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We develop the Hadamard renormalization of the stress-energy tensor for a massive scalar field theory

defined on a general spacetime of arbitrary dimension. Our formalism could be helpful in treating some

aspects of the quantum physics of extra spatial dimensions. More precisely, for spacetime dimensions up

to six, we explicitly describe the Hadamard renormalization procedure and for spacetime dimensions from

7 to 11, we provide the framework permitting the interested reader to perform this procedure explicitly in

a given spacetime. We complete our study (i) by considering the ambiguities of the Hadamard

renormalization of the stress-energy tensor and the corresponding ambiguities for the trace anomaly,

(ii) by providing the expressions of the gravitational counterterms involved in the renormalization process,

and (iii) by discussing the connections between Hadamard renormalization and renormalization in the

effective action. All our results are expanded on standard bases for Riemann polynomials constructed

from group theoretical considerations and thus given on irreducible forms.
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I. INTRODUCTION

In semiclassical gravity, spacetime is considered from a
classical point of view, i.e., its metric g�� is treated clas-

sically, while all the other fields propagating on this back-
ground (from matter fields to the graviton field at one-loop
order) are assumed to be quantized. In the last 30 years, this
approximation of quantum gravity, usually called quantum
field theory in curved spacetime, has permitted us to obtain
very interesting results concerning more particularly
(i) quantum black hole physics in connection with
Hawking radiation, (ii) early universe cosmology, (iii) the
Casimir effect, and (iv) quantum violations of classical
energy conditions in connection with both the singularity
theorems of Hawking and Penrose and the existence of
traversable wormholes and time-machines. We refer to the
monographs of Birrell and Davies [1], Fulling [2], and
Wald [3] as well as to references therein for various aspects
of semiclassical gravity. We also refer to a recent review by
Ford [4] which is a short but rather up to date introduction
to semiclassical gravity and to its applications. We finally
refer to Sec. II.B of Ref. [5] for a very interesting critical
account about the status and the domain of applicability of
semiclassical gravity and to Refs. [6,7] for an extension of
semiclassical gravity, the so-called semiclassical stochastic
gravity, which also permits us to discuss and investigate its
validity.

For a quantum field in some normalized state j i, the
expectation value with respect to j i of its associated
stress-energy-tensor operator T��, denoted h jT��j i,
plays a central role in semiclassical gravity. Indeed:

(i) In curved spacetime, the particle concept is in gen-
eral very nebulous. Here, we adhere completely to
the point of view developed by Davies in Ref. [8]. It
is then nonsense to speak about the particle content
of the quantum state j i. From the physical point of
view, it is more objectively described by a quantity
such as the expectation value h jT��j i.

(ii) It is rather natural to conjecture that the classical
metric g�� is coupled to the quantum field according

to the semiclassical Einstein equations

G�� ¼ 8�Gh jT��j i (1)

where G�� is the Einstein tensor R�� � 1
2g��Rþ

�g�� (here � and G denote, respectively, the cos-

mological constant and Newton’s gravitational con-
stant) or some higher-order generalization of this
geometrical tensor. The expectation value
h jT��j i which acts as a source in Eq. (1) then

governs the backreaction of the quantum field on the
spacetime geometry.

As a consequence, in semiclassical gravity, it is funda-
mental to be able to obtain an expression of the expectation
value h jT��j i showing in detail the influence of the

background geometry but also of the quantum state j i.
But it is well-known that this is not really obvious [1–3].
The stress-energy tensor T�� is an operator quadratic in

the quantum field which is, from the mathematical point of
view, an operator-valued distribution. As a consequence,
the operator T�� is ill defined and the associated expecta-

tion value h jT��j i is formally infinite. To deal with such

a difficulty, renormalization is required. Much work has
been done since the mid-1970s in order to renormalize the
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stress-energy tensor and/or to extract from the expectation
value h jT��j i a finite and physically acceptable contri-

bution which could act as the source in the semiclassical
Einstein equations (1) (see, Ref. [1] for the state of affairs
of the literature concerning this subject before 1982).
Among all the methods employed, the axiomatic approach
introduced by Wald [9] is certainly the most general and
the most powerful. It is an extension of the ‘‘point-splitting
method’’ [10–12] and it has been developed in connection
with the Hadamard representation of the Green functions
by Wald [9,13], Adler, Lieberman, and Ng [14,15]; Brown
and Ottewill [16]; and Castagnino and Harari [17]. We
refer to the monographs of Fulling [2] and Wald [3] for
rigorous presentations of this approach which is usually
called Hadamard renormalization. It permitted us to ob-
tain, in the most general context, the explicit expressions of
the renormalized expectation value of the stress-energy
tensor for the scalar field theory [18–20] but also for
some gauge theories such as (i) electromagnetism [18],
(ii) quantum gravity at one-loop order [21] (here the theo-
ries described by the standard effective action as well as by
the reparametrization-invariant effective action of
Vilkovsky and DeWitt were both considered), and
(iii) two- and three-form field theories [22] (in this context,
the Hadamard formalism allowed us to treat carefully the
phenomenon of ghosts for ghosts).

Hadamard renormalization has been exclusively consid-
ered for field theories defined on four-dimensional curved
spacetimes. (However, it should be noted that a recent
work has been achieved in a two-dimensional framework
[23] but it is incorrect due to a wrong expression for the
Hadamard representation of the Green functions.)
According to the ‘‘recent’’ physical theories such as super-
gravity theories, string theories, and M theory, which were
developed in order to understand gravity in a quantum
framework and to provide a unified description of all the
fundamental interactions, we should live in a spacetime
with more dimensions than the four we observe, a scenario
which is a resurgence of the old Kaluza-Klein theory
[24,25]. Because all the previously mentioned theories
are still at an early stage of development and are far from
being well understood, it is rather difficult to make pre-
dictions by using them directly. In fact, people studying the
consequences of supergravity and string theories in cos-
mology or in black hole physics often develop analysis
based on semiclassical approximations or more precisely
use the methods of quantum field theory in curved space-
time taking into account the extra dimensions. In this
context, it seems to us crucial to extend the powerful
Hadamard renormalization procedure to be able to deal,
as generally as possible, with quantum fluctuations and
with their backreaction effects. In this paper, we shall take
some steps in this direction.

It is important to note that many recent articles have
already been devoted to the role as well as to the calcu-

lation of the expectation value of the stress-energy tensor in
the presence of extra spatial dimensions. For example:
(i) In the context of the Randall-Sundrum braneworld

models [26,27] introduced in order to solve the
hierarchy problem [28–30], i.e., to eliminate the
large hierarchy between the electroweak scale and
the gravity scale. The vacuum expectation value of
the stress-energy tensor and the associated vacuum
energy have been called upon to stabilize the size of
the extra dimensions. There is extensive literature on
the subject. We refer more particularly to Ref. [31]
where backreaction effects are in addition consid-
ered and to Ref. [32] where cosmological consider-
ations in connection with the inflationary scenario
are in addition discussed (see, also, Refs. [33–37]
and references therein).

(ii) In the context of the vacuum polarization induced by
topological defects such as monopoles [38–40] or
cosmic strings (see, Ref. [37] and references
therein).

(iii) In the context of the AdS/CFT correspondence [41–
43] which asserts the existence of a duality between
a theory of gravity in the (Dþ 1)-dimensional anti-
de Sitter (AdS) space and a conformal field theory
living on its D-dimensional boundary (for a review,
see, Ref. [44]) and which could provide a concrete
realization of the holographic principle [45,46]. A
new renormalization procedure, the so-called holo-
graphic renormalization, has been developed. More
precisely, it has been shown that the regularized
expectation value of the stress-energy tensor corre-
sponding to the conformal field theory living on the
boundary can be obtained from the ‘‘regularized’’
action of the gravitational field living in the bulk
[47,48] (see, also for a review, Ref. [49] as well as
references therein for complements and Refs. [50–
60] for related approaches as well as extensions).
The counterterm subtraction technique developed in
this context permits us to obtain the stress-energy
tensor, at large distance, for higher-dimensional
black holes such as Kerr-AdS5, Kerr-AdS6, and
Kerr-AdS7 [61,62].

(iv) In the context of the validity of semiclassical gravity
but also of the avoidance of the singularities pre-
dicted by the singularity theorems of Hawking and
Penrose [63]. Fluctuations of the stress-energy tensor
induce Ricci curvature fluctuations (see, for ex-
ample, Ref. [64]) or in other words fluctuations of
the gravitational field itself. The existence of these
fluctuations places limits on the validity of semiclas-
sical gravity but also could lead to important effects
on the focusing of a bundle of timelike or null geo-
desics. The study of such fluctuations in the presence
of compact extra spatial dimensions has been dis-
cussed more particularly in Ref. [65].
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All these works have however been carried out under
very strong hypotheses: flat (or conformally flat) space-
times with extra dimensions or maximally (or asymptoti-
cally maximally) symmetric spacetimes as well as
massless or conformally invariant field theories. Of course,
it is necessary, from a physical point of view, to be able to
deal with situations presenting a lower degree of symmetry.
With this aim in view, the Hadamard renormalization
procedure could be very helpful.

Finally, it should be noted that some mathematical as-
pects of the Hadamard renormalization procedure for a
scalar field in a general ‘‘spacetime’’ of arbitrary dimen-
sion have been already considered by Moretti in a series of
recent articles [66–70]. He has provided a rigorous proof of
the symmetry of the off diagonal Hadamard coefficients,
i.e., of the coefficients corresponding to the short-distance
divergent part of the Hadamard representation of the Green
functions for the Euclidean and Lorentzian scalar field
theories [67,69]. He has also established a connection
between the zeta- and Hadamard-regularization procedures
in the Euclidean framework [66,68] and he has finally
discussed the possible elimination of the ambiguities pla-
guing the Hadamard renormalization procedure by using
microlocal analysis in the context of the algebraic ap-
proach to quantum field theory [70]. In fact, the results
we present in this article are very different from those of
Moretti. We do not focus our attention on the mathematical
aspects of Hadamard renormalization as he did but on its
practical aspects: from our results, the interested reader
should be able to obtain explicitly the renormalized ex-
pression of the expectation value with respect to a given
state j i of the stress-energy-tensor operator associated
with the scalar field theory if he/she knows (exactly or
asymptotically in a sense defined below) the Feynman
propagator corresponding to j i. With this aim in view,
we have provided in Sec. III a step-by-step guide for the
reader who simply wishes to calculate this regularized
expectation value and is not specially interested in follow-
ing the derivation of all our results.

Our article is organized as follows. In Sec. II, we de-
velop as generally as possible the Hadamard renormaliza-
tion of the stress-energy tensor associated with a massive
scalar field theory defined on a general spacetime of arbi-
trary dimension. In Sec. III, we explicitly describe this
procedure for arbitrary spacetimes of dimension from 2
to 6. This is done by using recent results we obtained in
Ref. [71] and which concern the covariant Taylor series
expansions of the Hadamard coefficients. For spacetime
dimension from 7 to 11, we provide the framework permit-
ting the interested reader to perform this regularization
procedure explicitly in a given spacetime. In Sec. IV, we
complete our study (i) by considering the ambiguities of
the Hadamard renormalization of the stress-energy tensor
and the corresponding ambiguities for the trace anomaly,
(ii) by providing the expressions of the gravitational coun-

terterms involved in the renormalization process, and
(iii) by discussing the connections between Hadamard
renormalization and renormalization in the effective ac-
tion. Finally, in Sec. V, we briefly discuss possible exten-
sions of our work as well as possible applications. In a
short appendix, we provide the traces of various conserved
local tensors of rank 2 and orders 4 and 6. These results are
more particularly helpful in order to discuss the ambiguity
problem for the trace anomaly considered in Sec. IV.
In this paper, we use units with @ ¼ c ¼ 1 and the

geometrical conventions of Hawking and Ellis [72] con-
cerning the definitions of the scalar curvature R, the Ricci
tensor R��, and the Riemann tensor R����. We also ex-

tensively use the commutation of covariant derivatives in
the form

T�...�...;�� � T�...�...;�� ¼ þR����T�...�... þ . . .

� R����T
�...

�... � . . . : (2)

It is furthermore important to note that all the results we
provide in Secs. III and IV are given on irreducible forms:
indeed, by using some of the geometrical identities dis-
played in our recent unpublished report [73], our results
have been systematically expanded on the standard bases
constructed from group theoretical considerations which
have been proposed by Fulling, King, Wybourne, and
Cummings (FKWC) in Ref. [74]. A reader who would
like to follow or to check our calculations is invited to
have in hand these two papers and more particularly
Ref. [73] which displays, in addition to a list of useful
geometrical identities, the slightly modified version of the
FKWC bases we used in the present article.

II. HADAMARD RENORMALIZED STRESS-
ENERGY TENSOR: GENERAL CONSIDERATIONS

In this section, we shall describe from a general point of
view the renormalization of the stress-energy tensor asso-
ciated with a massive scalar field theory defined on a
general spacetime of arbitrary dimension D � 2. We shall
assume that the scalar field is in a normalized quantum
state of Hadamard type and we shall consider that the
Wald’s axiomatic approach (see, Refs. [3,9,13]) developed
in the four-dimensional framework remains valid in the
D-dimensional one. We shall in fact extend various con-
siderations previously developed in the four-dimensional
framework (see, Refs. [9,13–22]).

A. Some aspects of the classical theory

We begin by reviewing the classical theory of a ‘‘free’’
massive scalar field � propagating on a D-dimensional
curved spacetime ðM; g��Þ in order to emphasize some

results which shall play a crucial role at the quantum level.
We first recall that the associated action is given by
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S ¼ � 1

2

Z
M
dDx

ffiffiffiffiffiffiffi�gp ðg���;��;� þm2�2 þ �R�2Þ
(3)

where m is the mass of the scalar field and � is a dimen-
sionless factor which accounts for the possible coupling
between the scalar field and the gravitational background.
We furthermore assume that spacetime has no boundary,
i.e., that @M ¼ ;. S is a functional of the scalar field� and
of the gravitational field g��, i.e., S ¼ S½�; g���. The

functional derivative of S with respect to � is given by

�S

��
¼ ffiffiffiffiffiffiffi�gp ðh�m2 � �RÞ� (4)

and its extremization provides the wave (Klein-Gordon)
equation

ðh�m2 � �RÞ� ¼ 0: (5)

The functional derivative of S with respect to g�� permits

us to define the stress-energy tensor T�� associated with

the scalar field � (see, for example, Ref. [72]). Indeed, we
have

T�� ¼ 2ffiffiffiffiffiffiffi�gp �

�g��
S½�; g��� (6)

and by using that in the variation

g�� ! g�� þ �g�� (7)

of the metric tensor we have (see, for example, Ref. [75])

g�� ! g�� þ �g�� (8a)ffiffiffiffiffiffiffi�gp ! ffiffiffiffiffiffiffi�gp þ �
ffiffiffiffiffiffiffi�gp

(8b)

R! Rþ �R (8c)

with

�g�� ¼ �g��g���g�� (8d)

�
ffiffiffiffiffiffiffi�gp ¼ 1

2

ffiffiffiffiffiffiffi�gp
g���g�� (8e)

�R ¼ �R���g�� þ ð�g��Þ;�� � ðg���g��Þ;�;�; (8f)

we can explicitly find that

T�� ¼ ð1� 2�Þ�;��;� þ ð2�� 1
2Þg��g���;��;�

� 2���;�� þ 2�g���h�

þ �ðR�� � 1
2g��RÞ�2 � 1

2g��m
2�2: (9)

It is well-known that the stress-energy tensor is con-
served, i.e., it satisfies

T��;� ¼ 0: (10)

This result could be obtained directly from Eq. (5) by using
the expression (9). However, it is more instructive from the
physical point of view to derive it from the invariance of

the action (3) under spacetime diffeomorphisms and there-
fore under the infinitesimal coordinate transformation

x� ! x� þ 	� with j	�j � 1: (11)

Indeed, under this transformation, the scalar field and the
background metric transform as

� ! �þ �� (12a)

g�� ! g�� þ �g�� (12b)

with

�� ¼ L�	� ¼ �	��;� (12c)

�g�� ¼ L�	g�� ¼ �	�;� � 	�;� (12d)

where L�	 denotes the Lie derivative with respect to the
vector �	. The invariance of the action (3) leads to

Z
M
dDx

��
�S

��

�
��þ

�
�S

�g��

�
�g��

�
¼ 0 (13)

which implies

T��;� ¼ �;�½h�m2 � �R�� (14)

by using (12). Then, from (5) we obtain immediately (10).
It is also well-known that for

m2 ¼ 0 and � ¼ �cðDÞ (15)

with

�cðDÞ ¼ 1

4

�
D� 2

D� 1

�
(16)

the stress-energy tensor is traceless, i.e., it satisfies

T�� ¼ 0: (17)

This result could be obtained directly from Eq. (5) by using
the expression (9). In fact, from the physical point of view,
it is more instructive to derive it by noting that for the
values of the parameters m2 and � given by (15) the scalar
field theory is conformally invariant (see, for example,
Appendix D of Ref. [76]). As a consequence, the action
(3) is invariant under the so-called conformal transforma-
tion

� ! �̂ ¼ �ð2�DÞ=2� (18a)

g�� ! ĝ�� ¼ �2g�� (18b)

and therefore under the infinitesimal conformal transfor-
mation

� ! �̂ ¼ �þ �� (19a)

g�� ! ĝ�� ¼ g�� þ �g�� (19b)

with

�� ¼ 2�D

2
	� (19c)
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�g�� ¼ 2	g�� (19d)

which corresponds to � ¼ 1þ 	 with j	j � 1. The in-
variance of the action (3) leads to (13) which now implies

T�� ¼ D� 2

2
�½h� �cðDÞR�� (20)

by using (19). Then, from (5) with (15), we obtain imme-
diately (17).

B. Hadamard quantum states and Feynman propagator

From now on, we shall assume that the scalar field
theory previously described has been quantized and that
the scalar field � is in a normalized quantum state j i of
Hadamard type. The associated Feynman propagator

GFðx; x0Þ ¼ ih jT�ðxÞ�ðx0Þj i (21)

(here T denotes time ordering) is, by definition, a solution
of

ðhx �m2 � �RÞGFðx; x0Þ ¼ ��Dðx; x0Þ (22)

with �Dðx; x0Þ ¼ ½�gðxÞ��1=2ðxÞ�Dðx� x0Þ. It is symmet-
ric in the exchange of x and x0 and its short-distance
behavior is of Hadamard type. Its precise form for x0
near x depends on whether the dimension D of spacetime
is even or odd (see, Refs. [77–79] or the articles by Moretti
[66–70] as well as our recent article [71] for more details).
It involves the geodetic interval �ðx; x0Þ and the biscalar
form �ðx; x0Þ of the Van Vleck-Morette determinant [80].
Here we recall that 2�ðx; x0Þ is a biscalar function which is
defined as the square of the geodesic distance between x
and x0 and which satisfies

2� ¼ �;��;�: (23)

We have �ðx; x0Þ< 0 if x and x0 are timelike related,
�ðx; x0Þ ¼ 0 if x and x0 are null related, and �ðx; x0Þ> 0
if x and x0 are spacelike related. We furthermore recall that
�ðx; x0Þ is given by

�ðx; x0Þ ¼ �½�gðxÞ��1=2 detð��;��0 ðx; x0ÞÞ½�gðx0Þ��1=2

(24)

and satisfies the partial differential equation

hx� ¼ D� 2��1=2�1=2
;��

;� (25a)

as well as the boundary condition

lim
x0!x

�ðx; x0Þ ¼ 1: (25b)

For D ¼ 2, the Hadamard expansion of the Feynman
propagator is given by

GFðx; x0Þ ¼ i
2

2
ðVðx; x0Þ ln½�ðx; x0Þ þ i	� þWðx; x0ÞÞ

(26)

where Vðx; x0Þ and Wðx; x0Þ are symmetric biscalars, regu-

lar for x0 ! x and which possess expansions of the form

Vðx; x0Þ ¼ Xþ1

n¼0

Vnðx; x0Þ�nðx; x0Þ; (27a)

Wðx; x0Þ ¼ Xþ1

n¼0

Wnðx; x0Þ�nðx; x0Þ: (27b)

For D even with D � 2, the Hadamard expansion of the
Feynman propagator is given by

GFðx; x0Þ ¼ i
D
2

�
Uðx; x0Þ

½�ðx; x0Þ þ i	�D=2�1
þ Vðx; x0Þ

� ln½�ðx; x0Þ þ i	� þWðx; x0Þ
�

(28)

where Uðx; x0Þ, Vðx; x0Þ, and Wðx; x0Þ are symmetric bisca-
lars, regular for x0 ! x and which possess expansions of
the form

Uðx; x0Þ ¼ XD=2�2

n¼0

Unðx; x0Þ�nðx; x0Þ; (29a)

Vðx; x0Þ ¼ Xþ1

n¼0

Vnðx; x0Þ�nðx; x0Þ; (29b)

Wðx; x0Þ ¼ Xþ1

n¼0

Wnðx; x0Þ�nðx; x0Þ: (29c)

For D odd, the Hadamard expansion of the Feynman
propagator is given by

GFðx; x0Þ ¼ i
D
2

�
Uðx; x0Þ

½�ðx; x0Þ þ i	�D=2�1
þWðx; x0Þ

�
(30)

where Uðx; x0Þ andWðx; x0Þ are again symmetric and regu-
lar biscalar functions which now possess expansions of the
form

Uðx; x0Þ ¼ Xþ1

n¼0

Unðx; x0Þ�nðx; x0Þ; (31a)

Wðx; x0Þ ¼ Xþ1

n¼0

Wnðx; x0Þ�nðx; x0Þ: (31b)

In Eqs. (26), (28), and (30), the coefficient 
D is given
by


D ¼
�
1=ð2�Þ for D ¼ 2;
�ðD=2� 1Þ=ð2�ÞD=2 for D � 2;

(32)

while the factor i	 with 	! 0þ is introduced to give to
GFðx; x0Þ a singularity structure that is consistent with the
definition of the Feynman propagator as a time-ordered
product [see Eq. (21)].
For D ¼ 2, the Hadamard coefficients Vnðx; x0Þ and

Wnðx; x0Þ are symmetric and regular biscalar functions.
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The coefficients Vnðx; x0Þ satisfy the recursion relations

2ðnþ 1Þ2Vnþ1 þ 2ðnþ 1ÞVnþ1;��
;�

� 2ðnþ 1ÞVnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞVn ¼ 0 for n 2 N (33a)

with the boundary condition

V0 ¼ ��1=2: (33b)

The coefficients Wnðx; x0Þ satisfy the recursion relations

2ðnþ 1Þ2Wnþ1 þ 2ðnþ 1ÞWnþ1;��
;�

� 2ðnþ 1ÞWnþ1�
�1=2�1=2

;��
;�

þ 4ðnþ 1ÞVnþ1 þ 2Vnþ1;��
;�

� 2Vnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞWn ¼ 0 for n 2 N: (34)

From the recursion relations (33a) and (34), the boundary
condition (33b), and the relations (23) and (25) it is pos-
sible to prove that GFðx; x0Þ given by (26) and (27) solves
the wave equation (22). This can be done easily by noting
that we have

ðhx �m2 � �RÞV ¼ 0 (35)

as a consequence of (33) and

�ðhx �m2 � �RÞW ¼ �2V;��
;� þ 2V��1=2�1=2

;��
;�

(36)

as a consequence of (33b) and (34).
For D even with D � 2, the Hadamard coefficients

Unðx; x0Þ, Vnðx; x0Þ, and Wnðx; x0Þ are symmetric and regu-
lar biscalar functions. The coefficients Unðx; x0Þ satisfy the
recursion relations

ðnþ 1Þð2nþ 4�DÞUnþ1 þ ð2nþ 4�DÞUnþ1;��
;�

� ð2nþ 4�DÞUnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞUn ¼ 0

for n ¼ 0; 1; . . . ; D=2� 3 (37a)

with the boundary condition

U0 ¼ �1=2: (37b)

The coefficients Vnðx; x0Þ satisfy the recursion relations

ðnþ 1Þð2nþDÞVnþ1 þ 2ðnþ 1ÞVnþ1;��
;�

� 2ðnþ 1ÞVnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞVn ¼ 0 for n 2 N (38a)

with the boundary condition

ðD� 2ÞV0 þ 2V0;��
;� � 2V0�

�1=2�1=2
;��

;�

þ ðhx �m2 � �RÞUD=2�2 ¼ 0: (38b)

The coefficients Wnðx; x0Þ satisfy the recursion relations

ðnþ 1Þð2nþDÞWnþ1 þ 2ðnþ 1ÞWnþ1;��
;�

� 2ðnþ 1ÞWnþ1�
�1=2�1=2

;��
;�

þ ð4nþ 2þDÞVnþ1 þ 2Vnþ1;��
;�

� 2Vnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞWn ¼ 0 for n 2 N: (39)

From the recursion relations (37a), (38a), and (39), the
boundary conditions (37b) and (38b), and the relations
(23) and (25) it is possible to prove that GFðx; x0Þ given
by (28) and (29) solves the wave equation (22). This can be
done easily by noting that we have

ðhx �m2 � �RÞV ¼ 0 (40)

as a consequence of (38a) and

�ðhx �m2 � �RÞW ¼ �ðhx �m2 � �RÞUD=2�2

� ðD� 2ÞV � 2V;��
;�

þ 2V��1=2�1=2
;��

;� (41)

as a consequence of (38b) and (39).
For D odd, the Hadamard coefficients Unðx; x0Þ and

Wnðx; x0Þ are symmetric and regular biscalar functions.
The coefficients Unðx; x0Þ satisfy the recursion relations

ðnþ 1Þð2nþ 4�DÞUnþ1 þ ð2nþ 4�DÞUnþ1;��
;�

� ð2nþ 4�DÞUnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞUn ¼ 0 for n 2 N (42a)

with the boundary condition

U0 ¼ �1=2: (42b)

The coefficients Wnðx; x0Þ satisfy the recursion relations

ðnþ 1Þð2nþDÞWnþ1 þ 2ðnþ 1ÞWnþ1;��
;�

� 2ðnþ 1ÞWnþ1�
�1=2�1=2

;��
;�

þ ðhx �m2 � �RÞWn ¼ 0 for n 2 N: (43)

From the recursion relations (42a) and (43), the boundary
conditions (42b) and the relations (23) and (25) it is
possible to prove that GFðx; x0Þ given by (30) and (31)
solves the wave equation (22). This can be done easily
from

ðhx �m2 � �RÞW ¼ 0 (44)

which is a consequence of (43).
For D ¼ 2, the Hadamard coefficients Vnðx; x0Þ can be

formally obtained by integrating the recursion relations
(33a) along the unique geodesic joining x to x0 (it is unique
for x0 near x or more generally for x0 in a convex normal
neighborhood of x). Similarly, for D even with D � 2, the
Hadamard coefficients Unðx; x0Þ and Vnðx; x0Þ can be ob-
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tained by integrating the recursion relations (37a) and
(38a) along the unique geodesic joining x to x0 while, for
D odd, the Hadamard coefficientsUnðx; x0Þ can be obtained
by integrating the recursion relations (42a) along the
unique geodesic joining x to x0. As a consequence, all these
Hadamard coefficients are determined uniquely and are
purely geometrical objects, i.e., they only depend on the
geometry along the geodesic joining x to x0. By contrast,
the Hadamard coefficients Wnðx; x0Þ with n 2 N are nei-
ther uniquely defined nor purely geometrical. Indeed, the
first coefficient of this sequence, i.e., W0ðx; x0Þ, is unre-
strained by the recursion relations (34) for D ¼ 2, (39) for
D even withD � 2, and (43) forD odd. As a consequence,
this is also true for all the Wnðx; x0Þ with n � 1. This
arbitrariness is in fact very interesting and it can be used
to encode the quantum state dependence in the biscalar
Wðx; x0Þ by specifying the Hadamard coefficient W0ðx; x0Þ.
Once it has been specified, the recursion relations (34) or
(39) or (43) uniquely determine the coefficients Wnðx; x0Þ
with n � 1 and therefore the biscalar Wðx; x0Þ. In other
words, the Hadamard expansions (26)–(31) comprise a
purely geometrical part, divergent for x0 ! x and given by

GF
singðx; x0Þ ¼

i
2

2
ðVðx; x0Þ ln½�ðx; x0Þ þ i	�Þ (45)

for D ¼ 2, by

GF
singðx; x0Þ ¼

i
D
2

�
Uðx; x0Þ

½�ðx; x0Þ þ i	�D=2�1
þ Vðx; x0Þ

� ln½�ðx; x0Þ þ i	�
�

(46)

for D even with D � 2 and by

GF
singðx; x0Þ ¼

i
D
2

�
Uðx; x0Þ

½�ðx; x0Þ þ i	�D=2�1

�
(47)

forD odd as well as a regular state-dependent part given by

GF
regðx; x0Þ ¼ i
D

2
Wðx; x0Þ: (48)

It should be noted that, bearing in mind practical appli-
cations, it is very interesting to replace the Hadamard
coefficients by their covariant Taylor series expansions.
Here, we shall provide some associated results which
will be helpful afterwards. As far as the geometrical
Hadamard coefficients Unðx; x0Þ and Vnðx; x0Þ which deter-
mine the singular part of the Feynman propagator are
concerned, they are usually obtained by looking for the
solutions of the recursion relations defining them as cova-
riant Taylor series expansions for x0 near x given by

Unðx; x0Þ ¼ unðxÞ þ
Xþ1

p¼1

ð�1Þp
p!

unðpÞðx; x0Þ (49a)

Vnðx; x0Þ ¼ vnðxÞ þ
Xþ1

p¼1

ð�1Þp
p!

vnðpÞðx; x0Þ (49b)

where the unðpÞðx; x0Þ and vnðpÞðx; x0Þ with p ¼ 1; 2; . . . are

all biscalars in x and x0 which are of the form

unðpÞðx; x0Þ ¼ una1...apðxÞ�;a1ðx; x0Þ . . .�;apðx; x0Þ (49c)

vnðpÞðx; x0Þ ¼ vna1...apðxÞ�;a1ðx; x0Þ . . .�;apðx; x0Þ: (49d)

This method, due to DeWitt [80,81], has been used in the
four-dimensional framework to construct the covariant
Taylor series expansions of U0ðx; x0Þ, V0ðx; x0Þ, and
V1ðx; x0Þ (see, for example, Ref. [18] and references therein
for the scalar field). In Ref. [71], we have recently dis-
cussed the construction of the expansions of the geometri-
cal Hadamard coefficients Unðx; x0Þ and Vnðx; x0Þ of lowest
orders in the D-dimensional framework (with D � 3) and
we intend to use these results later. The caseD ¼ 2 has not
been explicitly treated in Ref. [71] but a comparison of
Eq. (23) of Ref. [71] with (33) permits us to express the
geometrical Hadamard coefficients Vnðx; x0Þ in terms of the

mass-dependent DeWitt coefficients ~Anðm2; x; x0Þ [71]. We

have Vnðx; x0Þ ¼ �ðð�1Þn=ð2nn!ÞÞ ~Anðm2; x; x0Þ and this re-
lation together with the covariant Taylor series expansions
of the mass-dependent DeWitt coefficients obtained in
Ref. [71] provide the covariant Taylor series expansions
of the geometrical Hadamard coefficients Vnðx; x0Þ of low-
est orders for D ¼ 2.
As far as the biscalar Wðx; x0Þ which encodes the state

dependence of the Feynman propagator is concerned, its
covariant Taylor series expansion is written as

Wðx; x0Þ ¼ wðxÞ þ Xþ1

p¼1

ð�1Þp
p!

wðpÞðx; x0Þ (50a)

where the wðpÞðx; x0Þwith p ¼ 1; 2; . . . are all biscalars in x

and x0 which are of the form

wðpÞðx; x0Þ ¼ wa1...apðxÞ�;a1ðx; x0Þ . . .�;apðx; x0Þ: (50b)

The coefficients wðxÞ and wa1...apðxÞ with p ¼ 1; 2; . . . are

constrained by the symmetry ofWðx; x0Þ in the exchange of
x and x0 as well as by the wave equations (36) or (41) or
(44) according to the values of D. The symmetry of
Wðx; x0Þ permits us to express the odd coefficients of the
covariant Taylor series expansion of Wðx; x0Þ in terms of
the even ones. We have for the odd coefficients of lowest
orders (see, for example, Refs. [18,19] or Ref. [71])

wa1 ¼ ð1=2Þw;a1 (51a)

wa1a2a3 ¼ ð3=2Þwða1a2;a3Þ � ð1=4Þw;ða1a2a3Þ: (51b)

The wave equation satisfied byWðx; x0Þ forD even permits
us to write

ðhx �m2 � �RÞW ¼ �ðDþ 2ÞV1 � 2V1;��
;� þOð�Þ:

(52)

This relation is valid for D ¼ 2 as well as for D even with
D � 2. It is obtained from (36) or (41) by using (27a) and
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(33b) or (29b) and (38b) as well as the following two
expansions (see, for example, Refs. [11,12] or Ref. [71])

�1=2 ¼ 1þ ð1=12ÞRa1a2�;a1�;a2 þOð�3=2Þ (53)

and

�;�� ¼ g�� � ð1=3ÞR�a1�a2�;a1�;a2 þOð�3=2Þ: (54)

Then, by inserting the expansion of V1ðx; x0Þ given by (49b)
and (49d) and by using (54), we have

ðhx �m2 � �RÞW ¼ �ðDþ 2Þv1 þ ðD=2Þv1;��;�

þOð�Þ: (55)

By inserting the expansion (50a) and (50b) of Wðx; x0Þ up
to order �3=2 into the left-hand side of (55) and by using
(51) as well as (54) we find that

w�� ¼ ðm2 þ �RÞw� ðDþ 2Þv1 (56a)

w�a;� ¼ ð1=4ÞðhwÞ;a þ ð1=2Þw��;a þ ð1=2ÞR�aw;�

� ð1=2Þðm2 þ �RÞw;a þ ðD=2Þv1;a (56b)

and by combining (56a) and (56b) we establish another
relation

w�a;� ¼ ð1=4ÞðhwÞ;a þ ð1=2ÞR�aw;�

þ ð1=2Þ�R;aw� v1;a (57)

which will be helpful in the next subsection. The wave
equation (44) satisfied byWðx; x0Þ forD odd can be worked
in the same manner. It leads to

w�� ¼ ðm2 þ �RÞw (58a)

w�a;� ¼ ð1=4ÞðhwÞ;a þ ð1=2Þw��;a þ ð1=2ÞR�aw;�

� ð1=2Þðm2 þ �RÞw;a (58b)

and to

w�a;� ¼ ð1=4ÞðhwÞ;a þ ð1=2ÞR�aw;� þ ð1=2Þ�R;aw:

(59)

C. Hadamard renormalization of the stress-energy
tensor

The expectation value with respect to the Hadamard
quantum state j i of the stress-energy-tensor operator is
formally given as the limit

h jT��ðxÞj i ¼ lim
x0!x

T ��ðx; x0Þ½�iGFðx; x0Þ� (60)

where GFðx; x0Þ is the Feynman propagator (21) which is
assumed to possess one of the Hadamard form displayed in
the previous subsection. In Eq. (60), T ��ðx; x0Þ is a differ-
ential operator which is constructed by point splitting from
the classical expression (9) of the stress tensor. It is a tensor
of type (0, 2) in x and a scalar in x0. It is given by

T �� ¼ ð1� 2�Þg��0r�r�0 þ ð2�� 1
2Þg��g��

0r�r�0

� 2�g�
�0
g�

�0r�0r�0 þ 2�g��r�r�

þ �ðR�� � 1
2g��RÞ � 1

2g��m
2 (61)

where g��0 denotes the bivector of parallel transport from x

to x0 (see Refs. [80,81]) which is defined by the partial
differential equation

g��0;��
;� ¼ 0 (62a)

and the boundary condition

lim
x0!x

g��0 ¼ g��: (62b)

Of course, because of the short-distance behavior of the
Feynman propagator, the expression (60) of the expecta-
tion value of the stress-energy-tensor operator in the
Hadamard state j i is divergent and therefore meaningless.
This pathological behavior comes from the purely geomet-
rical part of the Hadamard expansion given by (45) for
D ¼ 2 or (46) forD even withD � 2 or by (47) forD odd.
More precisely, for D ¼ 2 the terms in ln� and � ln�
which are present in (45) induce divergences in 1=� and
ln� in the expression (60) of h jT��j i. For D even with

D � 2, the terms in 1=�D=2�1; . . . ; 1=�, ln�, and � ln�
which are present in (46) induce divergences in

1=�D=2; . . . ; 1=�2, 1=�, and ln� in the expression (60) of
h jT��j i while, for D odd, the terms in

1=�D=2�1; . . . ; 1=�1=2 and �1=2 which are present in (47)

induce divergences in 1=�D=2; . . . ; 1=�1=2 in this
expression.
With Wald [3,9,13] it is possible to cure the pathological

behavior of h jT��j i given by (60) and to construct from
it a meaningful expression which can act as a source in the
semiclassical Einstein equations (1) and which can be
considered as the renormalized expectation value with
respect to the Hadamard quantum state j i of the stress-
energy tensor operator. The Hadamard regularization pre-
scription permits us to accomplish this in the following
manner: we first discard in the right-hand side of (60) the
purely geometrical part (45) or (46) or (47) of GF, i.e., we
make the replacement

lim
x0!x

T ��ðx; x0Þ½�iGFðx; x0Þ�

! 
D
2

lim
x0!x

T ��ðx; x0ÞWðx; x0Þ: (63)

We then add to the right-hand side of (63) a state-

independent tensor ~��� which only depends on the pa-

rameters m2 and � of the theory and on the local geometry
and which ensures the conservation of the resulting ex-
pression. The renormalized expectation value of the stress-
energy tensor operator in the Hadamard state j i is there-
fore given by
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h jT��ðxÞj iren ¼ 
D
2

lim
x0!x

T ��ðx; x0ÞWðx; x0Þ þ ~���ðxÞ:
(64)

Bearing in mind practical applications, it is also interesting
to reexpress the previous result in terms of the lowest order
coefficients of the covariant Taylor series expansion of the
biscalarWðx; x0Þ. By inserting (50a) and (50b) into (64) and
by using the expansions (54) and (see, for example,
Refs. [11,12] or Ref. [71])

g�
�0�;��0 ¼ �g�� � ð1=6ÞR�a1�a2�;a1�;a2 þOð�3=2Þ

(65)

as well as the relations (see, for example, Refs. [11,12])

g�
�0
g��0 ¼ g�� (66a)

g�
�0g��0;� ¼ �ð1=2ÞR���a�;a þOð�Þ (66b)

g�
�0g�

�0
g��0;�0 ¼ �ð1=2ÞR���a�;a þOð�Þ (66c)

we obtain

h jT��j iren ¼ 
D
2

�
�
�
w�� � 1

2
g��w

�
�

�

þ 1

2
ð1� 2�Þw;�� þ 1

2

�
2�� 1

2

�
g��hw

þ �

�
R�� � 1

2
g��R

�
w� 1

2
g��m

2w

�

þ ~���: (67)

Now, by requiring the conservation of h jT��j iren given
by (67), we find that ~��� must satisfy

½ ~��� � ðD=4Þ
Dg��v1�;� ¼ 0 (68)

when D is even and

~� ��
;� ¼ 0 (69)

when D is odd. Equations (68) and (69) are derived by
using (56a) and (57) for the former and (58a) and (59) for
the latter.

It is now possible to provide a definitive expression for
the renormalized expectation value of the stress-energy
tensor operator in the Hadamard state j i. From (64) and
by taking into account (68), we have for D even

h jT��ðxÞj iren ¼ 
D
2

�
lim
x0!x

T ��ðx; x0ÞWðx; x0Þ

þD

2
g��v1

�
þ���ðxÞ: (70)

This result can be also written in the form

h jT��j iren ¼ 
D
2

�
�w�� þ 1

2
ð1� 2�Þw;��

þ 1

2

�
2�� 1

2

�
g��hwþ �R��w

� g��v1

�
þ��� (71)

which is obtained by inserting (56a) into (67) and by taking
into account (68). From (64) and by taking into account
(69), we have for D odd

h jT��ðxÞj iren ¼ 
D
2

lim
x0!x

T ��ðx; x0ÞWðx; x0Þ þ���ðxÞ:
(72)

This result can be also written in the form

h jT��j iren ¼ 
D
2

�
�w�� þ 1

2
ð1� 2�Þw;��

þ 1

2

�
2�� 1

2

�
g��hwþ �R��w

�
þ���

(73)

which is obtained by inserting (58a) into (67) and by taking
into account (69). In Eqs. (70)–(73), the tensor ��� only

depends on the parameters m2 and � of the theory and on
the local geometry and it is now conserved, i.e., it satisfies

���
;� ¼ 0: (74)

To conclude this subsection, we think it is interesting to
recall to the reader that the two coefficients wðxÞ and
w��ðxÞ which appear in the final expressions (71) and

(73) and which encode the state dependence are obtained
as Taylor coefficients of the expansion of the biscalar
Wðx; x0Þ but also more directly by the following two for-
mulas

wðxÞ ¼ lim
x0!x

Wðx; x0Þ (75a)

w��ðxÞ ¼ lim
x0!x

Wðx; x0Þ;�� (75b)

which can be derived easily from (50a) and (50b) by using
(51a) and (54). They are useful to treat practical
applications.

D. Ambiguities in the renormalized expectation value of
the stress-energy tensor

As we have previously noted, the renormalized expec-
tation value h jT��j iren is unique up to the addition of a

local conserved tensor ���. This problem plagues the

Hadamard renormalization procedure since its invention
(see, Sec. III of Ref. [13]). It has been recurrently discussed
in the four-dimensional context: we refer to the mono-
graphs of Fulling [2] andWald [3] and to references therein
as well as to more recent considerations developed in
Refs. [70,82–87]. In our opinion, this problem cannot be
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solved in the lack of a complete quantum theory of gravity.
As a consequence, it induces a serious difficulty with
regard to the study of backreaction effects, the right-hand
side of the semiclassical Einstein equation (1) being am-
biguously defined.

In the present subsection, we shall not consider the
ambiguity problem from a general point of view. We shall
only discuss the standard ambiguity associated with the
choice of a mass scale M—the so-called renormalization
mass—introduced in order to make the argument of the
logarithm in Eq. (28) dimensionless. We intend to provide
a more general (but still incomplete) discussion in Sec. IV.
The ambiguity associated with the renormalization mass
only exists when the dimension D of spacetime is even. It
corresponds to the replacement of the term Vðx; x0Þ �
ln½�ðx; x0Þ þ i	� by the term Vðx; x0Þ ln½M2ð�ðx; x0Þ þ
i	Þ� and therefore to an indeterminacy in the function
Wðx; x0Þ previously considered which corresponds to the
replacement

Wðx; x0Þ ! Wðx; x0Þ � Vðx; x0Þ lnM2 (76)

for which the theory developed in Sec. II C remains valid.
This indeterminacy is therefore associated with the term

�M2

��ðxÞ ¼ �
D
2

lim
x0!x

T ��ðx; x0ÞVðx; x0Þ lnM2: (77)

By using Eqs. (29b), (49b), and (49d), we can see also that
the transformation (76) leads to the replacement

w! w� v0 lnM
2 (78a)

w�� ! w�� � ðv0�� þ g��v1Þ lnM2 (78b)

into Eq. (71) and thus we have

�M2

�� ¼ �
D
2

�
�ðv0�� þ g��v1Þ þ 1

2
ð1� 2�Þv0;��

þ 1

2

�
2�� 1

2

�
g��hv0 þ �R��v0

�
lnM2: (79)

As a consequence, the knowledge of the first Taylor co-
efficients of the purely geometrical Hadamard coefficients
V0ðx; x0Þ and V1ðx; x0Þ permits us to treat partially the
ambiguity problem. It should be finally recalled that the
renormalization mass can be fixed by imposing additional
physical conditions on the renormalized expectation value
of the stress-energy tensor, these conditions being appro-
priate to the problem treated.

E. Trace anomaly

Here, we shall assume that the renormalized expectation
value of the stress-energy tensor h jT��j iren is given by

(71) for D even with the geometrical tensor ��� which

reduces to �M2

�� given by (79) and by (73) for D odd with

the geometrical tensor��� which vanishes. We neglect all

the other possible contributions (see however Sec. IVA for
a more general discussion).

By using (56a), we can show that the trace of
h jT��j iren is then given by

h jT��j iren ¼ 
D
2

½�m2wþ ðD� 1Þð�� �cðDÞÞhw
þ 2v1� þ g���M2

�� (80)

for D even and by using (58a) that it reduces to

h jT��j iren ¼ 
D
2

½�m2wþ ðD� 1Þð�� �cðDÞÞhw�
(81)

for D odd. Furthermore, we have

g���M2

�� ¼ �
D
2

½�m2v0 þ ðD� 1Þð�� �cðDÞÞhv0�
� lnM2 (82)

which is obtained from (79) by using v0
�
� ¼ �Dv1 þ

ðm2 þ �RÞv0, this last relation being easily derived from
(35) or (40).
For m2 ¼ 0 and � ¼ �cðDÞ, i.e,. when the scalar field

theory is conformally invariant, the trace g���M2

�� vanishes

and Eq. (80) yields

h jT��j iren ¼ 
Dv1 (83)

for D even. After renormalization, the expectation value of
the stress-energy tensor has acquired a nonvanishing or
‘‘anomalous’’ trace even though the classical stress-energy
tensor is traceless [see, Eq. (17)]. We refer to the mono-
graphs of Birrell and Davies [1], Fulling [2], and Wald [3]
as well as to references therein for various discussions and
considerations concerning trace anomalies in quantum
field theory in curved spacetime. For D odd, m2 ¼ 0, and
� ¼ �cðDÞ, Eq. (81) yields

h jT��j iren ¼ 0 (84)

and it appears that the trace anomaly does not exist when
the dimension of spacetime is odd.

III. HADAMARD RENORMALIZED STRESS-
ENERGY TENSOR: EXPLICIT CONSTRUCTION

In this section, we shall mainly discuss the practical
aspects of the Hadamard renormalization of the expecta-
tion value of the stress-energy tensor. This section is writ-
ten for the reader who simply wishes to calculate this
renormalized expectation value in a particular case and is
not specially interested in the derivation of all the previous
general results.
We assume that we know the explicit expression of the

Feynman propagator GFðx; x0Þ associated with a given
Hadamard quantum state j i. We first obtain the state-
dependent Hadamard biscalar Wðx; x0Þ from the relation

Wðx; x0Þ ¼ 2

i
D
½GFðx; x0Þ �GF

singðx; x0Þ� (85)
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where GF
singðx; x0Þ is given by (45) or (46) or (47) according

to the dimension D of spacetime. Of course, we need only
the covariant Taylor series expansion of Wðx; x0Þ up to
order � and therefore we do not need to know the terms
of the expansion of GF

singðx; x0Þ which vanish faster than

�ðx; x0Þ for x0 near x. For the same reason, the Feynman
propagatorGFðx; x0Þ does not need to be known exactly: we
need only its asymptotic expansion for x0 near x and we do
not need to know the terms of this expansion which vanish
faster than �ðx; x0Þ for x0 near x. From the expansion up to
order � of the biscalar Wðx; x0Þ we then obtain the Taylor
coefficients wðxÞ and w��ðxÞ either directly or by using the
relations (75). This permits us to finally construct the
renormalized expectation value in the Hadamard quantum
state j i of the stress-energy tensor by using (71) and (79)
or (73) according to the parity of D. Of course, for D even,

we must in addition construct the geometrical tensor �M2

��

from the Taylor coefficients v0, v0��, and v1 in order to do

this last step.
In the subsections below, we shall provide for spacetime

dimension from D ¼ 2 to D ¼ 6 the explicit expansion of
GF

singðx; x0Þ and for D ¼ 2, 4, and 6 we shall in addition

give the explicit expression of the geometrical tensor �M2

��

as well as of the trace anomaly. We shall use some of the
results we obtained in Ref. [71]. We have simplified them
from the geometrical identities displayed in our unpub-
lished report [73]. These geometrical identities are helpful
to expand the Riemann polynomials encountered in our
calculations on the FKWC bases constructed from group
theoretical considerations in Ref. [74]. They have permit-
ted us to provide irreducible expressions for all our results.
For spacetime dimension from 7 to 11, we shall describe
the method permitting the interested reader to construct

explicitly GF
singðx; x0Þ (as well as�M2

�� when it is necessary)

in a given spacetime by using the results obtained in
Ref. [71].

A. D ¼ 2

For D ¼ 2, the expansion of the singular part

GF
singðx; x0Þ ¼

i

4�
ðVðx; x0Þ ln½�ðx; x0Þ þ i	�Þ (86)

of the Feynman propagator is obtained, up the required
order, for

V ¼ V0 þ V1�þOð�3=2Þ (87)

with

V0 ¼ v0 � v0a�
;a þ 1

2!
v0ab�

;a�;b þOð�3=2Þ (88)

V1 ¼ v1 þOð�1=2Þ: (89)

The Taylor coefficients appearing in Eqs. (88) and (89) are
given by

v0 ¼ �1 (90a)

v0a ¼ 0 (90b)

v0ab ¼ �ð1=12ÞRgab (90c)

and

v1 ¼ �ð1=2Þm2 � ð1=2Þð�� 1=6ÞR: (91)

The geometrical tensor�M2

�� which is associated with the

renormalization mass is obtained from (79) by using (90a),
(90c), and (91) and is given by

�M2

�� ¼ lnM2

4�
½�ð1=2Þm2g���: (92)

The trace anomaly (83) is obtained by usingm2 ¼ 0 and
� ¼ �cð2Þ ¼ 0 into (91). It reduces to [1,88]

h jT��j iren ¼ R

24�
: (93)

B. D ¼ 3

For D ¼ 3, the expansion of the singular part

GF
singðx; x0Þ ¼

i

4
ffiffiffi
2

p
�

�
Uðx; x0Þ

½�ðx; x0Þ þ i	�1=2
�

(94)

of the Feynman propagator is obtained, up the required
order, for

U ¼ U0 þU1�þOð�2Þ (95)

with

U0 ¼ u0 � u0a�
;a þ 1

2!
u0ab�

;a�;b

� 1

3!
u0abc�

;a�;b�;c þOð�2Þ (96)

U1 ¼ u1 � u1a�
;a þOð�Þ: (97)

The Taylor coefficients appearing in Eqs. (96) and (97) are
given by

u0 ¼ 1 (98a)

u0a ¼ 0 (98b)

u0ab ¼ ð1=6ÞRab (98c)

u0abc ¼ ð1=4ÞRðab;cÞ (98d)

and

u1 ¼ m2 þ ð�� 1=6ÞR (99)

u1a ¼ ð1=2Þð�� 1=6ÞR;a: (100)

C. D ¼ 4

For D ¼ 4, the expansion of the singular part

GF
singðx; x0Þ ¼

i

8�2

�
Uðx; x0Þ

�ðx; x0Þ þ i	

þ Vðx; x0Þ ln½�ðx; x0Þ þ i	�
�

(101)
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of the Feynman propagator is obtained, up the required
order, for

U ¼ U0 (102)

V ¼ V0 þ V1�þOð�3=2Þ (103)

with

U0 ¼ u0 � u0a�
;a þ 1

2!
u0ab�

;a�;b � 1

3!
u0abc�

;a�;b�;c

þ 1

4!
u0abcd�

;a�;b�;c�;d þOð�5=2Þ (104)

V0 ¼ v0 � v0a�
;a þ 1

2!
v0ab�

;a�;b þOð�3=2Þ (105)

V1 ¼ v1 þOð�1=2Þ: (106)

The Taylor coefficients appearing in Eqs. (104)–(106) are
given by

u0 ¼ 1 (107a)

u0a ¼ 0 (107b)

u0ab ¼ ð1=6ÞRab (107c)

u0abc ¼ ð1=4ÞRðab;cÞ (107d)

u0abcd ¼ ð3=10ÞRðab;cdÞ þ ð1=12ÞRðabRcdÞ
þ ð1=15ÞRpðajqjbRpcqdÞ (107e)

and

v0 ¼ ð1=2Þm2 þ ð1=2Þð�� 1=6ÞR (108a)

v0a ¼ ð1=4Þð�� 1=6ÞR;a (108b)

v0ab ¼ ð1=12Þm2Rab þ ð1=6Þð�� 3=20ÞR;ab

� ð1=120ÞhRab þ ð1=12Þð�� 1=6ÞRRab
þ ð1=90ÞRpaRpb � ð1=180ÞRpqRpaqb
� ð1=180ÞRpqraRpqrb (108c)

and

v1 ¼ð1=8Þm4þð1=4Þð��1=6Þm2R�ð1=24Þð��1=5ÞhR
þð1=8Þð��1=6Þ2R2�ð1=720ÞRpqRpq
þð1=720ÞRpqrsRpqrs: (109)

The geometrical tensor�M2

�� which is associated with the

renormalization mass is obtained from (79) by using
(108a), (108c), and (109) and is given by

�M2

�� ¼ lnM2

2ð2�Þ2 ½�ð1=2Þð�� 1=6Þm2R�� þ ð1=2Þ½�2 � ð1=3Þ�þ 1=30�R;�� � ð1=120ÞhR�� � ð1=2Þð�� 1=6Þ2RR��
þ ð1=90ÞRp�Rp� � ð1=180ÞRpqRp�q� � ð1=180ÞRpqr�Rpqr� þ g��ðð1=8Þm4 þ ð1=4Þð�� 1=6Þm2R

� ð1=2Þ½�2 � ð1=3Þ�þ 1=40�hRþ ð1=8Þð�� 1=6Þ2R2 � ð1=720ÞRpqRpq þ ð1=720ÞRpqrsRpqrsÞ�: (110)

The trace anomaly (83) is obtained by usingm2 ¼ 0 and
� ¼ �cð4Þ ¼ 1=6 into (109). It reduces to [1,88]

h jT��j iren ¼ 1

ð2�Þ2 ½ð1=720ÞhR� ð1=720ÞRpqRpq

þ ð1=720ÞRpqrsRpqrs�: (111)

D. D ¼ 5

For D ¼ 5, the expansion of the singular part

GF
singðx; x0Þ ¼

i

16
ffiffiffi
2

p
�2

�
Uðx; x0Þ

½�ðx; x0Þ þ i	�3=2
�

(112)

of the Feynman propagator is obtained, up the required
order, for

U ¼ U0 þU1�þU2�
2 þOð�3Þ (113)

with

U0 ¼ u0 � u0a�
;a þ 1

2!
u0ab�

;a�;b � 1

3!
u0abc�

;a�;b�;c

þ 1

4!
u0abcd�

;a�;b�;c�;d

� 1

5!
u0abcde�

;a�;b�;c�;d�;e þOð�3Þ (114)

U1 ¼ u1 � u1a�
;a þ 1

2!
u1ab�

;a�;b

� 1

3!
u1abc�

;a�;b�;c þOð�2Þ (115)

U2 ¼ u2 � u2a�
;a þOð�Þ: (116)

The Taylor coefficients appearing in Eqs. (114)–(116) are
given by
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u0 ¼ 1 (117a)

u0a ¼ 0 (117b)

u0ab ¼ ð1=6ÞRab (117c)

u0abc ¼ ð1=4ÞRðab;cÞ (117d)

u0abcd ¼ ð3=10ÞRðab;cdÞ þ ð1=12ÞRðabRcdÞ þ ð1=15ÞRpðajqjbRpcqdÞ (117e)

u0abcde ¼ ð1=3ÞRðab;cdeÞ þ ð5=12ÞRðabRcd;eÞ þ ð1=3ÞRpðajqjbRpcqd;eÞ (117f)

and

u1 ¼�m2�ð�� 1=6ÞR (118a)

u1a ¼�ð1=2Þð�� 1=6ÞR;a (118b)

u1ab ¼�ð1=6Þm2Rab�ð1=3Þð�� 3=20ÞR;abþð1=60ÞhRab�ð1=6Þð�� 1=6ÞRRab�ð1=45ÞRpaRpb
þð1=90ÞRpqRpaqbþð1=90ÞRpqraRpqrb (118c)

u1abc¼�ð1=4Þm2Rðab;cÞ � ð1=4Þð�� 2=15ÞR;ðabcÞ þ ð1=40ÞðhRðabÞ;cÞ � ð1=4Þð�� 1=6ÞR;ðaRbcÞ � ð1=4Þð�� 1=6ÞRRðab;cÞ
� ð1=15ÞRpðaRpb;cÞ þ ð1=60ÞRpq;ðaRpbqcÞ þ ð1=60ÞRpqRpðaqb;cÞ þ ð1=30ÞRpqrðaRpqrb;cÞ (118d)

and

u2 ¼ �ð1=2Þm4 � ð�� 1=6Þm2Rþ ð1=6Þð�� 1=5ÞhR� ð1=2Þð�� 1=6Þ2R2 þ ð1=180ÞRpqRpq
� ð1=180ÞRpqrsRpqrs (119a)

u2a ¼ �ð1=2Þð�� 1=6Þm2R;a þ ð1=12Þð�� 1=5ÞðhRÞ;a � ð1=2Þð�� 1=6Þ2RR;a þ ð1=180ÞRpqRpq;a
� ð1=180ÞRpqrsRpqrs;a: (119b)

E. D ¼ 6

For D ¼ 6, the expansion of the singular part

GF
singðx; x0Þ ¼

i

16�3

�
Uðx; x0Þ

½�ðx; x0Þ þ i	�2

þ Vðx; x0Þ ln½�ðx; x0Þ þ i	�
�

(120)

of the Feynman propagator is obtained, up the required
order, for

U ¼ U0 þU1� (121)

V ¼ V0 þ V1�þOð�3=2Þ (122)

with

U0 ¼ u0 � u0a�
;a þ 1

2!
u0ab�

;a�;b � 1

3!
u0abc�

;a�;b�;c

þ 1

4!
u0abcd�

;a�;b�;c�;d

� 1

5!
u0abcde�

;a�;b�;c�;d�;e

þ 1

6!
u0abcdef�

;a�;b�;c�;d�;e�;f þOð�7=2Þ (123)

U1 ¼ u1 � u1a�
;a þ 1

2!
u1ab�

;a�;b � 1

3!
u1abc�

;a�;b�;c

þ 1

4!
u1abcd�

;a�;b�;c�;d þOð�5=2Þ (124)

V0 ¼ v0 � v0a�
;a þ 1

2!
v0ab�

;a�;b þOð�3=2Þ (125)

V1 ¼ v1 þOð�1=2Þ: (126)

The Taylor coefficients appearing in Eqs. (123)–(126) are
given by

u0 ¼ 1 (127a)

u0a ¼ 0 (127b)

u0ab ¼ ð1=6ÞRab (127c)

and

u0abc ¼ ð1=4ÞRðab;cÞ (127d)
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u0abcd ¼ ð3=10ÞRðab;cdÞ þ ð1=12ÞRðabRcdÞ þ ð1=15ÞRpðajqjbRpcqdÞ (127e)

u0abcde ¼ ð1=3ÞRðab;cdeÞ þ ð5=12ÞRðabRcd;eÞ þ ð1=3ÞRpðajqjbRpcqd;eÞ (127f)

u0abcdef ¼ ð5=14ÞRðab;cdefÞ þ ð3=4ÞRðabRcd;efÞ þ ð4=7ÞRpðajqjbRpcqd;efÞ þ ð5=8ÞRðab;cRde;fÞ þ ð15=28ÞRpðajqjb;cRpdqe;fÞ
þ ð5=72ÞRðabRcdRefÞ þ ð1=6ÞRðabRpcqdRjpjejqjfÞ þ ð8=63ÞRpðajqjbRqcjrjdRrejpjfÞ (127g)

and

u1 ¼�ð1=2Þm2 � ð1=2Þð�� 1=6ÞR (128a)

u1a ¼�ð1=4Þð�� 1=6ÞR;a (128b)

u1ab ¼�ð1=12Þm2Rab� ð1=6Þð�� 3=20ÞR;abþ ð1=120ÞhRab� ð1=12Þð�� 1=6ÞRRab� ð1=90ÞRpaRpb
þ ð1=180ÞRpqRpaqbþ ð1=180ÞRpqraRpqrb (128c)

u1abc ¼�ð1=8Þm2Rðab;cÞ � ð1=8Þð�� 2=15ÞR;ðabcÞ þ ð1=80ÞðhRðabÞ;cÞ � ð1=8Þð�� 1=6ÞR;ðaRbcÞ
� ð1=8Þð�� 1=6ÞRRðab;cÞ � ð1=30ÞRpðaRpb;cÞ þ ð1=120ÞRpq;ðaRpbqcÞ þ ð1=120ÞRpqRpðaqb;cÞ
þ ð1=60ÞRpqrðaRpqrb;cÞ (128d)

u1abcd ¼�ð3=20Þm2Rðab;cdÞ � ð1=24Þm2RðabRcdÞ � ð1=30Þm2RpðajqjbRpcqdÞ � ð1=10Þð�� 5=42ÞR;ðabcdÞ
þ ð1=70ÞðhRðabÞ;cdÞ � ð1=6Þð�� 3=20ÞR;ðabRcdÞ � ð3=20Þð�� 1=6ÞRRðab;cdÞ þ ð1=120ÞRðabhRcdÞ
� ð3=70ÞRpðaRjpjb;cdÞ þ ð1=210ÞRpðaRbc;dÞpþ ð1=70ÞRpq;ðabRpcqdÞ � ð2=105ÞRpða;bjqjRpcqdÞ
þ ð1=70ÞRðab

;pqRjpjcjqjdÞ þ ð1=105ÞRpqRpðaqb;cdÞ þ ð2=105ÞRpqrðaRjpqrjb;cdÞ � ð1=4Þð�� 1=6ÞR;ðaRbc;dÞ
� ð11=420ÞRpða;bRjpjc;dÞ � ð3=140ÞRpða;bRcdÞ;pþ ð17=1680ÞRðab

;pRcdÞ;pþ ð1=60ÞRpq;ðaRpbqc;dÞ
þ ð1=210ÞRpða;jqjRpbqc;dÞ þ ð1=56ÞRpqrða;bRjpqrjc;dÞ þ ð1=280ÞRpðaqb;rRjpjcjqjdÞ;r� ð1=24Þð�� 1=6ÞRRðabRcdÞ
� ð1=90ÞRðabRpcRjpjdÞ þ ð1=180ÞRðabRpqRjpjcjqjdÞ þ ð1=90ÞRpðaRqbRjpjcjqjdÞ � ð1=30Þð�� 1=6ÞRRpðaqbRjpjcjqjdÞ
þ ð1=180ÞRðabRpqrcRjpqrjdÞ þ ð1=315ÞRpðaRrpsbRjrjcjsjdÞ � ð1=315ÞRpqRrðapbRjrjc

q
dÞ

� ð2=315ÞRprqsRpðaqbRrcsdÞ � ð1=315ÞRpðaqbRrsjpjcRjrsqjdÞ þ ð4=315ÞRpðaqbRjpj
rs
cRjqrsjdÞ (128e)

and

v0 ¼ �ð1=8Þm4 � ð1=4Þð�� 1=6Þm2Rþ ð1=24Þð�� 1=5ÞhR� ð1=8Þð�� 1=6Þ2R2 þ ð1=720ÞRpqRpq
� ð1=720ÞRpqrsRpqrs (129a)

v0a ¼ �ð1=8Þð�� 1=6Þm2R;a þ ð1=48Þð�� 1=5ÞðhRÞ;a � ð1=8Þð�� 1=6Þ2RR;a þ ð1=720ÞRpqRpq;a
� ð1=720ÞRpqrsRpqrs;a (129b)

and

YVES DÉCANINI AND ANTOINE FOLACCI PHYSICAL REVIEW D 78, 044025 (2008)

044025-14



v0ab ¼ �ð1=48Þm4Rab � ð1=12Þð�� 3=20Þm2R;ab þ ð1=240Þm2hRab � ð1=24Þð�� 1=6Þm2RRab � ð1=180Þm2RpaR
p
b

þ ð1=360Þm2RpqRpaqb þ ð1=360Þm2RpqraRpqrb þ ð1=80Þð�� 4=21ÞðhRÞ;ab � ð1=3360ÞhhRab

� ð1=12Þð�� 1=6Þð�� 3=20ÞRR;ab þ ð1=144Þð�� 1=5ÞðhRÞRab þ ð1=360Þð�� 1=7ÞR;pðaRpbÞ
þ ð1=240Þð�� 1=6ÞRhRab þ ð1=1008ÞRpðahRpbÞ þ ð1=1680ÞRpqRpq;ðabÞ þ ð1=1260ÞRpqRpða;bÞq
� ð1=1680ÞRpqRab;pq þ ð1=180Þð�� 3=14ÞR;pqRpaqb � ð1=2520ÞðhRpqÞRpaqb þ ð1=630ÞRpq;rðaRjrqpjbÞ

þ ð1=420ÞRpða;qrRjpqrjbÞ � ð1=1260ÞRpqrsRpqrs;ðabÞ � ð1=16Þð�� 1=6Þ2R;aR;b � ð1=120Þð�� 3=14ÞR;pR
p
ða;bÞ

þ ð1=120Þð�� 17=84ÞR;pRab
;p þ ð1=1440ÞRpq;aRpq;b � ð1=5040ÞRpa;qRpb;q þ ð1=1008ÞRpa;qRqb;p

� ð1=2520ÞRpq;rRrqpða;bÞ � ð1=1680ÞRpq;rRpaqb;r � ð1=1344ÞRpqrs;aRpqrs;b � ð1=1680ÞRpqra;sRpqrb;s
� ð1=48Þð�� 1=6Þ2R2Rab � ð1=180Þð�� 1=6ÞRRpaRpb þ ð1=4320ÞRpqRpqRab � ð1=3780ÞRpqRpaRqb
þ ð1=360Þð�� 1=6ÞRRpqRpaqb þ ð1=7560ÞRprRqrRpaqb þ ð1=7560ÞRpqRrðaRjrqpjbÞ

þ ð1=360Þð�� 1=6ÞRRpqraRpqrb � ð1=4320ÞRabRpqrsRpqrs � ð1=1890ÞRpðaRqrsjpRqrsjbÞ
� ð1=3780ÞRpqRrspaRrsqb þ ð1=1890ÞRpqRprqsRrasb � ð1=7560ÞRpqRprsaRqrsb
þ ð1=3780ÞRpqrsRpqtaRrstb þ ð1=378ÞRprqsRtpqaRtrsb � ð1=3780ÞRpqrsRpqrtRsatb (129c)

and

v1 ¼�ð1=48Þm6 � ð1=16Þð�� 1=6Þm4Rþ ð1=48Þð�� 1=5Þm2hR� ð1=16Þð�� 1=6Þ2m2R2 þ ð1=1440Þm2RpqR
pq

� ð1=1440Þm2RpqrsR
pqrs� ð1=480Þð�� 3=14ÞhhRþ ð1=48Þð�� 1=6Þð�� 1=5ÞRhR

� ð1=720Þð�� 3=14ÞR;pqR
pq� ð1=5040ÞRpqhRpqþ ð1=840ÞRpq;rsRprqsþ ð1=96Þ½�2 � ð2=5Þ�þ 17=420�R;pR

;p

� ð1=20160ÞRpq;rRpq;r� ð1=10080ÞRpq;rRpr;qþ ð1=4480ÞRpqrs;tRpqrs;t� ð1=48Þð�� 1=6Þ3R3

þ ð1=1440Þð�� 1=6ÞRRpqRpqþ ð1=45360ÞRpqRprRqr� ð1=15120ÞRpqRrsRprqs� ð1=1440Þð�� 1=6ÞRRpqrsRpqrs
þ ð1=2160ÞRpqRprstRqrst� ð1=5670ÞRpqrsRpquvRrsuv� ð11=11340ÞRprqsRpuqvRrusv: (130)

The geometrical tensor �M2

�� which is associated with the renormalization mass is obtained from (79) by using (129a),

(129c), and (130) and is given by

�M2

�� ¼ lnM2

2ð2�Þ3 ½ð1=8Þð�� 1=6Þm4R��� ð1=4Þ½�2 � ð1=3Þ�þ 1=30�m2R;��þ ð1=240Þm2hR��

þ ð1=4Þð�� 1=6Þ2m2RR��� ð1=180Þm2Rp�R
p
�þ ð1=360Þm2RpqRp�q�þ ð1=360Þm2Rpqr�Rpqr�

þ ð1=24Þ½�2 � ð2=5Þ�þ 3=70�ðhRÞ;��� ð1=3360ÞhhR��� ð1=4Þð�� 1=6Þ½�2 � ð1=3Þ�þ 1=30�RR;��

� ð1=24Þð�� 1=6Þð�� 1=5ÞðhRÞR��þ ð1=360Þð�� 1=7ÞR;pð�Rp�Þ þ ð1=240Þð�� 1=6ÞRhR��
þ ð1=1008ÞRpð�hRp�Þ þ ð1=360Þð�� 2=7ÞRpqRpq;ð��Þ þ ð1=1260ÞRpqRpð�;�Þq� ð1=1680ÞRpqR��;pq
þ ð1=180Þð�� 3=14ÞR;pqRp�q�� ð1=2520ÞðhRpqÞRp�q�þ ð1=630ÞRpq;rð�Rjrqpj�Þ þ ð1=420ÞRpð�;qrRjpqrj�Þ

� ð1=360Þð�� 3=14ÞRpqrsRpqrs;ð��Þ � ð1=4Þð�� 1=6Þ2ð�� 1=4ÞR;�R;�� ð1=120Þð�� 3=14ÞR;pR
p
ð�;�Þ

þ ð1=120Þð�� 17=84ÞR;pR��
;pþ ð1=360Þð�� 1=4ÞRpq;�Rpq;�� ð1=5040ÞRp�;qRp�;qþ ð1=1008ÞRp�;qRq�;p

� ð1=2520ÞRpq;rRrqpð�;�Þ � ð1=1680ÞRpq;rRp�q�;r� ð1=360Þð�� 13=56ÞRpqrs;�Rpqrs;�� ð1=1680ÞRpqr�;sRpqr�;s
þ ð1=8Þð�� 1=6Þ3R2R��� ð1=180Þð�� 1=6ÞRRp�Rp�� ð1=720Þð�� 1=6ÞRpqRpqR��� ð1=3780ÞRpqRp�Rq�
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þð1=360Þð�� 1=6ÞRRpqRp�q�þð1=7560ÞRprRqrRp�q�þð1=7560ÞRpqRrð�Rjrqpj�Þ þ ð1=360Þð�� 1=6ÞRRpqr�Rpqr�
þð1=720Þð�� 1=6ÞR��RpqrsRpqrs�ð1=1890ÞRpð�RqrsjpRqrsj�Þ � ð1=3780ÞRpqRrsp�Rrsq�þð1=1890ÞRpqRprqsRr�s�
�ð1=7560ÞRpqRprs�Rqrs�þð1=3780ÞRpqrsRpqt�Rrst�þð1=378ÞRprqsRtpq�Rtrs��ð1=3780ÞRpqrsRpqrtRs�t�
þg��ð�ð1=48Þm6�ð1=16Þð�� 1=6Þm4Rþð1=4Þ½�2�ð1=3Þ�þ 1=40�m2hR�ð1=16Þð�� 1=6Þ2m2R2

þð1=1440Þm2RpqR
pq�ð1=1440Þm2RpqrsR

pqrs�ð1=24Þ½�2�ð2=5Þ�þ 11=280�hhRþð1=4Þð�� 1=6Þ
� ½�2�ð1=3Þ�þ 1=40�RhR�ð1=720Þð�� 3=14ÞR;pqR

pq�ð1=360Þð�� 5=28ÞRpqhRpq
þð1=90Þð�� 1=7ÞRpq;rsRprqsþð1=4Þ½�3�ð13=24Þ�2þð17=180Þ�� 53=10080�R;pR

;p

�ð1=360Þð�� 13=56ÞRpq;rRpq;r�ð1=10080ÞRpq;rRpr;qþð1=360Þð�� 19=112ÞRpqrs;tRpqrs;t�ð1=48Þð�� 1=6Þ3R3

þð1=1440Þð�� 1=6ÞRRpqRpqþð1=45360ÞRpqRprRqr�ð1=15120ÞRpqRrsRprqs�ð1=1440Þð�� 1=6ÞRRpqrsRpqrs
þð1=180Þð�� 1=6ÞRpqRprstRqrst�ð1=360Þð�� 47=252ÞRpqrsRpquvRrsuv�ð1=90Þð�� 41=252ÞRprqsRpuqvRrusvÞ�:

(131)

The trace anomaly (83) is obtained by using m2 ¼ 0 and � ¼ �cð6Þ ¼ 1=5 into (130). It reduces to

h jT��j iren ¼ 1

ð2�Þ3 ½ð1=33600ÞhhRþ ð1=50400ÞR;pqR
pq � ð1=5040ÞRpqhRpq þ ð1=840ÞRpq;rsRprqs

þ ð1=201600ÞR;pR
;p � ð1=20160ÞRpq;rRpq;r � ð1=10080ÞRpq;rRpr;q þ ð1=4480ÞRpqrs;tRpqrs;t

� ð1=1296000ÞR3 þ ð1=43200ÞRRpqRpq þ ð1=45360ÞRpqRprRqr � ð1=15120ÞRpqRrsRprqs
� ð1=43200ÞRRpqrsRpqrs þ ð1=2160ÞRpqRprstRqrst � ð1=5670ÞRpqrsRpquvRrsuv
� ð11=11340ÞRprqsRpuqvRrusv�: (132)

F. D ¼ 7, 8, 9, 10, 11

The complexity of the explicit expressions ofGF
singðx; x0Þ

and of the geometrical tensor �M2

�� greatly increases with

the dimension D of spacetime. That clearly appears in the
previous subsections. For this reason, we cannot write
them explicitly for spacetime dimension from D ¼ 7 to
D ¼ 11 even though we have at our disposal all the tools
permitting us to carry out all the necessary calculations.
Indeed, in the appendices of Ref. [71], we have obtained
the covariant Taylor series expansions of the Van Vleck-

Morette determinant U0ðx; x0Þ ¼ �1=2ðx; x0Þ up to order

�11=2 and of the bitensor ���ðx; x0Þ up to order �9=2. We
have also developed the general theory permitting us to
construct the covariant derivative and the d’Alembertian of
an arbitrary biscalar Fðx; x0Þ symmetric in the exchange of
x and x0. From a theoretical point of view, all these results
could permit us to solve the recursion relations (37) and
(38) for D even and the recursion relations (42) for D odd
and therefore to obtain the explicit expressions of
GF

singðx; x0Þ up to the required order and of the geometrical

tensor �M2

�� when necessary. Of course, this could be

realized but at the cost of odious calculations in a general
spacetime.

By contrast, in a given spacetime, i.e., if we know
explicitly the Riemann tensor R���� and therefore the

Ricci tensor R�� and the scalar curvature R, interesting

simplifications may occur, the construction of GF
singðx; x0Þ

and of �M2

�� done explicitly and the renormalization of the

expectation value of the stress-energy tensor ‘‘easily’’
achieved. For example, in D-dimensional Schwarzschild
black hole spacetimes where we haveR ¼ 0, R�� ¼ 0, and

more generally in Ricci-flat spacetimes, considerable sim-
plifications could permit us to obtain explicitly GF

singðx; x0Þ
and �M2

�� even for D> 6. This certainly also happens in

D-dimensional spacetimes such as AdSp � Sq with pþ
q ¼ D where the covariant derivative of the Riemann
tensor vanishes (R����;� ¼ 0) as well as in

D-dimensional de Sitter and Anti-de Sitter spacetimes,
i.e., in maximally symmetric spacetimes, where R���� ¼
½R=DðD� 1Þ�ðg��g�� � g��g��Þ with R ¼ Cte.

IV. IMPORTANT REMARKS AND COMPLEMENTS

In this section, we shall complete our study by discus-
sing some aspects of the Hadamard renormalization of the
stress-energy tensor which are more or less directly related
to the explicit calculations described in Secs. II and III.
They are helpful in order to simplify some of the results
displayed above. Furthermore, they permit us to discuss
more generally the ambiguity problem and the trace anom-
aly as well as to clarify the links existing between the
Hadamard formalism and the more popular method based

YVES DÉCANINI AND ANTOINE FOLACCI PHYSICAL REVIEW D 78, 044025 (2008)

044025-16



on regularization and renormalization in the effective
action.

A. Ambiguities and trace anomaly

As already noted in Sec. II, the renormalized expectation
value h jT��j iren is unique up to the addition of a local

conserved tensor ���. For D even, we have been able to

construct the standard ambiguity associated with the
choice of the renormalization mass M [see, Eq. (79)]
and, in Sec. III, we have explicitly obtained its expression
forD ¼ 2, 4, and 6 [see, Eqs. (92), (110), and (131)]. In the
present subsection, following Wald’s arguments of
Ref. [13], we shall push further our discussion and provide
forD ¼ 2, 3, 4, 5, and 6, the bases (i.e., all the independent
conserved local tensors) permitting us to constructed the
most general expression for the tensor ���. Here, we

adhere to a conventional point of view [13] by discarding
ambiguities diverging as m2 ! 0. It should be however
noted that a less conventional point of view has been
considered by Tichy and Flanagan in Ref. [82].

In order to extend Wald’s arguments, it is important to
keep in mind that ��� is a local conserved tensor of

dimension ðmassÞD and that it can be obtained by func-
tional derivation with respect to the metric tensor from a
geometrical Lagrangian of dimension ðmassÞD. We note
also that g�� is dimensionless while R, R��, and R����
have dimension ðmassÞ2.

1. D ¼ 2

For D ¼ 2, there are only two ‘‘independent’’ geomet-
rical Lagrangians of dimension ðmassÞ2 which remain
finite in the massless limit: L ¼ m2 and L ¼ R.
However, by functional derivation, the latter does not
provide any contribution to ��� because, in two dimen-

sions, the Euler number

Z
M
d2x

ffiffiffiffiffiffiffi�gp
R (133)

is a topological invariant. ��� is then necessarily propor-

tional to the functional derivative ofL ¼ m2 and therefore
of the form

��� ¼ Am2g�� (134)

where A is a dimensionless constant.
It is interesting to note that��� given by (134) vanishes

for m2 ¼ 0 and therefore does not modify the trace anom-
aly (93).

2. D ¼ 3

For D ¼ 3, there are only two independent geometrical
Lagrangians of dimension ðmassÞ3 which remain finite in
the massless limit: L ¼ m3 and L ¼ mR. So, it is natural
to consider that ��� is necessarily a linear combination of

their functional derivatives m3g��=2 and m½ð1=2ÞRg�� �

R���, i.e., that
��� ¼ Am3g�� þ Bm½R�� � ð1=2ÞRg��� (135)

where A and B are dimensionless constants.
It should be noted that ��� given by (135) vanishes for

m ¼ 0. Thus, it cannot be used in order to modified (84). In
other words, the trace anomaly does not exist for D ¼ 3
even if we take into account the possible ambiguities of the
Hadamard renormalization process.

3. D ¼ 4

For D ¼ 4, there are five ‘‘independent’’ geometrical
Lagrangians of dimension ðmassÞ4 which remain finite in
the massless limit: L ¼ m4, L ¼ m2R, L ¼ R2, L ¼
RpqR

pq, and L ¼ RpqrsR
pqrs. By functional derivation

with respect to the metric tensor, they define the conserved
tensors m4g��=2, m

2½ð1=2ÞRg�� � R��� as well as the

three conserved tensors of rank 2 and order 4

Hð4;2Þð1Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
R2 (136a)

¼ 2R;�� � 2RR�� þ g��½�2hRþ ð1=2ÞR2�;
(136b)

Hð4;2Þð2Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RpqR

pq (137a)

¼ R;�� �hR�� � 2RpqRp�q�

þ g��½�ð1=2ÞhRþ ð1=2ÞRpqRpq�; (137b)

Hð4;2Þð3Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RpqrsR

pqrs (138a)

¼ 2R;���4hR��þ4Rp�Rp��4RpqRp�q�

�2Rpqr�Rpqr�þg��½ð1=2ÞRpqrsRpqrs�: (138b)
��� is therefore necessarily of the form

��� ¼ Am4g�� þ Bm2½R�� � ð1=2ÞRg��� þ C1H
ð4;2Þð1Þ
��

þ C2H
ð4;2Þð2Þ
�� þ C3H

ð4;2Þð3Þ
�� (139)

where A, B, C1, C2, and C3 are dimensionless constants.
Here, it should be also noted that it is possible to simplify
the previous expression because, in a four-dimensional
background, the Euler number

Z
M
d4x

ffiffiffiffiffiffiffi�gp
Lð2Þ; (140)

where Lð2Þ is the quadratic Gauss-Bonnet Lagrangian

given by

L ð2Þ ¼ R2 � 4RpqR
pq þ RpqrsR

pqrs; (141)
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is a topological invariant. By functional derivation of (140)
we obtain

Hð4;2Þð1Þ
�� � 4Hð4;2Þð2Þ

�� þHð4;2Þð3Þ
�� ¼ 0 (142)

which could be helpful in order to eliminate one of the
three conserved tensors of rank 2 and order 4 into (139). In
other words, without loss of generality it is possible to use
C1 ¼ 0 or C2 ¼ 0 or C3 ¼ 0 into (139).

It should be noted that the ‘‘basis’’ exhibited above
which has permitted us to provide the general form for
the tensor ��� can be used to simplify considerably the

expression (110) obtained for �M2

��. Indeed, from

Eqs. (136)–(138), we can write

�M2

�� ¼ lnM2

ð4�Þ2 � ðþð1=2Þð�� 1=6Þ2Hð4;2Þð1Þ
��

� ð1=180ÞHð4;2Þð2Þ
�� þ ð1=180ÞHð4;2Þð3Þ

��

� ð�� 1=6Þm2½R��� ð1=2ÞRg��� þ ð1=4Þm4g��Þ:
(143)

Finally, it is interesting to note that ��� given by (139)

can be used in order to modify the trace anomaly (111).
Indeed, form2 ¼ 0 and by using Eqs. (A1)–(A3) withD ¼
4, we obtain

g����� ¼ ½�6C1 � 2C2 � 2C3�hR: (144)

For example, by taking C1 ¼ 1=4320ð2�Þ2 and C2 ¼
C3 ¼ 0, we can remove the hR term from (111). This
elimination can be achieved by adding a finite R2 term to
the gravitational Lagrangian [see, Eq. (136)] and is in
accordance with the discussion we shall develop in
Sec. IVB. On the contrary, the RpqR

pq term and the

RpqrsR
pqrs term cannot be modified. We refer to Sec. 6.3

of Ref. [1] for various physical comments concerning the
possible modifications of the trace anomaly in a four-
dimensional gravitational background.

4. D ¼ 5

For D ¼ 5, there are five independent geometrical
Lagrangians of dimension ðmassÞ5 which remain finite in
the massless limit: L ¼ m5, L ¼ m3R, L ¼ mR2, L ¼
mRpqR

pq, and L ¼ mRpqrsR
pqrs. By functional deriva-

tion, they define the conserved tensors m5g��=2,

m3½ð1=2ÞRg�� � R��� as well as the three conserved ten-

sors of rank 2 and order 4 mHð4;2Þð1Þ
�� , mHð4;2Þð2Þ

�� , and

mHð4;2Þð3Þ
�� . ��� is therefore necessarily of the form

��� ¼ Am5g�� þ Bm3½R�� � ð1=2ÞRg���
þ C1mH

ð4;2Þð1Þ
�� þ C2mH

ð4;2Þð2Þ
�� þ C3mH

ð4;2Þð3Þ
��

(145)

where A, B, C1, C2, and C3 are dimensionless constants.

Here, the conserved tensors Hð4;2Þð1Þ
�� , Hð4;2Þð2Þ

�� , and Hð4;2Þð3Þ
��

are still, respectively, defined by Eqs. (136a), (137a), and
(138a) but now, in these equations,D ¼ 4must be replaced
by D ¼ 5. Their explicit expressions (136b), (137b), and
(138b) remain unchanged. For D ¼ 5, it is not possible to
simplify Eq. (145) by using (142). Indeed, for D> 4 this
topological constraint is not valid because the Euler num-
ber (140) does not remain a topological invariant.
It should be noted that ��� given by (145) vanishes for

m ¼ 0. Thus, it cannot be used in order to modify (84). In
other words, the trace anomaly does not exist for D ¼ 5
even if we take into account the possible ambiguities of the
Hadamard renormalization process.

5. D ¼ 6

For D ¼ 6, there are 15 ‘‘independent’’ geometrical
Lagrangians of dimension ðmassÞ6 which remain finite in
the massless limit: L ¼ m6, L ¼ m4R and the three
Riemann polynomials of rank 0 and order 4 L ¼ m2R2,
L ¼ m2RpqR

pq, L ¼ m2RpqrsR
pqrs as well as the ten

Riemann monomials of rank 0 and order 6 (see
Refs. [73,74]) L ¼ RhR, L ¼ RpqhR

pq, L ¼ R3, L ¼
RRpqR

pq, L ¼ RpqR
p
rR

qr, L ¼ RpqRrsR
prqs, L ¼

RRpqrsR
pqrs, L ¼ RpqR

p
rstR

qrst, L ¼ RpqrsR
pquvRrsuv,

L ¼ RprqsR
p
u
q
vR

rusv. By functional derivation, they de-

fine the conserved tensors m6g��=2, m
4½ð1=2ÞRg�� �

R��� and the three conserved tensors of rank 2 and order 4
m2Hð4;2Þð1Þ

�� , m2Hð4;2Þð2Þ
�� , and m2Hð4;2Þð3Þ

�� as well as the ten
conserved tensors of rank 2 and order 6

Hf2;0gð1Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RhR (146)

Hf2;0gð3Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RpqhR

pq (147)

Hð6;3Þð1Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
R3 (148)

Hð6;3Þð2Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RRpqR

pq (149)

Hð6;3Þð3Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RpqR

p
rR

qr (150)

Hð6;3Þð4Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RpqRrsR

prqs (151)

Hð6;3Þð5Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RRpqrsR

pqrs (152)

Hð6;3Þð6Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RpqR

p
rstR

qrst (153)
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Hð6;3Þð7Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RpqrsR

pquvRrsuv

(154)

Hð6;3Þð8Þ
�� � 1ffiffiffiffiffiffiffi�gp �

�g��

Z
M
dDx

ffiffiffiffiffiffiffi�gp
RprqsR

p
u
q
vR

rusv:

(155)

Here we do not provide the explicit expressions of these ten
tensors. They are very complicated ones and can be found
in Ref. [89] [see, Eqs. (2.22)–(2.31) of this article]. As far

as the conserved tensors Hð4;2Þð1Þ
�� , Hð4;2Þð2Þ

�� , and Hð4;2Þð3Þ
�� are

concerned, they are still, respectively, defined by
Eqs. (136a), (137a), and (138a) but now, in these equations,
D ¼ 4 must be replaced by D ¼ 6. Their explicit expres-
sions (136b), (137b), and (138b) remain unchanged.��� is

therefore necessarily of the form

��� ¼ Am6g�� þ Bm4½ð1=2ÞRg�� � R���
þ C1m

2Hð4;2Þð1Þ
�� þ C2m

2Hð4;2Þð2Þ
�� þ C3m

2Hð4;2Þð3Þ
��

þD1H
f2;0gð1Þ
�� þD2H

f2;0gð3Þ
�� þD3H

ð6;3Þð1Þ
��

þD4H
ð6;3Þð2Þ
�� þD5H

ð6;3Þð3Þ
�� þD6H

ð6;3Þð4Þ
��

þD7H
ð6;3Þð5Þ
�� þD8H

ð6;3Þð6Þ
�� þD9H

ð6;3Þð7Þ
��

þD10H
ð6;3Þð8Þ
�� (156)

where A, B, C1, C2, and C3 as well as D1; . . .D9 and D10

are dimensionless constants. Finally, it should be noted that
it is possible to simplify the previous expression for ���

because, in a six-dimensional background, the Euler num-
ber

Z
M
d6x

ffiffiffiffiffiffiffi�gp
Lð3Þ; (157)

where Lð3Þ is the cubic Lovelock Lagrangian explicitly

given by

L ð3Þ ¼ R3 � 12RRpqR
pq þ 16RpqR

p
rR

qr

þ 24RpqRrsR
prqs þ 3RRpqrsR

pqrs

� 24RpqR
p
rstR

qrst þ 4RpqrsR
pquvRrsuv

� 8RprqsR
p
u
q
vR

rusv; (158)

is a topological invariant. By functional derivation of (157)
we obtain the relation

Hð6;3Þð1Þ
�� � 12Hð6;3Þð2Þ

�� þ 16Hð6;3Þð3Þ
�� þ 24Hð6;3Þð4Þ

��

þ 3Hð6;3Þð5Þ
�� � 24Hð6;3Þð6Þ

�� þ 4Hð6;3Þð7Þ
�� � 8Hð6;3Þð8Þ

�� ¼ 0:

(159)

Equation (159) could be helpful in order to eliminate into
(156) one of the conserved tensors of rank 2 and order 6.
Of course, the ‘‘basis’’ exhibited above and which has

permitted us to provide the general form for the tensor���

can be used to simplify considerably the expression (131)

obtained for �M2

��. By using Eqs. (2.22)–(2.31) of Ref. [89]

and after a tedious calculation, we obtain the compact
expression

�M2

�� ¼ lnM2

ð4�Þ3 � ð½ð1=12Þ�2 � ð1=30Þ�þ 1=336�Hf2;0gð1Þ
�� þ ð1=840ÞHf2;0gð3Þ

�� � ð1=6Þð�� 1=6Þ3Hð6;3Þð1Þ
��

þ ð1=180Þð�� 1=6ÞHð6;3Þð2Þ
�� � ð4=2835ÞHð6;3Þð3Þ

�� þ ð1=945ÞHð6;3Þð4Þ
�� � ð1=180Þð�� 1=6ÞHð6;3Þð5Þ

��

þ ð1=7560ÞHð6;3Þð6Þ
�� þ ð17=45360ÞHð6;3Þð7Þ

�� � ð1=1620ÞHð6;3Þð8Þ
�� � ð1=2Þð�� 1=6Þ2m2Hð4;2Þð1Þ

��

þ ð1=180Þm2Hð4;2Þð2Þ
�� � ð1=180Þm2Hð4;2Þð3Þ

�� þ ð1=2Þð�� 1=6Þm4½R�� � ð1=2ÞRg��� � ð1=12Þm6g��Þ: (160)

Finally, it is interesting to note that ��� given by (156) could permit us to modify the trace anomaly (132). Indeed, for

m2 ¼ 0 and by using Eqs. (A4)–(A7) and (A7)–(A13) with D ¼ 6, we obtain

g����� ¼ ½�10D1 � 3D2�hhRþ ½�2D1 � 30D3 � 4D4 �D6=2� 2D7�RhRþ ½�8D2 � 4D4 � 6D5 þ 2D6 � 4D7

�D8 þ 3D10=2�R;pqR
pqþ ½2D2 � 10D4 � 3D5 � 6D6 � 2D8 � 3D10�RpqhRpq

þ ½8D2 � 4D6 � 40D7 � 14D8 � 24D9 þ 3D10�Rpq;rsRprqs
þ ½�2D1 � 3D2=2� 30D3 � 6D4 � 3D5=2� 3D6=4� 4D7 �D8=2�R;pR

;pþ ½10D2 � 10D4 � 3D5

� 10D6 � 8D8 � 12D9 � 3D10�Rpq;rRpq;rþ ½�18D2 � 6D5 þ 9D6 þ 6D8 þ 12D9 þ 3D10�Rpq;rRpr;q
þ ½�18D2 � 6D5 þ 9D6 þ 6D8 þ 12D9 þ 3D10�Rpq;rRpr;qþ ½�10D7 � 2D8 � 3D9 þ 3D10=4�Rpqrs;tRpqrs;t
þ ½�10D2 � 6D5 þ 5D6 þ 3D10�ðRpqRprRqr�RpqRrsR

prqsÞ þ ½�10D7 � 2D8 � 3D9 þ 3D10=4�
� ð2RpqRprstRqrst�RpqrsR

pquvRrsuv� 4RprqsR
p
u
q
vR

rusvÞ: (161)

HADAMARD RENORMALIZATION OF THE STRESS- . . . PHYSICAL REVIEW D 78, 044025 (2008)

044025-19



It should be noted that three of the ten scalar Riemann
monomials of order 6, namely R3, RRpqR

pq, and
RRpqrsR

pqrs, do not appear in (161). As a consequence, it
is impossible to remove such terms from the trace anomaly
(132). On the contrary, by choosing correctly the coeffi-
cients Di, it is possible to remove any other term from
(132).

B. Infinities and gravitational actions

In the previous sections, we have constructed the renor-
malized expectation value of the stress-energy operator for
a massive scalar field in a general spacetime of arbitrary
dimension by assuming that the Wald’s axiomatic ap-
proach (see, Refs. [3,9,13]) remains valid for all dimen-
sions. In the Wald’s axiomatic approach, the treatment of
the divergences present in the formal expression (60) does
not necessitate a particular study, i.e., absorption into
renormalized gravitational parameters. These divergences
are simply discarded and the cosmological constant � and
the Newton’s gravitational constant G (as well as the other
coupling constants associated with higher-order gravita-
tional terms if we need to consider such terms) appearing
in the semiclassical Einstein equations (1) are directly the
physical gravitational parameters while the expectation
value h jT��j iren constructed from the Hadamard bisca-

lar Wðx; x0Þ is automatically the physically meaningful
source.

In the present subsection, we shall depart from the path
marked out by Wald. We shall briefly describe one way to
deal with the divergent part of (60) by extending the
approach developed by Christensen in Refs. [11,12] (see,
also, Adler, et. al. in Refs. [14,15] for a related but slightly
different approach). We intend to discuss at more length
this very technical aspect of our work in a paper in prepa-
ration [90]. However, in order to be as complete as pos-
sible, we shall here provide partial results related to the
present work.

For a given spacetime dimension, we can formally
evaluate the divergent part of (60) and express the result
of our calculation as a power series in �;aðx; x0Þ. By con-
sistently averaging this power series over all the angular
directions joining x0 and x and by adding to it, for D even,
the opposite of (79) as well as�ðD=4Þ
Dg��v1, we find a
final divergent expression constructed from ‘‘simple’’ con-
served geometrical tensors which can be absorbed into a
bare gravitational Lagrangian. It is important to note that
the averaging process of the direction-dependant terms
adopted in Refs. [11,12,14,15]) must be modified in order
to take into account the spacetime dimension.

For D ¼ 2, we obtain for the averaged divergent part of
(60) an expression of the form

h jT��j ising�A
g��
�

þ½B1m
2g��þB2Rg���lnðM2�Þ

þ finite terms inm2g�� and Rg��: (162)

Here A, B1, and B2 are dimensionless constants. This
singular tensor cannot be absorbed into a bare gravitational
Lagrangian of Einstein-Hilbert type because, in two di-
mensions, the Euler number (133) being a topological
invariant, the tensor R�� � ð1=2ÞRg�� vanishes identi-

cally. However, this tensor can be absorbed into the
Polyakov nonlocal bare gravitational action

Sgrav ¼
Z
M
d2x

ffiffiffiffiffiffiffi�gp �
aBR

1

h
R� 2�B

�
: (163)

It should be noted that the nonlocal LagrangianL ¼ R 1
h
R

provides, by functional derivation with respect to the met-
ric tensor, a contribution in 2Rg�� but also a nonlocal

contribution proportional to

� 2

�
1

h
R

�
;��

þ
�
1

h
R

�
;�

�
1

h
R

�
;�
� 1

2
g��

�
1

h
R

�
;p

�
1

h
R

�
;p
:

(164)

We think that these two contributions must be added to
(134). In the particular case of a two-dimensional back-
ground, it is not natural to follow Wald’s prescription and
to construct the conserved tensor ��� from a purely local

Lagrangian.
For D ¼ 3, we obtain for the averaged divergent part of

(60) an expression of the form

h jT��j ising � A
g��

�3=2
þ B

½R�� � ð1=2ÞRg���
�1=2

þ finite terms in m3g�� and

m½R�� � ð1=2ÞRg���: (165)

Here A and B are dimensionless constants. This singular
tensor can be absorbed into a bare gravitational action
given by

Sgrav ¼ � 1

16�GB

Z
M
d3x

ffiffiffiffiffiffiffi�gp ðR� 2�BÞ: (166)

For D ¼ 4, we obtain for the averaged divergent part of
(60) an expression of the form

h jT��j ising�A
g��

�2
þB½R���ð1=2ÞRg���

�
þðC1H

ð4;2Þð1Þ
��

þC2H
ð4;2Þð2Þ
�� þC3H

ð4;2Þð3Þ
�� Þ lnðM2�Þ

þ finite terms inm4g��;m
2

�½R���ð1=2ÞRg���;Hð4;2Þð1Þ
�� ;

Hð4;2Þð2Þ
�� and Hð4;2Þð3Þ

�� : (167)

Here A, B, C1, C2, and C3 are dimensionless constants.
This singular tensor can be absorbed into a bare gravita-
tional action given by
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Sgrav ¼ � 1

16�GB

Z
M
d4x

ffiffiffiffiffiffiffi�gp ðR� 2�B þ 
ð1Þ
B R

2

þ 
ð2Þ
B RpqR

pq þ 
ð3Þ
B RpqrsR

pqrsÞ: (168)

In this bare gravitational action, the term in 
ð3Þ
B RpqrsR

pqrs

could be removed because, as we have already noted, the

Euler number (140) is a topological invariant in four
dimensions. Similarly, it would have been possible to

remove the Hð4;2Þð3Þ
�� term from (167).

For D ¼ 5, we obtain for the averaged divergent part of
(60) an expression of the form

h jT��j ising � A
g��

�5=2
þ B

½R�� � ð1=2ÞRg���
�3=2

þ ðC1H
ð4;2Þð1Þ
�� þ C2H

ð4;2Þð2Þ
�� þ C3H

ð4;2Þð3Þ
�� Þ

�1=2

þ finite terms in m5g��;m
3½R�� � ð1=2ÞRg���; mHð4;2Þð1Þ

�� ;mHð4;2Þð2Þ
�� and mHð4;2Þð3Þ

�� : (169)

Here A, B,C1,C2, andC3 are dimensionless constants. This singular tensor can be absorbed into a bare gravitational action
given by

Sgrav ¼ � 1

16�GB

Z
M
d5x

ffiffiffiffiffiffiffi�gp ðR� 2�B þ 
ð1Þ
B R

2 þ 
ð2Þ
B RpqR

pq þ 
ð3Þ
B RpqrsR

pqrsÞ: (170)

Of course, this bare gravitational action cannot be simplified because, forD> 4, the Euler number (140) does not remain a
topological invariant. Similarly, the Hð4;2Þð3Þ

�� term cannot be removed from (169).
Finally, for D ¼ 6, we obtain for the averaged divergent part of (60) an expression of the form

h jT��j ising � A
g��

�3
þ B

½R�� � ð1=2ÞRg���
�2

þ ðC1H
ð4;2Þð1Þ
�� þ C2H

ð4;2Þð2Þ
�� þ C3H

ð4;2Þð3Þ
�� Þ

�
þ ðD1H

f2;0gð1Þ
�� þD2H

f2;0gð3Þ
��

þD3H
ð6;3Þð1Þ
�� þD4H

ð6;3Þð2Þ
�� þD5H

ð6;3Þð3Þ
�� þD6H

ð6;3Þð4Þ
�� þD7H

ð6;3Þð5Þ
�� þD8H

ð6;3Þð6Þ
�� þD9H

ð6;3Þð7Þ
��

þD10H
ð6;3Þð8Þ
�� Þ lnðM2�Þ þ finite terms in m6g��;m

4½R�� � ð1=2ÞRg���; m2Hð4;2Þð1Þ
�� ;m2Hð4;2Þð2Þ

�� ;

m2Hð4;2Þð3Þ
�� ;Hf2;0gð1Þ

�� ;Hf2;0gð3Þ
�� ;Hð6;3Þð1Þ

�� ;Hð6;3Þð2Þ
�� ;Hð6;3Þð3Þ

�� ;Hð6;3Þð4Þ
�� ;Hð6;3Þð5Þ

�� ;Hð6;3Þð6Þ
�� ;Hð6;3Þð7Þ

�� and Hð6;3Þð8Þ
�� :

(171)

Here A, B, C1, C2, C3, D1; . . . ; D9, and D10 are dimensionless constants. This singular tensor can be absorbed into a bare
gravitational action given by

Sgrav ¼ � 1

16�GB

Z
M
d6x

ffiffiffiffiffiffiffi�gp ðR� 2�B þ 
ð1Þ
B R

2 þ 
ð2Þ
B RpqR

pq þ 
ð3Þ
B RpqrsR

pqrs þ �ð1Þ
B R

3 þ �ð2Þ
B RRpqR

pq

þ �ð3Þ
B RpqR

p
rR

qr þ �ð4Þ
B RpqRrsR

prqs þ �ð5Þ
B RRpqrsR

pqrs þ �ð6Þ
B RpqR

p
rstR

qrst þ �ð7Þ
B RpqrsR

pquvRrsuv

þ �ð8Þ
B RprqsR

p
u
q
vR

rusvÞ: (172)

This bare gravitational action could be simplified by
using the fact that the Euler number (157) is a topological
invariant. This result could be used to remove from the bare

gravitational action a term such as �ð8Þ
B RprqsR

p
u
q
vR

rusv.
Similarly, it would have been possible to remove the

Hð6;2Þð8Þ
�� term from (171).
To conclude this subsection, it is important to note that

the previous results must be taken with a grain of salt.
Indeed, Eqs. (162), (165), (167), (169), and (171) are
formal relations: they display on a very condensed form
the true behavior of the averaged divergent part of (60) in
the limit of small� (for more details, we refer to Ref. [90]).

C. Hadamard renormalization versus renormalization
in the effective action

Field quantization in curved spacetime can be addressed
very efficiently by using the effective action [80,88,91].
This basic object contains, in principle, all the information
about a given quantum field theory but, unfortunately, it is
not usually possible to express it explicitly. Even in the
very simple case of the scalar field theory considered in the
present article, we have only an approximation for the
associated effective action, the so-called DeWitt-
Schwinger (DS) approximation [1,80,88,91–93], which
may be represented by the asymptotic series [88]
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WDS ¼
Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
�

�
1

2ð4�ÞD=2

�
Z þ1

0

dðisÞ
ðisÞD=2þ1

e�m2is�ðx; sÞ
�

(173)

where �ðx; sÞ is a purely geometrical object (see,
Ref. [88]) which satisfies

lim
s!þ1e

�m2is�ðx; sÞ ¼ 0 (174)

and which can be formally written for s! 0 on the form

�ðx; sÞ � Xþ1

k¼0

akðxÞðisÞk: (175)

Here, akðxÞ are the diagonal DeWitt coefficients. The four
first ones can be found in Refs. [88,94,95] and, because we

have previously assumed that spacetime has no boundary,
we have for their global (or integrated) expressions

Z
M
dDx

ffiffiffiffiffiffiffi�gp
a0 ¼

Z
M
dDx

ffiffiffiffiffiffiffi�gp
; (176)

Z
M
dDx

ffiffiffiffiffiffiffi�gp
a1 ¼

Z
M
dDx

ffiffiffiffiffiffiffi�gp ½�ð�� 1=6ÞR�; (177)

Z
M
dDx

ffiffiffiffiffiffiffi�gp
a2 ¼

Z
M
dDx

ffiffiffiffiffiffiffi�gp ½ð1=2Þð�� 1=6Þ2R2

� ð1=180ÞRpqRpq
þ ð1=180ÞRpqrsRpqrs�; (178)

and

Z
M
dDx

ffiffiffiffiffiffiffi�gp
a3 ¼

Z
M
dDx

ffiffiffiffiffiffiffi�gp ð½ð1=12Þ�2 � ð1=30Þ�þ 1=336�RhRþ ð1=840ÞRpqhRpq � ð1=6Þð�� 1=6Þ3R3

þ ð1=180Þð�� 1=6ÞRRpqRpq � ð4=2835ÞRpqRprRqr þ ð1=945ÞRpqRrsRprqs
� ð1=180Þð�� 1=6ÞRRpqrsRpqrs þ ð1=7560ÞRpqRprstRqrst
þ ð17=45360ÞRpqrsRpquvRrsuv � ð1=1620ÞRprqsRpuqvRrusvÞ: (179)

The DeWitt-Schwinger representation (173) of the effec-
tive action is a purely local geometrical object which
contains all the information on the ultraviolet behavior of
the quantum theory of the scalar field obeying the wave
equation (5) but which does not take into account its state
dependence. By functional derivation of (173) with respect
to the metric tensor, we can construct the formal stress-
energy tensor

hTDS
��i ¼ 2ffiffiffiffiffiffiffi�gp �WDS

�g��
: (180)

Of course, it is also a purely local geometrical object which
is furthermore state independent. However, in spite of this
last drawback, it has been extensively used, in the four-
dimensional context, in order (i) to understand the regu-
larization and renormalization of the true (i.e., state-
dependent) stress-energy tensor (see, for example,
Ref. [1]) or (ii) to provide approximations valid in the
large mass limit for this true stress-energy tensor (see, for
example, Refs. [89,91,96,97]). In the present subsection,
we shall briefly discuss some aspects of the renormaliza-
tion of the formal stress-energy tensor (180) directly linked
to our propose in order to shed light, from a different point
of view, on the results obtained above but also to advocate,
with in mind practical applications, the use of the
Hadamard method we have developed.

First, it is important to note that the effective actionWDS

is divergent at the lower limit of the integral over s for all
the positive values of the dimension D. For D ¼ 2 and

D ¼ 3, this divergent behavior is associated with the inte-
grated DeWitt coefficients (176) and (177); for D ¼ 4 and
D ¼ 5, it is associated with the integrated DeWitt coeffi-
cients (176)–(178); and for D ¼ 6, it is associated with the
integrated DeWitt coefficients (176)–(179). As a conse-
quence, from (180) and by using (136)–(138) and (146)–
(155), we can very easily obtain results analogous to those
described in Sec. IVB concerning the formal expression of
the divergent part of the stress-energy tensor.
The treatment of the divergent behavior of (180) can be

achieved by first regularizing the effective action (173),
then by absorbing its divergent part into a bare gravita-
tional action and finally by functionally deriving the re-
normalized effective action so obtained. By considering
the dimensionality D of spacetime as a complex number,
the effective action WDS can be regularized by analytic
continuation and its divergent part can be extracted coher-
ently and naturally absorbed into a bare gravitational ac-
tion [1,88]. The resulting renormalized effective action can
be written in the form

WDS
ren ¼

Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
�

�
� 1

2½ðD=2Þ!�ð4�ÞD=2

�
Z þ1

0
dðisÞ lnð4�M2isÞ

�
@

@ðisÞ
�
D=2þ1

�½e�m2is�ðx; sÞ�
�

(181)

for D even and in the form
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WDS
ren ¼

Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
�

�
1

2½�ðD=2Þ= ffiffiffiffi
�

p �ð4�ÞD=2

�
Z þ1

0

dðisÞ
ðisÞ1=2

�
@

@ðisÞ
�
D=2þ1=2½e�m2is�ðx; sÞ�

�

(182)

for D odd. Formulas (181) and (182) generalize results
displayed in Ref. [88] forD ¼ 2, 3, 4. In Eq. (181),M is an
arbitrary mass scale parameter (the renormalization mass)
which is necessary in dimensional regularization because
only dimensionless quantities can be analytically contin-
ued. M remains in the renormalized effective action for D
even. Now, by inserting (181) or (182) into (180), we can
obtain a renormalized stress-energy tensor for D even orD
odd. Of course, the object calculated in that way is only a
state-independent approximation of the true expectation
value of the stress-energy operator. Furthermore, because
in order to obtain (181) and (182) we have discarded not
only infinite terms involving the integrated DeWitt coef-
ficients but also finite ones which have been absorbed by
finite renormalization, this object is also ambiguously de-
fined. The corresponding ambiguities are obtained by func-
tional derivation of the integrated DeWitt coefficients and
are those displayed in Sec. IVA.

Let us now consider the part of the renormalized effec-
tive action (181) associated with the renormalization mass
M. By using (174) we obtain for its expression

WDS
M2 ¼

Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q �
lnM2

2½ðD=2Þ!�ð4�ÞD=2
�
@

@ðisÞ
�
D=2

� ½e�m2is�ðx; sÞ�
�
s¼0

(183)

and, from (175) and (180), it provides a geometrical am-
biguity associated with the stress-energy tensor given by

�M2

�� ¼ lnM2

2ð4�ÞD=2 �
2ffiffiffiffiffiffiffi�gp �

�g��

�Z
M
dDx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q

� XD=2
k¼0

ð�1Þk
k!

ðm2ÞkaD=2�kðxÞ
�
: (184)

This ambiguity is in fact equivalent to that obtained from
the Hadamard formalism in Sec. II [see, Eq. (79)]. Indeed,
for D ¼ 2 it reduces to

�M2

�� ¼ lnM2

2ð4�Þ �
2ffiffiffiffiffiffiffi�gp �

�g��

�
�Z

M
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
½a1ðxÞ �m2a0ðxÞ�

�
(185)

which permits us to recover (92) from (176) and (177). For
D ¼ 4, it reduces to

�M2

�� ¼ lnM2

2ð4�Þ2 �
2ffiffiffiffiffiffiffi�gp �

�g��

�Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
½a2ðxÞ

�m2a1ðxÞ þ ðm4=2Þa0ðxÞ�
�

(186)

which permits us to recover (143) from (176)–(178) by
using (136)–(138). For D ¼ 6, it reduces to

�M2

�� ¼ lnM2

2ð4�Þ3 �
2ffiffiffiffiffiffiffi�gp �

�g��

�Z
M
d6x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðxÞ

q
½a3ðxÞ

�m2a2ðxÞ þ ðm4=2Þa1ðxÞ � ðm6=6Þa0ðxÞ�
�

(187)

which permits us to recover (160) from (176)–(179) by
using (136)–(138) and (146)–(155).
We shall now conclude the present subsection by com-

paring the respective merits of the Hadamard formalism
developed in this article and of the approach based on
renormalization in the effective action. Renormalization
in the effective action is a powerful tool which permits us
to understand the structure of the ultraviolet divergences
contained in the unrenormalized expression of the stress-
energy tensor and to discuss the ambiguity problem.
Because it uses functional derivation with respect to the
metric instead of the point-splitting method, it permits us to
obtain very easily the results mentioned above with a
formalism which is rather independent of the dimension
of spacetime. Hadamard formalism, if we depart from the
axiomatic point of view advocated by Wald, does not seem
so interesting. Unfortunately, calculations based on renor-
malization in the effective action cannot permit us to take
into account the state dependence of the considered quan-
tum theory and therefore to obtain, in a general framework,
the full renormalized expectation value of the stress-energy
operator. In fact, bearing in mind practical calculations,
Hadamard formalism is much more efficient than the
method based on renormalization in the effective action
even if, at first sight and because of its use of the point-
splitting method, it seems rather heavier. It is also impor-
tant to note that, in the present article, we have achieved the
major part of the boring job. The reader who simply wishes
to calculate the renormalized expectation value of the
stress-energy tensor in a particular case must only extract
from the available Feynman propagator the first two co-
efficients of the biscalar Wðx; x0Þ by using the formulas
displayed in Sec. III. If he/she wants furthermore to discuss
the ambiguities of the renormalized stress-energy tensor
obtained, he/she can used the expressions displayed in
Sec. IVA. He/she has nothing else to do.

V. CONCLUSION AND PERSPECTIVES

In this article, we have developed the Hadamard renor-
malization of the stress-energy tensor for a massive scalar
field theory defined on a general spacetime of arbitrary
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dimension. For spacetime dimensions up to 6, we have
explicitly described the renormalization procedure while
for spacetime dimensions from 7 to 11, we have provided
the framework permitting the interested reader to perform
this procedure explicitly in a given spacetime.

Our formalism is very general: we do not assume any
symmetry for spacetime and we do not limit our study to
the massless or the conformally invariant scalar fields. As a
consequence, we have provided a powerful formalism
which could permit us to deal with some particular aspects
of the quantum physics of extra spatial dimensions in a
rather general way or, more precisely, in a more general
way than usual (see, references in Sec. I). We think that this
formalism could be immediately used to discuss, from a
more general point of view, the consequence of the pres-
ence of extra spatial dimensions upon:

(i) The stabilization of Randall-Sundrum braneworld
models of cosmological interest (in connection
with the inflationary scenario and the dark energy
problem).

(ii) The quantum violations of the classical energy con-
ditions (in connection with the singularity theorems
of Hawking and Penrose) as well as of the averaged
null energy condition (in connection with the exis-
tence of traversable wormholes and time machines).

(iii) The fluctuations of the stress-energy tensor (in con-
nection with the validity of semiclassical gravity and
again with the singularity theorems of Hawking and
Penrose).

Furthermore, we think it would be very interesting to
revisit holographic renormalization from the point of view
of the Hadamard formalism and, above all, to use the
Hadamard renormalization procedure developed in this
article to perform calculations of stress-energy tensors
for higher-dimensional black holes. Indeed, even though
such a subject has been a central topic of four-dimensional
semiclassical gravity, very little has been realized in the
higher-dimensional framework. This is rather incompre-
hensible since string theory (or more precisely the so-
called TeV-scale quantum gravity [28–30]) predicts the
possibility of production of such black holes at CERN’s
Large Hadron Collider [98–100] with a production rate
around 1 Hz [101,102]. In this context, the semiclassical
Einstein equations (1) could permit us to partially describe
the black hole evaporation and to test TeV-scale quantum
gravity.

Of course, with the various applications previously men-
tioned in mind, it is necessary to extend our present work to
more general field theories and more particularly to the
graviton field. In order to perform such a generalization, it
is first of all necessary to carry out the program described at
the end of the conclusion of Ref. [71], i.e., to construct the
covariant Taylor series expansions for the off diagonal
Hadamard coefficients for these field theories by going
beyond the existing results.
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APPENDIX: TRACES FOR THE ANOMALOUS
TRACE OF THE STRESS TENSOR

In this appendix, we provide the expressions for the
traces of the three conserved tensors of rank 2 and order 4

Hð4;2Þð1Þ
�� , Hð4;2Þð2Þ

�� , and Hð4;2Þð3Þ
�� and of the ten conserved

tensors of rank 2 and order 6 Hf2;0gð1Þ
�� , Hf2;0gð3Þ

�� , Hð6;3Þð1Þ
�� ,

Hð6;3Þð2Þ
�� , Hð6;3Þð3Þ

�� , Hð6;3Þð4Þ
�� , Hð6;3Þð5Þ

�� , Hð6;3Þð6Þ
�� , Hð6;3Þð7Þ

�� , and

Hð6;3Þð8Þ
�� .
From Eqs. (136a), (137a), and (138a), we easily obtain

g��Hð4;2Þð1Þ
�� ¼ �ð2D� 2ÞhRþ ðD=2� 2ÞR2; (A1)

g��Hð4;2Þð2Þ
�� ¼ �ðD=2ÞhRþ ðD=2� 2ÞRpqRpq; (A2)

g��Hð4;2Þð3Þ
�� ¼ �2hRþ ðD=2� 2ÞRpqrsRpqrs: (A3)

From Eqs. (2.22)–(2.31) of Ref. [89], we obtain after
tedious calculations using results and geometrical identi-
ties of Ref. [73]

g��Hf2;0gð1Þ
�� ¼ �ð2D� 2ÞhhR� 2RhR

� ðD=2� 1ÞR;pR
;p (A4)

g��Hf2;0gð3Þ
�� ¼�ðD=2ÞhhRþð4�2DÞR;pqR

pq

þðD�4ÞRpqhRpqþð2D�4ÞRpq;rsRprqs
�ðD=2�3=2ÞR;pR

;pþð5D=2�5ÞRpq;rRpq;r
�ð4D�6ÞRpq;rRpr;q�ð2D�2ÞRpqRprRqr
þð2D�2ÞRpqRrsRprqs (A5)

g��Hð6;3Þð1Þ
�� ¼ �ð6D� 6ÞRhR� ð6D� 6ÞR;pR

;p

þ ðD=2� 3ÞR3 (A6)

g��Hð6;3Þð2Þ
�� ¼ �ðD=2þ 1ÞRhR� ðD� 2ÞR;pqR

pq

� ð2D� 2ÞRpqhRpq �DR;pR
;p

� ð2D� 2ÞRpq;rRpq;r
þ ðD=2� 3ÞRRpqRpq (A7)
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g��Hð6;3Þð3Þ
�� ¼ �ð3D=2� 3ÞR;pqR

pq � 3RpqhR
pq

� ð3D=8� 3=4ÞR;pR
;p � 3Rpq;rR

pq;r

� ð3D=2� 3ÞRpq;rRpr;q �DRpqR
p
rR

qr

þ ð3D=2� 3ÞRpqRrsRprqs (A8)

g��Hð6;3Þð4Þ
�� ¼ �ð1=2ÞRhRþ ðD=2� 1ÞR;pqR

pq

�DRpqhR
pq � ðD� 2ÞRpq;rsRprqs

� ð3=4ÞR;pR
;p � ð2D� 2ÞRpq;rRpq;r

þ ð2D� 3ÞRpq;rRpr;q þ ðD� 1ÞRpqRprRqr
� ðD=2þ 2ÞRpqRrsRprqs (A9)

g��Hð6;3Þð5Þ
�� ¼ �2RhR� 4R;pqR

pq

� ð8D� 8ÞRpq;rsRprqs � 4R;pR
;p

� ð2D� 2ÞRpqrs;tRpqrs;t
þ ðD=2� 3ÞRRpqrsRpqrs
� ð4D� 4ÞRpqRprstRqrst
þ ð2D� 2ÞRpqrsRpquvRrsuv
þ ð8D� 8ÞRprqsRpuqvRrusv (A10)

g��Hð6;3Þð6Þ
�� ¼�R;pqR

pq�2RpqhR
pq

�ð2Dþ2ÞRpq;rsRprqs�ð1=2ÞR;pR
;p

�ðDþ2ÞRpq;rRpq;rþDRpq;rRpr;q
�ðD=4þ1=2ÞRpqrs;tRpqrs;t�4RpqR

p
rstR

qrst

þðD=4þ1=2ÞRpqrsRpquvRrsuv
þðDþ2ÞRprqsRpuqvRrusv (A11)

g��Hð6;3Þð7Þ
�� ¼ �24Rpq;rsR

prqs � 12Rpq;rR
pq;r

þ 12Rpq;rR
pr;q � 3Rpqrs;tR

pqrs;t

� 6RpqR
p
rstR

qrst þ ðD=2ÞRpqrsRpquvRrsuv
þ 12RprqsR

p
u
q
vR

rusv (A12)

g��Hð6;3Þð8Þ
�� ¼ ð3=2ÞR;pqR

pq � 3RpqhR
pq þ 3Rpq;rsR

prqs

� 3Rpq;rR
pq;r þ 3Rpq;rR

pr;q

þ ð3=4ÞRpqrs;tRpqrs;t þ 3RpqR
p
rR

qr

� 3RpqRrsR
prqs þ ð3=2ÞRpqRprstRqrst

� ð3=4ÞRpqrsRpquvRrsuv
þ ðD=2� 6ÞRprqsRpuqvRrusv: (A13)
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