP black holes
and black strings in Sec. II C 1 and II C 2 respectively, our
goal is to try to use near-horizon geometries to learn about
new solutions which are yet to be constructed. In particular,
we would like to know whether (2.23) is isometric to the
near-horizon geometry of an asymptotically flat black ring
in D ¼ 2nþ 3 dimensions. We will find that the Komar
integrals evaluated on the horizon capture some of the
basic physical parameters, but not all. Specifically, deter-
mining the mass needs some additional data not present in
the near-horizon geometry. The basic issue is that the near-
horizon limit loses the information regarding the asymp-
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totic stationary Killing field and this prevents one from
directly calculating the mass.

Angular momenta: Let us first investigate how the an-
gular momenta can be calculated from the near-horizon
geometry. The angular momentum of the black hole can be
calculated from the Komar integrals

Ji ¼ 1

16�GðDÞ
N

Z
H r

?dmi; (2.27)

where mi denotes the metric dual one-form to @
@	i

. The

integral is taken over H r which is the compact co-dimen-
sion-two manifold defined in a neighborhood of the hori-
zon by the Gaussian null coordinates v ¼ constant and
r ¼ constant with r � 0 (so H 0 ¼ H ). Usually the
Komar integral is taken over the sphere at infinity SD�21 ;
the difference is an integral over a manifold whose bound-
ary is the union of the two compact manifolds which
vanishes if R�� ¼ 0 (i.e., for vacuum solutions).

Now let us work in Gaussian null coordinates, (2.1),
prior to taking the near-horizon limit (thus all quantities
depend on r). It is useful to work in a noncoordinate basis,
with the vielbeins ðeþ; e�; eAÞ such that g��dx

�dx� ¼
2eþe� þ eAeA, defined by

eþ ¼ dv; e� ¼ 1

2
rfðr; xÞdvþ drþ rhaðr; xÞdxa;

eA ¼ êA: (2.28)

Here êA are a set of vielbeins for the metric on H r so
�abðr; xÞdxadxb ¼ 
ABê

AêB. In this basis

mi ¼ rhiðr; xÞeþ þ ðmiÞBeB (2.29)

where hi ¼ hað@	i
Þa. Therefore,

? dmijv;r¼const ¼ ½hiðxÞ þOðrÞ�e1 ^ e2 � � � ^ eD�2

(2.30)

where as before hiðxÞ ¼ hið0; xÞ. Thus for small r > 0

Ji ¼ 1

16�GðDÞ
N

Z
H r

ffiffiffiffi
�

p ðhiðxÞ þOðrÞÞ

¼ 1

16�GðDÞ
N

Z
H

ffiffiffiffi
�

p jr¼0hiðxÞ þOðrÞ; (2.31)

and hence we must have

Ji ¼ 1

16�GðDÞ
N

Z
H

ffiffiffiffi
�

p
hiðxÞ; (2.32)

where �mn and hi are the metric �mnðr; xÞ and the vector
hiðr; xÞ evaluated at r ¼ 0, which coincide with the corre-
sponding quantities appearing in the near-horizon limit
metric (2.3).

Thus one can indeed calculate the angular momenta Ji
from the near-horizon metric (2.3) alone. Note that this is
not a priori guaranteed—one could have had contributions

from terms like ð@rhiÞjr¼0, which are inaccessible from the
near-horizon data alone. We find it convenient to recast this
formula into the coordinates introduced in (2.5):

Ji ¼ 1

16�GðDÞ
N

Z
H

ffiffiffiffi
�

p
��1ki: (2.33)

There is however an important caveat in the determina-
tion of the angular momenta. In general, from the near-
horizon geometry alone, it is not possible to know which
Killing fields on the horizon correspond to the generators
@
@	i

chosen to be orthogonal at asymptotic infinity. One can

evade this problem for spherical topology black holes since
the Killing fields will have the same number of fixed points
on the horizon as at infinity and thus a natural identification
exists. However, for ringlike topology there is not a unique
way of identifying the generator of the S1.
Mass: Let us now consider the Komar integral associated

to the Killing vector @
@v . It turns out to be more illuminating

to do this for a general black hole (2.1) (not necessarily
extremal). Let V be the one-form whose metric dual is @

@v so

V ¼ rfðr; xÞeþ þ drþ rhAðr; xÞeA (2.34)

and thus

ð?dVÞjv;r¼const ¼ ðfð0; xÞ þOðrÞÞe1 ^ e2 � � � ^ eD�2:

(2.35)

Hence employing the argument outlined above for com-
puting the angular momenta, we obtain

Qv 	 �
�
D� 2

D� 3

�
1

16�GðDÞ
N

Z
H r

?dV

¼ �
�
D� 2

D� 3

�
1

16�GðDÞ
N

Z
H

ffiffiffiffi
�

p
fð0; xÞ: (2.36)

For an extremal black hole we immediately learn that
Qv ¼ 0, as the extremality condition (� ¼ 0, see (2.2))
forces fð0; xÞ ¼ 0. The Killing vector @

@v is corotating and

can be written as

@

@v
¼ @

@t
þ�i

@

@	i

(2.37)

where @
@t is the stationary Killing field (asymptotically

timelike). Therefore

M ¼
�
D� 2

D� 3

�
�iJi (2.38)

where we define the mass M through the usual Komar
integral associated with the stationary Killing field @

@t .

The near-horizon geometry has no knowledge of the
Killing field @

@t and hence there is no way of inferring the

mass from the near-horizon data alone. Put differently, one
can evaluate Ji as argued above from near-horizon data.
However, to complete the determination of the mass we
need to know the angular velocities �i, which are mea-
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sured relative to a stationary observer at infinity. This is the
data one is missing from the near-horizon geometry.

As an aside, for a nonextremal black hole note the above
provides an efficient proof of the Smarr relation [59] (see
also [60]), illustrating the advantage of using Gaussian null
coordinates. The integral forQv can be evaluated simply in
terms of the surface gravity (2.2). Since this is constant
over the horizon we have

Qv ¼
�
D� 2

D� 3

�
�AH

8�GðDÞ
N

(2.39)

whereAH ¼ R
H

ffiffiffiffi
�

p
is the area of the horizon. Using this

we can write

M ¼
�
D� 2

D� 3

��
�AH

8�GðDÞ
N

þ�iJi

�
; (2.40)

for any vacuum asymptotically flat spacetime with a regu-
lar event horizon, as is well known.

Finally, we remark that the existence of a near-horizon
geometry does not necessarily imply that there exists an
extremal black hole solution with such a near-horizon
geometry and prescribed asymptotics (e.g., asymptotically
flat or AdS). For example, one would not expect the near-
horizon geometry of an extremal boosted Kerr string to
correspond to the near-horizon geometry of an asymptoti-
cally flat black ring for generic boost values. This is
because we know from [42] that the known vacuum ex-
tremal black ring in 5d [9] has a near-horizon geometry
isometric to the boosted Kerr-string with a particular value
of boost parameter. Further, one might expect that this

known vacuum extremal black ring solution is the most
general solution with two rotational isometries in five
dimensions cf., [61]. It would be interesting to understand
more generally what obstructions can occur when one tries
to integrate out from the horizon and match to a solution
with prescribed asymptotics.17

III. EXTREMAL MP BLACK HOLES

In this section we will consider the physical quantities of
extremal MP black holes in various dimensions. We dis-
cuss the extremal locus for these solutions in terms of
dimensionless parameters and the phase diagram for these
solutions. A curious fact we observe is that in dimensions
D � 6 it is possible to stay on the extremal locus while
sending the angular momenta in certain planes to infinity.
We show that it is therefore possible to obtain highly
distorted extremal black hole horizons with spherical to-
pology. Some of the results we obtain for the MP black
holes will be useful for comparison with the conjectured
black ring solution we propose in Sec. VI. Some of these
results have been previously discussed in [15,62].

A. Parametrization of MP black holes

The physical quantities of interest viz. the mass, the
angular momenta and velocities and the area can be ex-
pressed in terms of the parameters ai appearing in the MP
solution (A1) and (A2). However, it is convenient to write
the formulae in terms of rþ (which is determined in terms
of ai for extremal solutions) to keep the expressions com-
pact. We have

Odd dimensional MP ðD ¼ 2nþ 3Þ Even dimensional MP ðd ¼ 2nþ 2Þ

M ¼ A2nþ1

16�GðDÞ
N

ð2nþ 1Þ�D M ¼ A2n

16�GðdÞ
N

ð2nÞ�d

�i ¼ ai
r2þ þ a2i

�i ¼ ai
r2þ þ a2i

Ji ¼ A2nþ1

8�GðDÞ
N

ai�D Ji ¼ A2n

8�GðdÞ
N

ai�d

AH ¼ A2nþ1�Drþ AH ¼ A2n�drþ;

�D ¼ �ðrþÞ
r2þ

�d ¼ �ðrþÞ
rþ

:

(3.1)

Note that the function �ðrÞ is given in (2.13) (with the
replacement n! nþ 1 in the first column). Here Ap
denotes the area of an unit Sp, i.e., Ap ¼ 2�ðpþ1=2Þ=�ðp2Þ.
In writing (3.1) we have separated the quantities that need
information about the asymptotic geometry (M and �i)
from those that can be determined from the near-horizon
alone (Ji and AH).

To discuss the physical behavior of the solutions as a
function of the parameters, it is useful to define dimen-

sionless variables. We find it convenient to define reduced
area and angular momenta by fixing the mass of the
solution as in [19]. These are defined by the following
expressions in D spacetime dimensions:

17This is important to understand the constraints on the entropy
function formalism [40,58], where one works exclusively with
the near-horizon geometry.
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aH ¼
�
AD�2

�
D� 2

16�GðDÞ
N

�
D�2

�
1=D�3 AH

ðMÞD�2=D�3

ji ¼ 1

2

�
AD�2

ðD� 2ÞD�2

16�GðDÞ
N

�
1=D�3 Ji

ðMÞD�2=D�3
:

(3.2)

The normalizations have been chosen such that the
D-dimensional Schwarzschild black hole has unit reduced
area aH. For the reduced angular momenta we have chosen
conventions that are natural generalizations of the defini-
tions used in five dimensions.18 Using the explicit expres-
sions for the physical parameters it is easy to check that

Odd dimensional MP ðD ¼ 2nþ 3Þ Even dimensional MP ðd ¼ 2nþ 2Þ
ji ¼ ai

ð�DÞ1=2n
ji ¼ ai

ð�dÞ1=2n�1

aH ¼ rþ
ð�DÞ1=2n

aH ¼ rþ
ð�dÞ1=2n�1

:

(3.3)

B. The extremal locus

We now turn to the implications of extremality for MP
black holes in various dimensions. To begin with, recall
that in four dimensions the extremal Kerr black hole is
given by a single point in the reduced parameter space j ¼
1 (recall that we fix the total mass). The situation in five
dimensions is already more interesting as we have a ‘‘mod-
uli space’’ of solutions; the extremality condition can be
written as

a1 þ a2 ¼ ffiffiffiffiffiffi
�5

p ) j1 þ j2 ¼ 1: (3.4)

We therefore see that there is a one-parameter family of
solutions (labeled by, say, j1) which takes values in a finite
domain, j1 2 ð0; 1Þ.

In D> 5 there is also a nontrivial moduli space of
solutions, albeit with one interesting feature—these moduli
spaces are noncompact. This arises because it is possible to
attain extremality while sending some of the angular mo-
menta to infinity. To understand this behavior it is useful to
characterize the extremal locus explicitly.

To understand the general picture in odd dimensions,
realize that the Eqs. (2.12) and (2.14) are symmetric in the
ai with both rþ and ai having length dimension one. �D is
therefore of scaling dimension 2n. The simplest way to get
the extremal locus is to eliminate rþ between the two
Eqs. (2.12) and (2.14); this will give

�D ¼ EDða1; � � � ; anþ1Þ; with

EDð�a1; � � � ; �anþ1Þ ¼ �2nEDða1; � � � ; anþ1Þ: (3.5)

Likewise one can carry out the exercise for even spacetime
dimensions where we get

�d ¼ Edða1; � � � ; anÞ; with

Edð�a1; � � � ; �anÞ ¼ �2n�1Edða1; � � � ; anÞ: (3.6)

Using the above homogeneity property together with the

definitions of the reduced parameters it is easy to see that
the extremal locus can be expressed as a function of the
reduced angular momenta alone,

E pðj1; � � � jnÞ ¼ 1; p 2 fd;Dg: (3.7)

The precise expression is not that easy to determine in
general, but it is easy to get explicit formulae for low-lying
dimensions. We already know from (3.4) that

E 5ðj1; j2Þ ¼ ðj1 þ j2Þ2: (3.8)

Similarly, one can check that in six dimensions

E6ðj1; j2Þ ¼ 1

3

ffiffiffi
2

3

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j21 � j22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j41 þ j42 þ 14j21j

2
2

qr

� ð2j21 þ 2j22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j41 þ j42 þ 14j21j

2
2

q
Þ (3.9)

while the seven-dimensional MP black holes give

E7ðj1; j2; j3Þ ¼
Q

3
i¼1ð~r2þ þ j2i Þ

~r2þ
;

~r2þ 	 1

3

0
@�X3

i¼1

j2i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

j4i �
X3
i<j¼2

j2i j
2
j þ 3

vuuut
1
A:

(3.10)

18While it is physical to measure the area with respect to a
Schwarzschild black hole of the same mass, the normalization
for the angular momenta is not uniquely characterized. Our
choice differs from the normalization chosen in [19], where
the authors found it convenient to keep the formulae for black
rings simple; we have simple expressions for MP black holes
(3.3).
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To check the assertion that the moduli spaces of ex-
tremal MP are noncompact in higher dimensions it suffices
to examine the behavior of Ep as the ji get large. In six

dimensions it is easy to check that j2 
 1 implies
E6ðj1; j2Þ � 2j1j

2
2 which gives nontrivial solutions to

(3.7). The extremal loci are illustrated in Figs. 1–3, for
six-, seven- and eight-dimensional MP black holes, respec-
tively. The plots of the extremal MP phase space as a
function of the jis have been described before in the
literature: Fig. 1 (left) has previously appeared in [15,62]

FIG. 3 (color online). The phase space of extremal eight-dimensional MP black holes. Left: The extremal locus as a function of the
reduced angular momenta variables ðj1; j2; j3Þ. Right: The phase plot aHðj1; j2Þ. The maximum occurs at the symmetric point j1 ¼
j2 ¼ j3 and the limiting behavior of the surface at large values of one of the ji coincides with that of the six-dimensional MP curve. We
can also take two angular momenta large in which case the solution behaves like a four-dimensional Kerr black hole.

FIG. 2 (color online). The phase space of extremal seven-dimensional MP black holes. Left: The extremal locus as a function of the
reduced angular momenta variables ðj1; j2; j3Þ. Here the allowed region is noncompact, with the arms of the fan extending off to
infinity. Also note that as one of the ji, say j1, gets large, the surface projected onto the ðj2; j3Þ plane starts to resemble a rescaled
version of the five-dimensional MP extremal locus, see Fig. 5. Right: The phase plot aHðj1; j2Þ. Note that the maximum occurs at the
symmetric point j1 ¼ j2 ¼ j3 and the limiting behavior of the surface at large values of ji coincides with that of the five-dimensional
MP curve, see Fig. 5.

FIG. 1 (color online). The phase space of extremal six-dimensional MP black holes. Left: The extremal locus in the ðj1; j2Þ plane.
Right: The area as a function of j1; note that the maximum area configuration is the symmetric one, j1 ¼ j2.
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while Figs. 2 and 3 (left) were first presented in [15]. In all cases the noncompactness of the moduli space is clearly visible.
A special case of interest for comparison to extremal black rings in Sec. VI is the odd-dimensional MP black

holes with all but one angular momenta equal. In this case it is easy to show that (as before we take ai ¼ a2 for i ¼
2; � � � ; nþ 1)

r2þ ¼ �n� 1

2n
a21 þ

1

2n
a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2a21 þ 4na22

q
(3.11)

which leads to

E Dðj1; j2Þ ¼
0
@2nj22 � ðn� 1Þj21 þ j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2j21 þ 4nj22

q
2n

1
An�1

0
@2nj22 þ ðn2 þ 1Þj21 þ ðnþ 1Þj1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ2j21 þ 4nj22

q
2n

1
A:

(3.12)

Even in this case the moduli space is noncompact; as j2 ! 0 one has

j1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þn�1

nn

s
1

jn�1
2

: (3.13)

Finally, there is another special case of interest; as is clear from the plots Figs. 1–3, the area for the MP black holes has a
distinct maximum—this occurs when all the angular momenta are equal. Physically this is because the MP black hole is
fattest at this point, by virtue of being uniformly distorted in all planes. Setting all the ai ¼ awe have from (2.14) and (3.1)

Odd dimensional MP ðD ¼ 2nþ 3Þ rþ ¼ affiffiffi
n

p �D ¼ ðnþ 1Þnþ1

nn
a2n jsym ¼

ffiffiffi
n

p
ðnþ 1Þnþ1=2n

Even dimensional MP ðd ¼ 2nþ 2Þ rþ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p �d ¼ ð2nÞn
ð2n� 1Þn�1=2

a2n�1 jsym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p

ð2nÞn=2n�1

(3.14)

where we have named the reduced angular momentum at
this symmetric point jsym.

C. Membrane limits of MP black holes

The fact that the extremal MP black holes inD> 5 have
a noncompact parameter space allows us to consider inter-
esting limiting behavior of the solutions. In particular,
following the discussion of [63], we can take some of the
angular momentum variables to infinity and obtain an
extremally spinning black brane. It is actually easy to see
that this can be done at the level of the near-horizon
geometry (2.15). Consider the following limit for the 2nþ
1 and 2nþ 2 dimensional extremal MP:

aj ! 1; j ¼ 1; � � � ; p (3.15)

with ak (for k ¼ pþ 1; � � � ; n), rþ, and define

�̂ ¼ �Qp
j¼1 a

2
j

; �j ¼ aj�j; j ¼ 1; � � � ; p

(3.16)

which are all kept fixed. In this limit one can show:

�0ðrþÞ
�ðrþÞ

! �̂0ðrþÞ
�̂ðrþÞ

;

�00ðrþÞ
�ðrþÞ ! �̂00ðrþÞ

�̂ðrþÞ
; with �̂ðrÞ ¼ Yn

k¼pþ1

ðr2 þ a2kÞ;

(3.17)

and rþ now satisfies (2.12) and (2.14) with �ðrÞ ! �̂ðrÞ.
After taking this limit the near-horizon geometry of the

MP metric becomes

ds2 ¼ F̂þ
�
� �̂00ðrþÞ
2�̂ðrþÞ

r2dv2 þ 2dvdr

�

þ Xp
j¼1

d�2
j þ �2

jd	
2
j þ

Xn
k;l¼pþ1

��k�l
d�kd�l

þ Xn
k;l¼pþ1

�kl

�
d	k þ 2rþak

ðr2þ þ a2kÞ2
rdv

�

�
�
d	l þ 2rþal

ðr2þ þ a2l Þ2
rdv

�
(3.18)

where

�kl ¼ ðr2þ þ a2kÞ�2
k
kl þ

1

F̂þ
ak�

2
kal�

2
l (3.19)

and
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F̂ ¼ 1� Xn
k¼pþ1

a2k�
2
k

r2þ þ a2k
(3.20)

and

Xn
k;l¼pþ1

��k�l
d�kd�l ¼

Xn
k¼pþ1

ðr2þ þ a2kÞd�2
k;

Xn
k;l¼pþ1

��k�l
d�kd�l ¼ r2þd�2 þ Xn

k¼pþ1

ðr2þ þ a2kÞd�2
k

(3.21)

in odd and even dimensions, respectively. Note thatP
n
k¼pþ1�

2
k ¼ 1 and �2 þP

n
k¼pþ1�

2
k ¼ 1 in odd and

even dimensions, respectively. Therefore, in the odd-
dimensional case we are left with exactly the near-horizon
geometry of a 2nþ 1� 2p dimensional extremal MP
times R2p, and in the even-dimensional case we are left
with the near-horizon geometry of 2nþ 2� 2p dimen-
sional MP times R2p.

Therefore, we can reduce the even-dimensional solution
to afour-dimensional extreme Kerr membrane (p ¼ n� 1)
and the odd-dimensional case to a five-dimensional MP
membrane (p ¼ n� 2). This implies that in even dimen-
sions one can take all but one of the angular momenta to
infinity, while in odd dimensions we need to keep two of
the angular momenta finite as we take the rest to infinity.
This feature is clearly visible in Fig. 4 where we show the
projection of the extremal locus of MP black holes in 7d
and 8d to the ðj1; j2Þ plane at different values of j3; the
extremal locus degenerates in the limit to that of 5d and 6d
MP black holes, respectively.

IV. EXTREMAL MP BLACK STRINGS

One of the main motivations behind our exploration of
higher-dimensional vacuum extremal black holes is to
learn about putative black ring solutions. Before discussing
the ring configurations we analyze some properties of
boosted MP black strings in D ¼ 2nþ 3 dimensions.

This will be of use later, since one expects multiply spin-
ning thin black rings to look like MP black strings.
The MP black string metrics in D ¼ 2nþ 3 dimensions

are constructed by taking a d ¼ 2nþ 2 dimensional MP
black hole (A2), adding a line with coordinate z and
boosting ðt; zÞ ! ðcosht� sinhz;� sinhtþ coshzÞ.
As before we will denote s 	 sinh and c 	 cosh. In

the MP string metric we take z to be a compact coordinate
on an S1 with radius ‘ so z� zþ 2�‘, and therefore the
spacetime is asymptotically Rd�1;1 � S1. The resulting
MP black string metric is parametrized by ð�d; ai; ; ‘Þ
where i ¼ 1; � � � n and ð�d; aiÞ are the MP black hole
parameters in d ¼ 2nþ 2 dimensions. Note that extrem-
ality is achieved by taking�d ¼ Edða1; � � � ; anÞ as in (3.6).
The explicit metric is given in the Appendix in Boyer-
Lindquist coordinates, see (A4). These MP black strings
have a regular horizon at r ¼ rþ (inherited from that of the
d-dimensional MP black hole) whose spatial sections have
topology S1 � S2n.
Recall that one can extend the ADM construction of the

stress-energy tensor in asymptotically flat spacetimes con-
taining pointlike sources, to spacetimes with p-branes.
Now, consider p-dimensional extended sources in linear-
ized gravity assuming that the brane directions are trans-
lationally invariant. The stress-tensor for the p-brane
world-volume is then [64]

Tab ¼ 1

16�GðDÞ
N

Z
SD�p�2

d�D�p�2r
D�p�2�i

� ½�abð@ihcc þ @ih
j
j � @jh

j
iÞ � @ihab�; (4.1)

where a, b ¼ 0; . . . ; p denote the world-volume directions,
i, j ¼ 1; . . . ; D� p� 1 denote the transverse directions to
the brane, and �i is the unit normal to the transverse
(D� p� 2)-sphere. One should note that h�� ¼ g�� �
��� is not gauge invariant, and in the expression above we

have to use Cartesian coordinates. For the boosted MP
black strings in D ¼ 2nþ 3, the components of the
ADM stress-tensor are given by

5
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3

2

1
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3
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1

0
0 1 2 3 4 5 0 1 2 3 4 5

FIG. 4 (color online). The extremal loci of MP black holes illustrating the membrane limit. Left: The behavior for 7d MP; the curves
correspond to increasing values of j3 moving from right to left. As j3 gets large the extremal locus degenerates into a straight line as for
the 5d MP, cf., (3.8) and Fig. 5. Right: Eight-dimensional MP where again we plot the curves are for different j3 values (increasing
from right to left)—compare the limiting behavior with the 6d MP extremal locus, Fig. 1.
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Ttt ¼ A2n

16�GðDÞ
N

�d½ð2n� 1Þc2 þ 1�; (4.2a)

Ttz ¼ A2n

16�GðDÞ
N

�dð2n� 1Þcs; (4.2b)

Tzz ¼ A2n

16�GðDÞ
N

�d½ð2n� 1Þs2 � 1�: (4.2c)

The mass and the momentum along the string can be
computed by integrating the energy and momentum den-
sities19

M0 ¼
Z 2�‘

0
dzTtt ¼ 2�‘Ttt; (4.3a)

P0 ¼
Z 2�‘

0
dzTtz ¼ 2�‘Ttz: (4.3b)

Defining an angular coordinate  0 as  0 ¼ z
‘ , so that  0 �

 0 þ 2�, the ‘‘angular momentum’’ carried by the string
along the  0 direction is simply given by

J0 ¼ ‘P0: (4.4)

Of course, in addition to this ‘‘angular momentum’’ the
string also carries angular momenta in each R2 � Rd�1;1

which are parametrized by the ai. These can be calculated
using the standard Komar integrals near the horizon (i.e.,
using (2.27)) and can be shown to agree with the values for
the d-dimensional MP black hole.

Given this data we can write down the physical parame-
ters, in terms of those of the MP black hole in d ¼ 2nþ 2
dimensions (ai and �d) and the period of the compact
circle ‘:20

M0 ¼ A2n

8GðDÞ
N

½ð2n�1Þc2þ1�‘�d; �0
i¼

ai
cðr2þþa2i Þ

�0
 ¼

s
c‘

; J0i¼
A2n

4GðDÞ
N

c‘ai�d;

J0 ¼
A2n

8GðDÞ
N

ð2n�1Þsc‘2�d; A0
H ¼ 2�cA2n‘rþ�d:

(4.5)

Note that these charges satisfy a Smarr-like relation (cf.,
[65–67] for discussions of first law and Smarr relation for
black branes):

D� 3

D� 2
M0 ¼ �0

iJ
0
i þ�0

 J
0
 � Tzz

D� 2
2�‘ (4.6)

and first law

dM0 ¼ �0
idJ

0
i þ�0

 dJ
0
 � Tzzdð2�‘Þ: (4.7)

Notice that both the first law and the Smarr relation incor-

porate explicit contributions coming from Tzz which is the
effective pressure or tension of the string. Also note that
when Tzz ¼ 0 the Smarr relation and first law look like
those for asymptotically flat black holes, provided one
identifies the mass, etc.

V. EXTREMAL BLACK RINGS IN FIVE
DIMENSIONS

To set the stage for our analysis of extremal black rings
we begin by recalling the situation in five dimensions
where exact solutions are known.21 The original two-
parameter singly spinning black ring solution [2] does
not admit an extremal limit. However, its multiply spinning
three-parameter generalization [9] does (both solutions are
balanced configurations). Thus, in five-dimensional vac-
uum gravity an exact solution representing an asymptoti-
cally flat extremal black ring is known. It is uniquely
parametrized by its two angular momenta which must lie
in the range J1 > 3 J2 > 0where J1 is the angular momen-
tum along which the S1 of the ring is aligned and J2 is the
angular momentum along the transverse S2.
Since this solution is extremal it admits a near-horizon

limit. In [42] it was shown that the resulting near-horizon
geometry of the extremal black ring solution simplifies
dramatically and it is given by a special case of the near-
horizon geometry of the boosted Kerr-string. The near-
horizon geometry of the extremal boosted Kerr-string is

ds2 ¼ 1þ cos2�

2 cosh

�
� 1

2a2 cosh
r2dv2 þ 2dvdr

�
þ ‘2cosh2d 02 þ a2ð1þ cos2�Þd�2

þ 4a2sin2�

1þ cos2�

�
d	0 þ ‘ sinh

2a
d 0 þ rdv

2a2 cosh

�
2
;

(5.1)

where  is the boost parameter, a is the Kerr parameter, ‘
is the string radius and  0 and	0 are 2� periodic (	0 is the
azimuthal angle of Kerr). This geometry is regular for any
a > 0 and ‘ > 0. From the results of [42] it can be seen that
the extremal black ring near-horizon geometry is given by
(5.1) with the following constraints on the parameters:

sinh 2 ¼ 1;
‘

a
> 4: (5.2)

The bounds on the parameter ‘a can be better understood as

follows. Noting that ð2þ�Þ2
2� is a monotonically decreasing

function for 0< �< 2 which ranges over the interval
ð1; 4Þ, we can uniquely parametrize ‘=a by

‘

a
¼ ð2þ �Þ2

2�
; for 0< �< 2: (5.3)

19We will label all string quantities by ‘‘primed’’ and reserve
the unprimed symbols for the corresponding black ring
quantities.
20Note that we present the momentum and boost along the
string in terms of quantities adapted to rotational isometries
rather than translational isometries for future use.

21See also the recent discussion of five-dimensional extremal
rings in [14,47].
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This choice of parametrization is such that � defined in
(5.3) is the same � with which the black ring solution is
written in [9]. Further, ð	0;  0Þ are related to ð	; Þ of the
extremal ring (defined as being orthogonal at infinity, with
 aligned along the S1 of the ring22) by

	0 ¼ 	þ  ;  0 ¼  ; (5.4)

@	 ¼ @	0 ; @ ¼ @ 0 þ @	0 : (5.5)

Given the near-horizon geometry of the boosted Kerr-
string (5.1), the interpretation of the constraints on the
parameters (5.2) is not apparent, as regularity of the ge-
ometry does not require them. However, they can be simply
explained as follows. The value of the boost parameter
actually corresponds to exactly the value which makes
the Kerr-string tensionless. As a consequence, from the
generalized Smarr relation (4.6) and first law for strings
(4.7), such solutions obey the standard Smarr relation and
first law for asymptotically flat black holes (upon identify-
ing the mass etc.). Thus the tensionless condition for a
string seems to be a necessary condition for its near-
horizon geometry to correspond to that of an asymptoti-
cally flat black hole. The second constraint on the parame-
ters ‘=a > 4 can be written in terms of the radius of the S1

and S2 as follows [47]: R1 ¼ ‘
ffiffiffi
2

p
and R2 ¼ a

ffiffiffi
2

p
and

therefore R1=R2 > 4. This tells us that for a ring, in con-
trast to a string, one cannot take arbitrary values for the
radii of the S1 and S2. There is yet another way of viewing
this constraint on the parameters. The angular momenta for
the extremal ring can be written in terms of the Kerr-string
parameters:

J ¼ �
ffiffiffi
2

p
a‘

Gð5Þ
N

ð‘þ 2aÞ; J	 ¼ 2
ffiffiffi
2

p
�

Gð5Þ
N

a2‘ (5.6)

leading to

J 
J	

¼ 1þ ‘

2a
> 3: (5.7)

Therefore the constraint on the parameters ð‘; aÞ is exactly
equivalent to the lower bound of J of the ring. This

provides a simple interpretation for the bounds on these
parameters, as a black ring in asymptotically flat space
needs a nonzero angular momentum along the ring to
support it from collapsing. This is in contrast to a black
string which may have arbitrarily small momentum along
the string direction.

Thus, we have shown how the restrictions on the pa-
rameters (5.2) of the near-horizon geometry both originate
from properties of asymptotically flat black holes.
However, we do not have a good understanding of the

origin of the coordinate change (5.4) (although see
Sec. VIC). Note that this necessarily must contain infor-
mation regarding how one can match the near-horizon
geometry to flat space at asymptopia.
Although certain physical properties can be computed

from the near-horizon geometry alone, as argued earlier,
quantities like the mass cannot in general. However, here
we note that all the physical quantities of the extremal
black ring are identical to those of the corresponding Kerr-
string once (5.4) is taken into account (i.e., they do not
receive ‘�1 corrections to all orders). Explicitly, the mass
and angular velocities of the extremal black ring written in
terms of the string parameters are

M ¼ 3�

Gð5Þ
N

a‘; � ¼ 1ffiffiffi
2

p
‘
; �	 ¼ 1

2
ffiffiffi
2

p
a
� 1ffiffiffi

2
p
‘
:

(5.8)

In fact the massM, J	,� does not actually depend on the

coordinate change (5.4). The fact that the angular momenta
match is not a surprise, since as we argued earlier these can
be computed from the near-horizon data once one knows
how to identify the angles. However, from this point of
view, it is not clear why the mass and angular velocities
should also coincide (of course it suffices to explain why
the angular velocities match as then the mass follows from
the Smarr relation).
The physical parameters of this solution are best ex-

pressed in terms of reduced quantities

aH ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
27

256�

s
AH

ðGð5Þ
N MÞ3=2 ; j ;	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27�

32Gð5Þ
N

vuut J ;	

M3=2

(5.9)

which are used to plot the extremal locus of the solutions in
Fig. 5. These plots have been described previously in [14]
(right figure for the area) and [15] (left figure for the
moduli space of solutions in five dimensions). We have a
simple analytic expression for the extremal locus using
(5.6), (5.8), and (5.9)

E BR
5 ðj ; j	Þ ¼ 8j	ðj � j	Þ ¼ 1: (5.10)

Another interesting aspect of the five-dimensional ex-
tremal solutions is uniqueness [14]. As is well known the
neutral singly spinning black ring solutions lead to a dis-
crete nonuniqueness; in a small window of the angular

momentum J (more precisely,
ffiffiffiffi
27
32

q
� j < 1) there are

three solutions (two black rings and anMP black hole) with
the same conserved charges. When we examine stationary
extremal black holes in five dimensions with two rotational
Killing fields, we find that uniqueness is restored. The
situation is described in Fig. 5; on the left plot the black
ring curve comes arbitrarily close to the MP curve but does
not intersect. The strict inequality J > 3J	 for doubly

spinning extremal black rings excludes this intersection

22We use conventional ring coordinates where  refers to the
angle in the plane of the ring in contrast to the choice made by
[9].
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point. A priori there is no reason why this should happen,23

however, this observation will prove useful in our attempt
to uncover properties of higher-dimensional extremal
black ring geometries.

Therefore, to summarize, it appears that the extremal
black ring solution is related to the extremal boosted Kerr-
string solution in two logically distinct ways: the first
coming from the equivalence of the near-horizon geome-
tries as explained above, and the second coming from the
fact that they have the same asymptotic charges (in the
sense that the ring quantities receive no corrections in ‘�1

relative to the string’s to all orders).

VI. EXTREMAL BLACK RINGS IN HIGHER
DIMENSIONS

Having explored the space of known vacuum extremal
solutions in diverse dimensions, we now turn to (yet to be
found) black ring geometries in spacetime dimensions
greater than five. Since exact vacuum solutions represent-
ing such objects are not known, our entire discussion will
be based on the assumption that such solutions actually
exist. Nonetheless, based upon the results presented pre-
viously, we will argue that one can still determine some
important physical properties of such solutions.

A. Extremal black rings as black strings

To begin with it is useful to develop an intuitive picture
for black rings in higher dimensions. As demonstrated in
[19] very thin black rings can be modeled as a bent black
strings; this analysis was for black rings spinning only in
the plane of the ring carrying no intrinsic angular momen-
tum in the transverse directions. We expect that this class
of solutions does not incorporate extremal black rings; this
is because there are no known regular extremal vacuum
solutions with vanishing angular momenta in any single
plane. So we will concentrate exclusively on rings which

spin in every available two plane. This is different from the
analysis of [19]; nevertheless, very thin extremal rings can
be thought of as multiply spinning black strings.
Moreover, for extremal solutions we have access to

another well-defined limit in which we expect black rings
to look like black strings: the near-horizon limit.24 After
taking the near-horizon limit, we expect that the curvature
of the ring disappears and is that of a straight string.25 This
suggests that the near-horizon geometry of an extremal
black ring is that of an extremal black string. Indeed this
is exactly the case in five dimensions: the near-horizon
geometry of the extremal black ring is isometric to that of a
boosted Kerr black string [42]. However, we will see this
picture is only useful for odd-dimensional black rings in
D ¼ 2nþ 3 for n � 1.
As we move away from the near-horizon geometry, we

do need to bend the S1 of the string to ensure that we have
an asymptotically flat solution. This will not be possible for
a generic boosted string. The reason is the tension carried
by the string, determined by the Tzz component of the
effective stress tensor (4.2c). If we attempt to bend a tensile
string we need to add energy-momentum into the system,
taking us away from vacuum solutions. To ensure that we
are able to wind the string into a ring, we demand that the
string be tensionless. Using (4.2c) this leads to the condi-
tion

Tzz ¼ 0 ) sinh ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p : (6.1)

Note that this the same as the condition derived in [19] for
the balance of singly spinning rings. The difference be-
tween our analysis and theirs is that they consider boosted
Schwarzschild strings while we are interested in boosted
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FIG. 5. Phase diagram for extremal MP black holes and doubly spinning black rings inD ¼ 5. The gray curve corresponds to the MP
black hole and the black one to the black ring. Left: Plot of the j	 vs j curve, where j	 is the S2 angular momentum. Note that the

point of intersection of the black ring and the black hole is excluded by the bounds on the angular momenta for the ring. Right: Plot of
the aH vs j curve.

23We note that a similar phenomenon occurs for supersymmet-
ric black rings which must have J > J	 and the topologically
spherical BMPV black hole which has J ¼ J	.

24This limit can be taken in a regime in which the gravitational
self-interaction of the ring is strong i.e., not just for very thin
rings.
25This is because to move to corotating coordinates one needs
to shift  !  �� v. Further, to take the near-horizon limit v
gets rescaled by a factor which is sent to1. Therefore this is like
scaling the original  by a factor which tends to 1.
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extremal MP strings. While the two solutions are physi-
cally different, the leading contribution to the tension only
arises from the mass of the solution and not the angular
momentum, so the balance condition is unchanged.

We now describe some general expectations for ex-
tremal black ring solutions, and will then go on to describe
the two limits mentioned above more precisely.

Symmetries: In D> 5 we expect asymptotically flat
black ring solutions to occur with conserved charges M,
Ji with i ¼ 1; � � �nþ 1 where n ¼ ½ðD� 1Þ=2� � 1, and
symmetry R�Uð1Þnþ1. Such solutions are presumably
not always uniquely specified by their conserved charges.
Consider the subset of this family of solutions with zero
surface gravity. We expect such solutions to possess all Ji
nonzero (which is true for all known vacuum extremal
black holes) and further to be uniquely parametrized by
these conserved charges, as is the case in five dimensions
[14]. Let Ji, for i ¼ 2; � � � ; nþ 1, be the angular momenta
in the direction of the transverse sphere SD�3 of the ring
and J 	 J1 be the angular momentum along the S1 of the

ring (orthogonal to SD�3 at infinity). The full solution will
be generically cohomogeneity D� ðnþ 2Þ. However, if
Ji ¼ J for i ¼ 2; � � � ; nþ 1 we expect the solution to be
cohomogeneity-2 in odd dimensions with rotational sym-
metry SUðnÞ �Uð1Þ2 (such a symmetry enhancement oc-
curs for all known solutions when one sets all but one
angular momenta equal).

As mentioned above there are two distinct limits in
which we expect these geometries to simplify, namely,
the infinite radius limit and the near-horizon limit which
we will now turn to. The first applies to both nonextremal
and extremal black rings in any dimension, while the
second holds only for extremal black rings in odd
dimensions.

Infinite radius limit: Let R1 be the radius of the S
1 of the

ring26 and R2 be the effective radius of the S
D�3 defined by

its area. In the limit R1

R2
! 1, we expect the geometry of the

black ring to be given by that of a tensionless boosted MP
black string, as is true for all known examples.27 Hence in
the thin ring limit (R1 
 R2), the geometry of the black
ring is well approximated by that of a straight MP black
string with OðR2=R1Þ corrections. This fact was recently
exploited in [19], where approximate solutions describing
thin, singly spinning black rings for D> 5 were obtained,
by considering perturbations of Schwarzschild black
strings. An important result obtained from this analysis
was that approximate solutions could only be found pro-
vided that the strings were tensionless, i.e., Tzz ¼ 0, (6.1),
which agrees with the physical picture developed above.
Note that the tensionless condition does not receive cor-

rection to order R2=R1 and therefore is valid not only in the
strict infinite radius limit, but also for large but finite
R1=R2.
Near-horizon limit: Now consider the near-horizon limit

of such extremal black rings. This will lead to near-horizon
geometries specified by nþ 1 parameters and with spatial
sections of the horizon of topology S1 � SD�3. When Ji ¼
J (for i ¼ 2; � � � nþ 1), in odd dimensions, we expect the
near-horizon geometry to be cohomogeneity-1 with rota-
tional symmetry enhanced to SUðnÞ �Uð1Þ2. From the
theorem we proved in Sec. II B this implies that the near-
horizon geometry should have SOð2; 1Þ symmetry. We
expect such a symmetry enhancement in the generic higher
cohomogeneity case. Therefore the extremal black ring
near-horizon geometries should have SOð2; 1Þ �Uð1Þnþ1

symmetry.
Examples of near-horizon geometries satisfying such

conditions are easily constructed in odd D as we now
explain. Consider the boosted MP-string in D dimensions
(i.e., one obtained by liftingD� 1 dimensional MP). Such
a solution is specified by �, ‘, ai,  where ‘ is the string
radius,  is the boost parameter and�, ai are the mass and
angular momenta parameters (in the transverse directions
to the string), respectively, so i ¼ 1; � � �m ¼ ½ðD�
2Þ=2�). The geometry clearly has symmetry R�
Uð1Þmþ1. Now take the extremal limit which leads to a
solution uniquely specified by ‘, ai,  which are mþ 2
parameters. As we showed earlier, the near-horizon ge-
ometry of this solution has SOð2; 1Þ �Uð1Þmþ1 symmetry,
is specified by mþ 2 parameters and spatial sections of its
horizon have S1 � SD�3 topology. A necessary condition
required for these solutions to correspond to the near-
horizon limits of black rings is that the symmetry of the
solution matches, i.e., m ¼ n. This occurs if and only if D
is odd and thus D ¼ 2nþ 3. In this case the boosted
extremal MP-string has nþ 2 parameters. Thus, for each
boost value one has an nþ 1 dimensional family of near-
horizon geometries with the same symmetry, topology and
number of parameters as one would expect for an extremal
black ring. We derived the explicit form of these near-
horizon geometries in Sec. II C 2, see Eq. (2.23).
Therefore we expect the near-horizon geometry of odd-

dimensional extremal rings to be given by that of the
appropriate MP-string for some particular value of the
boost. In fact the boost must be such that the MP-string
is tensionless, i.e., given by (6.1). The reasoning for this is
as follows: we have argued that (6.1) must hold in the
infinite radius limit. Further, this condition (6.1) does not
receive corrections at leading order in R2=R1 (at least in the
singly spinning limit), and so we expect it to hold for all
values of R1=R2. Therefore
Conjecture: The near-horizon geometry of an asymptoti-

cally flat extremal vacuum black ring in D ¼ 2nþ 3> 5
spacetime dimensions is globally isometric to the near-
horizon geometry of a boosted extremal MP black string

26Since in general this can vary over the transverse sphere we
will measure this at the poles of this sphere.
27This was first observed for charged black rings [68] and more
recently [19] has a detailed discussion of this issue.
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carrying nonvanishing angular momentum in all two
planesR2 � R2n at a specific value of boost given by (6.1).

Note that from the explicit near-horizon geometry we
constructed earlier (2.23), this implies that

R1 ¼ ‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

2n� 1

s
; R2 ¼ �ðrþÞ1=2n: (6.2)

In particular if ai ¼ a (so Ji ¼ J), then R2 simplifies and
we have R1=R2 ¼ ‘=a. Also observe that this conjecture
implies that the area of the horizon of the black ringAH is
given by AH ¼ A0

H where A0
H is that of the MP black

string (4.5).

B. Conserved charges of extremal black rings

We now turn to a discussion of the conserved charges of
the ring, making use of the observations in Sec. II D re-
garding which parameters can be read off from the near-
horizon.

First observe that the angular momenta of an asymptoti-
cally flat vacuum black hole can be calculated from the
near-horizon geometry provided one knows how to iden-
tify the generators of the rotational symmetries on the
horizon with those at infinity (which are defined as lying
in orthogonal two-planes). For a spherical topology black
hole with Uð1Þnþ1 symmetry the generators of rotational
symmetries are easily identified as the topology of the
horizon is the same as at infinity. However, for a black
ring, such an easy identification does not occur. This is
because the generator of the S1 is not uniquely defined as it
has no fixed points. The rotational symmetries of the S2n do
have fixed points and these can be identified with the n
rotational Killing fields at infinity. Thus Ji for i ¼
2; � � � ; nþ 1 can be calculated from the near-horizon ge-
ometry, but not J 	 J1. However, it must be the case that

@ ¼ @ 0 þ Xnþ1

i¼2

ci@	0
i
; @	i

¼ @	0
i

(6.3)

where @ 0 is the generator of the S1 of the string in the near-

horizon limit. As a coordinate change this reads:  0 ¼  
and 	0

i ¼ 	i þ ci , where ð 0; 	0
iÞ are the S1 and S2n

coordinates of the string, respectively. Further, ci must be
integers to ensure the generators of the S1 have closed
orbits of period 2�. It follows that

J ¼ J0 þ Xnþ1

i¼2

ciJ
0
i; Ji ¼ J0i (6.4)

where J0 , J0i can be evaluated from the near-horizon ge-

ometry and are given by (4.5). Therefore one can determine
all angular momenta, up to the set of integers ci. From the
explicit expressions for the angular momenta of the MP-
string, (4.5) we find

J ¼ J0 
�
1þ Xnþ1

i¼2

ci
ai
‘

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p
�
: (6.5)

These observations imply the following, using (6.2): for the
extremal black rings the Ji (for i ¼ 2; � � � ; nþ 1) do not
receive corrections in R2=R1 to any order, whereas J can

only receive a correction of order R2=R1 (if any of the ci�
0).
We will now turn to quantities which cannot be deduced

from knowledge of the near-horizon limit alone. The most
important such quantity is the ADM mass M of the ex-
tremal black ring solution. We will make the following
assumption: the massM does not receive any corrections in
R2=R1 as compared to the mass of the string, i.e.,M ¼ M0
where M0 is given in (4.5). This fact is true in five dimen-
sions as discussed earlier in Sec. V.
Before closing this section we note the following:

Consider the corotating Killing vector of the extremal
ring which is null on the horizon @v ¼ @t þ� @ þ
�i@i where @t is the asymptotic stationary Killing vector.
From this it follows that � ¼ �0

 and �0
i ¼ �i þ ci� .

Therefore, from the Smarr relation for the tensionless MP-
string ((4.6) with Tzz ¼ 0), we obtain

D� 2

D� 3
M0 ¼ �0

 J
0
 þ�0

iJ
0
i ¼ � J þ�iJi ¼ D� 2

D� 3
M:

(6.6)

The second equality follows from changing from ð 0; 	0
iÞ

(string) to ð ;	iÞ (black ring) coordinates, whereas the
third equality follows from the Smarr relation for asymp-
totically flat extremal black holes (which we know must
hold in general). This shows that the Smarr relation is
actually insensitive to the knowledge of the integers ci
and can therefore be used to determine M given �0

i and
�0
 . However, these angular velocities, like the mass, are

not encoded in the near-horizon limit. Thus, instead of
assuming the mass M does not receive any R2=R1 correc-
tions, one could assume the�0

i,�
0
 do not receive any such

corrections which then, via the Smarr relation, allows one
to deduce this fact for the mass as well. Note that this
argument relies crucially on the fact that of the MP-string
being tensionless—otherwise one would have an extra
term in the Smarr relation coming from that of the string
(4.6). Therefore, assuming the angular velocities receive no
corrections relative to the string is a stronger condition
than assuming this for the mass. We will not actually need
to make this stronger assumption to deduce the phase
diagrams.
Summary: We have argued that all conserved charges of

the ring are the same as those of the string, except for
possibly J . Further, the only way J can differ from that

of the string is via a term of order R2=R1, (6.5), if and only
if any of the ci � 0.
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C. Determining angular momentum in the plane
of the ring

In this section we will now present an argument which
will allow us to deduce the set of integers ci discussed in
the previous section and therefore J for the conjectured

extremal black rings. The upshot of our discussion will be
that all the ci vanish for D> 5. Recall, from Sec. V we
know that ci ¼ 1 in D ¼ 5.

Following [19] consider thin extremal black rings,
which correspond to R1 
 R2. The authors of [19] con-
structed perturbative solutions describing higher-
dimensional singly spinning black rings by computing
the leading R2=R1 ¼ Oð‘�1Þ correction to the boosted
Schwarzschild black string and matching this onto a black
ring solution valid in the weak field approximation. To
repeat the analysis for extremal black rings, one would
need to construct similar solutions by perturbing away
from MP black strings. This requires knowledge of the
appropriate sources for a multiply spinning black ring in
the weak field approximation.28 The source encoding the
angular momentum of a ring in the  direction can be
simply modeled as a current density along the ring.
Intuitively, this is easy to understand once one thinks of
the ring as a bent black string; in the string picture one has
just momentum density which produces a current. For
singly spinning rings, the rest of the source should then
reduce to that of Schwarzschild at each point on the ring.
Now, in the weak field approximation, a Schwarzschild
black hole is flat space perturbed by a point mass for
source; because these black holes possess only one length
scale the weak field approximation is equivalent to the far-
field behavior.

If we wish to generalize this and write down appropriate
sources for the MP-string, at each point on the ring one
needs a source corresponding to that of an MP black hole.
However, such rotating black holes possess other intrinsic
length scales (associated to the angular momenta) and
therefore the weak field source is not given simply by the
far-field solution. Indeed, the source for a Kerr black hole
is a complicated distribution of negative mass density,29

and one expects MP black holes to have similarly compli-
cated sources. It is possible however that one may need to
only focus on slowly spinning black holes a� rþ. In this
case one can utilize a point source of a spinning particle,
see [15], because we have established a hierarchy of scales
and are ignoring physics at subhorizon scale.30 In any case,

we will present an argument that sidesteps the precise
knowledge of the sources of multiply spinning black rings.
To do so we will appeal to some results of the analysis of
the singly spinning case [19], which we now recall.
For thin singly spinning black rings, the leading 1=‘

correction to the geometry displays interesting distinctions
between D ¼ 5 and D> 5. In particular, the physical
parameters of the ring receive 1=‘ corrections in five
dimensions, but remain uncorrected at this order in higher
dimensions. The reason for this can be traced to regularity
of the solutions. To see this in more detail consider the
linearized solutions constructed in [19] which are valid in
the overlap region r0 � r� ‘ where r0 is the character-
istic scale of the transverse SD�3 (so r0 � R2) and r is a
radial coordinate. The relevant component of the metric
looks like

gt 0 ¼ C‘

�
r0
r

�
D�4

�
1þ r

‘
cos�þOð‘�2Þ

�
(6.7)

where ð�; rÞ are a set of ring-adapted coordinates intro-
duced in [19] and recall z ¼ ‘ 0. This perturbation is
regular in D> 5 but is not regular in D ¼ 5. This can
only be seen by comparing to the regular linearized solu-
tion for a ring in asymptotically flat space which is valid for
r0 � r; in the overlap region this solution possesses a
constant term in gt at Oð‘�1Þ which ensures that @ has

a fixed point in the correct place at infinity ( here refers to
true S1 direction at infinity). To cure this pathology in (6.7)
one needs to shift t! t� �r0 

0. This results in a shift of
the physical parameters measured at infinity at order
Oð‘�1Þ. In higher dimensions the constant term in the
expansion of the weak field solution (r0 � r) occurs at a
higher order Oð‘4�DÞ and thus the physical parameters are
not affected at Oð‘�1Þ.
Now, consider constructing a multiply spinning ring

solution in asymptotically flat space in the weak field
approximation. The weak field source for such a solution
must depend on R1 (the ring radius), R2 the radius of the
transverse sphere, and the angular momenta Ji in the
transverse sphere. Such a solution is valid for R2 � r.
Second, we take a linearized ring solution about the MP-
string; this will depend on ‘, rþ and the MP rotation
parameters ai; note that for extremal solutions rþ ¼
rþðaiÞ � ai. The regime of validity for such a solution is
rþ � ‘. Now, we would like to match these two solutions
in an analogous manner to the analysis in [19] which led to
(6.7) for singly spinning rings. From our near-horizon
analysis R1 � ‘ and R2 � rþ. Since there are two scales
in the problem ‘, rþ the trick is to work in a region where
both of the approximate solutions above are valid. This
occurs when rþ � r� ‘. By continuity with the singly
spinning case, we expect the linearized solution in this
overlap region to look like

28In order to construct the geometry of a black hole in a weak
field approximation, we take g�� ¼ ��� þ h�� and consider
appropriate effective sources for the stress tensor. h�� in
transverse-traceless gauge r�h

�� ¼ 0 and h
�
� ¼ 0 satisfies

hh�� ¼ �16�GðDÞ
N T��.

29A superluminally spinning disk of matter located on the plane
of rotation and bounded by the ring-singularity of a Kerr black
hole [69].
30We thank Roberto Emparan for emphasizing this point to us.
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gt 0 ¼C‘

�
rþ
r

�
D�4

�
1þX1

p¼1

Fp

�
ai
‘
;�i

��
r

‘

�
p
�
; with

Fp

�
ai
‘
;�i

�
¼Fpð0;�iÞþO

�
ai
‘

�
(6.8)

where Fpð0; �iÞ is a function of the direction cosines �i,

and is equal to Fpð�Þ in the solution (6.7) and C is a

constant independent of ‘.
The important thing to note is that the constant term in

gt 0 in (6.8) is contained in FD�4 ¼ Oð1Þ as ‘! 1. This

constant term is affected by gauge transformations: under
t! tþ 
‘ 0 we find that FD�4 ! FD�4 þ ‘D�4
 and
thus 
 ¼ Oð‘4�DÞ for a finite limit. Such transformations
do not change @t but do shift @ 0 ! @ 0 � 
‘@t. We want

to find the value of 
 which shifts @ 0 to the vector which

matches onto @ . However, even without its knowledge we

see that such a matching predicts that J ¼ J0 þ
ðD�3
D�2Þ
‘M. Therefore, using M ¼ Oð‘Þ and J0 ¼ Oð‘2Þ
(which follow from (4.5)) we learn that
J ¼ J0 ½1þOð‘4�DÞ�.31

However, in the previous section we argued that J ¼
J0 ½1þOð‘�1Þ� (see (6.5)), if and only if any of the ci � 0,

or J ¼ J 0 if all ci ¼ 0. Therefore we see that for D> 5

one must have all ci ¼ 0 which implies

J ¼ J0 (6.9)

and so in fact @ ¼ @ 0 . Observe this argument is only

valid for D> 5. Indeed, in D ¼ 5 one does in fact get a
correction to J as can be seen explicitly from (5.6).

The main point is that despite the lack of knowledge of
the precise sources, the leading falloff at large distances is
given by the mass term—for a string in D dimensions, this
is r4�D. This then implies that any corrections to the
physical parameters occur at Oð‘4�DÞ, which is ruled out
by the near-horizon analysis discussed in Sec. VI B. We
may summarize the results of this section by the following.

Claim: For D ¼ 2nþ 3 � 7, the Killing field that gen-
erates translations along the string direction in the near-
horizon limit is proportional to the Killing field that gen-
erates rotations along the S1 of the ring defined to be in a
plane orthogonal to the transverse S2n at asymptotic
infinity.

D. Bounds on black ring parameters and uniqueness

We have determined the physical parameters of extremal
black rings as explained above. To fully specify the solu-
tion, we must provide bounds on these parameters. In

general, for a black ring in asymptotically flat space one
expects the angular momentum along the S1 of the ring to
be bounded from below since it provides the centrifugal
force to compensate the ring’s tension and gravitational
self-attraction. This is of course in contrast to a black string
whose linear momentum can be arbitrarily small.
In Sec. V we have seen that uniqueness is not violated

for five-dimensional extremal black objects with a single
connected horizon. Rather, the bounds on the ring parame-
ters admit extremal ring solutions whose conserved
charges are arbitrarily close to the conserved charges of
the MP black hole, but never equal. If we assume that this
phenomenon extends to higher dimensions we can deter-
mine a lower bound for J ; this would be defined to be the

value where the extremal ring locus intersects the extremal
D-dimensional MP locus. It turns out that the MP locus
always intersects with our conjectured extremal black ring
locus32 as we will show in the next section. The upshot of
this proposal to constrain the parameters is that uniqueness
would not be violated.
Rather than working directly with the conserved charges

and the area we will revert to reduced variables. Based
upon our arguments, the reduced quantities (3.2) for the
conjectured extremal black rings are33 (recallD ¼ 2nþ 3)

ji ¼ N n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

2n� 1

s
ai

ð�d‘Þ1=2n
¼ N n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

2n� 1

s
qi

EdðqiÞ1=2n

j ¼ N n

ffiffiffiffiffiffi
2n

p
2

‘

ð�d‘Þ1=2n
¼ 1

2
N n

ffiffiffiffiffiffi
2n

p 1

EdðqiÞ1=2n

aH ¼ N n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

2n� 1

s
rþ

ð�d‘Þ1=2n
(6.10)

where

N n ¼
�

1

2
ffiffiffiffi
�

p �ðnþ 1
2Þ

�ðnþ 1Þ
�
1=2n

: (6.11)

The second equality follows from using the extremal locus
of the d-dimensional MP black hole (3.6) together with its
homogeneity properties and qi ¼ ai=‘. The dimension-
dependent normalization is the same as what we used
earlier for the MP black hole in (3.2) which was chosen
to keep reduced quantities for MP black holes simple. This
convention differs from those used in [19], which are
chosen to simplify expressions for black rings. Explicitly,

the reduced quantities |a of [19] are related to ours by |a ¼

31Note that such a matching also predicts that M receives no
correction to this order, which is consistent with our assumption
that it receives no corrections to all orders made in Sec. VIB.

32This is not the case when ci � 0. In these cases the conserved
charges of the spherical black hole solutions cannot become
arbitrarily close to black ring ones. We have checked this
explicitly for the equal angular momenta case, but believe it to
be generic.
33Having argued that the angular direction in the plane of the
ring  is the same as direction of the string  0 ¼ z

‘ we will
henceforth drop the distinction between the two and use j to
indicate the reduced angular momentum along the ring.
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1ffiffiffiffi
2n

p
N n

ð12Þ1=2nja. Note that due to the arbitrariness in the

choice of the normalization of the reduced quantities it is
only meaningful to compare ratios of reduced quantities in
a given dimension.

The task now is to compare the reduced quantities for the
rings to that of the MP black holes and plot the resulting
phase diagrams.

E. Phase diagrams of extremal black rings

We are now ready to draw the phase diagram for the
higher (odd-)dimensional extremal black objects following
our proposal. First of all we need to find the extremal locus
for black rings generalizing (5.10), analogous to the ex-
pression obtained in (3.7) for MP black holes. Essentially,
we are after the relation between j , the angular momen-

tum in the  direction and the ji, the transverse angular
momenta. The data necessary to carry out this exercise is
the reduced angular momenta for the ring, given explicitly
in (6.10) and the extremal locus for even-dimensional MP
black holes specified by the function EdðjiÞ. Using the
homogeneity properties of the functions EdðjiÞ, it is easy
to show that the desired extremal locus for the black rings
is given by

j ¼ �n
EdðjiÞ 	

N 2n
n

2

ð2nÞn
ð2n� 1Þn�1=2

1

EdðjiÞ (6.12)

which can be reexpressed in a terms of a homogeneous
function EBRðj ; jiÞ as

EBR
D ðj ; jiÞ 	

j EdðjiÞ
�n

¼ 1 with

EBR
D ð�j ; �jiÞ ¼ �2nEBR

D ðj ; jiÞ: (6.13)

Since the general expression for EdðjiÞ for MP strings is
complicated, it is useful to consider the simple case of
equal rotational parameters (ji ¼ j) on the S2n. Exploiting
the results for extremal MP black holes in d ¼ 2nþ 2
dimensions with equal angular momenta on S2n, (3.14),
the black ring extremal locus simplifies to

j ¼ N 2n
n

2

1

j2n�1
: (6.14)

This can now be compared with the behavior of the
extremal MP black hole in D ¼ 2nþ 3 dimensions with
all but one equal angular momenta. The extremal locus in
this case is given for the black holes by (3.12) with j1 ¼ j 
and j2 ¼ j. The resulting phase diagrams forD ¼ 7, 9, 11,
are depicted in Fig. 6, where we plot the extremal loci for
the MP black holes and the extremal black rings. An
important feature, consistent with uniqueness, is demand-
ing that the potential intersection point of the MP black
hole and black ring curves is a strict lower bound for j of

the black ring, called ðj Þmin; for these solutions we predict

j > ðj Þmin (i.e., strict inequality as in the 5d case) thus

avoiding an intersection.

In Table I we give the values of ðj Þmin. To remove the

effects of dimension-dependent normalization coefficients
involved in defining the reduced parameters (3.2) and
(6.10), we present these values compared to the value of
the maximal area MP black hole in D ¼ 2nþ 3 dimen-
sions, i.e., jsym of (3.14). Curiously, this minimal value

decreases with dimension, lending credence to the lore that
gravity is weaker in higher dimensions (and thus one ought
to be able to balance rings more easily).34 In the general
situation, i.e., for MP black holes with arbitrary rotation in
the transverse S2n, we continue to have an intersection
between the ring and black hole extremal loci. We expect
this intersection always happens along a codimension one
surface; in seven dimensions the surfaces intersect along a
connected curve while in nine dimensions the intersection
occurs along a connected surface.35 This is seen clearly in
Fig. 7, where we see the intersection of the surfaces of
extremal MP and black rings in D ¼ 7. The intersection
happens along a connected curve, which extends off to
large values of j2 or j3 and thereby allows extremal rings
with arbitrarily small values of j ; hence there exist ex-

tremal rings with ðj Þmin ! 0. This feature is a novel

prediction of our analysis for black rings in D> 5.

F. Predictions for extremal black rings

We now discuss a few features of extremal black rings
that our analysis reveals. We have already mentioned that
higher-dimensional extremal rings can stay balanced with
arbitrarily small angular momentum in the plane of the ring
(essentially by being spun up in the transverse directions),
see Fig. 8. This is in fact in line with the observation made
for doubly spinning (nonextremal) rings five dimensions in
[14] that increasing the transverse spin tends to reduce
ðj Þmin. Intuitively, this might be attributed to a spin-spin

interaction of antipodal components of the ring along the
S1.36

Entropy: For large j , the black rings are entropically

more favorable (cf., Fig. 6) than the MP black holes. While
such behavior is expected for singly spinning rings (nec-
essarily nonextremal), due to the ultraspinning instability
of the MP black holes [63], in the extremal context its
origins are different. One heuristic reason for this is that
thin rings are like hula-hoops, while ultraspinning black
holes (even extremal) are like disks; for given mass the
disks tend to be thinner than rings and hence have smaller

34For D ¼ 5 the minimal value of the true j as in (5.9)
measured thus is 1.5, while the string result of using j from
(6.10) (i.e., not accounting for the mixing of angles) gives 1.707.
This is a consequence of the 1=‘ effects in five dimensions.
35It is interesting that the intersection happens along a con-
nected codimension one hypersurface of the extremal loci. A
priori it was not guaranteed that the surfaces intersect; at best
one could have expected them to meet at a disjoint union of
lower-dimensional hypersurfaces.
36We thank Veronika Hubeny for emphasizing this point to us.
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area [19]. Of course, we are far from Newtonian physics in
this strong gravity regime of extremal black holes, but the
intuitive argument serves to illustrate the essential distinc-
tion between the objects.

From Fig. 6 it is clear that the black ring area is mono-
tonically decreasing with j for the special case of all the

transverse angular momenta being equal, unlike the MP
black hole where the area is maximized at the symmetric
point (j ¼ j). This is because the ring picks out a pre-

ferred direction and so the area has no characteristic fea-
ture as a function of j . On the contrary, the absence

preferred choice for MP black holes results in an asym-
metric behavior of aHðj Þ, with a characteristic maximum.

This monotonicity property for the rings is lost when we
consider generic rotations in the transverse S2n.
Membrane limit: In Sec. III C we showed that the ex-

tremal MP black holes have an ultraspinning limit follow-
ing [63]; this limit appears to be more subtle for extremal
black rings. To see this recall that above we demonstrated
that the membrane limit commutes with the near-horizon
limit for MP black holes. Now consider taking the limit in
the near-horizon of an extremal black string with horizon
topology S1 � S2n in D spacetime dimensions. We expect
to obtain a black brane with horizon topology S1 �
S2n�2p �R2p by the arguments of Sec. III C. Ignoring
the flat space factors thus generated (arising from the
R2s where we sent ai ! 1), we have a black string in
someD� 2p dimensions. This string is however tensile—
the pressurelessness condition (6.1) being dimension de-
pendent leads to differing values of the boost for the string
and the membrane (in the former case we have the boost as
in (6.1), while in the latter the boost would have to be
sinh2 ¼ 1

2n�2p�1 ). So assuming that a potential mem-

brane limit commutes with the near-horizon limits for the
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FIG. 6. Phase diagram for extremal black holes and black rings with equal angular momenta on the transverse S2n inD ¼ 7, 9, 11 (in
this order.) In all cases, the gray curve corresponds to the MP black hole and the black one to the black ring. The corresponding phase
diagram for D ¼ 5 is given in Fig. 5. The ring curve is terminated at the point of intersection with the MP curve; this preserves
uniqueness and provides a lower bound on the allowed value of j . Left: Plot of the j vs j curve, where j ¼ ji is any of the angular

momenta on the S2n. Right: Plot of the aH vs j curve.

TABLE I. The minimal value of j in various dimensions.

D ðj Þmin=jsym

7 1.657

9 1.421

11 1.241
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extremal black rings, we are led to a contradiction. On the
other hand, inspection of the phase diagram Fig. 7 suggests
that as one of the ji gets large, the ring ‘‘behaves’’ like a
lower-dimensional ring. However, upon closer inspection,
it appears that in addition to taking the ji ! 1 we need to
rescale j by a finite amount to precisely recover the lower

dimensional ring’s extremal locus. This is consistent with
the differing values of boost described above. Putting these
things together suggests that there is no simple analog of
the membrane limit of MP black holes for the black rings.

VII. DISCUSSION

The main focus of the present paper has been an explo-
ration of vacuum extremal black holes in dimensions
greater than five. As motivated in Sec. I the restriction to
extremal solutions is nontrivial, and as we have discussed
there is a rich moduli space of such solutions even in
vacuum gravity. Apart from examining aspects of known
examples of extremal black objects based on the MP black

holes, we have also obtained predictions of certain prop-
erties of hitherto unknown extremal black ring solutions.
On the mathematical side, we have shown that vacuum

solutions with degenerate horizons have an enhanced near-
horizon AdS2 isometry assuming the rotational symmetry
of the solution enhances such that spatial sections of the
horizon are cohomogeneity-1. From the known solutions to
date, MP black holes (and strings) with equal angular
momenta in even dimensions and all but one equal angular
momenta in odd dimensions fall into this class of geome-
tries. It is natural to expect that this symmetry enhance-
ment extends to situations where the spatial sections of the
horizon have less symmetry given the fact that we proved
this was the case for the generic extremal MP black holes
with unequal angular momenta. However, proving the
general statement requires new techniques beyond those
developed in [42] which we exploited. The primary com-
plication is that the method used is well adapted to
cohomogeneity-1 metrics on the horizon; higher cohomo-
geneity metrics occurring in the generic case are trouble-
some due to the absence of well-adapted coordinates for

FIG. 7 (color online). Our prediction for the phase diagram of seven-dimensional extremal black rings. We have superposed on this
plot the extremal MP solutions for comparison. Left: The extremal loci plotted as a surface in the reduced angular momenta ðj ; j2; j3Þ
space. We have cut off the ring surface along the intersection curve with the MP extremal locus. Nevertheless, there exist solutions with
arbitrarily small j . Right: Reduced area of the black rings and black holes.

FIG. 8 (color online). Left: The value of ðj Þmin as a function of ji for the seven-dimensional extremal black rings. As emphasized in
the text there are rings with arbitrarily small values of ðj Þmin owing to the possibility of taking j2 ! 1 or j3 ! 1. Right: The value of

ðj Þmin as a function of ðj2; j3Þ for the nine-dimensional black ring. Note that now both j2 and j3 can become large simultaneously.
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the analysis. Nevertheless, given that there are high coho-
mogeneity metrics displaying the enhanced symmetry, it
would be interesting to see if the theorem proved in
Sec. II B can be generalized.

We have also presented explicit examples of vacuum
near-horizon geometries with horizon topology SD�2 and
S1 � SD�3. Of course, in higher than five dimensions one
might expect other topologies. Although we have concen-
trated on black rings, it would be very interesting to find
solutions with even more exotic horizon topology.37

Given the near-horizon geometry alone, an important
question is how much of the physical characteristics of the
solution, such as the conserved charges etc., can be deter-
mined. We have argued that while it is possible using
Komar integrals to capture certain angular momenta, the
near-horizon metric does not capture the mass of the black
object or the angular velocities (both of which depend on
the asymptotic stationary frame). More generally, as dis-
cussed at the end of Sec. II D, a given near-horizon geome-
try might not always be extended to a full solution with
prescribed asymptotics. Understanding the constraints on
when this can be done is an interesting open question.

The new physical result in the paper is the prediction of
the phase structure for extremal black rings in higher
dimensions. As we have emphasized, higher-dimensional
black holes/rings are not easily amenable to analytic treat-
ment owing to the lack of solution generating techniques.
Given this, our strategy has been to exploit the mathemati-
cal result above, combined with certain plausible physical
assumptions, to construct the phase diagram for black
rings.

The logical argument for our construction of extremal
black rings can be summarized as follows: given the near-
horizon symmetry enhancement for degenerate horizons,
extremal black rings should have a near-horizon that has
three main characteristics: (i) AdS2 isometry, (ii) ring to-
pology, and (iii) correct rotational symmetry, i.e., must be a
subgroup of SOðD� 1Þ. We already know of a solution in
odd spacetime dimensions with these characteristics—the
near-horizon geometry of the extremal MP black string.
The MP black string is not asymptotically flat, but, heuris-
tically, can be made so if the string is tensionless, by
bending it. The tensionlessness condition fixes the boost
parameter of the string to a numerical (dimension-
dependent) constant, which is independent of the trans-
verse rotation. Our main claim is that the black string near-
horizon geometry at this particular value of the boost

parameter is isometric to the near-horizon geometry of an
extremal black ring. The rest of the analysis is then aimed
at determining the physical parameters of the black ring.
We have argued that the conserved quantities of the ex-
tremal ring are the same as those for the corresponding
black string.
We infer the angular momenta in the transverse sphere

of the ring using the Komar integrals—these are therefore
the same as the corresponding values of the MP black
string. We assume the mass of the asymptotically flat black
ring receives no corrections relative to the MP black string.
The remaining physical parameter, the angular momentum
in the plane of the ring, we also argue agrees with the
string. Deducing this involves realizing that the only ad-
missible correction to the string’s angular momentum oc-
curs at leading order in 1=‘ (recall that ‘ size of the circle
wrapped by the string) and showing that such corrections
do not arise in D> 5. This then completes the determina-
tion of the physical parameters. Finally, we put bounds on
the physical parameters by requiring that black ring ex-
tremal locus is unbounded above and bounded below by
the extremal locus of the MP black holes. This requirement
implies uniqueness is not violated, but this is not demanded
by any known theorem. Curiously, uniqueness is satisfied
by the known extremal black objects in five dimensions. It
would be very interesting to understand the origin of this
uniqueness and explore its consequences further.
Of course, a generic feature of higher-dimensional non-

extremal black holes is violation of uniqueness.38

Therefore, from this point of view, it seems remarkable
that uniqueness is restored for extremal black holes in five
dimensions. Curiously, note that the extremal doubly spin-
ning rings do come arbitrarily close to violating uniqueness
[14]. It is interesting to observe that based on our proposal,
if any ci � 0 (in (6.5)) it seems one cannot get extremal
rings arbitrarily close to MP black holes. It is thus tempting
to speculate that this suggests all ci ¼ 0 (consistent with
our final proposal), so that extremal higher-dimensional
rings can come arbitrarily close to violating uniqueness as
in five dimensions.
Our analysis throws up some interesting features of five-

dimensional solutions which do not seem to be shared by
their higher-dimensional counterparts. Apart from the fact
that extremal rings in five dimensions have slightly differ-
ent characteristics (in terms of the mixing of the ring and
the transverse directions), there is a curious fact about the
entropy of five-dimensional black objects. The area for-
mula for extremal five-dimensional MP or doubly spinning
black rings takes an extremely simple form. For example,
for the extremal black ring solution of [9] one has

A H ¼ 8�J	: (7.1)

37Of course one can trivially construct vacuum near-horizon
geometries by taking the direct product of R1;1 with a Ricci flat
metric on H , ds2NH ¼ dvdrþ ds2ðH Þ. While this gives ex-
amples with nontrivial horizon topology they are in a sense
trivial and we do not expect them to correspond to near-horizon
limits of asymptotically flat black holes. It is the nontrivial
examples which take the form of fibrations over AdS2 which
we are interested in.

38In the context of generalized Weyl solutions [61], it is shown
that the rod-structure of a solution together with its conserved
charges fully specify the solution.
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The simplicity of this and analogous expressions for four-
and five-dimensional black holes have been used to moti-
vate a microscopic counting of the entropy of these objects
[44–48]. These results rely on locally supersymmetric D-
brane intersections (with supersymmetry being globally
broken due to different supercharges being preserved at
different intersections). It is well known that in dimensions
greater than five there are no localized supersymmetric
black holes. Further, the known extremal solutions in
vacuum gravity have complicated area formulae. For ex-
ample for the 6d extremal MP one has

A H ¼ 8�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ21 þ J22Þ2

36
þ J21J

2
2

3

s
� J21 þ J22

6

vuut
: (7.2)

This seems suggestive that the mechanism for micro-state
counting of black holes in four and five dimensions is a
happy accident of local supersymmetry, while higher-
dimensional extremal solutions are intrinsically more
complex.

Although the focus of this paper has been on asymptoti-
cally flat vacuum black holes let us comment on AdS black
holes, as some of the techniques used in this paper can
easily accommodate a cosmological constant. For ex-
ample, the theorem we proved on symmetry enhancement
in the near-horizon limit applies equally to AdS vacuum
gravity. Our discussion of extremal black holes has relied
heavily on the use of Gaussian null coordinates and the ‘‘-
double-scaling’’ limit which defines the near-horizon ge-
ometry (2.3). Indeed such coordinates have been used
previously in the context of supersymmetric AdS5 black
holes. In particular, under some assumptions, supersym-
metric AdS5 black rings were ruled out. This was deduced
from a classification of all possible near-horizon geome-
tries of supersymmetric AdS5 black holes with R�Uð1Þ2
symmetry [38,39].

More recently, again in the AdS/CFT context, a map
relating gravitational solutions in asymptotically AdS
spacetimes to solutions of conformal fluid dynamics has
been constructed in a long-wavelength approximation [70–
72]. The discussion so far has been for uncharged fluids
just carrying energy-momentum corresponding to AdS
vacuum gravity. Note that extremal solutions in pure AdS
gravity cannot be supersymmetric. However, the tech-
niques used in this paper, which rely only on extremality,
could be applied to the study of ‘‘extremal’’ fluids. For
instance, it would be interesting to exploit the Gaussian
null coordinates to analyze the entropy current for such
degenerate horizons, generalizing the recent analysis of
[73]. It would also be interesting to develop techniques to
analyze the behavior of extremal fluids in confining gauge
theories as discussed in [74,75]. The latter analysis predicts
a phase diagram for black holes and rings in AdS space-
times using the dual field theory; this could provide an
interesting test for the phase diagram proposed in this
paper.
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APPENDIX: CALCULATING NEAR-HORIZON
LIMITS

In this appendix we describe how to construct the near-
horizon geometries for the MP black holes and strings
given in Secs. II C 1 and II C 2, following the approach
developed in [42]. The starting point for any of these
calculations are the MP solutions which, in Boyer-
Lindquist type coordinates, are

ds2 ¼ �dt2 þXn
i¼1

ðr2 þ a2i Þðd�2
i þ�2

i d	
2
i Þ

þ�r2

�F

�
dt�Xn

i¼1

ai�
2
i d	i

�
2 þ �F

���r2
dr2 (A1)

in 2nþ 1 dimensions and

ds2 ¼ �dt2 þ r2d�2 þXn
i¼1

ðr2 þ a2i Þðd�2
i þ�2

i d	
2
i Þ

þ �r

�F

�
dt�Xn

i¼1

ai�
2
i d	i

�
2 þ �F

���r
dr2 (A2)

in 2nþ 2 dimensions, where

F ¼ 1�Xn
i¼1

a2i �
2
i

r2 þ a2i
(A3)

and the rest of the functions and coordinates are defined as
in the main text.39 We are also interested in the MP black
strings inD ¼ 2nþ 3. These are constructed by taking the
2nþ 2 dimensional MP metric (A2) adding dz2 and boost-
ing ðt; zÞ ! ðct� sz;�stþ czÞ where c 	 cosh

and s 	 sinh.40 The explicit metric for this thus reads

ds2 ¼�dt2 þ dz2 þ r2d�2 þXn
i¼1

ðr2 þ a2i Þðd�2
i þ�2

i d	
2
i Þ

þ �r

�F

�
cdt� sdz�

Xn
i¼1

ai�
2
i d	i

�
2

þ �F

���r
dr2: (A4)

39We have taken ai ! �ai relative to the original MP metric in
[18]. Without loss of generality we will assume our ai > 0.
40Note this is equivalent to changing coordinates to ðt0; z0Þ ¼
ðctþ sz; stþ czÞ and then subsequently dropping the
primed..
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In fact it is convenient to illustrate the method of com-
puting a near-horizon limit for a more general class of
‘‘black-hole like’’ metrics. This generalizes the discussion
in [42]. Consider solutions of the form

ds2 ¼ gttðR;�Þdt2 þ 2gtiðR;�Þdtd�i þ gRRðR; �ÞdR2

þ gpqðR; �Þd�pd�q þ gijðR;�Þd�id�j; (A5)

where p, q ¼ 1; � � �m and i, j ¼ 1; � � � ; n.41 The �p co-
ordinates are a set of ‘‘polar’’ angles and the�i are a set of
azimuthal angles. Here R is a radial coordinate and the
event horizon is located at R ¼ 0. We emphasize that all
known black hole solutions (in any dimension), including
black rings, can be written in the above form. By shifting
the �i by constant multiples of t, we may always choose a
corotating frame in which the Killing vector @t is null on
the horizon, which we assume henceforth. For all known
extremal black hole solutions it is the case that

gtt ¼ ftð�ÞR2 þOðR3Þ; gti ¼ fið�ÞRþOðR2Þ;
gRR ¼ fRð�ÞR�2 þOðR�1Þ (A6)

for functions f� that are determined from the given solu-

tion. To construct the near-horizon limit, we proceed by
introducing coordinates valid on the horizon, ðv; r;	iÞ, via

R ¼ r; dt ¼ dvþ
�
a0
r2

þ a1
r

�
dr;

d�i ¼ d	i þ bi0
r
dr:

(A7)

The constants a0, a1, b0 are fixed by requiring the metric
and its inverse be analytic at the horizon r ¼ 0. Now take
the near-horizon limit defined by v! v=�, r! �r with
�! 0. Referring to the metric that results after taking the
limit as ĝ��, we easily obtain the following components, as

they are not affected by the transformation (A7):

ĝ vv ¼ ftð�Þr2; ĝpq ¼ gpqð0; �Þ;
ĝvi ¼ fið�Þr; ĝij ¼ gijð0; �Þ:

(A8)

Now define ki ¼ fið�Þ. Elimination of the divergent 1=r
terms in gri requires

bi0 ¼ �a0�ijð�Þ ki ¼ �a0ki: (A9)

Consistency obviously requires that the ki be constants.
This is certainly true for the examples we are dealing with
and ultimately follows from the fact that we are dealing
with solutions to the field equations. Next, it is straightfor-
ward to check that, after the taking the near-horizon limit,

� 	 ĝvr ¼ a0ftð�Þ þ bi0ki ¼ a0ðftð�Þ � kikiÞ; (A10)

and hence now we need only a0 to determine the full near-
horizon metric. We now turn to grr. Eliminating the 1=r2

term yields the condition

a20 ¼
fRð�Þ

kiki � ftð�Þ : (A11)

This equation is only consistent if the right-hand side is a
constant and further, since fRð�Þ> 0, a second consistency
condition is that kiki � ft > 0; again, these consistency
requirements are met for the solutions we are dealing with.
We could now determine a1 by removing the 1=r diver-
gence in grr. However, note that dr

2=r vanishes in the near-
horizon limit, and hence to construct the near-horizon
geometry we do not need a1. Finally, observe that we
may write ĝvv ¼ ftð�Þr2 ¼ ða�1

0 �þ kikiÞr2. Putting this

all together, we have the following cohomogeneity-m near-
horizon geometry:

ds2 ¼ �ð�Þ½a�1
0 r2dv2 þ 2dvdr� þ ĝpqð�Þd�pd�q

þ �ijð�Þðd	i þ rkidvÞðd	j þ rkjdvÞ: (A12)

We choose signs such that �> 0, so we are dealing with a
future horizon. This implies a0 < 0. In this form, it is clear
that the near-horizon geometry has an SOð2; 1Þ �Uð1Þn
isometry.
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