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Gravitational radiation in plane-symmetric space-times can be encoded in a complex potential,

satisfying a nonlinear wave equation. An effective energy tensor for the radiation is given, taking a

scalar-field form in terms of the potential, entering the field equations in the same way as the matter

energy tensor. It reduces to the Isaacson energy tensor in the linearized, high-frequency approximation.

An energy conservation equation is derived for a quasilocal energy, essentially the Hawking energy. A

transverse pressure exerted by interacting low-frequency gravitational radiation is predicted.
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I. INTRODUCTION

Gravitational radiation, as predicted by Einstein gravity,
is indirectly observed in such examples as the Hulse-Taylor
pulsar, and widely expected to be directly observed in the
coming years, offering a new window to understand vari-
ous astrophysical processes, such as binary inspiral and
merger of black holes or neutron stars. However, the text-
book theory of gravitational radiation mostly concerns
weak radiation, either in the linearized approximation or
at infinity in an asymptotically flat space-time [1].
Comparatively little is known about strong-field radiation.
Exceptions include plane symmetry, cylindrical symmetry,
Robinson-Trautman space-times, and boost-rotation sym-
metric space-times, as reviewed by Bičák [2]. The simplest
example is plane gravitational radiation, where exact so-
lutions describe radiation propagating in one direction. The
simplest scenario to study interaction effects is the head-on
collision of two such beams, as pioneered by Szekeres
[3,4] and reviewed by Griffiths [5]. More generally, one
may study plane-symmetric space-times, which in vacuum
generally consist of gravitational radiation propagating in
opposite directions and interacting [6].

Much is known about such space-times, including that
the interaction is nonlinear, that the key dynamical equa-
tions can be cast as a complex Ernst equation [7], and that
the cross-focusing of the radiation produces a caustic
which is generically a curvature singularity, though there
are nongeneric exceptions [8–10]. This article introduces
an effective energy tensor �ab for the gravitational radia-
tion, taking a scalar-field form in terms of a complex
potential �. Then �ab enters the field equations in the
same way as the matter energy tensor Tab, in particular,
entering an energy conservation law. The Ernst equation is
manifestly a wave equation for �, generally with a non-
linear source, which vanishes for collinear polarization.

The method involves a conserved time vector ka, a
conserved energy-momentum density ja, a corresponding
energy E, and a first law for E involving energy-supply and
work terms. Surface gravity � is also defined and takes a
quasi-Newtonian form. This is intended to complete the

same programme of identifying physical quantities and
equations which has previously been performed in spheri-
cal symmetry [11,12], cylindrical symmetry [13], and a
quasispherical approximation [14–17]. These references
will be assumed for comparison throughout the text with-
out repeated citation, though the treatment here is self-
contained.

II. METRIC VARIABLES AND FIELD EQUATIONS

Cartesian coordinates ðz; yÞ on the planes of symmetry
will be used, to allow easy comparisons with standard
coordinates ðz; ’Þ in cylindrical symmetry and ð#;’Þ in
spherical symmetry and the quasispherical approximation.
It is convenient to use null coordinates x� in the normal
space, as they are adapted to gravitational radiation. Then
the metric can be written locally as

ds2 ¼ �2e2�dxþdx� þ Aðe2� sec2�dy2 þ 2 tan2�dydz

þ e�2� sec2�dz2Þ; (1)

where ðA;�; �; �Þ are functions of ðxþ; x�Þ. Here A is the
specific area, meaning that it is the area of a square
coordinate patch ð0; 1Þ � ð0; 1Þ in the ðy; zÞ plane. It is
invariant up to constant linear transformations of y and z,
under which it scales by a constant factor. The remaining
freedom in ðy; zÞ is by rotations, under which A is invariant.
The functions ð�;�Þ encode the gravitational radiation, as
will be seen below. They are invariant up to the above-
mentioned transformations of ðy; zÞ, which will be treated
as fixed henceforth. The remaining function � is invariant
up to functional rescalings x� � ~x�ðx�Þ, under which it
transforms by additive functions of xþ and x�. The varia-
bles have been chosen so that the induced metric on the
planes of symmetry takes a similar form to that used in the
quasispherical approximation, with ðdz; dyÞ replaced by
(d#, sin#d’), and takes a similar form to that used in
cylindrical symmetry. The Szekeres variables ðP;M;Q;WÞ
are related by
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P ¼ � logA; M ¼ �2�;

Q ¼ �2�; sinhW ¼ tan2�;
(2)

or coshW ¼ sec2�.
The six independent components of the Einstein equa-

tion may be found directly, or by comparison with the
Szekeres form, as

2A@�@�A� ð@�AÞ2 � 4A@�A@��

þ 4A2sec22�ðð@��Þ2 þ ð@��Þ2Þ ¼ �16�A2T��; (3)

@þ@�A ¼ 8�ATþ�; (4)

2A@þ@��þ @þA@��þ @�A@þ�

þ 4A tan2�ð@þ�@��þ @��@þ�Þ
¼ 4�Ae2�cos22�ðTyy � TzzÞ; (5)

2A@þ@��þ @þA@��þ @�A@þ�þ 4A tan2�ð@þ�@��
� @þ�@��Þ ¼ 4�Ae2�cos22�ðe2�Tyz þ e�2�TzyÞ; (6)

4A2@þ@��� @þA@�Aþ 4A2sec22�ð@þ�@��
þ @þ�@��Þ ¼ �8�A2ð2Tþ� þ e2�ðTyy þ Tzz ÞÞ; (7)

where @�¼@=@x�, T�� ¼ Tð@�; @�Þ, Tþ� ¼ Tð@þ; @�Þ,
and the units are such that Newton’s gravitational constant
is unity. Equations (3) can be regarded as constraint equa-
tions on initial null hypersurfaces �� of constant x�, as
they are preserved in the @� directions due to the Bianchi
identities or energy-momentum conservation. The other
Eqs. (4)–(7) are then the evolution equations.

In vacuum, Tab ¼ 0, it is well known that these equa-
tions describe the propagation and interaction of gravita-
tional radiation in the opposite @� directions, and that the
radiation may be encoded in ð�;�Þ. The solution to (4) is
trivial and can be used to fix the rescaling freedom in x�.

One may give initial data for ð�;�Þ on ��, corresponding
to initial radiation profiles, with (3) determining � on ��.
Then the main task is to solve (5) and (6) simultaneously
for ð�;�Þ, after which the full solution follows from (7) by
quadrature for �. The main Eqs. (5) and (6) can be written
as a complex Ernst equation, corresponding physically to a
nonlinear wave equation, as will be verified below.

III. EFFECTIVE ENERGY TENSOR FOR
GRAVITATIONAL RADIATION

The next aim is to find an effective energy tensor�ab for
the gravitational radiation, analogous to those found in
cylindrical symmetry and the quasispherical approxima-
tion, and consistent with the Isaacson effective energy
tensor in the high-frequency linearized approximation
[1]. In all cases, the components of the energy tensor are
quadratic in first derivatives of the metric, in this case the
@� derivatives of ð�;�Þ, and such terms can be seen in the
last term in parentheses on the left-hand side of each of (3)
and (5)–(7). The idea is to identify these terms as compo-
nents of the desired�ab, corresponding to the components
of Tab on the right-hand sides. The result is that one may
introduce a complex potential

� ¼ �þ i� (8)

and define the effective energy tensor as

�ab ¼
2rða�rbÞ ��� gabg

cdrc�rd
��

8�cosh2ð�� ��Þ ; (9)

where gab is the space-time metric and ra its covariant
derivative operator. It is manifestly a tensor, taking a
scalar-field form in terms of �, with the same form,
including the same denominator, as in the quasispherical
approximation. Apart from this denominator, it is the
energy tensor of a massless complex scalar field �.
Explicitly in terms of ð�;�Þ,

�ab¼2ra�rb�þ2ra�rb��gabgcdðrc�rd�þrc�rd�Þ
8�cos22�

: (10)

If � ¼ 0, it reduces to the energy tensor of a massless
scalar field �, as in cylindrical symmetry, where the cor-
responding � reduces to the Newtonian gravitational po-
tential in the Newtonian limit. Here there are generally two
polarizations of the radiation, as is familiar from the line-
arized approximation. Inspection of the metric (1) for small
� identifies � as encoding the ‘‘plus’’ polarization and �
as encoding the ‘‘cross’’ polarization. These properties
justify the numerical factors chosen in the definitions of
ð�;�Þ and partly motivated the chosen symbols.

The nontrivial components of �ab follow explicitly as

4���� ¼ sec22�ðð@��Þ2 þ ð@��Þ2Þ; (11)

�þ� ¼ 0; (12)

4�?� ¼ e�2�sec22�ð@þ�@��þ @þ�@��Þ?g; (13)

where ? denotes projection onto the planes of symmetry
and the transverse metric is given in ðy; zÞ coordinates by

?g ¼ A
e2� sec2� tan2�
tan2� e�2� sec2�

� �
: (14)

It is then straightforward to verify that adding �ab to Tab
on the right-hand sides of the Einstein equations (3)–(7)
cancels the quadratic terms in ð�;�Þ on the left-hand sides.
In abstract terms, the Einstein equation Gab ¼ 8�Tab may
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be rewritten as Cab ¼ 8�ðTab þ�abÞ in terms of a trun-
cated Einstein tensor Cab, whose components have a sim-
pler form to those of the Einstein tensor Gab.

The physical interpretation of ���=2 is the energy
density of gravitational radiation propagating in the @�
direction. Apart from the nonlinear modification due to the
sec22� factor in (11), it is the energy density of a complex
scalar field�. The numerical factor also corresponds to the
energy density of electromagnetic radiation in Gaussian
units, with � corresponding to the electric potential and �
vanishing. The vanishing of �þ� (12) is familiar from
cylindrical symmetry and the quasispherical approxima-
tion, and indicates that the gravitational radiation is work-
less. Note that this is generally not so for a similar effective
energy tensor found in the context of black holes [18,19]
and uniformly expanding flows [20,21]. The non-
negativity of ��� indicates that, as an energy tensor,
�ab satisfies the dominant energy condition, meaning
physically that gravitational radiation carries positive en-
ergy. The other nonzero terms (13) indicate that interacting
gravitational radiation generally exerts transverse pressure
and shear, proportional to the transverse metric. These
terms vanish for radiation propagating in one direction
only, where � is a function of xþ (or x�) only. They are
commonly known as plane waves, but since this would
appear to imply periodicity in some sense, this article uses
the more general terminology of radiation.

IV. CONSERVATION OF ENERGY

To see how � (switching to index-free notation) further
qualifies as an effective energy tensor, one may proceed by
analogy with spherical symmetry, cylindrical symmetry,
and the quasispherical approximation. Here the definitions
and equations will be stated first in a manifestly invariant
way, then verified in coordinates. First introduce the spe-
cific area radius

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A=4�

p
: (15)

This is defined in order to compare with spherically sym-
metric space-times or the quasispherical approximation, so
that one may easily treat astrophysical gravitational radia-
tion as observed on or near Earth, since distant sources can
be treated as points, producing roughly spherical wave
fronts which can be treated as planes when observed.

The Hodge operator � defines the Hodge dual �� of a
normal one-form, up to sign, by

g�1ð��;�Þ ¼ 0; g�1ð��; ��Þ ¼ �g�1ð�;�Þ: (16)

Then a preferred time vector is defined by

k ¼ g�1ð�drÞ; (17)

where the qualification ‘‘specific’’ is omitted here and
henceforth. This vector is conserved:

r � k ¼ 0: (18)

The corresponding energy-momentum density is

j ¼ �g�1ððT þ�Þ � kÞ: (19)

Then j is also conserved:

r � j ¼ 0: (20)

Here the standard physical interpretation is conservation of
energy, and the role of � as an effective energy tensor is
clear in that it appears additively with T in j.
Put another way, both k and j are Noether currents, and

the corresponding Noether charges are area volume

V ¼ 4
3�r

3 (21)

and energy E, defining the latter. Specifically,

AgðkÞ ¼ �dV; AgðjÞ ¼ �dE: (22)

Integrating for E and requiring it to vanish for flat space-
time,

E ¼ �1
2rg

�1ðdr; drÞ (23)

which has a similar form to the Misner-Sharp energy in
spherical symmetry and the modified Thorne energy in
cylindrical symmetry. In fact, if the planes of symmetry
are toroidally compacted by periodic identifications in
ðy; zÞ at 0 and 1, so that A is actually the area, then E
coincides with the Hawking energy [22].
Note thatE> 0 for trapped surfaces,E ¼ 0 for marginal

surfaces and E< 0 for untrapped surfaces. In particular, E
vanishes for radiation propagating in one direction only.
Thus it should not be interpreted as the energy of a wave in
any sense. Taking the example of two colliding beams,
where the surfaces in the interaction region are trapped if
the null energy condition holds, one may interpret E as
measuring energy due to cross-focusing of radiation. In
particular, it diverges at the caustic formed by such cross-
focusing.
Introduce the work density

w ¼ �trT=2 (24)

and the energy flux

 ¼ ðT þ�Þ � g�1ðdrÞ þ wdr; (25)

where the trace is in the normal space. Then conservation
of energy (20) can be written in the form of a first law:

dE ¼ A þ wdV (26)

which has the same form as in spherical symmetry and the
quasispherical approximation. Here the two terms can be
interpreted as energy supply and work, respectively, as in
the first law of thermodynamics. Note again that� appears
additively with T in  and (in a null sense) w, playing the
role of an effective energy tensor.
The corresponding definition of surface gravity is

� ¼ �d � dr=2; (27)
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where d is the exterior derivative of the normal space. Then
the Einstein equations yield

� ¼ E

r2
� 4�rw (28)

which again has the same form as that in spherical sym-
metry and the quasispherical approximation. Apart from
the matter term, this has the form of Newtonian gravita-
tional acceleration.

In dual-null coordinates (1), the corresponding expres-
sions are

� � ¼ ��þdxþ þ ��dx�;

where � ¼ �þ dxþ þ ��dx�;
(29)

k ¼ e�2�ð@þr@� � @�r@þÞ; (30)

j ¼ e�4�½ððT�� þ���Þ@þr� Tþ�@�rÞ@þ
� ððTþþ þ�þþÞ@�r� Tþ�@þrÞ@��; (31)

E ¼ e�2�r@þr@�r; (32)

w ¼ e�2�Tþ�; (33)

 � ¼ �e�2�ðT�� þ���Þ@�r; (34)

� ¼ �e�2�@þ@�r: (35)

Writing 4ð4�Þ3=2E ¼ e�2�A�1=2@þA@�A and using the
Einstein equations (3) and (4), a calculation yields

@�E ¼ Ae�2�ð@�rTþ� � @�rðT�� þ���ÞÞ: (36)

Comparison with

AgðjÞ ¼ Ae�2�½ððTþþ þ�þþÞ@�r� Tþ�@þrÞdxþ
� ððT�� þ���Þ@þr� Tþ�@�rÞdx��

¼ ½�@þEdxþ þ @�Edx�� ¼ �dE (37)

verifies (22). Similarly, the calculation

Að � þw@�rÞ ¼ Ae�2�ð�@�rðT�� þ���Þþ @�rTþ�Þ
¼ @�E (38)

verifies (26). The easiest way to verify the conservation
equations (18) and (20) is to use (22) and exterior calculus:

r � k ¼ A�1 � d � ðAgðkÞÞ ¼ A�1 � d � �dV ¼ 0; (39)

r � j ¼ A�1 � d � ðAgðjÞÞ ¼ A�1 � d � �dE ¼ 0 (40)

since �� ¼ �1 and dd ¼ 0. Finally, a calculation using the
Einstein equation (4) verifies (28).

V. GRAVITATIONALWAVE EQUATION

As is well known, the propagation equations (5) and (6)
for ð�;�Þ can be written as a single complex Ernst equa-
tion, usually given in terms of an Ernst potential Z ¼ e2�

or E ¼ tanh� [5]. The corresponding form for � is

r2� ¼ 2 tanhð�� ��Þg�1ðr�;r�Þ; (41)

where ?T ¼ 0 for simplicity. This has the same form as
that in the quasispherical approximation. The calculation is
straightforward:

r2� ¼ �e�2�ð2@þ@��þ A�1ð@þA@��þ @�A@þ�ÞÞ
(42)

and

2 tanhð�� ��Þg�1ðr�;r�Þ
¼ �4e�2� tanh2i�ð@þ�þ i@þ�Þð@��þ i@��Þ
¼ 4e�2� tan2�ðð@þ�@��þ @��@þ�Þ

þ ið@þ�@��� @þ�@��ÞÞ (43)

then the result follows by comparing with (5) and (6).
Note that (41) is manifestly a wave equation for �,

equating r2� to a nonlinear term in �. This source term
is highly nonlinear, being quadratic in r� and also in-

volving tanhð�� ��Þ. In the special case of collinear
polarization � ¼ 0, the source term vanishes and the equa-
tion reduces to the wave equation for �, r2� ¼ 0. This
can be written as a Euler-Poisson-Darboux equation, for
which general solutions are available. The full Ernst equa-
tion has been studied by various methods both in plane
symmetry and in the original context of stationary axisym-
metric space-times; see e.g. the reviews of Bičák [2] and
Griffiths [5], and references therein.

VI. LINEARIZED GRAVITATIONAL RADIATION

To compare with the usual description of linearized
gravitational radiation [1], it is convenient to switch tem-
porarily to Minkowski coordinates ðt; x; y; zÞ defined byffiffiffi
2

p
x� ¼ t� x. Expanding about the Minkowski metric

� ¼ diagf�1; 1; 1; 1g by g ¼ �þ h consists of expanding
about ðA;�;�; �Þ ¼ ð1; 0; 0; 0Þ, so one can write A ¼ 1þ
� and use ð�;�; �; �Þ as perturbative fields, each assumed
� 1. Linearizing, the metric perturbation h is given by

�2�ðdt2 � dx2Þ þ ð�þ 2�Þdy2 þ 2ð�þ 2�Þdydz
þ ð�� 2�Þdz2: (44)

Then the trace of h is 2�þ 4� and the trace-reversed
metric perturbation �h is given by

�ðdt2 � dx2Þ þ ð2�� 2�Þdy2 þ 2ð�þ 2�Þdydz
þ ð�2�� 2�Þdz2: (45)

Applying the transverse traceless gauge conditions:
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@a �hab ¼ 0 yields constant �, �h0b ¼ 0 yields � ¼ 0, and
�haa ¼ 0 yields � ¼ 0. Then h ¼ �h is indeed transverse: in
ðy; zÞ coordinates,

h ¼ 2� 2�
2� �2�

� �
: (46)

This verifies the appropriateness of the transverse traceless
gauge conditions in plane symmetry. Noting that the space-
time strain is h=2, this also confirms that � and � encode
the plus and cross polarizations, respectively.

In the high-frequency approximation, the Isaacson ef-

fective energy tensor �� for gravitational waves is defined
by

32� ��ab ¼ hð@ahcdÞð@bhcdÞi; (47)

where the angle brackets denote averaging over several
wavelengths [1]. Returning to dual-null coordinates, the
explicit expressions are

4� ���� ¼ hð@��Þ2 þ ð@��Þ2i; (48)

4� ��þ� ¼ h@þ�@��þ @þ�@��i; (49)

? �� ¼ 0: (50)

Comparing with (11) and (13), one sees that the radiative

components ���� agree with ���, but the other compo-
nents apparently do not. However, this is due to the aver-
aging, as follows.

First note that the gravitational wave equation (41) lin-
earizes to the flat-space form

@þ@�� ¼ 0 (51)

with general solution

� ¼ �þðxþÞ þ��ðx�Þ (52)

as expected. Considering linear superpositions of Fourier
modes in the high-frequency approximation, it suffices to
consider solutions of the form

�� ¼ �� sin
ffiffiffi
2

p
!�x� þ i�� sin

ffiffiffi
2

p
��x� (53)

for constant amplitudes ð��; ��Þ and angular frequencies
ð!�; ��Þ. Then

@�� ¼ ffiffiffi
2

p
��!� cos

ffiffiffi
2

p
!�x�; (54)

@�� ¼ ffiffiffi
2

p
���� cos

ffiffiffi
2

p
��x� (55)

and

4���� ¼ 2�2�!2�cos2
ffiffiffi
2

p
!�x� þ 2�2��2�cos2

ffiffiffi
2

p
��x�

(56)

4�?� ¼ 2ð�þ��!þ!� cos
ffiffiffi
2

p
!þxþ cos

ffiffiffi
2

p
!�x�

þ �þ���þ�� cos
ffiffiffi
2

p
�þxþ cos

ffiffiffi
2

p
��x�Þ	;

(57)

where 	 ¼ diagf1; 1g. Since hcos2i ¼ 1=2 but hcosi ¼ 0,

h?�i ¼ 0 and similarly ��þ� ¼ 0. Then

4�h���i ¼ 4� ���� ¼ �2�!2� þ �2��2�; (58)

h�þ�i ¼ ��þ� ¼ 0; (59)

h?�i ¼ ? �� ¼ 0; (60)

or

h�i ¼ �� (61)

as expected. Note that the energy densities ����=2 (58)
have the expected form of squares of amplitudes times
angular frequencies, with the same numerical factor
1=8� as for electromagnetic radiation in Gaussian units.
On the other hand, for low-frequency waves, transverse

pressure is generally present in ?� even in the linearized
approximation, for which� reduces to the energy tensor of
a massless complex scalar field in flat space-time:

8��ab ¼ 2@ða�@bÞ ��� �ab�
cd@c�@d ��: (62)

The nonzero components (11)–(13) reduce to

4���� ¼ ð@��Þ2 þ ð@��Þ2; (63)

4�?� ¼ ð@þ�@��þ @þ�@��Þ	 (64)

and, in particular, the transverse shear vanishes, but trans-
verse pressure generally remains. Recall that this is an
effect for interacting radiation, vanishing for radiation
propagating in one direction only. However, if two beams
with similar amplitude and frequency are passing through
one another, the transverse pressure is generally of the
same order as the energy densities ���=2. Although this
has been derived here only for plane-symmetric radiation
propagating in opposite directions, one may expect it to
generalize to gravitational radiation from any two sources
in different directions.
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