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Limits on the speed of gravitational waves from pulsar timing
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In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we

show the presence and significance of the so-called surfing effect for pulsar timing measurements. It is
shown that, due to the transverse nature of gravitational waves, the surfing effect leads to enormous pulsar
timing residuals if the speed of gravitational waves is smaller than the speed of light. This fact allows one
to place significant constraints on parameter €, which characterizes the relative deviation of the speed of
gravitational waves from the speed of light. We show that the existing constraints from pulsar timing
measurements already place stringent limits on € and consequently on the mass of the graviton m,. The
limits on m, = 8.5 X 1072* are 2 orders of magnitude stronger than the current constraints from Solar
System tests. The current constraints also allow one to rule out massive gravitons as possible candidates
for cold dark matter in the galactic halo. In the near future, the gravitational wave background from
extragalactic super massive black hole binaries, along with the expected submicrosecond pulsar timing
accuracy, will allow one to achieve constraints of € < 0.4% and possibly stronger.
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L. INTRODUCTION

Gravitational wave astronomy is an active field of re-
search which promises to open up a new window into the
physical universe [1-7]. The current and future laser inter-
ferometric gravitational wave detectors, high precision
pulsar timing, along with measurements of the anisotropies
in the temperature and polarization of the cosmic micro-
wave background have the potential to discover gravita-
tional waves in a broad range of frequencies in the near
future (see [8—10] for recent discussions).

In this paper we shall be mainly interested in pulsar
timing as a laboratory for gravitational wave physics.
Propagation of pulsar signal through space-time perturbed
by gravitational waves results in the appearance of anoma-
lous timing residuals (i.e. differences between observed
and theoretically predicted times of arrival). Pulsar timing
provides a unique tool for observing gravitational waves in
a low-frequency band (1077 Hz < f,,, < 107° Hz) [9,11-
17]. The main sources of gravitational waves at these
frequencies are expected to be of extragalactic origin.
The strongest sources would be supermassive black hole
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binaries in the center of galaxies [18-21]. Relic gravita-
tional waves, which are the remnants from the early history
of the Universe, may also contribute a significant fraction
to the gravitational wave background at these frequencies
[22,23]. Pulsar timing could also measure gravitational
waves from superstrings [24], as well as several other
exotic sources [25].

The main methods to detect gravitational waves are
based on the analysis of their interaction with electromag-
netic fields [26-28]. The interaction of gravitational waves
with electromagnetic waves leaves measurable imprints on
the latter. For example, the phase variations in the electro-
magnetic wave propagating in the field of a gravitational
wave and its implications for space radio interferometry
were studied in [29] (see also [30]). In [31], analyzing these
phase variations in a situation when the speed of gravita-
tional waves could be smaller than the speed of light, the
authors introduced the concept of “surfing effect” and
studied its implications for the precision interferometry
measurements. In this paper we shall consider the impli-
cations of the surfing effect for pulsar timing measure-
ments. As we shall show, due to the transverse nature of
gravitational waves, the surfing effect can lead to enormous
observable pulsar timing residuals if the speed of gravita-
tional waves is smaller than the speed of electromagnetic
waves. We shall use this fact, along with the expected
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precision of pulsar timing measurements, to place stringent
upper limits on the parameter € = (¢ — v,,)/c which
characterizes the deviation of the speed of gravitational
waves from the speed of light. We show that, for a realistic
gravitational wave background and a reasonable time du-
ration of observations, the achievable limits are € < 0.4%.
Constraining the speed of gravitational waves is an inter-
esting experimental challenge attracting much theoretical
and experimental interest [32—-37]. We argue that the con-
straint on € from pulsar timing would provide the strongest
current limitations on the deviation of the speed of gravi-
tational waves from the speed of light.

It is worth mentioning that the surfing effect considered
in this paper is quite generic. The surfing effect occurs in
any physical situation where the phase speed of gravita-
tional waves is smaller than the phase speed of electro-
magnetic waves [29,31]. For example, this is the case in
theories which predict a nonvanishing rest mass for gravi-
ton [33,38,39]. Although, generically, these theories pre-
dict extra polarization states for gravitational waves, in our
work we shall restrict our analysis to effects caused only by
transverse traceless gravitational waves. Another possible
scenario for the surfing effect to arise is to consider the
interaction of gravitational waves and electromagnetic
waves in the presence of plasma. In this case the phase
speed of gravitational waves remains unchanged and is
equal to ¢ (i.e. the speed of light in a vacuum), while the
phase speed of electromagnetic waves becomes generally
greater than c [40].

The plan of the paper is as follows. We shall begin in
Sec. II with the analysis of propagation of an electromag-
netic wave in the field of a single monochromatic plane
gravitational wave. We shall calculate the timing residuals
due to a single gravitational wave and discuss the mani-
festations and physical consequences of the surfing effect.
In Sec. III we generalize the surfing effect for the case of an
arbitrary gravitational wave field. We derive the statistical
properties of the timing residual signal based on the statis-
tical properties of the gravitational wave field. In Sec. IV
we calculate the achievable constraints on € depending on
the strength of the gravitational wave background charac-
terized by the energy density parameter {},,,. In Sec. V we
study the physical consequences of the surfing effect in
pulsar timing. We show that the gravitational wave back-
ground from extragalactic black holes allows one to place
strong limits on €. Furthermore, we show that the surfing
effect can also place a strong upper bound on the mass of a
graviton. Finally, we conclude the paper in Sec. VI with a
summary of the main results of this work.

II. PULSAR TIMING RESIDUALS FOR A SINGLE
MONOCHROMATIC GRAVITATIONAL WAVE

In this paper we shall be working in the framework of a
slightly perturbed Minkowski space-time with coordinates
x* = (ct, x') and the metric given by
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ds* = —c*dt* + (8;; + h;)dx'dx/, (1)

where h;; is the gravitational wave perturbation. For clarity
and in order to gain physical insight into the problem, in
this section we shall consider the case of a single mono-
chromatic plane gravitational wave. In the next section, we
shall generalize our analysis to the case of an arbitrary
gravitational wave field. For a monochromatic gravita-
tional wave the metric perturbation #4;; takes the form
[26,27]

hij — hpijeik#x“ — hpije—i(k[,ct—k,-x"), (2)

where / is a complex amplitude of the gravitational wave
with random phase, k,, = (ko, k;) is the wave vector, and
pir 1s the polarization tensor of the gravitational wave.
Introducing a set of two mutually orthogonal unit vectors
[; and m; orthogonal to the wave vector k;, the polarization
tensor p;; has the form [26,27]

pix = 3 = im)(l, * imy), 3)

where * corresponds to the two independent states of
circular polarization. Because of the transverse and trace-
less nature of gravitational waves, the polarization tensor
satisfies the following conditions:
pak! =0, pud™ =0. 4)

For further discussion, it is convenient to introduce the
wave number k = (8;;k'k/)!/2, and a unit vector in the
direction of the wave propagation k' = k’/k. The wave-
length of the gravitational wave is related to the wave
number by the equality k = 27/A,,,. The frequency of
the gravitational wave f,, is related to the time component
of the wave vector through the relation k, = 27f,,,/c.

The speed of a gravitational wave is determined by the
relationship vy, = fowAgw- In general relativity gravita-
tional waves travel at the speed of light, i.e. vy, = c,
which implies a relationship (dispersion relationship) k =
ko. In order to analyze the possibility v, # c, let us
introduce a phenomenological parameter € describing the
relative deviation of v,,, from the speed of light ¢

ck
where vy, = fowAgw = 0= (1 - e).

k
&)

The quantity € has been introduced as a phenomenological
parameter, and thus the analysis that follows is valid for
any theory that predicts gravitational waves with vy, # c.
Particularly of interest are modifications of general rela-
tivity that predict massive gravitons. For these models, |€|
can be related to the rest mass of the graviton m, through
the relation [34]

w
e=—2F%,
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Let us move our attention to pulsar timing measure-
ments. The effect of a gravitational wave upon the mea-
sured frequency of a pulsar signal is given by [11,12]

1 (p . 0hy;
Av() 2—/ ds(e’e/—/>
Vo 2c Jo at

where v, is the unperturbed pulsar frequency in the ab-
sence of gravitational waves and Av(r) = v(f) — v, is the
variation of the pulsar frequency due to the presence of a
gravitational wave. D is the distance from the pulsar to the
observer, integration variable s is the distance parameter
along the unperturbed light ray path from the pulsar to the
observer, e’ is the unit vector tangent along this path (i.e.
unit vector in the direction from the pulsar to the observer),
and the subscript indicates the integration along this path.
The unperturbed light ray path is given by

)

s
path

t(s) =1t— %, xi(s) = x' — efs, (8)
where t and x' determine the time and position of the
observation. Without loss of generality we can set x' = 0
by choosing a spatial coordinate system with an observer at
its origin.

Substituting the path (8) into (7), taking into account (2)
and (5), after straightforward integration we arrive at

Av()

1
140 2

_ i(l—e—k;e")kD
(1- e)heiefpi-e_ik(l_f)”’[l e ~€). ]
/ (1 — € — ke

()]

The pulsar timing measurements customarily measure
the timing residuals, i.e. the difference between the actual
pulse arrival times and times predicted from a spin-down
model for a pulsar [12,16]. The variations in the measured
frequency, due to the presence of a gravitational wave, will
cause an anomalous timing residual R(¢) in the pulse arrival
time given by [12]

Av(t), (10)
0

R(t)=[_Tdt ”

where T is the time of observations, and the residual R(¢) is
measured in seconds. Note that, for convenience, in the
above expression we have explicitly retained an arbitrary
time of measurement ¢, while in [12] the measurement time
t was set to zero. Substituting expression (9) into (10), we
get for the timing residual due to a single monochromatic
gravitational wave

R(t) = %heiejp[jefik(lfe)ct(l — eik(1=e)eT)
c

_ Li(l—e—k;e)kD
X [le—] (11)
(1 — € — k;e")
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Before proceeding further, let us analyze the above expres-
sion. The expression in the square brackets on the right side
of (11) becomes large (proportional to kD ~ D/ Agy) When

(1—€—kie')—0,i.e.
1 ‘ .
R ~__lheleip.. —ik(1—€)ct 1— ik(1—e)cT
(1) Trc e’ pie (I—e )
X [kD(1 + 0(8))],
for 8 = (1 — € — k;e')kD < 1. (12)

Hence, for gravitational waves traveling in a direction at a
sufficiently small angle to the direction from the pulsar, i.e.
k;e' = (1 — €), there is a resonance increase in the expres-
sion for the timing residual. In the case when € = 0 this
does not lead to a growth of the timing residual R(?) itself,
due to the transverse nature of the gravitational wave [since
e'e/p;; — 0 when k;e' — 1, see expression (21)]. On the
other hand, if € >0, the expression for R(r) increases
significantly for k;e! = (1 — €). The resonance occurs
when the signal from the pulsar “surfs” along the gravi-
tational wave, i.e. travels at a small angle cosf = (1 — €)
to the gravitational wave. This picture is reminiscent of
wave surfing, so for this reason following [31] we call this
effect, of a resonant increase in R(7), as the surfing effect. It
is worth noticing that the above analysis closely resembles
considerations in [31], where the surfing effect manifested
itself in the resonance growth of the phase variation of
electromagnetic waves, leading to an observable angular
displacement of distant quasars. In the current work, we are
analyzing the signature of the surfing effect in pulsar
timing residuals.

III. PULSAR TIMING RESIDUALS FOR AN
ARBITRARY GRAVITATIONAL WAVE FIELD

In the previous section we calculated the timing residual
due to a single plane monochromatic gravitational wave. In
this section we shall generalize our analysis to an arbitrary
gravitational wave field. In general, an arbitrary gravita-
tional wave field can be decomposed into spatial Fourier
modes

hijt, ') = f kY [hy(K!, 1) p;; (ke

s=1,2
+ R, 1)y (ke '] (13)

where d°k denotes the integration over all possible wave
vectors, and s = 1, 2 corresponds to the two linearly inde-
pendent modes of polarization satisfying the orthogonality
condition

s sijE

pijP = 6&\‘" (14)

The mode functions h,(k’, f) correspond to plane mono-
chromatic waves
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hy(ki, 1) = hy(ki)e k=€t (15)

Because of the linear nature of the problem, following the
decomposition (13), the total timing residual due to an
arbitrary gravitational wave field can be presented in the
following manner:

R() = f Pk > [h(K)R(t; K, 5) + i (K)R*(1; k', 5)].

s=1,2
(16)

Using the results of the previous section, the contribution
from a single Fourier component R(t; k', s) is given by

~ . 1 .o e o
R(t; K, S) — %e’ejp,’je ik(1 e)cr(l _ etk(l e)cT)

_ i(l—e—k;e")kD
X [1 S ] (17)
(1 — € — k,»e')

where the tilde over R in the above expression is intro-
duced to indicate explicit factoring out of the gravitational
wave amplitude 4 compared with (11).

In general, if we have the information about the mode
functions &,(k'), using expressions (16) and (17) we can
calculate the expected timing residual for an arbitrary
gravitational wave field. In most of the practically interest-
ing cases we do not have such a complete knowledge of the
gravitational wave field, but we are restricted to the knowl-
edge of its statistical properties. To proceed, let us assume
the following statistical properties:

(hy(k')) =0, (18)

iNLE (LI — P h (k)
Chy K () = <0
where the brackets denote ensemble averaging over all
possible realizations, and P, (k) is the metric power spec-
trum per logarithmic interval of k. These conditions corre-
spond to a stationary statistically homogeneous and
isotropic gravitational wave field.

The positing of the statistical properties of the gravita-
tional wave field (18) allows us to calculate the statistical
properties of the timing residual R(¢). Using (16) and (18),
and taking into account the orthogonality property (14),
after straightforward calculations, we arrive at the follow-
ing statistical properties for the timing residual R:

633’63(ki - k/i);

(R(1)) =0, (19a)
2 dk 52
(R*(1)) = TPh(k)R (k), (19b)
where we have introduced the transfer function
- 1 - .
R2(k)=— | dQY |R(t; K, 5)|% 2
0 =g, [dOZIREL IR 20

In the above expression d{) represents integration over the
possible directions of gravitational wave (i.e. d°’k =
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k2dkdQ). From (17) and (20) it follows that the transfer
function R2(k) does not depend on time variable ¢, which is
a reflection of the stationarity of the underlying gravita-
tional wave field.

The expression for the transfer function can be explicitly
calculated. In order to do this, let us first introduce a
spherical coordinate system (6, ¢) related to the spatial
coordinates {x'} (following notations of [41]). Without loss
of generality, we can assume that our spatial coordinate
system is chosen such that the unit vector from the pulsar to
the observer points in the North Pole direction, i.e. e/ =
(0,0,1). Let us also introduce the quantity u = cosf =
e;k', characterizing the angle between the direction of
gravitational wave propagation and the direction from
pulsar to the observer. Furthermore, let ¢ denote the
azimuthal angle that is subtended by k' projected onto
the (x',x?) plane, ie. k' =cos¢sind and k> =
sing sinf. Introducing ef and el‘/ﬁ which are the meridian
and azimuthal unit vectors perpendicular to the gravita-
tional wave vector k;, respectively, the polarization tensors
for gravitational waves (3) take the form jY),-j(ki) = (ef =
ie?)(e? + ie;ﬁ)/ 2, with = corresponding to the two inde-
pendent circularly polarized degrees of freedom s = 1,2
(for a detailed discussion see for example [42,43]). Taking
into account the relation

elelp;; =51 — p)e*??, @

substituting (17) into (20) and setting d{) = dudd, after
integration over ¢, we arrive at the expression for the
transfer function

R0 = spsin(“Sh0 = 0) [ autr - oy
sin* {2 (1 — € — w)}

The integrand under the integral in the above expression is
illustrated in Fig. 1. As can been seen, when € # 0, the
predominant contribution to the integral comes from the
resonance region u = (1 — €). Thus, in this case, the
predominant contribution to the timing residual (R”) comes
from “surfing” gravitational waves, i.e. waves for which
# = (1 — €). In the physically interesting limit e — 0 and
kD — oo, we can calculate the integral in (22) explicitly.
We refer the reader to the appendix for details of this
calculation. The result is as follows:

R*(k) =~

o sinz(kCTT(l - 6))[1 + %’FEZICD:I. (23)
The above expression allows us to simply quantify the
condition for the surfing effect to be dominant, €>kD >
1. As we shall show in the next section, given the precision
level of the current and planned pulsar timing measure-
ments, the surfing effect allows one to place significant

044018-4



LIMITS ON THE SPEED OF GRAVITATIONAL WAVES ...

10*

=10°

D/A,

Integrand

FIG. 1 (color online).
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The illustration of the resonance effect, present for € # 0. The graphs show integrand in expression (22). For

the case € # O the integrand sharply peaks at angle u = (1 — €) (solid red line), while for the case € = 0 the effect is absent (dashed
blue line). In the case of € # 0, the gravitational waves travelling at an angle cosf = (1 — €) to the line of sight are the predominant
contributors to the surfing effect. The figure on the left shows the integrand for the whole region of w, while the figure on the right

zooms into the region around the resonance.

constraints on the € parameter if € > 0 (the surfing effect
does not work if € <0, i.e. when the phase velocity of
gravitons is larger than c¢).

Before proceeding, it is instructive to compare the re-
sults of this section with the results of [31]. More specifi-
cally, it is interesting to compare expression (23) for the
transfer function of timing residuals with its counterpart
expression (29) in [31] for the transfer function of angular
displacement

Aa*(k) = 51 + 5we’kD].

Apart from the differing factors in front of the square
brackets in the two expressions, the crucial difference is
the differing powers of e. In the present work, the surfing
effect manifests in the term €2kD in the square brackets of
(23). In [31], the surfing effect manifests in the term e*kD
in the square brackets of (29). The extra factor of € arose
due to the geometrical specificity of interferometric obser-
vations of phase difference at the ends the interferometric
system (see [31] for details). The main consequences of
this difference are twofold. First, equivalent constraints on
€ require a smaller distance to the source in the case of
pulsar timing compared with interferometric observations.
This is reflected in the fact that in the present work we
focus on galactic pulsars, whereas [31] focused on high
redshift quasars. Second, the condition for the surfing
effect to dominate is different in the two contexts. This
condition, characterized by the value of €, (see expression
(28) below and expression (32) in [31]), places the lower
limit on the potentially possible bounds on €. This limiting
bound is lower for interferometry measurements (€, =

2.3 X 10™%) than for pulsar timing measurements (€, =~
3.2 X 107%). Even so, due to exceptional precision, the
experimentally achievable bounds on € from pulsar timing
measurements would be more stringent.

IV. UPPER LIMITS ON THE SPEED OF
GRAVITATIONAL WAVES

Let us now turn our attention to the various cosmological
and astrophysical candidates for a stochastic gravitational
wave background and their contribution to the surfing
effect in a pulsar timing measurement. Analyzing their
magnitude, we shall study the achievable upper limits on
€ that these backgrounds could place.

The stochastic gravitational wave field may be charac-
terized by the dimensionless strain amplitude 4 ,(f) which
is related to the power spectrum P, in the following way:

he(f) = yPak),  where f = %(1 — o)

The quantity 4.(f) is the root-mean value of the gravita-
tional wave amplitude in a unit logarithmic interval of
frequencies. For analyzing the stochastic gravitational
wave fields, it is also customary to introduce the density
parameter (), to characterize the strength of the gravita-
tional wave field [2,3,6]. ng is related to the power
spectrum P, (k) and strain A.(f) by the relation

27 [k

00 =22 (£ Put =27

(24)

(fiH)zh%(f), (25)

where ky = 27 fy/c = 2wH,/c, and H, is the current
Hubble parameter. The density parameter (), is the cur-
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rent day ratio of energy density of gravitational waves (per
unit logarithmic interval in k) to the critical density of the
Universe p.i = 3¢*H2/87G. Below, for numerical esti-
mations, we set the Hubble parameter H, = 75 ':e—”c‘ /Mpc.
Note, that the above definition (25) is valid for stationary
gravitational wave backgrounds. In a cosmological con-
text, when considering relic gravitational waves, this defi-
nition modifies to g, (k) = %2 (ﬁ)zPh(k) due to the
nonstationary (standing wave) nature of relic gravitational
waves (see for example [3]).

For simplicity, in the numerical estimations below, we
shall assume a simple power law behavior for /. which is
equivalent to a power law spectrum for the density parame-
ter gy,

r = h L) = 2uk)(3)"
! " 26
where

29

Quutk) = - () 120s)

_2af,
c Q@

=~

nr = 2(1 + CY)

Although restricted, this form of spectrum is a good ap-
proximation for a large variety of models in gravitational
wave frequency range of our interest. For example, this
type of power law spectrum, with @ = —2/3, is produced
by the extragalactic coalescing super massive binary black
hole systems [18]. In a cosmological context, this type of a
power spectrum, with spectral index « at the current epoch,
arises due to the evolution of relic gravitational waves with
a primordial spectral index equal to 2(1 + a), [i.e.
P, (k)| prim k2(1@)] [22]. The flat, scale invariant power
spectrum (also known as Harrison-Zeldovich power spec-
trum) corresponds to & = —1 (i.e. ny = 0). In general the
power law spectrum just assumes the absence of features in
the spectrum of gravitational waves at the wavelengths of
our interest.

In practice, when considering pulsar timing, we are
interested in calculating the expected mean square devia-
tion of the timing residuals due to thestochastic back-
ground of gravitational waves (19b). In order to evaluate
(R?(t)) from expression (19b) we require to specify the
limits of integration k.;, and k.,, which determine the
frequency range of gravitational waves that can be probed
by pulsar timing measurements. The lower limit k., is
determined by the time duration of observations T,
kiin = 27 f ops/ ¢ = 27/ cTps. In our estimates we shall
assume T,,, = 10yrs. The upper limit k., = 27/cdt is
determined by the duration of single observation 87 (in
other words, the time of integration), which is usually of
the order of 1-2 hours. We note here that it is this time (and
not the time between consecutive observations, of order of
weeks) which determines k,,, in timing residuals. Indeed,

PHYSICAL REVIEW D 78, 044018 (2008)

if the period of a gravitational wave is smaller than &¢, its
effect is smeared out by the averaging procedure. But if the
period of the gravitational wave lies between the averaging
time and the sampling time, the wave will clearly manifest
itself in the timing residuals. Some authors erroneously use
the inverse sampling time as k,,,,, apparently guided by the
analogy with time series analysis. Thus, in our case, it is
safe to assume 6f K Ty (€. kpax > kmin), and set
kmax = ©© in numerical evaluations below. Furthermore,
we shall be working under the assumption kD =
27D/ Agy > 1, which corresponds to the reasonable as-
sumption that the gravitational waves of our interest
(Agw = 10 lyr) have wavelengths much shorter than the
distance to the pulsar (D ~ 10 kpc).

As can be seen from expression (23) and the consider-
ations in the appendix, the behavior of the transfer function
R?(k) depends on value of the quantity 377€2kD /2. In order
to analyze the various possibilities let us introduce

3 -1/2
€, — (E kainD)

1/2
—32X% 10-3[<%)< Tops )] . 29)
D 10 yr

Below we shall analyze the two possibilities, € < €, and
€ > €,, separately.

In the case € < €, in transfer function R?(k), in expres-
sion (23), we can neglect the second term in the square
brackets in comparison with the first. Furthermore, in the
term sin?(kcT(1 — €))/2 we can neglect the rapid oscilla-
tory factor. Thus, for the transfer function we get

R0 = s (=Y 1 2o |

1
3k3c?

(29)

Substituting the above approximation (29), taking into
account the definition (24) and a power law spectrum
(26), into expression (19b), and setting the limits of inte-
gration as mentioned above, we arrive at

Tgbs h% (fobs)

(R*(1)) = m,

for € X e,. 30)

In the case € > €., neglecting the first term in the
square brackets with respect to the second in (23) and
ignoring the rapid oscillatory factor, the transfer function
can be approximated as

< 2 (1 —cos(keT(1 — €)) 3
201 S0
R 3k2c2( : )[1 + e kD]
we’D
~—. 31
2kc? D

In this case, the expression for (19b) takes the form
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Tgbsh% (fobs)

(1)) =~ 1272(1 — 2a)

€ \2
(—) , for e > e,. (32)
€

Comparing expressions (30) and (32) it can be seen that
when € > €, the surfing effect leads to a strong resonance
contribution (proportional to kD) in the timing residual
compared with the case when € < €,. This dominant
resonance contribution comes from gravitational waves
traveling at an angle cosf = (1 — €) to the direction of
signal propagation from the pulsar (see appendix for
details).

From expressions (30) and (32), it follows that the direct
measurement of pulsar timing residuals would be able to
measure or constrain either s, or h e, depending on the
value of € compared with €.. A null result in timing
residual measurements would place the following upper
limits:

h, < 4.9 X 10*15[@( Rims )(10 yr)}

0.1 wsec/\ Ty
for € K €., (33)
or
R 10yr\1/2
h.e < 11X 10*17[«/1 — 2a<$)< yr)
0.1 sec/\ Ty
10kpc\1/2
X ( ODpC) ]7 fOI’ € > €. (34)

where R, = V(R?(1)) is the precision of the pulsar resid-
ual timing, and h, = h.(f4,) is evaluated at fg,, =
0.1 yr~!. It is also convenient to present these limits in
terms of the density parameter {):

R 2710 yr\4
Q 55.3><10-10[1— 4( s )( )]
& (1 =nr/4) 0.1 mwsec) \ Tops

for € < €, (35)
or
10 kpc R 2
06t = 40 X107 1 ny /)1 PSY( Ko )
gw € 01075 (1= nr/3) D 0.1 usec
10 yrs\3
X ( ) ] for € > e, (36)
Tobs

Thus, from (33) [or (35)], it can be seen that for € < €.,
when the surfing effect is not important, pulsar timing sets
limits directly on &, (or equivalently on (), i.e. the
strength of the gravitational wave background. On the
other hand, when € > €, and the surfing effect becomes
dominant, from (34) [or (36)], it follows that pulsar timing
sets limits on the combination /€ (or €’ equivalently).
The upper limits from pulsar timing, along with possible
sources and sensitivity levels of various experimental tech-
niques to detect gravitational waves, are illustrated in
Fig. 2.
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FIG. 2 (color online). The upper limit on strain amplitude .
and velocity parameter € for gravitational waves, achievable by
pulsar timing residual measurements with precision R, =
0.1 wsec and time of observation T,,, = 10 yr. The shaded
area shows the region that can be probed or ruled out by pulsar
timing observations. The horizontal lines show the strain ., at
f = (10 yr)~!, for some viable sources of gravitational waves.

As follows from the above discussion, and can be seen
from Fig. 2, an independent knowledge of &, would enable
us to directly constrain the parameter €, i.e. constrain the
deviation of the speed of gravitational waves from the
speed of light. From expression (34) we arrive at the
following constrain on e:

10715\ /10 kpc\!/2
651.1X10_2[\/1—2a< ; )( DPC)

R 1 3/2
(@) @
0.1 wsec/\ Ty

In terms of the density parameter (), the constraint has
the form

10710\1/2 /10 kpc\1/2
€ < 6.4 X% 10*3[,/1 — nT/3( 3 ) ( Dpc)

W

R 10 3/2
(o) | a9
0.1 pwsec/\ Ty

In the next section we shall discuss the various viable
candidates for a stochastic gravitational wave background
and explicitly calculate the achievable limits on €. We shall
also discuss the implications of the surfing effect for theo-
ries with massive gravitons.

V. THE PHYSICAL IMPLICATIONS OF THE
SURFING EFFECT

The analysis in Sec. IV indicates that the surfing effect in
pulsar timing can yield interesting constraints on the €
parameter and consequently the mass of the graviton in a
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sufficiently strong gravitational wave background with
Qg ~ 10710 [see (38)]. It is important to note that this
method is fundamentally limited by the value €., which is
currently about 3 X 1073 [see (28)]. Although an increase
in the time of observation will improve overall precision, it
will also increase the value of €., thus worsening the
potential constraints on €. In the future, this method can
become more sensitive with the implementation of large
radio telescopes like the Square Kilometer Array (SKA)
(see [44] for detailed discussion of SKA and its usage in
pulsar astrophysics), which would improve the limitations
to €, ~ 1073, Furthermore, as seen from expression (38)
[or (37)], increasing the pulsar timing accuracy (for ex-
ample, using pulsar timing ensembles [45]) can reduce the
limit down to the critical value e€,.

The gravitational wave background, at the frequency
range of our interest (fg, = 0.1 yr~1), consists of a con-
tribution from a variety of well-established astrophysical
and cosmological sources [3] as well as a possible contri-
bution from exotic remnants of the early universe [24,25].
The strongest contribution to the gravitational wave back-
ground, at these frequencies, comes from the background
of extragalactic coalescing supermassive binary black
holes (SMBH) [18-21]. For this reason, below in
Sec. VA, we shall study the implications of the surfing
effect for this background. Following this, in Sec. VB, we
shall analyze the consequences of the limitations on € for
theories with massive gravitons.

A. Gravitational wave background from extragalactic
black holes

As was mentioned above, one of the strongest sources
for a stochastic gravitational wave background at the fre-
quency range of our interest, fg, ~ Tot = 0.1 yr™!,
comes from the extragalactic black hole binaries. Various
groups have conducted a theoretical study on the strength
of this background [18-21]. There is a general consensus
on the expected gravitational wave strain for this back-

ground:

-2/3
h(f) ~ 10*‘6(L) , 39
) o (39)
corresponding to the value for the density parameter
2/3
Q ~ 2.4 X 10’1(’(4) . 40
ew(f) 01 yr! (40)

The uncertainty surrounding this value of &, arises mainly
due to the uncertainty in the galaxy merger rates as well as
some other astrophysical factors. Taking into account these
uncertainties, the amplitude lies in the interval h.(f =
1 uHz) = 2.5 X 10717 —4 X 10716 [21].

The expected strain 4. from the background of SMBH
allows one to place significant bounds on the € parameter.
Substituting expression (39) into expression (37), and
setting &« = —2/3, we arrive at the following limit on
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upper e:

<37 % 1073[(10 kpc)%( Rims )(10 yr)3/2:|
- D 0.1 wsec/\ Ty ’

(41)

Thus, the stochastic gravitational wave background of
extragalactic SMBH mergers can potentially place very
stringent constraints, € < 0.4%, on the speed of gravita-
tional waves.

B. Implications for theories with massive gravitons

The phenomenological parameter e is directly related to
the mass of the graviton m, [(see (6)]. It is convenient to
rewrite expression (6) in the form

Kmin\2 1 2T obs\2
e(k) = e,,( ‘Z) . where €, = 5(%) . (42

For the fiducial strength of the gravitational wave back-
ground, we get

10719\1/2/10 kpc\1/2
e, = 1.0X 10-2[,/1 — nT/7( 9 ) ( Dpc)

gw

R 10 3/2
(o) | @
0.1 wsec/\ Ty

Note that the factor ny/7 in the above expression (43)
[compared with the factor ny/3 in expression (38)] arises
because we are constraining €, [compared with constraints
on € in (38)]. This leads to an extra factor (k/ky;,) in
integral (19b) and hence slightly modifies the result. The
above limit on €, implies the following limit on the mass of
the graviton

10710 1/4
m, < 1.9 X 1072 eV[(l - nT/7)1/4( )

gw

1/4 1/2 7/4
% (10 kpc) ( R ) (10 yr) ] (44)
D 0.1 wsec Tops

From expression (42) it follows that a stronger constraint
on m, requires smaller values of k.,;;, i.e. requires a longer
time of observation T,. On the other hand, the strongest
possible constraint for €, is determined by the value of €.
[which increases with the time of observation, see expres-
sion (28)]. For this reason, an increase in 7,,, beyond a
value of approximately 25 yr will not lead to an improve-
ment in constraining m,,.

As a concrete example, let us assume that the gravita-
tional wave background from SMBH coalesces dominates
at frequencies 0.1 — 1 yr™!, and that its properties are not
affected by the nonzero mass of the graviton. Then the
existing four years’ precise timing of PSR B1937+421 [45]
allow one to significantly constrain the mass of the gravi-
ton. Setting T, = 4 yr, R = 0.17 wsec, D = 8.3 kpc,
ny =2/3, and Qg (Ty) = 4.2 X 1071 [see (40)] in ex-
pression (44), we arrive at a limit
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m, <85X107* eV, (45)

corresponding to a Compton length for graviton of A, =
h/mgc = 1.5 X 10" km. This bound is about two orders
stronger than the current limit from Solar System tests [46]
and is comparable to future limits from SMBH mergers
obtainable with LISA (Laser Interferomenter Space
Antenna) (see [47] and references therein). It is worth
stressing that the limits from pulsar timing are more robust
and less model dependent than the prospects for LISA.

The surfing effect in pulsar timing puts a stringent con-
straint on the mass of the graviton in some theories of
gravity (see [48]). In [49] the authors propose massive
gravitons as viable candidates for cold dark matter in the
galactic halo. At the frequency ranges of our interest, these
massive gravitons imply € = 0.5. The existing precise
timing of PSR B1937+421 place direct limits on the pa-
rameter {),, € <2 X 1071 [setting Ry = 0.17 u sec
and T,,, = 4 yr in expression (36)] . This implies that
massive gravitons, as candidates to explain the dark matter
in the galactic halo, can be ruled out with the current
observations.

VI. CONCLUSIONS

In this work we have analyzed the consequences of the
surfing effect, introduced in [31], for pulsar timing obser-
vations. The surfing effect, due to the transverse nature of
gravitational waves, leads to a strong observable signature
only when the speed of gravitational waves is smaller than
the speed of light. In order to analyze this possibility, we
have introduced a parameter €, which characterizes the
deviation of the speed of gravitational waves from the
speed of light. By studying the pulsar timing residuals in
the presence of a single plane monochromatic gravitational
wave, followed by a generalization to an arbitrary gravita-
tional wave field, we show the presence and importance of
the surfing effect in the case when € # 0.

The surfing effect allows one to place significant bounds
on the parameter €. For a timing accuracy of R, =
0.1 wsec, and assuming a realistic background of gravi-
tational waves from extragalactic super massive black hole
binary mergers, the achievable limits are € < 0.4%. The
strongest achievable bounds on € are determined by €,.. For
a pulsar at a typical distance D = 10 kpc the value is €, =
0.3%. This limit could potentially be slightly improved by
observing pulsars at a greater distance D.

The surfing effect leads to interesting consequences for
theories with massive gravitons. Using the existing obser-
vations, we have constrained the mass of graviton to m, =<
4 X 1072 eV, which is 3 orders of magnitude stronger
than the current limits from Solar System tests. With future
observations this constraint could improve by an order of
magnitude. Based on the existing observations, we have
also ruled out massive gravitons as candidates to explain
the dark matter in the galactic halo.

PHYSICAL REVIEW D 78, 044018 (2008)

In comparison with precision interferometry methods
considered in [31], pulsar timing measurements (due to
their high precision) should be able to put tighter con-
straints on €. In any case, these two methods of constrain-
ing € are independent and hence should be considered
complementary.
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APPENDIX: EVALUATION OF THE TRANSFER
FUNCTION

Let us evaluate the integral in expression (22)
+1 sin?{f2(1 — € —

1(k) =[ du(l - ,uz)z[ g 2,u)}
-1 (I—€e—p)

in the physically interesting case when € — 0 and kD > 1.
The integral can be separated into two distinctive contri-
butions

[

1(k) = Ing (k) + Ir (), (A2)

where Iyg (k) is the nonresonance contribution

.y SR (1 e - )
hatt = [ = e[ ]

+1 . Sinz{}%(l —€e— )}
- f1—5+A;4 dul =) [ (1—€—p)? ]
(A3)

and Ad%(k) is the resonance (or, in other words surfing,)
contribution

A& (k) = ﬁ HT" du(l — u2)?
y
SR (1 — € — )}
£ . A4
al (- e up } o

The quantity Au occurring in the limits of integration in
the above expressions is fixed by the condition for the
resonance to occur. This condition corresponds to the
region, around u = 1 — €, where the sine function under-
goes a few oscillations. Thus Ay = N/\gW/D = 27N/kD,
where N is the number of oscillations of the sine function,
around the point w = 1 — €, included in the evaluation of
the resonance. The value of N is limited by the condition
Au =27N/kD < €, implying N < €kD/27. Since in
all our considerations we assume € < 1, and €2kD > 1,
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the condition imposed on N is consistent with an additional
condition N >> 1 that we shall assume.

When evaluating (A3), since we assume € < 1, we can
neglect the second integral in comparison with the first. In
the evaluation of the remaining integral we can set € = 0.
Thus, we get

(k) = [_11 du(l + mzsinZ(%D(l - m)
=%ILWAI+MYU—C%%DO—MD)

N.l ! 2 __4
=3 [ ant v wp =1, (AS)

where, assuming kD >> 1, we have explicitly separated out

the rapid oscillatory part and neglected it in the last line.
In order to evaluate (A4), in the case of € < 0 and

kD > 1, it is helpful to notice that the factor (1 — u?)?
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on the right side of (A4) is a slowly varying function over
the range of integration. Taking this factor (evaluated at
pm =1 — €) outside the integral we get the following ap-
proximation for the resonance part of the transfer function:

1—e+Ap 4 I:sinz{kTD(l —€— ,LL)}]
(1—e— p)?
sin’x
2

Lo (k) ~ 4€? [

1—e—Aun

+N
= 262kDf dx
—Nm

X

== 277'6sz(1 - O<L>> ~ 2me*kD. (A6)

N2

Finally, the total transfer function, given by the sum of
the nonresonance (A5) and resonance parts (A6), has the
following form:

1(k) = Ing(k) + Ix(k) = 3[1 + 3we*kD]. (A7)
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